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Can we develop learning algorithms that are robust to
a constant fraction of corruptions in the data?




MOTIVATION

* Model Misspecification/Robust Statistics
[Fisher 1920s, Tukey 1960s, Huber 1960s]

e Qutlier Detection/Removal

« Adversarial/Secure ML
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THE STATISTICAL LEARNING PROBLEM

Unknown
0* samples

>
Ll

» Input. sample generated by a statistical model with unknown 9*
» Goal: estimate parameters 0 so that 0 ~ §*

. .. i : Main performance criteria:
°
Question 1: Is there an efficient learning algorithm? . S e si

* Running time
Robustness

Question 2: Are there tradeoffs between these criteria?




(OUTLIER-) ROBUSTNESS

p

Strong Contamination Model:

Let F be a family of statistical models.

We say that a set of N samples is e -corrupted from F if

it is generated as follows:

« N samples are drawn from an unknown F' ¢ F

« An omniscient adversary inspects these samples and
changes arbitrarily an e-fraction of them.

/

cf. Huber’s contamination model [1964]



EXAMPLE: PARAMETER ESTIMATION

Given i.i.d. samples from an unknown distribution

e.g., a 1-D Gaussian

N(p,0?)

how do we accurately estimate its parameters?

empirical mean: empirical variance:
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John W. Tukey Peter J. Huber

Model Misspecification Robust Estimation of Location
(1960s) (1964)
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What estimators behave well in the presence of outliers?



ROBUST ESTIMATION: ONE DIMENSION

Given corrupted samples from a one-dimensional Gaussian, can we
accurately estimate its parameters?

* Asingle corrupted sample can arbitrarily corrupt the empirical mean and
variance

« But the median and interquartile range work



Fact [Folklore]: Given a set S of N e-corrupted samples from a one-dimensional

Gaussian 5
N (p, %)

with high constant probability we have that:
—u <O (e—l- 1/N) o

where 7; = median(S).

What about robust estimation in high-dimensions?




HIGH-DIMENSIONAL ROBUST MEAN ESTIMATION

Robust Mean Estimation: Given an ¢ - corrupted set of samples
from an unknown mean, identity covariance Gaussian N (s, I)in
d dimensions, recover 1 with

Iz = pll2 = O(e) + O(v/d/N)

: Above convergence rate is optimal [Tukey’75, Donoho’82]



PREVIOUS APPROACHES: ROBUST MEAN ESTIMATION

Estimator Error Rate Running Time
Distance-Based Pruning | ©(evVd) X O(dN) /
Coordinate-wise Median |~ ©(ev/d) X O(dN) /

Geometric Median o(evd) X | poly(d,N)/

Tukey Median O(e) \/ NP-Hard X

Tournament O(e) \/ NO(d) X




DISTANCE-BASED PRUNING
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HIGH-DIMENSIONAL ROBUST STATISTICS: 1960-2016

All known estimators either require exponential time to compute
or can tolerate a negligible fraction of outliers.

Is robust estimation algorithmically possible in high-dimensions?




Peter J. Huber, 1975

“The bad news is that with all currently known algorithms the effort of computing those
estimates increases exponentially in d. We might say they break down by failing to give a
timely answer!

Only simple algorithms (i.e., with a low degree of computational complexity) will survive the
onslaught of huge data sets. This runs counter to recent developments in computational robust
statistics. It appears to me that none of the above problems will be amenable to a
treatment through theorems and proofs. They will have to be attacked by heuristics and
judgment, and by alternative “what if” analyses.|[...]"

Robust Statistical Procedures, 1996, Second Edition.



/

Meta-Theorem [D-Kamath-Kane-Li-Moitra-Stewart’16]

Efficient robust estimators with dimension-independent error for robust
mean and covariance estimation, if inlier distribution has bounded
moments/nice concentration.

(S

Related results by [Lai-Rao-Vempala’16]



ROBUST UNSUPERVISED LEARNING
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Robustly Learning Graphical Models Computational/Statistical-Robustness Tradeoffs

List-decodable Learning and
Robustly Learning Mixture Models




ROBUST SUPERVISED LEARNING

Robust Supervised
Learning
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Test Error

Provable Defenses
against Data Poisoning
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APPLICATIONS

Detecting Patterns
in Biological Data a1}

Regression: Synthetic data

j i I

Outlier Fraction epsilon

Test Error

[D-Kamath-Kane-Li-Moitra-Stewart, ICML'17]
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SUBSEQUENT WORKS

» Sparse Models [Balakrishan-Du-Li-Singh’17, D-Karmalkar-Kane-Price-Stewart'19, D-Kane-Lee-Pensia’22,...]
* Graphical Models [Cheng-D-Kane-Stewart' 18, D-Kane-Stewart-Sun’21, D-Kane-Sun’22]

* Robust Regression/Classification [D-Kane-Stewart'18, Klivans-Kothari-Meka’18, D-Kong-Stewart' 19 Bakshi-
Prasad’21, ...]

