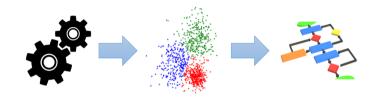
High-Dimensional Robust Mean Estimation in Nearly-Linear Time

Yu Cheng 1 $\,$ Ilias Diakonikolas 2 $\,$ Rong Ge 1

¹Duke University

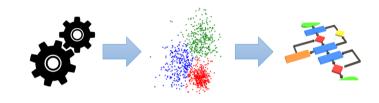
²University of Southern California



(Unknown) Parameters

Samples

Algorithms



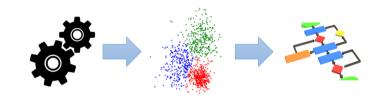
(Unknown) Parameters

Samples

Algorithms

Performance criteria:

• Sample complexity



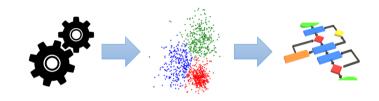
(Unknown) Parameters

Samples

Algorithms

Performance criteria:

- Sample complexity
- Running time



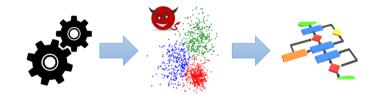
(Unknown) Parameters

Samples

Algorithms

Performance criteria:

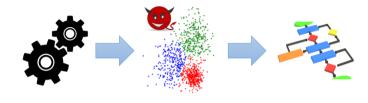
- Sample complexity
- Running time
- Robustness



(Unknown) Parameters

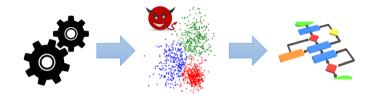
Corrupted samples

Algorithms



(Unknown) Parameters Corrupted samples Algorithms

Q: Can we design provably robust and computational efficient learning algorithms when a small fraction of the data is corrupted?

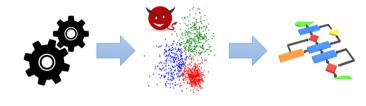


(Unknown) Parameters Corrupted samples Algorithms

Q: Can we design provably robust and computational efficient learning algorithms when a small fraction of the data is corrupted?

Motivation:

• Model misspecification / Robust statistics [Huber 1960s, Tukey 1960s, ...]



(Unknown) Parameters Corrupted samples Algorithms

Q: Can we design provably robust and computational efficient learning algorithms when a small fraction of the data is corrupted?

Motivation:

- Model misspecification / Robust statistics [Huber 1960s, Tukey 1960s, ...]
- Data poisoning attacks, Reliable / Adversarial / Secure ML

Motivation

Data Poisoning: High-frequency trading algorithms. Twitter account of the Associated Press was hacked in April 2013 (\$136 billion in 3 minutes).

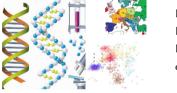
Motivation

Data Poisoning: High-frequency trading algorithms. Twitter account of the Associated Press was hacked in April 2013 (\$136 billion in 3 minutes).

Biological Datasets: POPRES project, HGDP datasets. High-dimensional datasets tend to be inherently noisy. Hard to detect in several cases [Rosenberg et al., Science'02; Li et al., Science'08; Paschou et al., Medical Genetics'10]

Motivation

Data Poisoning: High-frequency trading algorithms. Twitter account of the Associated Press was hacked in April 2013 (\$136 billion in 3 minutes).



Biological Datasets: POPRES project, HGDP datasets. High-dimensional datasets tend to be inherently noisy. Hard to detect in several cases [Rosenberg et al., Science'02; Li et al., Science'08; Paschou et al., Medical Genetics'10]

Reliable/Adversarial/Secure ML:

Recommendation Systems, Crowdsourcing, ...

Attacker can generate malicious data to maximize his objectives. [Mayzlin et al. '14] [Wang et al. '14] [Li et al. '16]

Yu Cheng (Duke)

FASTER ROBUST MEAN ESTIMATION

Mean Estimation

- *Input:* N samples $\{X_1, \ldots, X_N\}$ drawn from $\mathcal{N}(\mu^*, I)$ on \mathbb{R}^d .
- Goal: Learn μ^* .

