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Can we develop learning algorithms that are robust to 
a constant fraction of corruptions in the data?



MOTIVATION

• Model Misspecification/Robust Statistics: 
Any model only approximately valid. 
Need stable estimators 
[Fisher 1920, Huber 1960s, Tukey 1960s]

• Outlier Removal: Natural outliers in real datasets. 
Hard to detect in several cases
[Rosenberg et al., Science’02; Li et al., Science’08; 
Paschou et al., Journal of Medical Genetics’10]

• Reliable/Adversarial/Secure ML: 
Data poisoning attacks (e.g., crowdsourcing) 
[Biggio et al. ICML’12, …]



BACKGROUND: ALGORITHMIC HIGH-DIMENSIONAL ROBUST STATISTICS

Robust estimation in high-dimensions is algorithmically possible!

• Computationally efficient robust estimators that can tolerate a 
constant fraction of corruptions.

• General methodology to detect outliers in high dimensions.

Meta-Theorem (Informal): Can obtain dimension-independent error 
guarantees, as long as good data has nice concentration.



[D-Kamath-Kane-Li-Moitra-Stewart, FOCS’16]

Can tolerate a constant fraction of corruptions:

• Mean and Covariance Estimation
• Mixtures of Spherical Gaussians, Mixtures of Balanced Product Distributions

[Lai-Rao-Vempala, FOCS’16]

Can tolerate a mild sub-constant (inverse logarithmic) fraction of 
corruptions:

• Mean and Covariance Estimation
• Independent Component Analysis, SVD



ROBUST UNSUPERVISED LEARNING

Robustly Learning Graphical Models
[Cheng-D-Kane-Stewart’16, 
D-Kane-Stewart’18]

Clustering in Mixture Models
[Charikar-Steinhardt-Valiant’17,
D-Kane-Stewart’18, 
Hopkins-Li’18, 
Kothari-Steinhardt-Steurer’18]

Computational/Statistical-Robustness Tradeoffs
[D-Kane-Stewart’17, D-Kong-Stewart’18]



ROBUST SUPERVISED LEARNING

Malicious PAC Learning
[Klivans-Long-Servedio’10, 
Awasthi-Balcan-Long’14, 
D-Kane-Stewart’18]

Stochastic (Convex) Optimization
[Prasad-Suggala-Balakrishnan-Ravikumar’18,
D-Kamath-Kane-Li-Steinhardt-Stewart’18] 

Robust Linear Regression
[D-Kong-Stewart’18, 
Klivans-Kothari-Meka’18]
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SUBSEQUENT RELATED WORKS

• Graphical Models [Cheng-D-Kane-Stewart’16, D-Kane-Stewart’18] 

• Sparse models (e.g., sparse PCA, sparse regression) [Li’17, Du-Balakrishan-Singh’17, Liu-Shen-
Li-Caramanis’18, …]

• List-Decodable Learning [Charikar-Steinhardt-Valiant ’17, Meister-Valiant’18, D-Kane-Stewart’18]

• Robust PAC Learning [Klivans-Long-Servedio’10, Awasthi-Balcan-Long’14, D-Kane-Stewart’18]

• “Robust estimation via SoS” (higher moments, learning mixture models) [Hopkins-Li’18, Kothari-
Steinhardt-Steurer’18, …]

• “SoS Free” learning of mixture models [D-Kane-Stewart’18] 

• Robust Regression [Klivans-Kothari-Meka’18, D-Kong-Stewart’18, …]

• Robust Stochastic Optimization [Prasad-Suggala-Balakrishnan-Ravikumar’18, D-Kamath-Kane-
Li-Steinhard-Stewart’18]

• Near-Linear Time Algorithms [Cheng-D-Ge’19, Cheng-D-Ge-Woodruff’19, …]



THIS TALK

Malicious PAC Learning
[D-Kane-Stewart’18]
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THE PAC LEARNING PROBLEM [VALIANT’84]

: known class of Boolean-valued functions on 
D : fixed (unknown) distribution on 

• Input: labeled sample                         where                 and    

• Goal: compute hypothesis                            such that                                 
is small

Question:	Is	there	an	efficient learning	algorithm?