* Robust Stochastic Optimization [Prasad-Suggala-Balakrishnan-Ravikumar’19, D-Kamath-Kane-Li-
Steinhard-Stewart’19, ...]

* Robust Estimation via SoS [Hopkins-Li’18, Kothari-Steinhardt-Steurer’18, Karmalkar-Klivans-Kothari’19,
Raghavendra-Yau'19, Bakshi-Kothari’20, D-Hopkins-Kane-Karmalkar’20, Liu-Moitra’21, Bakshi-D-Jia-Kane-Kothari-
Vempala’'21, Ivkov-Kothari’22, ...]

* Near-Linear Time Algorithms [Chen-D-Ge’18, Cheng-D-Ge-Woodruff'19, Depersin-Lecue’19, Dong-Hopkins-
Li’19, Li-Ye'20, Cherapanamjeri-Mohanty-Yau’20, D-Kane-Koongsgard-Li-Tian'21, ...]

« Computational-Statistical Tradeoffs [D-Kane-Stewart’17, D-Kong-Stewart'19, Hopkins-Li’19, ...]
* Connections to Non-Convex Optimization [Chen-D-Ge-Soltanolkotabi’20, Zhu-Jiao-Steinhardt’20, ...]

« List-Decodable Learning [Charikar-Steinhardt-Valiant'17, D-Kane-Stewart' 18, Meister-Valiant'18, Karmalkar-
Klivans-Kothari’19, Raghavendra-Yau’'19, D-Kane-Koongsgard’20, D-Kane-Koongsgard-Li-Tian'21, D-Kane-
Karmalkar-Pensia-Pittas’22]

* Applications in Data Analysis [D-Kamath-Kane-Li-Moitra-Stewart'17, Tran-Li-Madry’18, D-Kamath-Kane-Li-
Steinhardt-Stewart’19, Hayase-Kong-Somani-Oh’21, Du-Fang-D-Li’'23, ... ]
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HIGH-DIMENSIONAL ROBUST MEAN ESTIMATION



RoOBUST MEAN ESTIMATION: GAUSSIAN CASE

Problem: Given an e -corrupted set of points £1,...,ZTN € R¢ from an
unknown distribution D in a known family F, estimate the mean (& of D.

-

Theorem 1: Let € < 1/2 . If D is a spherical Gaussian, there is an
efficient algorithm that outputs an estimate j; that with high probability

satisfies
|E = pllz = O(e) + O(v/d/N)

in the additive contamination model.

First-term of RHS Independent of d !

[D-Kamath-Kane-Li-Moitra-Stewart, SODA'18; D-Kane-Pensia-Pittas, NeurlPS'23]



RoOBUST MEAN ESTIMATION: SuB-GAUSSIAN CASE

Problem: Given an e -corrupted set of points £1,...,ZTN € R¢ from an
unknown distribution D in a known family F, estimate the mean (& of D.

4 N
Theorem 2: Let € < 1/2 . If D is a spherical sub-Gaussian, there is an
efficient algorithm that outputs an estimate j; that with high probability

satisfies
|2 — pllz = O(e/log(1/€)) + O(\/d/N) .

in the strong contamination model.
- J

Information-theoretically optimal error.

[D-Kamath-Kane-Li-Moitra-Stewart, FOCS’16, ICML'17; D-Kane-Pensia-Pittas, ICML'22]



RoBUST MEAN ESTIMATION: BOUNDED COVARIANCE CASE

Problem: Given an e -corrupted set of points £1,...,ZTN € R¢ from an
unknown distribution D in a known family F, estimate the mean (& of D.

- N
Theorem 3: Let e < 1/2. If D has covariance X < I , there is an
efficient algorithm that outputs an estimate 1z that with high probability

satisfies
| — pll2 = O(e+ /d/N) .

in the strong contamination model.
- v

Information-theoretically optimal error.