Mean Estimation

- *Input:* N samples $\{X_1, \ldots, X_N\}$ drawn from $\mathcal{N}(\mu^*, I)$ on \mathbb{R}^d .
- *Goal:* Learn μ^* .
- Empirical mean $\widehat{\mu} = \frac{1}{N} \sum_{i=1}^{N} X_i$ works:
 - $\|\widehat{\mu} \mu^{\star}\|_{2} \leq \epsilon$ when $N = \Omega(d/\epsilon^{2})$.

Mean Estimation

- *Input:* N samples $\{X_1, \ldots, X_N\}$ drawn from $\mathcal{N}(\mu^*, I)$ on \mathbb{R}^d .
- *Goal:* Learn μ^* .
- Empirical mean $\widehat{\mu} = \frac{1}{N} \sum_{i=1}^{N} X_i$ works:
 - $\|\widehat{\mu} \mu^{\star}\|_{2} \leq \epsilon$ when $N = \Omega(d/\epsilon^{2})$.
- Running time: O(Nd).

Definition (ϵ -Corruption)

• N samples are drawn i.i.d. from the ground-truth distribution D.

Definition (ϵ -Corruption)

- *N* samples are drawn i.i.d. from the ground-truth distribution *D*.
- Adversary replaces ϵN samples with arbitrary points (after inspecting *D*, the samples, and the algorithm).

Definition (ϵ -Corruption)

- *N* samples are drawn i.i.d. from the ground-truth distribution *D*.
- Adversary replaces ϵN samples with arbitrary points (after inspecting *D*, the samples, and the algorithm).

Robust Mean Estimation

- *Input:* an *ϵ*-corrupted set of *N* samples {*X*₁,...,*X_N*} drawn from an unknown distribution *D* on ℝ^d with mean μ*.
- *Goal:* Learn μ^* in ℓ_2 -norm.

Algorithm Error Guarantee Poly-Time?

Robustly learn μ^{\star} given $\epsilon\text{-corrupted}$ samples from $\mathcal{N}(\mu^{\star},I)\text{:}$

Algorithm	Error Guarantee	Poly-Time?
Tukey Median	$O(\epsilon)$	No
Geometric Median	$O(\epsilon \sqrt{d})$	Yes
Tournament	$O(\epsilon)$	No
Pruning	$O(\epsilon \sqrt{d})$	Yes
RANSAC	∞	Yes

Algorithm	Error Guarantee	Poly-Time?
Tukey Median	$O(\epsilon)$	No
Geometric Median	$O(\epsilon \sqrt{d})$	Yes
Tournament	$O(\epsilon)$	No
Pruning	$O(\epsilon \sqrt{d})$	Yes
RANSAC	∞	Yes
[LRV'16]	$O(\epsilon \sqrt{\log d})$	Yes
[DKKLMS'16]	$O(\epsilon \sqrt{\log(1/\epsilon)})$	Yes

Algorithm	Error Guarantee	Poly-Time?
Tukey Median	$O(\epsilon)$	No
Geometric Median	$O(\epsilon \sqrt{d})$	Yes
Tournament	$O(\epsilon)$	No
Pruning	$O(\epsilon \sqrt{d})$	Yes
RANSAC	∞	Yes
[LRV'16]	$O(\epsilon \sqrt{\log d})$	Yes
[DKKLMS'16]	$O(\epsilon \sqrt{\log(1/\epsilon)})$	Yes

Algorithm	Error (δ)	Runtime
-----------	--------------------	---------

Algorithm	Error (δ)	Runtime
Dimension Halving [LRV'16]	$O(\epsilon \sqrt{\log d})$	$\Omega(Nd^2)$ + SVD
Convex Programming [DKKLMS'16]	$O(\epsilon \sqrt{\log(1/\epsilon)})$	Ellipsoid Algorithm
Filtering [DKKLMS'16]	$O(\epsilon \sqrt{\log(1/\epsilon)})$	$\Omega(\mathit{Nd}^2)$

Robustly learn μ^{\star} given $\epsilon\text{-corrupted}$ samples from $\mathcal{N}(\mu^{\star},I)\text{:}$