Unknown 
samples



PAC LEARNING WITH ADVERSARIAL NOISE

Contamination	Model:

Fix																												We	say	that	a	set	of	m samples	is			-corrupted	
from					 if	it	is	generated	as	follows:	
• m samples are drawn, where               and

for some unknown
• An omniscient adversary inspects these samples and 

changes arbitrarily an   - fraction of them.

✏

“nasty” PAC learning [Bshouty-Eiron-Khusilevitz’02]

cf. malicious PAC learning [Valiant’85, Kearns-Li’93]
agnostic PAC learning [Haussler’92, Kearns-Shapire-Sellie’94]



THIS TALK: GEOMETRIC CONCEPT CLASSES

Linear Threshold Functions (Halfspaces)
such that 

where 
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Polynomial Threshold Functions (PTFs)
such that

where                      is a degree-d real 
polynomial.
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Intersections of LTFs



PREVIOUS WORK: PAC LEARNING (NO CORRUPTIONS)

• Low-degree PTFs efficiently PAC learnable under any distribution [Blumer et al. ’89]: 

“For all , can achieve accuracy    with                         samples and time.”

• Intersection of 2 Halfspaces under any distribution: 

?

• Intersection of any constant number of Halfspaces efficiently PAC learnable 
under “well-behaved” distributions
e.g., [Baum’91, Blum-Kannan’96, Klivans-O’Donnell-Servedio’02, Vempala’10].



PREVIOUS WORK: “ROBUST” PAC LEARNING

Distribution D is arbitrary: 
• Can efficiently achieve error          [Kearns-Li’93]. 

• “Hard” to get dimension-independent error, even for LTFs [Daniely’16].

Distribution D is “well-behaved”: 

• Agnostic learning model (label corruptions): “L1-regression” algorithm [KKMS’05] can get 
error            with samples and time

• Malicious learning model:                       time algorithms for origin-centered LTFs 
[Klivans-Long-Servedio’09], [Awasthi-Balcan-Long’14/’17], [Daniely’15].

If                       is fraction of corruptions, 
information-theoretic optimal error is



Origin-centered LTFs only concept class for which 
efficient malicious PAC learning algorithms known.

What about efficient robust estimation for more general concept classes?

Goal: Dimension-independent error guarantees.



THIS TALK: OUR CONTRIBUTION

• Efficient PAC learning algorithm in nasty noise model for that can 
tolerate a constant fraction of corruptions for:

- low-degree PTFs
- intersections of constantly many LTFs 

under Gaussian distribution.

• Near-optimal error guarantee for all LTFs.

First efficient robust learning algorithms with dimension-independent 
error guarantees for more general geometric concept classes.



OUTLINE

Part I: Introduction
• Motivation
• PAC Learning, Geometric Concepts, Robustness
• Prior Work
• Our Contribution

Part II: Robust Learning of Geometric Concepts
• Statements of Results
• Overview of Algorithmic Ideas

Part III: Future Directions
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ROBUST PAC LEARNING OF LOW-DEGREE PTFS

Error Guarantee Independent of n  ! 

Theorem: Let D be any log-concave distribution with known moments 
up to degree 2d. There is a                         time algorithm that outputs a 
degree-d PTF h such that

Problem: Given m samples                         of which                 satisfy                 
and                      , for an unknown degree-d PTF f, compute hypothesis h such 
that                                     is small.