[D-Kamath-Kane-Li-Moitra-Stewart, ICML'17; Steinhardt, Charikar, Valiant, ITCS’18]



CERTIFICATE OF ROBUSTNESS FOR EMPIRICAL ESTIMATOR

Idea #1: If the empirical covariance is “close to what it should be”, then
the empirical mean works.

- J




CERTIFICATE FOR EMPIRICAL MEAN

Detect when the empirical estimator may be compromised

o ‘. ®
'Y ® 1y
N ® n=— Z X
N 4
° .. @® = uncorrupted
® @® = corrupted
P o
o ©°o0°

There is no direction of large empirical variance




Lemma: Let X}, X, ..., Xy be an €-corrupted set of samples from M (u, I) and N = Q(d/€?)
for

| N | N
1= 1=

with high probability we have:
ISl <1+X  => [E—pl2 < O(ev/log(1/e) + VeX)

in strong contamination model.

p

~




Idea #2: Removing any € - fraction of inliers does not move the
empirical mean and covariance by much.




Idea #3: Iteratively “remove outliers” to “fix” the empirical covariance.




ITERATIVE FILTERING

e
Iterative Two-Step Procedure:

Step #1: Test certificate of robustness of “standard” estimator
Step #2: If certificate is violated, detect and remove outliers

lterate on “cleaner” dataset.

.

General recipe that works in general settings.

We’ll see how this works for robust mean estimation.



FILTERING SUBROUTINE

Either output empirical mean or remove many outliers.

Filtering Approach: Suppose that:

IZ]2 > 1+ Q(elog(1/e))

Let v*be the direction of maximum variance.




FILTERING SUBROUTINE

Either output empirical mean, or remove many outliers.

Filtering Approach: Suppose that:

IZ]2 > 1+ Q(elog(1/e))

Let v*be the direction of maximum variance.

4 N
Project all the points on the direction of v*

Find a threshold 7" such that
Prx.,s[|v" - X — median({v* -z, 2z € S})| >T+1] > 8- e T /2
Throw away all points x such that

v* -z — median({v* - z,x € S})| > T +1

\ lterate on new dataset. )




FILTERING SUBROUTINE: ANALYSIS SKETCH

Either output empirical mean, or remove many outliers.

Filtering Approach: Suppose that:

IZ]2 > 1+ Q(elog(1/e))

Claim: In each iteration, we remove more outliers than inliers.

After a bounded number of iterations, we stop removing points.

Eventually the empirical mean works

Runtime: O(Ndz)



STABILITY CONDITION

Definition Fix0 < e <1/2 andd >¢. Aset S c R? is (¢, d)—stable with respect to u if
for allv € S?~'and every S’ C S such that |S’| > (1 — €)|S| , we have:

’ﬁzxes,v-(m—uﬂg& > lus —pll2 <6

|1 Taes - (o= w)2 = 1| < 82/e = S5~ T2 < 8%/c

Intended for inlier distributions with X < T

Similar definition for distributions as opposed to datasets.

A sufficiently large clean sample from a well-behaved distribution is stable with high
probability.




EFFICIENT ROBUST MEAN ESTIMATION UNDER STABILITY

4 N\

General Theorem Let S be (¢, §)—stable with respect to a vector i, and T' an e- corruption of S .
There is an efficient algorithm that given ¢, §, 7" it computes an estimate @ such that

1 — pll2 = O(5)

Fact Asetof N i.i.d. samples from a well-behaved distribution is (€, §)— stable with high probability.

- For identity covariance sub-Gaussians, § ~ €+/log(1/€) and N > d/?

- For identity covariance sub-exponentials, § ~ elog(1/¢) and N > d/§?

- For identity covariance with bounded k—th central moments (k > 4) , § ~ e!~1/% and N > d(log d) /5>

« For bounded covariance distributions, § ~ y/€ and N > d(logd)/4>
(after removing € - fraction of inliers)




CERTIFICATE FOR EMPIRICAL MEAN

f Lemma Let S be (¢, §)—stable with respect to i, and T" be an e - corruption of S .
|f||ET||2 <1+ , for A >0, then
lur — pll2 < OB + VeN)

A J

Proof Let X, Y be uniform distribution over S, T respectively. Can write Y = (1 — €)X’ + €¢F,
where X' is e—subtraction of X .

Sy = (1 - )2x +eXp +e(l =€) (uxr — pp)(ux — pp)'
Let v be normalized version of ux: — ug .