Algorithm	Error (δ)	Runtime
Dimension Halving [LRV'16]	$O(\epsilon \sqrt{\log d})$	$\Omega(\mathit{Nd}^2)$ + SVD
Convex Programming [DKKLMS'16]	$O(\epsilon \sqrt{\log(1/\epsilon)})$	Ellipsoid Algorithm
Filtering [DKKLMS'16]	$O(\epsilon \sqrt{\log(1/\epsilon)})$	$\Omega(\mathit{Nd}^2)$
This paper	$O(\epsilon \sqrt{\log(1/\epsilon)})$	$\widetilde{O}(Nd/\epsilon^6)$

Algorithm	Error (δ)	Runtime
Dimension Halving [LRV'16]	$O(\epsilon \sqrt{\log d})$	$\Omega(\mathit{Nd}^2)$ + SVD
Convex Programming [DKKLMS'16]	$O(\epsilon \sqrt{\log(1/\epsilon)})$	Ellipsoid Algorithm
Filtering [DKKLMS'16]	$O(\epsilon \sqrt{\log(1/\epsilon)})$	$\Omega(\mathit{Nd}^2)$
This paper	$O(\epsilon \sqrt{\log(1/\epsilon)})$	$\widetilde{O}(Nd/\epsilon^6)$

All these algorithms have the right sample complexity $N = O(d/\delta^2)$.

Robustly learn μ^* given ϵ -corrupted samples from D on \mathbb{R}^d .

Distribution	Error (δ)	# of Samples (N)	Runtime
--------------	--------------------	------------------	---------

Robustly learn μ^* given ϵ -corrupted samples from D on \mathbb{R}^d .

Distribution	Error (δ)	# of Samples (N)	Runtime
Sub-Gaussian	$O(\epsilon \sqrt{\log(1/\epsilon)})$	$O(d/\delta^2)$	$\widetilde{O}(Nd/\epsilon^6)$
Bounded Covariance ($\Sigma \leq I$)	$O(\sqrt{\epsilon})$	$\widetilde{O}(d/\delta^2)$	$O(Ma/\epsilon)$

Robustly learn μ^* given ϵ -corrupted samples from D on \mathbb{R}^d .

Distribution	Error (δ)	# of Samples (N)	Runtime
Sub-Gaussian	$O(\epsilon \sqrt{\log(1/\epsilon)})$	$O(d/\delta^2)$	$\widetilde{O}(Nd/\epsilon^6)$
Bounded Covariance ($\Sigma \leq I$)	$O(\sqrt{\epsilon})$	$\widetilde{O}(d/\delta^2)$	$O(Nu/\epsilon)$

When ϵ is constant, our algorithm has the best possible error guarantee, sample complexity, and running time (up to polylogarithmic factors).

Our Results

Distribution	Error (δ)	# of Samples (N)	Runtime
Sub-Gaussian	$O(\epsilon \sqrt{\log(1/\epsilon)})$	$O(d/\delta^2)$	$\widetilde{O}(Nd/\epsilon^6)$
Bounded Covariance ($\Sigma \leq I$)	$O(\sqrt{\epsilon})$	$\widetilde{O}(d/\delta^2)$	$O(Nu/\epsilon)$

Our Results

Distribution	Error (δ)	# of Samples (N)	Runtime
Sub-Gaussian	$O(\epsilon \sqrt{\log(1/\epsilon)})$	$O(d/\delta^2)$	$\widetilde{O}(Nd/\epsilon^6)$
Bounded Covariance ($\Sigma \leq I$)	$O(\sqrt{\epsilon})$	$\widetilde{O}(d/\delta^2)$	$O(Ma/\epsilon)$

Robust mean estimation under bounded covariance assumptions has been used as a subroutine to obtain robust learners for a wide range of supervised learning problems that can be phrased as stochastic convex programs.

Our Results

Distribution	Error (δ)	# of Samples (N)	Runtime
Sub-Gaussian	$O(\epsilon \sqrt{\log(1/\epsilon)})$	$O(d/\delta^2)$	$\widetilde{O}(Nd/\epsilon^6)$
Bounded Covariance ($\Sigma \leq I$)	$O(\sqrt{\epsilon})$	$\widetilde{O}(d/\delta^2)$	$O(Ma/\epsilon)$

Robust mean estimation under bounded covariance assumptions has been used as a subroutine to obtain robust learners for a wide range of supervised learning problems that can be phrased as stochastic convex programs.