• For d=1 under N(0, I), error is  

• For d=1, get dimension-independent error for uniform distribution on 



NEAR-OPTIMAL ROBUST PAC LEARNING OF LTFS

Error guarantee optimal, up to constant factor 

Theorem: Let D be N(0, I). There is a                         time algorithm that 
outputs an LTF h such that

Problem: Given m samples                         of which                 satisfy                 
and                      , for an unknown LTF f, compute hypothesis h such that

is small.

cf. [DKS’17] SQ lower bound for robust mean estimation within 



ROBUST PAC LEARNING OF POLYTOPES

Error Guarantee Independent of n  ! 

Theorem: Let D be N(0, I). There is an algorithm that draws 
corrupted labeled examples, runs in time                        , and outputs an 
intersection of k LTFs h such that

Problem: Given m samples                         of which                 satisfy                 
and                      , for an unknown intersection of k LTFs f, compute 
hypothesis h such that                                     is small.

No non-trivial robust learning algorithm previously known even for k=2.
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ROBUST LEARNING ALGORITHM FOR LOW-DEGREE PTFS

Two-step Procedure:

Step 1: Robustly estimate the degree at most d “Chow parameters” of f. 

Step 2: Find a degree-d PTF h with (approximately) these Chow parameters.

Output h.

Def: Let                              and D a distribution on      . The degree-d Chow parameters of f
with respect to D are                                 for all degree at most d monomials          



ROBUST ESTIMATION OF LOW-DEGREE CHOW PARAMETERS (I)

Def: Let                              and D a distribution on      . The degree-d Chow parameters of f
with respect to D are                                 for all degree at most d monomials          

Theorem: Let D be N(0, I), uniform on            or any log-concave 
distribution with known moments up to degree 2d. There is a                         
time algorithm that outputs an approximation with l2 – error

Problem: Given m samples                         of which                 satisfy                 
and                      , for an unknown , compute an 
approximation to the degree-d Chow parameters of  f in l2 - norm.



ROBUST ESTIMATION OF LOW-DEGREE CHOW PARAMETERS (II)

• Let S be a set of samples from D. Then

• Let S be an    - corrupted set of samples from D.

can be very far from                                for some degree-d polynomials p.

Main Idea: “Fix the moments” by iterative filtering
(inspired by [D-Kamath-Kane-Lee-Moitra-Stewart’16])

• Detect whether there is a degree-d polynomial whose empirical variance is much larger 
than its variance under D. 

• If no such polynomial exists, use empirical. 
• Otherwise, can detect and remove outliers.



ROBUST LEARNING ALGORITHM FOR POLYTOPES

Two-step Procedure:

Step 1: Robustly estimate the degree at most 2 “Chow parameters” of f. 

Step 2: Project to an approximate k+1 dimensional subspace V and solve the 
problem by using a cover on V. Let g be the output.

Output

Main challenge: Analysis of Correctness
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SUMMARY AND CONCLUSIONS

• First computationally efficient robust PAC learners with 
dimension-independent error guarantees for low-degree 
PTFs and intersections of LTFs.

• Near-optimal error guarantees for robust PAC learning of LTFs.

• General procedure for robustly learning low-degree Chow parameters.



FUTURE DIRECTIONS

Concrete Open Questions:
• Near-optimal error guarantees, e.g.,           error for degree-d PTFs
• More general classes of distributions
• Practical Algorithms?

[D-Kamath-Kane-Moitra-Lee-Stewart, ICML’17] [DKKLSS’18]
• Alternate models of robustness?

General Algorithmic Theory of Robustness

Thank you! 
Questions?

• Pick your favorite high-dimensional learning problem for 
which a (non-robust) efficient algorithm is known. 

• Make it robust!



Related Materials:

• TTI-Chicago Summer Workshop Program

http://www.ttic.edu/summer-workshop-2018/

(Aug. 13-17 2018, co-organized with Daniel Kane)

• Simons Institute, Foundations of Data Science 
Program

https://simons.berkeley.edu/data-science-2018-2

(Oct. 29-Nov. 2 2018, co-organized with Montanari, Candes, Vempala)