1+A> v'Syv=>1—-€ev ' Exv+ev Lpv+e(l—ev' (ux — pr)(px — pe) v
> (1—€)(1—0%/€) +e(l = €)llux — pell3
>1-0(8°/€) + (¢/2)|lux’ — pEl3

Rearranging

lux: = bglla = O(6/e + V/A/e)



CERTIFICATE FOR EMPIRICAL MEAN

4 N\

Lemma Let S be (¢, §)—stable with respect to i, and T" be an e - corruption of S .
|f||ET||2 <14+A , for \ >0 - then
lur — pll2 < OB + VeN)

A J

Proof Let X, Y be uniform distribution over S, T respectively. Can write Y = (1 — €)X’ + €F,
where X' is e—subtraction of X .

lux — pellz = O/ + /Ae)

For the means, have that pur = py = (1 — €)ux’ + eug .

lpr — pll2 = [[(1 — €)ux +epr — pll2 = ||px — p+ e(up — px)|2

< |lpx: — pll2 + €llux — pel2
=0(0)+€-0(d/e+ v/ Ae) -



RANDOMIZED FILTERING: IDEA

Main Idea: Suppose we can find f : T'— R>( such that

> fl@)>2) f(x).

zeT x€S
Then we can randomly filter by removing each point z € T with probability o f(x) .

Need this property to hold across iterations, assuming certificate not satisfied.

/

Condition Given any 77 C T such that [T N S| > (1 — 4¢)|S|, if ||Z7/||l2 > 1+ A
there is an explicit f : 77 — R>(such that

Y f@) =2 ) f(@)

zeT’ zeT’'NS




RANDOMIZED FILTERING: PROPERTIES

p

Condition Given any 77 C T such that [T N S| > (1 — 4¢)|S], if [|[Z7/|2 > 1+ A
there is an explicit f : 7" — R>( such that

Y f@=2 ) fa)

€T’ zeT’'NS

Vs

Theorem If condition holds, there is an efficient randomized algorithm that computes an
estimate 1 such that with high probability

I — pxllz = O + Ve




RANDOMIZED FILTERING

-

Randomized Filtering Pseudocode

—

Compute v = ||Z7||2

If v <14+ X\, return ur

Else

« Compute the function f.

« Remove each z € T with probability f(z)/ max,;ecr f(x)
* Return to Step 1 with new set T'.

e




RANDOMIZED FILTERING: ANALYSIS

At least one point is removed in each iteration, so algorithm runs in polynomial time.

Claim With probability at least 2/3, throughout the algorithm have that |S N T;| > (1 — 4¢)|S| .

Proof Consider
Have d(T;) = |(SNT)\Ti| + T\ S| -

d(T;)—d(T;_1) = (#Inliers removed in iteration 7)—(#Outliers removed in iteration )

Ed(T)—dT )= Y, fl@)— > fl@) =2 Y f@)=) fx) <o0.

reSNT; x€T;\S TzESNT; z€T;
Since d(T;) > 0 and E[d(T;)] < E[d(Ty)] < €S|, by Ville’s inequality

Pr[max; d(T;) > 3¢|S|] <1/3.

This implies that|S N T;| > (1 — 4¢)|S| throughout. u



FINDING f: UNIVERSAL FILTERING

p
Proposition Let S be (2¢, §)—stable and T' be an e— corruption of S . Suppose that

|Z7]l2 =1+ A > 1+ 86%/¢ . There exists an efficient algorithm that given €, 6, T
it computes a function f : T — R>¢ such that

Y f@>2 ) flz).

. xeT zeTNS

Proof Define the function g(z) = (v (z — pr))? , where v is the top eigenvector.
Let L be the set of €- |T'| points z € T for which g(x) is largest.

Then 0 L
g(z) ze€L

g(x(l)) g(m(3))

*—o—0—0 PO P P —e *—o
g9(z®) 5



UNIVERSAL FILTERING: ANALYSIS
« By definition > wer 9(x) = |T|Var[v - T| = |T|(1 + X)

and > zes 9(x) = |S|(Varfv - S] + (v (pr — ps))?)
» By stability and our lemma }__ ¢ 9(z) is small so that

Y 9@ =) g(z) =) g(z) > (2/3)ISIA.

x€T\S zeT z€S

» By the definition of L and \

d fl@)=) gz > > g(x)

€T €L xzeT\S
« Similarly
Yo fl@)y= ) gl@)=> gz - > g
xesSNT xeSNL €S x€S\L

< 2|8|6%/€ + |S|O(82 + €)



WEIGHTED FILTERING

Assign weights to the samples so that weighted empirical mean works.