Our result provides a faster implementation of such a subroutine, hence yields faster robust algorithms for all these problems.

[DKKLMS'16]: To shift the empirical mean far from μ^* , the corrupted samples must introduce a large eigenvalue in the second-moment matrix.

[DKKLMS'16]: To shift the empirical mean far from μ^* , the corrupted samples must introduce a large eigenvalue in the second-moment matrix.

• For $X \sim \mathcal{N}(\mu^*, I)$, $\mathbb{E}[(X - \mu^*)(X - \mu^*)^\top] = I$.

[DKKLMS'16]: To shift the empirical mean far from μ^* , the corrupted samples must introduce a large eigenvalue in the second-moment matrix.

• For $X \sim \mathcal{N}(\mu^*, I)$, $\mathbb{E}[(X - \mu^*)(X - \mu^*)^\top] = I$.

Good Weights

$$\begin{array}{ll} \text{minimize} & \lambda_{\max} \left(\sum_{i=1}^{N} w_i (X_i - \mu^*) (X_i - \mu^*)^{\mathsf{T}} \right) \\ \text{subject to} & w \in \Delta_{N, \epsilon} & \left(\sum_i w_i = 1 \text{ and } 0 \le w_i \le \frac{1}{(1 - \epsilon)N} \right) \end{array}$$

[DKKLMS'16]: To shift the empirical mean far from μ^* , the corrupted samples must introduce a large eigenvalue in the second-moment matrix.

• For
$$X \sim \mathcal{N}(\mu^*, I), \mathbb{E}[(X - \mu^*)(X - \mu^*)^{\top}] = I.$$

Good Weights

minimize
$$\lambda_{\max} \left(\sum_{i=1}^{N} w_i (X_i - \mu^*) (X_i - \mu^*)^\top \right)$$

subject to $w \in \Delta_{N, \epsilon} \left(\sum_i w_i = 1 \text{ and } 0 \le w_i \le \frac{1}{(1 - \epsilon)N} \right)$

Lemma ([DKKLMS'16])

If we can find a near-optimal solution w, we can output $\widehat{\mu}_w = \sum_i w_i X_i$.

Reweight the Samples

[DKKLMS'16]: To shift the empirical mean far from μ^* , the corrupted samples must introduce a large eigenvalue in the second-moment matrix.

• For
$$X \sim \mathcal{N}(\mu^*, I)$$
, $\mathbb{E}[(X - \mu^*)(X - \mu^*)^\top] = I$.

Good Weights

minimize
$$\lambda_{\max} \left(\sum_{i=1}^{N} w_i (X_i - \mu^*) (X_i - \mu^*)^{\top} \right)$$

subject to $w \in \Delta_{N,\epsilon} \left(\sum_i w_i = 1 \text{ and } 0 \le w_i \le \frac{1}{(1-\epsilon)N} \right)$

Lemma ([DKKLMS'16])

If we can find a near-optimal solution w, we can output $\widehat{\mu}_w = \sum_i w_i X_i$.

This looks like a packing SDP in w (which we can solve in nearly-linear time). Except that ...

Yu Cheng (Duke)

Reweight the Samples

[DKKLMS'16]: To shift the empirical mean far from μ^* , the corrupted samples must introduce a large eigenvalue in the second-moment matrix.

• For
$$X \sim \mathcal{N}(\mu^*, I)$$
, $\mathbb{E}[(X - \mu^*)(X - \mu^*)^{\top}] = I$.

Good Weights

minimize
$$\lambda_{\max} \left(\sum_{i=1}^{N} w_i (X_i - \mu^*) (X_i - \mu^*)^\top \right)$$

subject to $w \in \Delta_{N, \epsilon} \left(\sum_i w_i = 1 \text{ and } 0 \le w_i \le \frac{1}{(1-\epsilon)N} \right)$

Lemma ([DKKLMS'16])

If we can find a near-optimal solution w, we can output $\widehat{\mu}_w = \sum_i w_i X_i$.

This looks like a packing SDP in w (which we can solve in nearly-linear time). Except that ... we do not know μ^* .

Yu Cheng (Duke)

Our Approach

Idea: guess the mean ν and solve the SDP with parameter ν .

