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Can we develop learning algorithms that are robust to 
a constant fraction of corruptions in the data?



MOTIVATION

• Model Misspecification/Robust Statistics 
[Fisher 1920s, Tukey 1960s, Huber 1960s]

• Outlier Detection/Removal 

• Adversarial/Secure ML



THE STATISTICAL LEARNING PROBLEM

• Input: sample generated by a statistical model with unknown
• Goal: estimate parameters    so that  

Question 1: Is there an efficient learning algorithm?

Unknown 
θ* samples ✓

✓⇤

✓ ✓ ⇡ ✓⇤

Main performance criteria:
• Sample size
• Running time

Question 2: Are there tradeoffs between these criteria?

• Robustness



(OUTLIER-) ROBUSTNESS

Strong Contamination Model:
Let     be a family of statistical models.
We say that a set of N samples is -corrupted from     if 
it is generated as follows: 
• N samples are drawn from an unknown
• An omniscient adversary inspects these samples and 

changes arbitrarily an   -fraction of them.

F

F 2 F

F

✏

cf. Huber’s contamination model [1964]



EXAMPLE: PARAMETER ESTIMATION

Given i.i.d. samples from an unknown distribution

e.g., a 1-D Gaussian

how do we accurately estimate its parameters?

empirical mean: empirical variance: 



John W. Tukey

Model Misspecification 
(1960s)

Robust Estimation of Location
(1964)

Peter J. Huber



ROBUST STATISTICS

What estimators behave well in the presence of outliers?



ROBUST ESTIMATION: ONE DIMENSION

• A single corrupted sample can arbitrarily corrupt the empirical mean and 
variance

• But the median and interquartile range work

Given corrupted samples from a one-dimensional Gaussian, can we 
accurately estimate its parameters?



Fact [Folklore]: Given a set S of N -corrupted samples from a one-dimensional 
Gaussian

with high constant probability we have that:                           

where

What about robust estimation in high-dimensions?



HIGH-DIMENSIONAL ROBUST MEAN ESTIMATION

Remark: Above convergence rate is optimal [Tukey’75, Donoho’82]

Robust Mean Estimation: Given an     - corrupted set of samples 
from an unknown mean, identity covariance Gaussian                in 
d dimensions, recover      with   

✏



PREVIOUS APPROACHES: ROBUST MEAN ESTIMATION

Error Rate Running Time

Tukey Median NP-Hard

Geometric Median

Tournament

Distance-Based Pruning

Estimator

Coordinate-wise Median



DISTANCE-BASED PRUNING



DISTANCE-BASED PRUNING = NAÏVE OUTLIER REMOVAL



All known estimators either require exponential time to compute 
or can tolerate a negligible fraction of outliers.

Is robust estimation algorithmically possible in high-dimensions?

HIGH-DIMENSIONAL ROBUST STATISTICS: 1960-2016



“The bad news is that with all currently known algorithms the effort of computing those 
estimates increases exponentially in d. We might say they break down by failing to give a 
timely answer! 
Only simple algorithms (i.e., with a low degree of computational complexity) will survive the
onslaught of huge data sets. This runs counter to recent developments in computational robust
statistics. It appears to me that none of the above problems will be amenable to a
treatment through theorems and proofs. They will have to be attacked by heuristics and
judgment, and by alternative “what if” analyses.[…]”

Robust Statistical Procedures, 1996, Second Edition.

Peter J. Huber, 1975



Meta-Theorem [D-Kamath-Kane-Li-Moitra-Stewart’16]
Efficient robust estimators with dimension-independent error for robust 
mean and covariance estimation, if inlier distribution has bounded 
moments/nice concentration.

