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Robust Statistical Learning

(Unknown) Parameters Corrupted samples Algorithms

Q: Can we design provably robust and computational efficient learning algorithms
when a small fraction of the data is corrupted?
Motivation:

@ Model misspecification / Robust statistics [Huber 1960s, Tukey 1960s, ...]

@ Data poisoning attacks, Reliable / Adversarial / Secure ML
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Motivation

Data Poisoning: High-frequency trading algorithms.
Twitter account of the Associated Press was hacked in April 2013
($136 billion in 3 minutes).
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Yu Cheng (Duke)

Data Poisoning: High-frequency trading algorithms.
Twitter account of the Associated Press was hacked in April 2013
($136 billion in 3 minutes).

Biological Datasets: POPRES project, HGDP datasets.
High-dimensional datasets tend to be inherently noisy.
Hard to detect in several cases [Rosenberg et al., Science’02; Li et al., Science’08; Paschou

et al., Medical Genetics’10]

Reliable/Adversarial/Secure ML:

Recommendation Systems, Crowdsourcing, ...

Attacker can generate malicious data to maximize his objectives. [Mayzlin et al. *14] [Wang
et al. "14] [Li et al. "16]
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Mean Estimation

Mean Estimation

o Input: N samples {X;,..., Xy} drawn from NV (u*,I) on R%

@ Goal: Learn p*.
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Mean Estimation

Mean Estimation

o Input: N samples {X;,..., Xy} drawn from NV (u*,I) on R%

@ Goal: Learn p*.

@ Empirical mean fi = % >N, X; works:
7 ||, < e when N = Q(d/ée?).
@ Running time: O(Nd).
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Robust Mean Estimation

Definition (e-Corruption)

@ N samples are drawn i.i.d. from the ground-truth distribution D.
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Robust Mean Estimation

Definition (e-Corruption)

@ N samples are drawn i.i.d. from the ground-truth distribution D.

@ Adversary replaces eN samples with arbitrary points (after inspecting D, the samples, and

the algorithm).

Robust Mean Estimation

@ Input: an e-corrupted set of N samples {X, ..., Xy} drawn from an unknown distribution D

on R? with mean p*.

@ Goal: Learn i~ in £3-norm.
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Previous Work

Robustly learn p* given e-corrupted samples from N (pu*, I):

Algorithm Error Guarantee Poly-Time?
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Previous Work

Robustly learn p* given e-corrupted samples from N (pu*, I):

Algorithm Error (d) Runtime
Dimension Halving [LRV’16] O(e\/log d) Q(Nd?*) + SVD

Convex Programming [DkkLMs'16] | O(ey/log(1/e))  Ellipsoid Algorithm
Filtering [DKKLMS 16] O(ev/log(1/€)) Q(Nd?)

This paper O(ev/log(1/€)) O(Nd/e®)

All these algorithms have the right sample complexity N = O(d/&?).
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Our Results

Robustly learn p* given e-corrupted samples from D on R¢.
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Our Results

Robustly learn p* given e-corrupted samples from D on R¢.

Distribution ‘ Error (6) # of Samples (N)  Runtime
Sub—Gau.ssian O(e/log(1/€)) g(d/(Sz) O(NdJe)
Bounded Covariance (X < I) O(/¢) 0(d/5?%)

When € is constant, our algorithm has the best possible error guarantee, sample complexity, and

running time (up to polylogarithmic factors).
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Our Results

Distribution Error (6) # of Samples (N)  Runtime
Sub-Gau.ssian O(e\/log(1/e)) 9(d/5z) O(N/ <)
Bounded Covariance (X < I) O(\/¢) 0(d/6*)

Robust mean estimation under bounded covariance assumptions has been used as a subroutine to
obtain robust learners for a wide range of supervised learning problems that can be phrased as

stochastic convex programs.

Our result provides a faster implementation of such a subroutine, hence yields faster robust

algorithms for all these problems.
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Reweight the Samples

[DKKLMS’16]: To shift the empirical mean far from p*, the corrupted samples must introduce a

large eigenvalue in the second-moment matrix.
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Reweight the Samples

[DKKLMS’16]: To shift the empirical mean far from p*, the corrupted samples must introduce a
large eigenvalue in the second-moment matrix.

@ For X ~ N (p*,I),E[(X - p*)(X-p*)"] =1L
Good Weights

minimize  Amax (Zji\il wi(X; — ) (X; - u*)T)

subjectto we Ay, (ZiwizlandOSWiSm)
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Reweight the Samples

[DKKLMS’16]: To shift the empirical mean far from p*, the corrupted samples must introduce a

large eigenvalue in the second-moment matrix.