Idea: guess the mean ν and solve the SDP with parameter ν .

Primal SDP (with parameter ν)

minimize
$$\lambda_{\max} \left(\sum_{i=1}^{N} w_i (X_i - \boldsymbol{\nu}) (X_i - \boldsymbol{\nu})^{\mathsf{T}} \right)$$

subject to $w \in \Delta_{N,\epsilon}$

Idea: guess the mean ν and solve the SDP with parameter $\nu.$

Primal SDP (with parameter $ u$)	
minimize	$\lambda_{\max}\left(\sum_{i=1}^{N} w_i (X_i - \boldsymbol{\nu}) (X_i - \boldsymbol{\nu})^{\top}\right)$
subject to	$w \in \Delta_{N,\epsilon}$

We give a win-win analysis: either

• a near-optimal solution w to the primal SDP give a good answer $\widehat{\mu}_w$, or

Idea: guess the mean ν and solve the SDP with parameter ν .

Primal SDP (with parameter u)

minimize
$$\lambda_{\max} \left(\sum_{i=1}^{N} w_i (X_i - \boldsymbol{\nu}) (X_i - \boldsymbol{\nu})^{\top} \right)$$

subject to $w \in \Delta_{N, \epsilon}$

We give a win-win analysis: either

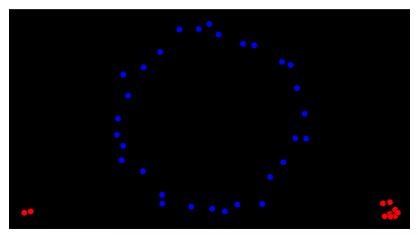
- a near-optimal solution w to the primal SDP give a good answer $\widehat{\mu}_w$, or
- a near-optimal solution to the dual SDP yields a new guess ν' that is closer to μ^* by a constant factor.

Our Approach

Iteratively move ν closer to μ^* using the dual SDP, until primal SDP has a good solution and we can output $\widehat{\mu}_w$.

Our Approach

Iteratively move ν closer to μ^* using the dual SDP, until primal SDP has a good solution and we can output $\widehat{\mu}_w$.



Iteratively move ν closer to μ^* using the dual SDP:

Iteratively move ν closer to μ^* using the dual SDP:

• Which direction is μ^* ?

Iteratively move ν closer to μ^{\star} using the dual SDP:

- Which direction is μ^* ?
- How far is μ^* ?

Primal SDP (with parameter ν)

minimize
$$\lambda_{\max} \left(\sum_{i=1}^{N} w_i (X_i - \nu) (X_i - \nu)^{\top} \right)$$

subject to $w \in \Delta_{N, \epsilon}$

Primal SDP (with parameter ν)

minimize
$$\lambda_{\max} \left(\sum_{i=1}^{N} w_i (X_i - \nu) (X_i - \nu)^{\top} \right)$$

subject to $w \in \Delta_{N,\epsilon}$

SDP Duality

$$\min_{w \in \Delta_{N,\epsilon}} \max_{M \ge 0, \operatorname{tr}(M) \le 1} \quad \langle M, \sum_{i} w_i (X_i - \nu) (X_i - \nu)^\top \rangle$$

Primal SDP (with parameter ν)

minimize
$$\lambda_{\max} \left(\sum_{i=1}^{N} w_i (X_i - \nu) (X_i - \nu)^{\top} \right)$$

subject to $w \in \Delta_{N, \epsilon}$

SDP Duality

$$\min_{\substack{w \in \Delta_{N,\epsilon}}} \max_{\substack{M \ge 0, \text{tr}(M) \le 1}} \langle M, \sum_{i} w_i (X_i - \nu) (X_i - \nu)^\top \rangle \\ \max_{\substack{M \ge 0, \text{tr}(M) \le 1}} \min_{\substack{w \in \Delta_{N,\epsilon}}} \langle M, \sum_{i} w_i (X_i - \nu) (X_i - \nu)^\top \rangle$$

maximize Mean of the smallest
$$(1 - \epsilon)$$
-fraction of $((X_i - \nu)^{\top} M(X_i - \nu))_{i=1}^N$
subject to $M \ge 0, \operatorname{tr}(M) \le 1$

maximize Mean of the smallest
$$(1 - \epsilon)$$
-fraction of $((X_i - \nu)^{\top} M(X_i - \nu))_{i=1}^N$
subject to $M \ge 0, \operatorname{tr}(M) \le 1$