Related results by [Lai-Rao-Vempala’16]



ROBUST UNSUPERVISED LEARNING

Robustly Learning Graphical Models

List-decodable Learning and 
Robustly Learning Mixture Models

Computational/Statistical-Robustness Tradeoffs



ROBUST SUPERVISED LEARNING

Robust Supervised 
Learning

Stochastic Convex OptimizationRobust Regression
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APPLICATIONS [D-Kamath-Kane-Li-Moitra-Stewart, ICML’17]

[D-Kamath-Kane-Li-Moitra-Steinhardt, ICML’19] OOD Detection

Detecting Patterns
in Biological Data

Provable Defenses 
against Data Poisoning

[Du-Fang-D-Li, ’23]

Wild data scenario 2

Wild data scenario 1

(a) Data setup (b)    Filtered outliers (in green) (c)    Uncertainty score



SUBSEQUENT WORKS

• Sparse Models [Balakrishan-Du-Li-Singh’17, D-Karmalkar-Kane-Price-Stewart’19, D-Kane-Lee-Pensia’22,…]
• Graphical Models [Cheng-D-Kane-Stewart’18, D-Kane-Stewart-Sun’21, D-Kane-Sun’22] 
• Robust Regression/Classification [D-Kane-Stewart’18, Klivans-Kothari-Meka’18, D-Kong-Stewart’19 Bakshi-

Prasad’21, …]
• Robust Stochastic Optimization [Prasad-Suggala-Balakrishnan-Ravikumar’19, D-Kamath-Kane-Li-

Steinhard-Stewart’19, …]
• Robust Estimation via SoS [Hopkins-Li’18, Kothari-Steinhardt-Steurer’18, Karmalkar-Klivans-Kothari’19, 

Raghavendra-Yau’19, Bakshi-Kothari’20, D-Hopkins-Kane-Karmalkar’20, Liu-Moitra’21, Bakshi-D-Jia-Kane-Kothari-
Vempala’21, Ivkov-Kothari’22, …]

• Near-Linear Time Algorithms [Chen-D-Ge’18, Cheng-D-Ge-Woodruff’19, Depersin-Lecue’19, Dong-Hopkins-
Li’19, Li-Ye’20, Cherapanamjeri-Mohanty-Yau’20, D-Kane-Koongsgard-Li-Tian’21, …]

• Computational-Statistical Tradeoffs [D-Kane-Stewart’17, D-Kong-Stewart’19, Hopkins-Li’19, …]
• Connections to Non-Convex Optimization [Chen-D-Ge-Soltanolkotabi’20, Zhu-Jiao-Steinhardt’20, …]
• List-Decodable Learning [Charikar-Steinhardt-Valiant’17, D-Kane-Stewart’18, Meister-Valiant’18, Karmalkar-

Klivans-Kothari’19, Raghavendra-Yau’19, D-Kane-Koongsgard’20, D-Kane-Koongsgard-Li-Tian’21, D-Kane-
Karmalkar-Pensia-Pittas’22]

• Applications in Data Analysis [D-Kamath-Kane-Li-Moitra-Stewart’17, Tran-Li-Madry’18, D-Kamath-Kane-Li-
Steinhardt-Stewart’19, Hayase-Kong-Somani-Oh’21, Du-Fang-D-Li’23, … ]





HIGH-DIMENSIONAL ROBUST MEAN ESTIMATION



ROBUST MEAN ESTIMATION: GAUSSIAN CASE

First-term of RHS Independent of d  ! 

Theorem 1: Let                   If D is a spherical Gaussian, there is an 
efficient algorithm that outputs an estimate      that with high probability 
satisfies

in the additive contamination model.                                           

Problem: Given an   -corrupted set of points                                 from an 
unknown distribution D in a known family    , estimate the mean     of D.

[D-Kamath-Kane-Li-Moitra-Stewart, SODA’18; D-Kane-Pensia-Pittas, NeurIPS’23]



ROBUST MEAN ESTIMATION: SUB-GAUSSIAN CASE

Theorem 2: Let                   If D is a spherical sub-Gaussian, there is an 
efficient algorithm that outputs an estimate      that with high probability 
satisfies

in the strong contamination model.                                           

Problem: Given an   -corrupted set of points                                 from an 
unknown distribution D in a known family    , estimate the mean     of D.

[D-Kamath-Kane-Li-Moitra-Stewart, FOCS’16, ICML’17;  D-Kane-Pensia-Pittas, ICML’22]

Information-theoretically optimal error. 



