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Statistical Learning

(Unknown) Parameters Samples Algorithms

Performance criteria:

Sample complexity

Running time

Robustness
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Robust Statistical Learning

(Unknown) Parameters Corrupted samples Algorithms

Q: Can we design provably robust and computational e�icient learning algorithms
when a small fraction of the data is corrupted?

Motivation:

Model misspecification / Robust statistics [Huber 1960s, Tukey 1960s, . . . ]

Data poisoning a�acks, Reliable / Adversarial / Secure ML
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Motivation

Data Poisoning: High-frequency trading algorithms.

Twi�er account of the Associated Press was hacked in April 2013

($136 billion in 3 minutes).

Biological Datasets: POPRES project, HGDP datasets.

High-dimensional datasets tend to be inherently noisy.

Hard to detect in several cases [Rosenberg et al., Science’02; Li et al., Science’08; Paschou

et al., Medical Genetics’10]

Reliable/Adversarial/Secure ML:

Recommendation Systems, Crowdsourcing, . . .

A�acker can generate malicious data to maximize his objectives. [Mayzlin et al. ’14] [Wang

et al. ’14] [Li et al. ’16]
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Mean Estimation

Mean Estimation

Input: N samples {X1, . . . ,XN} drawn from N (µ⋆, I) on Rd
.

Goal: Learn µ⋆.

Empirical mean µ̂ =
1
N ∑

N
i=1 Xi works:

∥µ̂ − µ⋆∥2 ≤ ε when N = Ω(d/ε2).

Running time: O(Nd).
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Robust Mean Estimation

Definition (ε-Corruption)

N samples are drawn i.i.d. from the ground-truth distribution D.

Adversary replaces εN samples with arbitrary points (a�er inspecting D, the samples, and

the algorithm).

Robust Mean Estimation

Input: an ε-corrupted set of N samples {X1, . . . ,XN} drawn from an unknown distribution D
on Rd

with mean µ⋆.

Goal: Learn µ⋆ in `2-norm.
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Previous Work

Robustly learn µ⋆ given ε-corrupted samples from N (µ⋆, I):

Algorithm Error Guarantee Poly-Time?

Tukey Median O(ε) No

Geometric Median O(ε
√

d) Yes

Tournament O(ε) No

Pruning O(ε
√

d) Yes

RANSAC ∞ Yes

[LRV’16] O(ε
√

log d) Yes

[DKKLMS’16] O(ε
√

log(1/ε)) Yes
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Previous Work

Robustly learn µ⋆ given ε-corrupted samples from N (µ⋆, I):

Algorithm Error (δ) Runtime

Dimension Halving [LRV’16] O(ε
√

log d) Ω(Nd2) + SVD

Convex Programming [DKKLMS’16] O(ε
√

log(1/ε)) Ellipsoid Algorithm

Filtering [DKKLMS’16] O(ε
√

log(1/ε)) Ω(Nd2)

This paper O(ε
√

log(1/ε)) Õ(Nd/ε6)

All these algorithms have the right sample complexity N = O(d/δ2).
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Our Results

Robustly learn µ⋆ given ε-corrupted samples from D on Rd
.

Distribution Error (δ) # of Samples (N) Runtime

Sub-Gaussian O(ε
√

log(1/ε)) O(d/δ2)
Õ(Nd/ε6)

Bounded Covariance (Σ ⪯ I ) O(

√

ε) Õ(d/δ2)

When ε is constant, our algorithm has the best possible error guarantee, sample complexity, and

running time (up to polylogarithmic factors).
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Our Results

Distribution Error (δ) # of Samples (N) Runtime

Sub-Gaussian O(ε
√

log(1/ε)) O(d/δ2)
Õ(Nd/ε6)

Bounded Covariance (Σ ⪯ I ) O(

√

ε) Õ(d/δ2)

Robust mean estimation under bounded covariance assumptions has been used as a subroutine to

obtain robust learners for a wide range of supervised learning problems that can be phrased as

stochastic convex programs.

Our result provides a faster implementation of such a subroutine, hence yields faster robust

algorithms for all these problems.
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Reweight the Samples

[DKKLMS’16]: To shi� the empirical mean far from µ⋆, the corrupted samples must introduce a

large eigenvalue in the second-moment matrix.