• The dual SDP certifies that there are no good weights that can make the spectral norm small.

maximize Mean of the smallest $(1 - \epsilon)$ -fraction of $((X_i - \nu)^{\top} M(X_i - \nu))_{i=1}^N$ subject to $M \ge 0, \operatorname{tr}(M) \le 1$

- The dual SDP certifies that there are no good weights that can make the spectral norm small.
- If the solution is rank-one: M = yy^T, then in the direction of y, the variance is large no matter how we reweight the samples.

maximize Mean of the smallest $(1 - \epsilon)$ -fraction of $((X_i - \nu)^{\top} M(X_i - \nu))_{i=1}^N$ subject to $M \ge 0, \operatorname{tr}(M) \le 1$

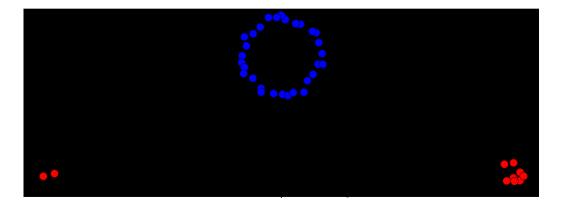
- The dual SDP certifies that there are no good weights that can make the spectral norm small.
- If the solution is rank-one: M = yy^T, then in the direction of y, the variance is large no matter how we reweight the samples.
- Intuition: When ν is far from μ^* , y should align with $(\nu \mu^*)$.

Direction of μ^* : Dual SDP

Why would the dual SDP pick the direction $(\nu - \mu^*)$?

Direction of μ^{\star} : Dual SDP

Why would the dual SDP pick the direction $(\nu - \mu^*)$?



How Far is $\mu^\star : \operatorname{Optimal}$ Value of the SDPs

Lemma

When
$$\|\nu - \mu^{\star}\|_{2} \ge \dots$$
,
 $1 + 0.99 \|\nu - \mu^{\star}\|_{2}^{2} \le OPT_{\nu} \le 1 + 1.01 \|\nu - \mu^{\star}\|_{2}^{2}$.

We show that despite the error from

We show that despite the error from

- the errors in the concentration bounds, and
- we are only solving the SDP approximately,

We show that despite the error from

- the errors in the concentration bounds, and
- we are only solving the SDP approximately,

 $OPT_{\nu} \approx 1 + \|\nu - \mu^{\star}\|^2$, and the top eigenvector of *M* still aligns approximately with $(\nu - \mu^{\star})$.

We show that despite the error from

- the errors in the concentration bounds, and
- we are only solving the SDP approximately,

 $OPT_{\nu} \approx 1 + \|\nu - \mu^{\star}\|^2$, and the top eigenvector of *M* still aligns approximately with $(\nu - \mu^{\star})$.

Algorithm 1: Robust Mean Estimation for Known Covariance Sub-Gaussian

```
Let \nu be the coordinate-wise median of \{X_i\}_{i=1}^N;
```

```
for i = 1 to O(\log d) do
```

```
Compute either
```

(*i*) a good solution $w \in \mathbb{R}^N$ for the primal SDP with parameters $(\nu, 2\epsilon)$; or (*ii*) a good solution $M \in \mathbb{R}^{d \times d}$ for the dual SDP with parameters (ν, ϵ) ; **if** the objective value of w in primal $SDP \le 1 + c_0 \epsilon \ln(1/\epsilon)$ **then** | **return** the weighted empirical mean $\widehat{\mu}_w = \sum_{i=1}^N w_i X_i$;

else

_ Move ν closer to μ^{\star} using the top eigenvector of M.

Algorithm 2: Robust Mean Estimation for Bounded Covariance Distributions

```
Let \nu be the coordinate-wise median of \{X_i\}_{i=1}^N;
```

```
for i = 1 to O(\log d) do
```

```
Compute either
```

(*i*) a good solution $w \in \mathbb{R}^N$ for the primal SDP with parameters $(\nu, 2\epsilon)$; or (*ii*) a good solution $M \in \mathbb{R}^{d \times d}$ for the dual SDP with parameters (ν, ϵ) ; **if** the objective value of w in primal SDP is at most c_1 then

return the weighted empirical mean $\widehat{\mu}_w = \sum_{i=1}^N w_i X_i$;

else

_ Move u closer to μ^{\star} using the top eigenvector of M .