ROBUST MEAN ESTIMATION: BOUNDED COVARIANCE CASE

Theorem 3: Let                   If D has covariance            , there is an 
efficient algorithm that outputs an estimate      that with high probability 
satisfies

in the strong contamination model.                                           

Problem: Given an   -corrupted set of points                                 from an 
unknown distribution D in a known family    , estimate the mean     of D.

Information-theoretically optimal error. 

[D-Kamath-Kane-Li-Moitra-Stewart, ICML’17; Steinhardt, Charikar, Valiant, ITCS’18]



CERTIFICATE OF ROBUSTNESS FOR EMPIRICAL ESTIMATOR

Idea #1: If the empirical covariance is “close to what it should be”, then 
the empirical mean works.



CERTIFICATE FOR EMPIRICAL MEAN

Detect when the empirical estimator may be compromised

= uncorrupted
= corrupted

There is no direction of large empirical variance



Lemma: Let X1, X2, …, XN be an    -corrupted set of samples from              and                      
for 

with high probability we have: 

in strong contamination model.



Idea #2: Removing any    - fraction of inliers does not move the 
empirical mean and covariance by much. 



Idea #3: Iteratively “remove outliers” to “fix” the empirical covariance.



ITERATIVE FILTERING

Iterative Two-Step Procedure:

Step #1: Test certificate of robustness of “standard” estimator

Step #2: If certificate is violated, detect and remove outliers

Iterate on “cleaner” dataset.

General recipe that works in general settings.

We’ll see how this works for robust mean estimation.



FILTERING SUBROUTINE

Either output empirical mean or remove many outliers.

Filtering Approach: Suppose that:

Let    be the direction of maximum variance.
T



FILTERING SUBROUTINE

Either output empirical mean, or remove many outliers.

Filtering Approach: Suppose that:

Let     be the direction of maximum variance.

• Project all the points on the direction of .
• Find a threshold T such that

• Throw away all points x such that 

• Iterate on new dataset.



FILTERING SUBROUTINE: ANALYSIS SKETCH

Either output empirical mean, or remove many outliers.

Filtering Approach: Suppose that:

Claim: In each iteration, we remove more outliers than inliers.

After a bounded number of iterations, we stop removing points.

Eventually the empirical mean works

Runtime: 



STABILITY CONDITION

Definition Fix                     and             A set              is            stable with respect to     if 
for all               and every             such that                           , we have:

•

•

• Intended for inlier distributions with 

• Similar definition for distributions as opposed to datasets.

• A sufficiently large clean sample from a well-behaved distribution is stable with high 
probability. 



EFFICIENT ROBUST MEAN ESTIMATION UNDER STABILITY

General Theorem Let     be           stable with respect to a vector    , and     an   - corruption of      
There is an efficient algorithm that given           it computes an estimate     such that 

Fact A set of      i.i.d. samples from a well-behaved distribution is              stable with high probability. 

• For identity covariance sub-Gaussians,                             and

• For identity covariance sub-exponentials,                           and

• For identity covariance with bounded      th central moments               ,                     and    

• For bounded covariance distributions,                and
(after removing   - fraction of inliers) 



CERTIFICATE FOR EMPIRICAL MEAN

Lemma Let     be           stable with respect to    , and     be an    - corruption of   
If                         , for             then 

Proof Let         be uniform distribution over        respectively. Can write                                 ,
where      is      subtraction of  

Let    be normalized version of

Rearranging  

⌃Y = (1� ✏)⌃X0 + ✏⌃E + ✏(1� ✏)(µX0 � µE)(µX0 � µE)
>



CERTIFICATE FOR EMPIRICAL MEAN

Proof Let         be uniform distribution over        respectively. Can write                                 ,
where      is      subtraction of  

For the means, have that

Lemma Let     be           stable with respect to    , and     be an    - corruption of   
If                         , for             then 



Condition Given any              such that                                    , if  
there is an explicit                       such that

RANDOMIZED FILTERING: IDEA

Main Idea: Suppose we can find                       such that

Then we can randomly filter by removing each point           with probability

Need this property to hold across iterations, assuming certificate not satisfied.