For X ∼ N (µ⋆, I), E[(X − µ⋆)(X − µ⋆)⊺] = I .

Good Weights

minimize λmax (∑
N
i=1wi(Xi − µ

⋆
)(Xi − µ

⋆
)
⊺
)

subject to w ∈∆N ,ε (∑i wi = 1 and 0 ≤ wi ≤ 1
(1−ε)N )

Lemma ([DKKLMS’16])

If we can find a near-optimal solution w, we can output µ̂w = ∑i wiXi.

This looks like a packing SDP in w (which we can solve in nearly-linear time).

Except that ... we do not know µ⋆.
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Our Approach

Idea: guess the mean ν and solve the SDP with parameter ν.

Primal SDP (with parameter ν)

minimize λmax (∑
N
i=1wi(Xi − ν)(Xi − ν)

⊺
)

subject to w ∈∆N ,ε

We give a win-win analysis: either

a near-optimal solution w to the primal SDP give a good answer µ̂w , or

a near-optimal solution to the dual SDP yields a new guess ν′ that is closer to µ⋆ by a

constant factor.

Yu Cheng (Duke) Faster Robust Mean Estimation 12 / 25



Our Approach

Idea: guess the mean ν and solve the SDP with parameter ν.

Primal SDP (with parameter ν)

minimize λmax (∑
N
i=1wi(Xi − ν)(Xi − ν)

⊺
)

subject to w ∈∆N ,ε

We give a win-win analysis: either

a near-optimal solution w to the primal SDP give a good answer µ̂w , or

a near-optimal solution to the dual SDP yields a new guess ν′ that is closer to µ⋆ by a

constant factor.

Yu Cheng (Duke) Faster Robust Mean Estimation 12 / 25



Our Approach

Idea: guess the mean ν and solve the SDP with parameter ν.

Primal SDP (with parameter ν)

minimize λmax (∑
N
i=1wi(Xi − ν)(Xi − ν)

⊺
)

subject to w ∈∆N ,ε

We give a win-win analysis: either

a near-optimal solution w to the primal SDP give a good answer µ̂w , or

a near-optimal solution to the dual SDP yields a new guess ν′ that is closer to µ⋆ by a

constant factor.

Yu Cheng (Duke) Faster Robust Mean Estimation 12 / 25



Our Approach

Idea: guess the mean ν and solve the SDP with parameter ν.

Primal SDP (with parameter ν)

minimize λmax (∑
N
i=1wi(Xi − ν)(Xi − ν)

⊺
)

subject to w ∈∆N ,ε

We give a win-win analysis: either

a near-optimal solution w to the primal SDP give a good answer µ̂w , or

a near-optimal solution to the dual SDP yields a new guess ν′ that is closer to µ⋆ by a

constant factor.

Yu Cheng (Duke) Faster Robust Mean Estimation 12 / 25



Our Approach

Iteratively move ν closer to µ⋆ using the dual SDP,

until primal SDP has a good solution and we can output µ̂w .
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Our Approach

Iteratively move ν closer to µ⋆ using the dual SDP:

Which direction is µ⋆?

How far is µ⋆?
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Direction of µ⋆: Dual SDP

Primal SDP (with parameter ν)

minimize λmax (∑
N
i=1wi(Xi − ν)(Xi − ν)

⊺
)

subject to w ∈∆N ,ε

SDP Duality

min
w∈∆N ,ε

max
M⪰0,tr(M)≤1

⟨M,∑
i
wi(Xi − ν)(Xi − ν)

⊺
⟩

max
M⪰0,tr(M)≤1

min
w∈∆N ,ε

⟨M,∑
i
wi(Xi − ν)(Xi − ν)

⊺
⟩
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Direction of µ⋆: Dual SDP

Dual SDP (with parameter ν)

maximize Mean of the smallest (1 − ε)-fraction of ((Xi − ν)
⊺M(Xi − ν))

N
i=1

subject to M ⪰ 0, tr(M) ≤ 1

The dual SDP certifies that there are no good weights that can make the spectral norm small.

If the solution is rank-one: M = yy⊺, then in the direction of y, the variance is large no ma�er

how we reweight the samples.