Distribution	Error (δ)	# of Samples (N)	Runtime
Sub-Gaussian	$O(\epsilon \sqrt{\log(1/\epsilon)})$	$O(d/\delta^2)$	$\widetilde{O}(Nd/\epsilon^6)$
Bounded Covariance	$O(\sqrt{\epsilon})$	$\widetilde{O}(d/\delta^2)$	$O(Ma/\epsilon)$

Distribution	Error (δ)	# of Samples (N)	Runtime
Sub-Gaussian	$O(\epsilon \sqrt{\log(1/\epsilon)})$	$O(d/\delta^2)$	$\widetilde{O}(Nd/\epsilon^6)$
Bounded Covariance	$O(\sqrt{\epsilon})$	$\widetilde{O}(d/\delta^2)$	$O(Nu/\epsilon)$

We hope our work will serve as a starting point for the design of faster algorithms for high-dimensional robust estimation.

Input: ϵ -corrupted set of *N* samples drawn from $\mathcal{N}(0, \Sigma)$.

Goal: Estimate Σ .

Input: ϵ -corrupted set of *N* samples drawn from $\mathcal{N}(0, \Sigma)$.

Goal: Estimate Σ .

	Distribution	Error (δ)	# of Samples (N)	Runtime
-	Gaussian	$\begin{aligned} \left\ \Sigma^{-1/2} \widehat{\Sigma} \Sigma^{-1/2} - I \right\ _F &= O(\epsilon \log(1/\epsilon)) \\ \left\ \widehat{\Sigma} - \Sigma \right\ _F &= O(\epsilon \log(1/\epsilon)) \end{aligned}$	$\widetilde{O}(d^2/\delta^2)$	$\widetilde{O}(d^{3.26}\log\kappa/\epsilon^8) \ \widetilde{O}(d^{3.26}/\epsilon^8)$

Input: ϵ -corrupted set of *N* samples drawn from $\mathcal{N}(0, \Sigma)$.

Goal: Estimate Σ .

Distribution	Error (δ)	# of Samples (N)	Runtime
Gaussian	$ \begin{aligned} \left\ \Sigma^{-1/2} \widehat{\Sigma} \Sigma^{-1/2} - I \right\ _{F} &= O(\epsilon \log(1/\epsilon)) \\ \left\ \widehat{\Sigma} - \Sigma \right\ _{F} &= O(\epsilon \log(1/\epsilon)) \end{aligned} $	$\widetilde{O}(d^2/\delta^2)$	$\widetilde{O}(d^{3.26}\log\kappa/\epsilon^8) \ \widetilde{O}(d^{3.26}/\epsilon^8)$

All previous algorithms with similar error guarantee run in time $\Omega(d^{2\omega}) = \Omega(d^{4.74})$.

Follow up: Robust Covariance Estimation [C Diakonikolas Ge Woodruff '19]

$$\begin{array}{c|c} \hline \text{Distribution} & Error\left(\delta\right) & \# \text{ of Samples}\left(\mathsf{N}\right) & \text{Runtime} \\ \\ \hline \text{Gaussian} & \left\| \begin{split} & \left\| \Sigma^{-1/2} \widehat{\Sigma} \Sigma^{-1/2} - I \right\|_F = O(\epsilon \log(1/\epsilon)) \\ & \left\| \widehat{\Sigma} - \Sigma \right\|_F = O(\epsilon \log(1/\epsilon)) & \widetilde{O}(d^2/\delta^2) \\ & \widetilde{O}(d^{3.26} \log \kappa/\epsilon^8) \\ & \widetilde{O}(d^{3.26}/\epsilon^8) \end{split} \right.$$

Fast rectangular multiplication: $d \times d^2 \times d$ matrix multiplication can be done in time $O(d^{3.26})$.