RANDOMIZED FILTERING: PROPERTIES

Condition Given any              such that                                    , if  
there is an explicit                       such that

Theorem If condition holds, there is an efficient randomized algorithm that computes an 
estimate     such that with high probability 



RANDOMIZED FILTERING

1. Compute
2. If                    return 
3. Else

• Compute the function f.
• Remove each            with probability
• Return to Step 1 with new set     . 

Randomized Filtering Pseudocode



Claim With probability at least 2/3, throughout the algorithm have that  

RANDOMIZED FILTERING: ANALYSIS

At least one point is removed in each iteration, so algorithm runs in polynomial time.

Proof Consider
Have

Since                 and                                              by Ville’s inequality 

This implies that                                   throughout. 

d(Ti)�d(Ti�1) = (#Inliers removed in iteration i)�(#Outliers removed in iteration i)

E[d(Ti)� d(Ti�1)] =
X

x2S\Ti

f(x)�
X

x2Ti\S

f(x) = 2
X

x2S\Ti

f(x)�
X

x2Ti

f(x)  0 .

d(Ti) � 0 E[d(Ti)]  E[d(T0)]  ✏|S| ,

Pr[maxi d(Ti) > 3✏|S|]  1/3 .

|S \ Ti| � (1� 4✏)|S| .



FINDING : UNIVERSAL FILTERING

Proposition Let     be             stable and     be an      corruption of       Suppose that 
There exists an efficient algorithm that given           

it computes a function                      such that  

Proof Define the function                                       where    is the top eigenvector. 
Let    be the set of            points           for which        is largest. 
Then  



UNIVERSAL FILTERING: ANALYSIS

• By definition

and
• By stability and our lemma                    is small so that

• By the definition of     and 

• Similarly 



WEIGHTED FILTERING

1. Set           and                      for   
2. While                                  

• Compute the function f.
• Set
• Set
• Set    to 

3.   Return 

Weighted Filtering Pseudocode

For

Assign weights to the samples so that weighted empirical mean works.



Lemma: Let      be an     corruption of a             stable set. For any                 , if

NON-CONVEX OPTIMIZATION FORMULATION (I)

Non-Convex Optimization Formulation: 

• Consider the convex set: 



NON-CONVEX OPTIMIZATION FORMULATION (II)

Problem Formulation: 
Assign weights to the samples so that weighted empirical mean works.

Non-Convex Optimization Formulation: 

Algorithmic Approaches:
• This is what filtering does!
• Ellipsoid Method [DKKLMS’16]
• Bi-level optimization [Cheng-D-Ge’18] 
• Gradient Descent [Cheng-D-Ge-Soltanolkotabi’20]

Let



CONCRETE OPEN PROBLEMS

• Design near-linear time algorithms for robust statistics tasks

Robust Mean Estimation [Cheng-D-Ge, SODA’19; Dong-Hopkins-Li, NeurIPS’19; Depersin-Lecue’19]
Robust Covariance Estimation [Cheng-D-Ge-Woodruff, COLT’19]
Clustering mixture models [D-Kane-Koongsgard-Li-Tian, STOC’22]
Robust sparse estimation?

• Can we design robust estimators using first-order methods?

Robust Mean Estimation [Cheng-D-Ge-Soltanolkotabi, ICML’20; Zhu et al. 2020]
More general tasks?

• Obtain low-memory streaming robust learning algorithms

[D-Kane-Pensia-Pittas, ICML’22] Tradeoffs between memory and sample size?

• Robust Online Estimation?



INFORMATION-COMPUTATION TRADEOFFS
(IN ROBUST STATISTICS)



OBSERVED STATISTICAL-INFORMATION GAPS

Problem 1: Robust Mean Estimation for              in strong contamination model

- Information-theoretic:
- Computational:                           [D-Kane-Kamath-Li-Moitra-Stewart’16]  

Problem 2: Robust Sparse Mean Estimation for              in Huber’s model

- Information-theoretic:
- Computational:                           [Li’17]                       

Problem 3: Robust covariance estimation for              in spectral norm
- Information-theoretic:
- Computational:            [D-Kane-Kamath-Li-Moitra-Stewart’16] 

Are these observed information-computation gaps inherent?



STATISTICAL QUERY (SQ) MODEL [KEARNS’93] 

Unrestricted algorithm

SQ algorithm

Q2

Qq

......