@ For X~ N(p*,I),E[(X - p*)(X-p*)] =1L

Good Weights

minimize  Amax (Zji\il wi(X; — ) (X - /L*)T)

subjectto we Ay, (Ziw,-:landoswigﬁ)

Lemma ([DKKLMS’16])

If we can find a near-optimal solution w, we can output i, = >°; w;X;.

This looks like a packing SDP in w (which we can solve in nearly-linear time).
Except that ... we do not know p*.
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Our Approach

Idea: guess the mean v and solve the SDP with parameter v.
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subjectto we Ay,

We give a win-win analysis: either

@ a near-optimal solution w to the primal SDP give a good answer fi,,, or
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Our Approach

Idea: guess the mean v and solve the SDP with parameter v.

Primal SDP (with parameter v)

minimize  Amax (SN wi(Xi— ) (X - )7)
subjectto we Ay,

We give a win-win analysis: either
@ a near-optimal solution w to the primal SDP give a good answer fi,,, or

@ a near-optimal solution to the dual SDP yields a new guess 1/’ that is closer to " by a

constant factor.
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Our Approach

Iteratively move v closer to u* using the dual SDP,

until primal SDP has a good solution and we can output i,,.
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Our Approach

Iteratively move v closer to u* using the dual SDP,

until primal SDP has a good solution and we can output i,,.
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Our Approach

Iteratively move v closer to ;1* using the dual SDP:

@ Which direction is p*?

@ How faris u*?
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Direction of p*: Dual SDP

Primal SDP (with parameter v)

minimize  Amax (SN wi(Xi —v) (X —v)7)

subjectto we Ay,
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SDP Duality

i M, (Xi-v)(X;-v)T
wrenAlifl,eMzor,ntre(ll)\{/I)g ( zi:Wl( l )( l ) >

Yu Cheng (Duke) FASTER ROBUST MEAN ESTIMATION 15/25



Direction of p*: Dual SDP

Primal SDP (with parameter v)

minimize  Amax (SN wi(Xi —v) (X —v)7)

subjectto we Ay,

SDP Duality

i M, (Xi-v)(X;-v)T
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Direction of p*: Dual SDP

Dual SDP (with parameter v)

maximize Mean of the smallest (1 — €)-fraction of ((X; - v)"M(X; - U))Zl
subjectto M > 0,tr(M) <1
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subjectto M > 0,tr(M) <1

@ The dual SDP certifies that there are no good weights that can make the spectral norm small.

@ If the solution is rank-one: M = yy', then in the direction of y, the variance is large no matter

how we reweight the samples.
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Direction of p*: Dual SDP

Dual SDP (with parameter v)

maximize Mean of the smallest (1 — €)-fraction of ((X; - v)"M(X; - V))Zl
subjectto M > 0,tr(M) <1

@ The dual SDP certifies that there are no good weights that can make the spectral norm small.

@ If the solution is rank-one: M = yy', then in the direction of y, the variance is large no matter
how we reweight the samples.

@ Intuition: When v is far from p*, y should align with (v — p*).
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Direction of p*: Dual SDP

Why would the dual SDP pick the direction (v — pu*)?
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Direction of p*: Dual SDP

Why would the dual SDP pick the direction (v — pu*)?

R
... ..
) L@
M=yy' § e
x ° .
y~(v—p*) Soape
Why is y better than y’? Yy
v '
e® -« ——— ——— >

/

Y
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How Far is pi*: Optimal Value of the SDPs

When |v - p*|,> ...,

1+0.99 v — p* |2 < OPT, <1+ 1.01 | — p*|%.
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Putting it Together: Moving v Closer to u*

We show that despite the error from
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Putting it Together: Moving v Closer to u*

We show that despite the error from
@ the errors in the concentration bounds, and
@ we are only solving the SDP approximately,

OPT, ~ 1+ |v — pu*||?, and the top eigenvector of M still aligns approximately with (v — ui*).

/!
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Full Algorithm: Sub-Gaussians

Algorithm 1: Robust Mean Estimation for Known Covariance Sub-Gaussian

Let v be the coordinate-wise median of {X;} ;

for i=1to O(logd) do
Compute either

(i) a good solution w € RN for the primal SDP with parameters (v, 2¢); or
(i) a good solution M € R¥“ for the dual SDP with parameters (v, ¢);
if the objective value of w in primal SDP < 1 + ¢yeln(1/¢) then
‘ return the weighted empirical mean Ti,, = YN | w;X; ;
else
| Move v closer to ;i using the top eigenvector of M.
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Full Algorithm: Bounded Covariance