Intuition: When ν is far from µ⋆, y should align with (ν − µ⋆).
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Direction of µ⋆: Dual SDP

Why would the dual SDP pick the direction (ν − µ⋆)?
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bc
bc bcbcbc

bc
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b µ⋆

b ν

y′

y

M = yy⊤

y ≈ (ν − µ⋆)

Why is y better than y′?
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How Far is µ⋆: Optimal Value of the SDPs

Lemma

When ∥ν − µ⋆∥2 ≥ . . .,

1 + 0.99 ∥ν − µ⋆∥22 ≤ OPTν ≤ 1 + 1.01 ∥ν − µ⋆∥22 .
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Pu�ing it Together: Moving ν Closer to µ⋆

We show that despite the error from

the errors in the concentration bounds, and

we are only solving the SDP approximately,

OPTv ≈ 1 + ∥ν − µ⋆∥2, and the top eigenvector of M still aligns approximately with (ν − µ⋆).

b
ν

b
µ⋆

b
ν′

r

v1

θ

b
ν′′

−v1
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Full Algorithm: Sub-Gaussians

Algorithm 1: Robust Mean Estimation for Known Covariance Sub-Gaussian

Let ν be the coordinate-wise median of {Xi}
N
i=1;

for i = 1 to O(log d) do
Compute either

(i) a good solution w ∈ RN
for the primal SDP with parameters (ν, 2ε); or

(ii) a good solution M ∈ Rd×d
for the dual SDP with parameters (ν, ε);

if the objective value of w in primal SDP ≤ 1 + c0ε ln(1/ε) then
return the weighted empirical mean µ̂w = ∑

N
i=1wiXi ;

else
Move ν closer to µ⋆ using the top eigenvector of M .
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Full Algorithm: Bounded Covariance

Algorithm 2: Robust Mean Estimation for Bounded Covariance Distributions

Let ν be the coordinate-wise median of {Xi}
N
i=1;

for i = 1 to O(log d) do
Compute either

(i) a good solution w ∈ RN
for the primal SDP with parameters (ν, 2ε); or

(ii) a good solution M ∈ Rd×d
for the dual SDP with parameters (ν, ε);

if the objective value of w in primal SDP is at most c1 then
return the weighted empirical mean µ̂w = ∑

N
i=1wiXi ;

else
Move ν closer to µ⋆ using the top eigenvector of M .
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Summary: Robust Mean Estimation

Distribution Error (δ) # of Samples (N) Runtime

Sub-Gaussian O(ε
√

log(1/ε)) O(d/δ2)
Õ(Nd/ε6)

Bounded Covariance O(

√

ε) Õ(d/δ2)

We hope our work will serve as a starting point for the design of faster algorithms for

high-dimensional robust estimation.
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Follow up: Robust Covariance Estimation [C Diakonikolas Ge Woodru� ’19]

Input: ε-corrupted set of N samples drawn from N (0,Σ).

Goal: Estimate Σ.

Distribution Error (δ) # of Samples (N) Runtime

Gaussian

∥Σ−1/2Σ̂Σ−1/2
− I∥F = O(ε log(1/ε))

Õ(d2/δ2)
Õ(d3.26 logκ/ε8)

∥Σ̂ −Σ∥
F = O(ε log(1/ε)) Õ(d3.26/ε8)

All previous algorithms with similar error guarantee run in time Ω(d2ω) = Ω(d4.74).
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Follow up: Robust Covariance Estimation [C Diakonikolas Ge Woodru� ’19]

Distribution Error (δ) # of Samples (N) Runtime
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Õ(d2/δ2)
Õ(d3.26 logκ/ε8)

∥Σ̂ −Σ∥
F = O(ε log(1/ε)) Õ(d3.26/ε8)

Fast rectangular multiplication: d × d2 × d matrix multiplication can be done in time O(d3.26).

Our runtime almost matches that of the best non-robust covariance estimation algorithm.

Computing the empirical covariance matrix
1
N ∑

N
i=1 XiX⊺

i takes O(d3.26/ε2) time.

E[XX⊺
] = Σ. Reduce to robust mean estimation with input X ⊗ X ∈ Rd2

.

We use the primal-dual framework presented in this talk.

Naive implementation takes Ω(Nd2) = Ω(d4) time. We need to open up the positive SDP solvers.
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Open Problems

Faster algorithms for other high-dimensional robust learning problems (e.g., sparse mean

estimation / sparse PCA)?

Can we avoid the poly(1/ε) in the runtime?
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