Statistical Query:

returns      :
tolerance of 
the query

Complexity measures
• Number of queries: 
• Query tolerance: 

Runtime
Sample complexity



POWER OF SQ ALGORITHMS

• Restricted Model: Can prove unconditional lower bounds.

• Powerful Model: Wide range of algorithmic techniques in ML are implementable using SQs:
- PAC Learning: AC0, decision trees, linear separators, boosting
- Unsupervised Learning: stochastic convex optimization, moment-based methods, 

k-means clustering, EM, … [Feldman-Grigorescu-Reyzin-Vempala-Xiao, JACM’17]

• Exceptions: Gaussian elimination, lattice basis-reduction [D-Kane’22, Zadik-Song-Wein-
Bruna’22]

• SQ Model     Low-degree Polynomial Tests [Brennan-Bresler-Hopkins-Li-Schramm’21]



INTERPRETATION OF SQ LOWER BOUNDS

Suppose we have proved:

Any SQ algorithm for problem P
• either requires queries of tolerance at most    
• or makes at least q queries.

Then we can interpret:

Any SQ algorithm* for problem P
• either requires at least           samples
• or has runtime at least q.



SQ LOWER BOUND FOR ROBUST MEAN ESTIMATION

Theorem: Any SQ algorithm that learns an    - corrupted Gaussian              in the strong 
contamination model within error

requires either:
• SQ queries of accuracy 
or
• at least           many SQ queries.

o(✏
p
log(1/✏))

Take-away: Any asymptotic improvement in error guarantee over filtering algorithm requires super-
polynomial time.

d�!(1)

d!(1)



SQ LOWER BOUND FOR ROBUST SPARSE MEAN ESTIMATION

Theorem: Any SQ algorithm that learns an    - corrupted Gaussian              where is 
k-sparse within constant error requires either:
• samples 
or
• at least           many SQ queries.

Take-away: Any asymptotic improvement in error guarantee over known efficient algorithms [Li’17, 
DKKPS’19,…] requires super-polynomial time.

Minimax sample complexity is 



SQ LOWER BOUND FOR LEARNING GMMS

Theorem: Any SQ algorithm that learns GMMs on      to constant total variation error requires 
either:
• samples 
or
• at least           many SQ queries.

even if the components are pairwise separated in total variation distance.

Take-away: Computational complexity of learning separated GMMs is inherently exponential in 
number of components.

Minimax sample complexity is 



NON-GAUSSIAN COMPONENT ANALYSIS (NGCA)

Given samples from a distribution on      , find a hidden “non-Gaussian” direction.

• Introduced in [Blanchard-Kawanabe-Sugiyama-Spokoiny-Muller’06].

• Studied extensively from algorithmic standpoint.
[ Kawanabe-Theis’06; Kawanabe-Sugiyama-Blanchard-Muller’07; 
Diederichs-Juditsky-Spokoiny-Schutte’10; Diederichs-Juditsky-Nemirovski-Spokoiny’13; 
Bean’14; Sasaki-Niu-Sugiyama’16; Virta-Nordhausen-Oja’16; 
Vempala-Xiao’11; Tan-Vershynin’18; Goyal-Shetty’19]



NON-GAUSSIAN COMPONENT ANALYSIS (NGCA): DEFINITION

Definition: Let     be a unit vector in       and                       be a pdf. We define        to be the 
distribution with    - projection equal to     and       - projection an independent standard Gaussian.

NGCA Problem: Given     that matches the first      moments with              :
Using i.i.d. samples from         where    is unknown, find the hidden direction    .