Algorithm 2: Robust Mean Estimation for Bounded Covariance Distributions

Let v be the coordinate-wise median of {X;} ;

for i=1to O(logd) do

Compute either
(i) a good solution w € RN for the primal SDP with parameters (v, 2¢); or
(i) a good solution M € R¥“ for the dual SDP with parameters (v, €);
if the objective value of w in primal SDP is at most c; then
‘ return the weighted empirical mean Ti,, = YN | w;X; ;
else
| Move v closer to ;* using the top eigenvector of M .
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Summary: Robust Mean Estimation

Distribution ‘ Error (9) # of Samples (N)  Runtime
Sub-Gaussian O(e\/log(1/€)) 0(d/§%) O(Nd/e)
Bounded Covariance O(\/¢) 0(d/é%) ‘
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Summary: Robust Mean Estimation

Distribution ‘ Error (9) # of Samples (N)  Runtime
Sub-Gaussian O(e\/log(1/€)) 0(d/§%) O(Nd/e)
Bounded Covariance O(\/¢) 0(d/é%) ‘

We hope our work will serve as a starting point for the design of faster algorithms for

high-dimensional robust estimation.
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Follow up: Robust Covariance Estimation [C Diakonikolas Ge Woodruff *19]

Input: e-corrupted set of N samples drawn from N (0, X).

Goal: Estimate Y.
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Follow up: Robust Covariance Estimation [C Diakonikolas Ge Woodruff *19]

Input: e-corrupted set of N samples drawn from N (0, X).

Goal: Estimate Y.

Distribution ‘ Error (0)

# of Samples (N) Runtime

SER2 0| = O(elog(1 ~ O(d**logr/e®

Gaussian H = HF (clog(1/e)) O(d*/6%) (~ 3;)65-_{/1/6 :
HE—EHFzO(elog(l/e)) o(d>*/e%)

All previous algorithms with similar error guarantee run in time Q(d**) = Q(d*"™).
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Follow up: Robust Covariance Estimation [C Diakonikolas Ge Woodruff *19]

Distribution ‘ Error (9) # of Samples (N) Runtime
S2ER 2 - = O(elog(1 ~ O(d** log i/ ®
Gaussian H = HF (clog(1/e)) O(dz/éz) (~ 3206g/€8/6 :
HE—EHF:O(elog(l/e)) O(d>*°/e®)

Fast rectangular multiplication: d x d* x d matrix multiplication can be done in time O(d>%®).
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Follow up: Robust Covariance Estimation [C Diakonikolas Ge Woodruff *19]

Distribution ‘ Error (9) # of Samples (N) Runtime
S2ER 2 - = O(elog(1 ~ O(d** log i/ ®
Gaussian H = HF (clog(1/e)) O(d2/52) (~ 3206g/€8/6 :
HE—EHF:O(elog(l/e)) O(d>*°/e®)

Fast rectangular multiplication: d x d* x d matrix multiplication can be done in time O(d>%®).

Our runtime almost matches that of the best non-robust covariance estimation algorithm.

Computing the empirical covariance matrix & >N, X;X] takes O(d*?/€®) time.
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|z-12Ex-12 - IHF = O(elog(1/e)) O(d>* log k/e®)
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O(d?/6%)

Gaussian

Fast rectangular multiplication: d x d* x d matrix multiplication can be done in time O(d>%®).

Our runtime almost matches that of the best non-robust covariance estimation algorithm.

Computing the empirical covariance matrix & >N, X;X] takes O(d*?/€®) time.
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Follow up: Robust Covariance Estimation [C Diakonikolas Ge Woodruff *19]

Distribution ‘ Error (9) # of Samples (N) Runtime
S2ER 2 - = O(elog(1 ~ O(d** log i/ ®
Gaussian H = HF (clog(1/e)) O(d2/52) (~ 3206g/€8/6 :
HE—EHF:O(elog(l/e)) O(d>*°/e®)

Fast rectangular multiplication: d x d* x d matrix multiplication can be done in time O(d>%®).

Our runtime almost matches that of the best non-robust covariance estimation algorithm.

Computing the empirical covariance matrix & >N, X;X] takes O(d*?/€®) time.

E[XX"] = 3. Reduce to robust mean estimation with input X ® X ¢ R%"
We use the primal-dual framework presented in this talk.
Naive implementation takes Q(Nd?) = Q(d*) time. We need to open up the positive SDP solvers.
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Open Problems

@ Faster algorithms for other high-dimensional robust learning problems (e.g., sparse mean

estimation / sparse PCA)?
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Open Problems

@ Faster algorithms for other high-dimensional robust learning problems (e.g., sparse mean

estimation / sparse PCA)?

@ Can we avoid the poly(1/e) in the runtime?
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