For w:T — R,

,wa[T] = m ZxET Wz X E’w[T] = W ZxET wx(:c o ,uw)(w o 'u"w)T

\
Weighted Filtering Pseudocode

1. Sett=1andwl’ = 1/|T| forx € T
While || X, [T]]|l2 > 1+ A

«  Compute the function f.

e Set fumax = max f(a:)|a:€Tandw§ct)7éO}
. Setwi ™ = w1 — £(2)/ fmax)

« Setttot+1

3. Return p,® /




NON-CONVEX OPTIMIZATION FORMULATION (I)

e (Consider the convex set:

1
A7, = RT . with =1land w, < —————
T, {'we >0 Wi |lw]|1 and w, < |T|(1—e)}

Lemma: Let 7' be an e—corruption of a (3¢, §)—stable set. Forany w € Ar , if
IZu[T]ll2 1+ == [|pw[T] = pllz = O + VeX)

Non-Convex Optimization Formulation:
min ||Xy,[T]|2

wEAT,e




NON-CONVEX OPTIMIZATION FORMULATION (lI)

Problem Formulation:
Assign weights to the samples so that weighted empirical mean works.

1
Ap . = RZ, with =land wy < ———
Let T, {w € R with [jw]|; and w, < 701 = e)}

Non-Convex Optimization Formulation:

o [Zw(T]]l2

Algorithmic Approaches:
« This is what filtering does!
Ellipsoid Method [DKKLMS’16]
* Bi-level optimization [Cheng-D-Ge’18]
+ Gradient Descent [Cheng-D-Ge-Soltanolkotabi’20]




CONCRETE OPEN PROBLEMS

Design near-linear time algorithms for robust statistics tasks

Robust Mean Estimation [Cheng-D-Ge, SODA19; Dong-Hopkins-Li, NeurlPS’19; Depersin-Lecue’19]
Robust Covariance Estimation [Cheng-D-Ge-Woodruff, COLT 19]

Clustering mixture models [D-Kane-Koongsgard-Li-Tian, STOC’22]

Robust sparse estimation?

Can we design robust estimators using first-order methods?

Robust Mean Estimation [Cheng-D-Ge-Soltanolkotabi, ICML20; Zhu et al. 2020]
More general tasks?

Obtain low-memory streaming robust learning algorithms

[D-Kane-Pensia-Pittas, ICML'22] Tradeoffs between memory and sample size?

Robust Online Estimation?



INFORMATION-COMPUTATION TRADEOFFS
(IN ROBUST STATISTICS)



OBSERVED STATISTICAL-INFORMATION GAPS

Problem 1: Robust Mean Estimation for N'(u, I) in strong contamination model
- Information-theoretic: O(e)

- Computational: O(e4/log(1/€)) [D-Kane-Kamath-Li-Moitra-Stewart’16]
Problem 2: Robust Sparse Mean Estimation for N (i, I) in Huber’s model

- Information-theoretic: O(k log(d)/€?)

- Computational: O(k? log(d)/€?) [Li'17]

Problem 3: Robust covariance estimation for N'(0, X) in spectral norm
- Information-theoretic: O(d)
- Computational: Q(d?) [D-Kane-Kamath-Li-Moitra-Stewart’16]

Are these observed information-computation gaps inherent?



STATISTICAL QUERY (SQ) MODEL [KEARNS 93]

5 @ ;
S I )
w //7 %al ﬁ x — ,x ‘ 4 R ‘ v
%}vﬁﬁ"" | @ . Y 4
7 < )
I | Unrestricted af§orithm
SQ algorithm . Qq
< o tolerance of
! STAT p(7) returns a; :  the query
Statistical Query: Q; : X — [—1,1] @i — Ezp|Qi(z)]| < 7 j

Complexity measures
* Number of queries: ¢ Runtime

* Query tolerance: T Sample complexity




POWER OF SQ ALGORITHMS

Restricted Model: Can prove unconditional lower bounds.