NGCA captures interesting instances of several (robust) learning tasks



• Learning Gaussian Mixtures [D-Kane-Stewart’17, D-Kane-Pittas-Zarifis’23]
• Robust mean and covariance estimation [D-Kane-Stewart’17]
• Robust sparse mean estimation, sparse PCA [D-Kane-Stewart’17, D-Stewart’18]
• Robust linear regression [D-Kong-Stewart’19]
• List-decodable learning [D-Kane-Stewart’18, D-Kane-Pensia-Pittas-Stewart’21]
• Adversarially robust PAC learning [Bubeck-Price-Razenshteyn’18]
• Agnostic PAC Learning [Goel-Gollakota-Klivans’20, D-Kane-Zarifis’20, D-Kane-Pittas-Zarifis’21]
• Learning LTFs with (Semi)-random Noise [D-Kane’20, Nasser-Tiegal’22, D-J.D.-Kane-Wang-

Zarifis’23]
• Learning (Very Simple) NNs and Generative Models [Goel-Gollakota-Jin-Karmalkar-Klivans’20,

D-Kane-Kontonis-Zarifis’20 Chen-Li-Li’22]
• Learning Mixtures of LTFs [D-Kane-Sun’23]
• …



INFORMAL LOWER BOUND RESULT

*holds for any Statistical Query (SQ) algorithm

[D-Kane-Stewart, FOCS’17; D-Kane-Ren-Sun, NeurIPS’23]

Fact: Non-Gaussian Component Analysis
• Can be solved with                    samples. 
• All known efficient algorithms require at least            samples (and time).

Informal Theorem: For any “nice” univariate distribution      matching its first m moments with 
the standard Gaussian, any* algorithm that solves NGCA 
• either draws at least            samples
• or has runtime            . 



GENERAL METHODOLOGY FOR SQ LOWER BOUNDS

Pairwise correlation: 

Hypothesis Testing Problem: Given access to a distribution     on       with promise that
• either                 
• or     is selected randomly from                          according to prior 
the goal is to distinguish between the two cases.

Theorem [FGRVX’17]: Suppose there exists a “large” set of distributions in     with “small” 
pairwise correlation with respect to       . Then any SQ algorithm for hypothesis testing task:
• either requires at least one “high-accuracy” query
• or requires a ”large” number of queries. 



STATISTICAL QUERY HARDNESS OF NGCA

Main Theorem [D-Kane-Stewart’17]
Suppose that A matches its first m moments with              and                                   . 
Any SQ algorithm for the testing version of NGCA:
• either requires a query of tolerance at most 
• or requires at least            many queries. 

Testing Version of NGCA: Given access to a distribution     on       with the promise that
• either                 
• or                 , where    is a uniformly random unit vector
the goal is to distinguish between the two cases.



INTUITION: WHY IS NGCA “HARD”?

Claim 1: Low-degree moments do not help.

• Degree at most m moment tensor of        identical to that of 

Claim 2: Random projections do not help.

Distinguishing requires exponentially many random projections.



KEY LEMMA: RANDOM PROJECTIONS ARE ALMOST GAUSSIAN

Key Lemma: Let Q be the distribution of            , where                . Then, we have that:

Ornstein-Uhlenbeck
operator



SQ LOWER BOUND: PROOF OVERVIEW

Want exponentially many       ’s that are nearly uncorrelated.

• Pick set     of near-orthogonal unit vectors. Can get 

• Have 



RECIPE FOR SQ HARDNESS RESULTS

Main Theorem [D-Kane-Stewart’17]
Suppose that A matches its first m moments with              and                                   . 
Any SQ algorithm for the testing version of NGCA:
• either requires a query of tolerance at most 
• or requires at least            many queries. 

Recipe.  Encode     as a NGCA instance:

• Construct moment-matching distribution A such that        is a valid instance of

• Match as many low-degree moments as possible.



MOMENT-MATCHING FOR ROBUST MEAN ESTIMATION

Lemma: There exists a univariate distribution A such that:
• A agrees with               on the first m moments
• A satisfies 

Proof Idea:
• Take 
• Define

where p is degree-m moment-matching polynomial.



MOMENT-MATCHING FOR LEARNING GMMS

Proof Idea:
• Construct discrete distribution B with support k matching its first  
2k-1 moments with              . 

• Rescale B and add a “skinny” Gaussian to get A.

Lemma: There exists a univariate k-GMM A with nearly non-overlapping components such that:
A agrees with               on the first 2k-1 moments.