$$\begin{array}{c|c} \hline \text{Distribution} & & \text{Error} (\delta) & \# \text{ of Samples (N)} & \text{Runtime} \\ \hline \text{Gaussian} & & \left\| \widehat{\Sigma}^{-1/2} \widehat{\Sigma} \widehat{\Sigma}^{-1/2} - I \right\|_F = O(\epsilon \log(1/\epsilon)) & & \widetilde{O}(d^2/\delta^2) & & \widetilde{O}(d^{3.26} \log \kappa/\epsilon^8) \\ & & & \left\| \widehat{\Sigma} - \Sigma \right\|_F = O(\epsilon \log(1/\epsilon)) & & & \widetilde{O}(d^2/\delta^2) & & & \\ \hline \end{array}$$

Fast rectangular multiplication: $d \times d^2 \times d$ matrix multiplication can be done in time $O(d^{3.26})$.

Our runtime almost matches that of the best non-robust covariance estimation algorithm. Computing the empirical covariance matrix $\frac{1}{N}\sum_{i=1}^{N} X_i X_i^{\top}$ takes $O(d^{3.26}/\epsilon^2)$ time.

$$\begin{array}{c|c} \hline \text{Distribution} & & \text{Error} (\delta) & \# \text{ of Samples (N)} & \text{Runtime} \\ \hline \text{Gaussian} & & \left\| \widehat{\Sigma}^{-1/2} \widehat{\Sigma} \widehat{\Sigma}^{-1/2} - I \right\|_F = O(\epsilon \log(1/\epsilon)) & & \\ & & \left\| \widehat{\Sigma} - \Sigma \right\|_F = O(\epsilon \log(1/\epsilon)) & & & \\ \hline O(d^{2}/\delta^2) & & & \\ & & & O(d^{3.26} \log \kappa/\epsilon^8) \\ & & & & \\ \hline O(d^{3.26}/\epsilon^8) & & & \\ \hline \end{array}$$

Fast rectangular multiplication: $d \times d^2 \times d$ matrix multiplication can be done in time $O(d^{3.26})$.

Our runtime almost matches that of the best non-robust covariance estimation algorithm. Computing the empirical covariance matrix $\frac{1}{N} \sum_{i=1}^{N} X_i X_i^{\top}$ takes $O(d^{3.26}/\epsilon^2)$ time.

 $\mathbb{E}[XX^{\top}] = \Sigma$. Reduce to robust mean estimation with input $X \otimes X \in \mathbb{R}^{d^2}$.

$$\begin{array}{c|c} \hline \text{Distribution} & & \text{Error} (\delta) & \# \text{ of Samples (N)} & \text{Runtime} \\ \hline \text{Gaussian} & & \left\| \widehat{\Sigma}^{-1/2} \widehat{\Sigma} \widehat{\Sigma}^{-1/2} - I \right\|_F = O(\epsilon \log(1/\epsilon)) & & \\ & & \left\| \widehat{\Sigma} - \Sigma \right\|_F = O(\epsilon \log(1/\epsilon)) & & & \\ \hline O(d^{2}/\delta^2) & & & \\ & & & O(d^{3.26} \log \kappa/\epsilon^8) \\ & & & & \\ \hline O(d^{3.26}/\epsilon^8) & & & \\ \hline \end{array}$$

Fast rectangular multiplication: $d \times d^2 \times d$ matrix multiplication can be done in time $O(d^{3.26})$.

Our runtime almost matches that of the best non-robust covariance estimation algorithm. Computing the empirical covariance matrix $\frac{1}{N} \sum_{i=1}^{N} X_i X_i^{\top}$ takes $O(d^{3.26}/\epsilon^2)$ time.

 $\mathbb{E}[XX^{\top}] = \Sigma$. Reduce to robust mean estimation with input $X \otimes X \in \mathbb{R}^{d^2}$. We use the primal-dual framework presented in this talk. Naive implementation takes $\Omega(Nd^2) = \Omega(d^4)$ time. We need to open up the positive SDP solvers. • Faster algorithms for other high-dimensional robust learning problems (e.g., sparse mean estimation / sparse PCA)?

- Faster algorithms for other high-dimensional robust learning problems (e.g., sparse mean estimation / sparse PCA)?
- Can we avoid the $poly(1/\epsilon)$ in the runtime?