« Powerful Model: Wide range of algorithmic techniques in ML are implementable using SQs:
- PAC Learning: AC?, decision trees, linear separators, boosting
- Unsupervised Learning: stochastic convex optimization, moment-based methods,
k-means clustering, EM, ... [Feldman-Grigorescu-Reyzin-Vempala-Xiao, JACM17]

« Exceptions: Gaussian elimination, lattice basis-reduction [D-Kane'22, Zadik-Song-\Wein-
Bruna’22]

 SQ Model =~ Low-degree Polynomial Tests [Brennan-Bresler-Hopkins-Li-Schramm’21]



INTERPRETATION OF SQ LOWER BOUNDS

Suppose we have proved:

Any SQ algorithm for problem P
» either requires queries of tolerance at most 7

« or makes at least g queries.

Then we can interpret:

I Any SQ algorithm* for problem P

I
: - either requires at least 1/72 samples |
|
I

1 orhas runtime at least g.



SQ LOWER BOUND FOR ROBUST MEAN ESTIMATION

4 N
Theorem: Any SQ algorithm that learns an € - corrupted Gaussian N (i, I) in the strong

contamination model within error
o(ey/log(1/e))

requires either:
» SQ queries of accuracy d—«@)
or

. atleast d“') many SQ queries.
& /

Take-away: Any asymptotic improvement in error guarantee over filtering algorithm requires super-
polynomial time.



SQ LOWER BOUND FOR ROBUST SPARSE MEAN ESTIMATION
-

Theorem: Any SQ algorithm that learns an € - corrupted Gaussian N (i, I) where is :
k-sparse within constant error requires either:

« Q(k?) samples

or

. atleast d*""’many SQ queries.

A /

Minimax sample complexity is ©(k log(d/k)/€?)

Take-away: Any asymptotic improvement in error guarantee over known efficient algorithms [Li’17,
DKKPS’19,...] requires super-polynomial time.



SQ LOWER BOUND FOR LEARNING GMMSs

4 N
Theorem: Any SQ algorithm that learns GMMs on R¢ to constant total variation error requires
either:

o d?%) samples
or
. atleast 2¢°” many SQ queries.

even if the components are pairwise separated in total variation distance.
- v

Minimax sample complexity is poly(d, k)

Take-away: Computational complexity of learning separated GMMs is inherently exponential in
number of components.



NON-GAUSSIAN COMPONENT ANALYSIS (NGCA)

Given samples from a distribution on R¢, find a hidden “non-Gaussian” direction.

» Introduced in [Blanchard-Kawanabe-Sugiyama-Spokoiny-Muller’06].

« Studied extensively from algorithmic standpoint.

[ Kawanabe-Theis'06; Kawanabe-Sugiyama-Blanchard-Muller’07;
Diederichs-Juditsky-Spokoiny-Schutte’10; Diederichs-Juditsky-Nemirovski-Spokoiny’13;
Bean’14; Sasaki-Niu-Sugiyama’16; Virta-Nordhausen-0ja’16;

Vempala-Xiao’'11; Tan-Vershynin'18; Goyal-Shetty’19]



NON-GAUSSIAN COMPONENT ANALYSIS (NGCA): DEFINITION

Definition: Let v be a unit vector in R and A : R — R be a pdf. We define Pf to be the
distribution with v - projection equal to A and vt projection an independent standard Gaussian.

NGCA Problem: Given A that matches the first m moments with A'(0,1):
Using i.i.d. samples from P;j‘ where v is unknown, find the hidden direction v.




NGCA captures interesting instances of several (robust) learning tasks



Learning Gaussian Mixtures [D-Kane-Stewart’17, D-Kane-Pittas-Zarifis’23]

Robust mean and covariance estimation [D-Kane-Stewart’17]

Robust sparse mean estimation, sparse PCA [D-Kane-Stewart’ 17, D-Stewart’18]

Robust linear regression [D-Kong-Stewart’19]

List-decodable learning [D-Kane-Stewart’ 18, D-Kane-Pensia-Pittas-Stewart’21]

Adversarially robust PAC learning [Bubeck-Price-Razenshteyn’'18]

Agnostic PAC Learning [Goel-Gollakota-Klivans'20, D-Kane-Zarifis’20, D-Kane-Pittas-Zarifis’21]
Learning LTFs with (Semi)-random Noise [D-Kane’20, Nasser-Tiegal’22, D-J.D.-Kane-Wang-
Zarifis’23]

Learning (Very Simple) NNs and Generative Models [Goel-Gollakota-Jin-Karmalkar-Klivans’20,
D-Kane-Kontonis-Zarifis'20 Chen-Li-Li’22]

Learning Mixtures of LTFs [D-Kane-Sun’23]



INFORMAL LOWER BOUND RESULT

Fact: Non-Gaussian Component Analysis
« Can be solved with poly(d, m) samples.
- All known efficient algorithms require at least ¢f*(™) samples (and time).