SQ HARD INSTANCES FOR GMMS: PARALLEL PANCAKES



NGCA captures SQ hard instances of several well-studied learning tasks

• Learning GMMs [D-Kane-Stewart’17, D-Kane-Pittas-Zarifis’23]
• Robust mean and covariance estimation [D-Kane-Stewart’17]
• Robust sparse mean estimation, sparse PCA [D-Kane-Stewart’17, D-Stewart’18]
• Robust linear regression [D-Kong-Stewart’19]
• List-decodable learning [D-Kane-Stewart’18, D-Kane-Pensia-Pittas-Stewart’21]
• Adversarially robust PAC learning [Bubeck-Price-Razenshteyn’18]
• Agnostic PAC Learning [Goel-Gollakota-Klivans’20, D-Kane-Zarifis’20, D-Kane-Pittas-Zarifis’21]
• Learning LTFs with (Semi)-random Noise [D-Kane’20, Nasser-Tiegal’22, D-J.D.-Kane-Wang-Zarifis’23]
• Learning (Very Simple) NNs and Generative Models [Goel-Gollakota-Jin-Karmalkar-Klivans’20, D-

Kane-Kontonis-Zarifis’20 Chen-Li-Li’22]
• Learning Mixtures of LTFs [D-Kane-Sun’23]
• …

SQ HARDNESS FOR WIDE RANGE OF PROBLEMS



OPEN PROBLEMS
NGCA leads to wide range of hardness results in SQ model

Open Problem 3: Prove SoS lower bounds for NGCA.

Open Problem 1: Alternative evidence of hardness?

Already known for special cases (reductions):
v Robust sparse mean estimation [Brennan-Bresler’20]
v Learning GMMs [Bruna-Regev-Song-Tang’21]
v Learning with Semi-random Noise [D-Kane-Panurangsi-

Ren’22, D-Kane-Ren’23]

SQ hard instances are 
computationally hard

Open Problem 2: How general is this phenomenon?



LEARNING WITH A MAJORITY OF OUTLIERS

• So far focused on setting where 

• What can we learn from a dataset in which the majority of points are corrupted?

Problem: Given a set of points                                 and                        such that:
• An unknown subset of         points are drawn from an unknown             , and
• The remaining                  points are arbitrary,
approximate the mean     of D.

Which is the “real” D?



LIST-DECODABLE LEARNING

• Return several hypotheses with the guarantee that at least one is close.

List-Decodable Mean Estimation: 
Given a set of points                                 and                        such that:
• An unknown subset of         points are drawn from an unknown             , and
• The remaining                  points are arbitrary,
output a small list of s hypotheses vectors such that one is close to the mean     of D.

• Model defined in [Balcan-Blum-Vempala’08]
• First studied for mean estimation [Charikar-Steinhardt-Valiant’17]
• Application: Learning Mixture Models



LIST-DECODABLE MEAN ESTIMATION

Theorem [Charikar-Steinhardt-Valiant’17]: Let                       . If D has covariance                    
there is an efficient algorithm that uses                  corrupted points, and outputs a list of

vectors                    such that with high probability

Theorem [D-Kane-Stewart’18] Any list-decodable mean estimator for bounded covariance 
distributions must have error                  as long as the list size is any function of    .

• Initial algorithm [CSV’17] based on ellipsoid method. 
• Generalization of filtering (“multi-filtering”) works for list-decodable setting [DKS’18].
• Near-linear time algorithm [D-Kane-Koongsgard-Li-Tian’22].



FUTURE DIRECTIONS: ALGORITHMS

• Pick your favorite high-dimensional probabilistic model for 
which a (non-robust) efficient learning algorithm is known. 

• Make it robust!



BROADER RESEARCH DIRECTIONS

Broader Challenges:
• Relation to Related Notions of Algorithmic Stability

(Differential Privacy, Adaptive Data Analysis)
• Resource tradeoffs (e.g., memory, communication)
• Further Applications (ML Security, Computer Vision, …)
• Connections to Adversarial Examples/Distribution Shift
• Other notions of robustness?

(heavy-tailed, semi-random, oblivious noise, missing data,…)

General Algorithmic Theory of Robustness

How can we robustly learn rich representations of data, based on natural hypotheses about 
the structure in data?
Can we robustly test our hypotheses about structure in data before learning?

Thank you! 
Questions?