Informal Theorem: For any “nice” univariate distribution A matching its first m moments withl
the standard Gaussian, any* algorithm that solves NGCA

. either draws at least d<(™) samples
Q(1
. or has runtime 24"

*holds for any Statistical Query (SQ) algorithm

[D-Kane-Stewart, FOCS’17; D-Kane-Ren-Sun, NeurlPS’'23]



GENERAL METHODOLOGY FOR SQ LOWER BOUNDS

Hypothesis Testing Problem: Given access to a distribution D on R% with promise that
« eitherD = Dy

« orDis selected randomly from D = {D,, },,cs according to prior

the goal is to distinguish between the two cases.

Pairwise correlation: Xp,(?,q9) = Ex~p,[(p/Do)(z)(q/Dp)(z)] — 1

Theorem [FGRVX’17]: Suppose there exists a “large” set of distributions in D with “small”
pairwise correlation with respect to Dy . Then any SQ algorithm for hypothesis testing task:

« either requires at least one “high-accuracy” query
« orrequires a "large” number of queries.




STATISTICAL QUERY HARDNESS OF NGCA

Testing Version of NGCA: Given access to a distribution D on R? with the promise that
« either D = N(0,1)

+ or D =P#, where v is a uniformly random unit vector

the goal is to distinguish between the two cases.

Main Theorem [D-Kane-Stewart'17]

Suppose that 4 matches its first m moments with A"(0, 1) and x*(4,N(0,1)) < oc.
Any SQ algorithm for the testing version of NGCA:

« either requires a query of tolerance at most d=(™) x2(A4, N(0,1))
* orrequires at least 9d?) many queries.

1/2




INTUITION: WHY IS NGCA “HARD”?

Claim 1: Low-degree moments do not help.

- Degree at most m moment tensor of P2 identical to that of A(0, 1)

Claim 2: Random projections do not help.

Distinguishing requires exponentially many random projections.




KEY LEMMA: RANDOM PROJECTIONS ARE ALMOST GAUSSIAN

Key Lemma: Let O be the distribution of v/ - X, where X ~ P?}. Then, we have that:
X*(Q,N(0,1)) < (v- o)™ HIx2(A4,N(0,1))

Q=Uy(A)

Ornstein-Uhlenbeck
operator




SQ LOWER BOUND: PROOF OVERVIEW

Want exponentially many P;j1 's that are nearly uncorrelated.

 Pick set V of near-orthogonal unit vectors. Can get |V| = 9d”"

+ Have
XN(O,Id)(Pf> P;jl’) - XN(O,I)(Aa UOA) < | COSmI_*_l(H)b(2 (Aa N(O’ 1))



RECIPE FOR SQ HARDNESS RESULTS

Main Theorem [D-Kane-Stewart'17]

Suppose that 4 matches its first  moments with A’(0, 1) and x*(4,N(0,1)) < .
Any SQ algorithm for the testing version of NGCA:

- either requires a query of tolerance at most d—(™) x2(A, N(0,1))/2

* orrequires at least 0d? many queries.

Recipe. EncodeIl as a NGCA instance:

»  Construct moment-matching distribution 4 such that P2 is a valid instance of IT .

« Match as many low-degree moments as possible.




MOMENT-MATCHING FOR ROBUST MEAN ESTIMATION

Lemma: There exists a univariate distribution 4 such that:
- A agrees with A/(0, 1) on the first m moments

. 4 satisfies dry (4, N(5,1)) < O(6m?/+/log(1/3))

Proof Idea:
« Take C' = O(y/log(1/6))
* Define

_ G(ZE T 5)7 L ¢ [_Ca C]
Ale) = {G(w ~8)+p(a), v € [-C,C]

where p is degree-m moment-matching polynomial.




MOMENT-MATCHING FOR LEARNING GMMSs

Lemma: There exists a univariate ~~-GMM A with nearly non-overlapping components such that:
A agrees with V'(0, 1) on the first 2k-1 moments.

Proof Idea:

« Construct discrete distribution B with support £ matching its first
2k-1 moments with V'(0,1).

» Rescale B and add a “skinny” Gaussian to get A4.




SQ HARD INSTANCES FOR GMMSs: PARALLEL PANCAKES
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SQ HARDNESS FOR WIDE RANGE OF PROBLEMS

NGCA captures SQ hard instances of several well-studied learning tasks

Learning GMMs [D-Kane-Stewart’ 17, D-Kane-Pittas-Zarifis’23]

Robust mean and covariance estimation [D-Kane-Stewart’17]

Robust sparse mean estimation, sparse PCA [D-Kane-Stewart’17, D-Stewart’18]

Robust linear regression [D-Kong-Stewart’19]

List-decodable learning [D-Kane-Stewart'18, D-Kane-Pensia-Pittas-Stewart’'21]

Adversarially robust PAC learning [Bubeck-Price-Razenshteyn’18]

Agnostic PAC Learning [Goel-Gollakota-Klivans’20, D-Kane-Zarifis’20, D-Kane-Pittas-Zarifis’21]
Learning LTFs with (Semi)-random Noise [D-Kane’20, Nasser-Tiegal’22, D-J.D.-Kane-Wang-Zarifis’23]

Learning (Very Simple) NNs and Generative Models [Goel-Gollakota-Jin-Karmalkar-Klivans’20, D-
Kane-Kontonis-Zarifis'20 Chen-Li-Li’22]

Learning Mixtures of LTFs [D-Kane-Sun’23]



OPEN PROBLEMS

NGCA leads to wide range of hardness results in SQ model

Open Problem 1: Alternative evidence of hardness?

Already known for special cases (reductions):
** Robust sparse mean estimation [Brennan-Bresler'20]
% Learning GMMs [Bruna-Regev-Song-Tang'21]
% Learning with Semi-random Noise [D-Kane-Panurangsi-
Ren’22, D-Kane-Ren’23]

Open Problem 2: How general is this phenomenon?

Open Problem 3: Prove SoS lower bounds for NGCA.

SQ hard instances are
computationally hard



LEARNING WITH A MAJORITY OF OUTLIERS

» So far focused on setting where € < 1/2 .

« What can we learn from a dataset in which the majority of points are corrupted?

Problem: Given a set of points z1,...,zxy € R?and 0 < o < 1/2 such that:
* An unknown subset of /N points are drawn from an unknown D € F , and
 The remaining (1 — o)) N points are arbitrary,

approximate the mean p of D.

) o

Which is the “real” D?




LIST-DECODABLE LEARNING

» Return several hypotheses with the guarantee that at least one is close.

List-Decodable Mean Estimation:

Given a set of points z1,...,2zx € R? and 0 < o < 1/2 such that:

« An unknown subset of /N points are drawn from an unknown D € F, and
 The remaining (1 — ) N points are arbitrary,

output a small list of s hypotheses vectors such that one is close to the mean p of D.

* Model defined in [Balcan-Blum-Vempala'08]
» First studied for mean estimation [Charikar-Steinhardt-Valiant’17]
» Application: Learning Mixture Models




LIST-DECODABLE MEAN ESTIMATION

p
Theorem [Charikar-Steinhardt-Valiant’17]: Let 0 < o < 1/2. If D has covariance ¥ < [
there is an efficient algorithm that uses N > d/« corrupted points, and outputs a list of

s = O(1/a) vectors i1, ..., s such that with high probability
min [[3: - pll2 = O(1/Va)

Theorem [D-Kane-Stewart’18] Any list-decodable mean estimator for bounded covariance
distributions must have error Q(1/4/«) as long as the list size is any function of .

 Initial algorithm [CSV’17] based on ellipsoid method.
» Generalization of filtering (“multi-filtering”) works for list-decodable setting [DKS’18].
* Near-linear time algorithm [D-Kane-Koongsgard-Li-Tian’22].



FUTURE DIRECTIONS: ALGORITHMS

 Pick your favorite high-dimensional probabilistic model for
which a (non-robust) efficient learning algorithm is known.
« Make it robust!




BROADER RESEARCH DIRECTIONS

[ General Algorithmic Theory of Robustness }

How can we robustly learn rich representations of data, based on natural hypotheses about
the structure in data?

Can we robustly test our hypotheses about structure in data before learning?

Broader Challenges:

Relation to Related Notions of Algorithmic Stability
(Differential Privacy, Adaptive Data Analysis)

Resource tradeoffs (e.g., memory, communication)

Further Applications (ML Security, Computer Vision, ...)
Connections to Adversarial Examples/Distribution Shift

Other notions of robustness?

(heavy-tailed, semi-random, oblivious noise, missing data,...)

Thank you!
Questions?



