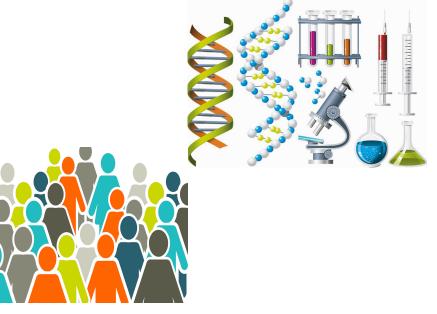
Outlier-Robust Learning of Geometric Concepts

llias Diakonikolas (USC)

joint work with Daniel Kane (UCSD) & Alistair Stewart (USC) Can we develop learning algorithms that are *robust* to a *constant* fraction of *corruptions* in the data?

MOTIVATION

- Model Misspecification/Robust Statistics: Any model only approximately valid. Need *stable* estimators [Fisher 1920, Huber 1960s, Tukey 1960s]
- Outlier Removal: Natural outliers in real datasets. Hard to detect in several cases
 [Rosenberg *et al.*, Science'02; Li *et al.*, Science'08; Paschou *et al.*, Journal of Medical Genetics'10]
- Reliable/Adversarial/Secure ML: Data poisoning attacks (e.g., crowdsourcing) [Biggio et al. ICML'12, ...]



BACKGROUND: ALGORITHMIC HIGH-DIMENSIONAL ROBUST STATISTICS

Robust estimation in high-dimensions is algorithmically possible!

- Computationally efficient robust estimators that can tolerate a *constant* fraction of corruptions.
- General methodology to detect outliers in high dimensions.

Meta-Theorem (Informal): Can obtain *dimension-independent* error guarantees, as long as good data has nice concentration.

[D-Kamath-Kane-Li-Moitra-Stewart, FOCS'16]

Can tolerate a *constant* fraction of corruptions:

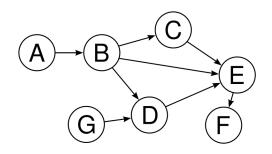
- Mean and Covariance Estimation
- Mixtures of Spherical Gaussians, Mixtures of Balanced Product Distributions

[Lai-Rao-Vempala, FOCS'16]

Can tolerate a *mild sub-constant* (*inverse logarithmic*) fraction of corruptions:

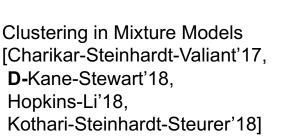
- Mean and Covariance Estimation
- Independent Component Analysis, SVD

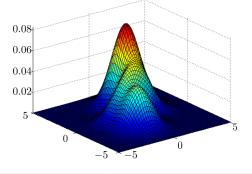
ROBUST UNSUPERVISED LEARNING



Robustly Learning Graphical Models [Cheng-**D-**Kane-Stewart'16, **D**-Kane-Stewart'18]

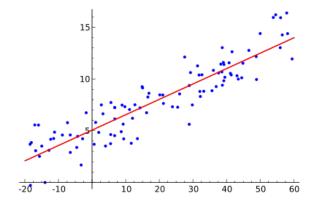
Computational/Statistical-Robustness Tradeoffs [**D-**Kane-Stewart'17, **D**-Kong-Stewart'18]



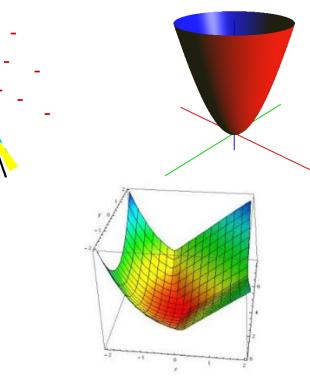


ROBUST SUPERVISED LEARNING

Malicious PAC Learning [Klivans-Long-Servedio'10, Awasthi-Balcan-Long'14, **D-**Kane-Stewart'18]



Robust Linear Regression [**D-**Kong-Stewart'18, Klivans-Kothari-Meka'18] Stochastic (Convex) Optimization [Prasad-Suggala-Balakrishnan-Ravikumar'18, **D**-Kamath-Kane-Li-Steinhardt-Stewart'18]

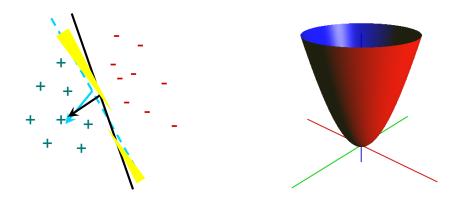


SUBSEQUENT RELATED WORKS

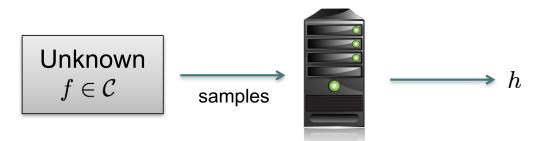
- Graphical Models [Cheng-D-Kane-Stewart'16, D-Kane-Stewart'18]
- Sparse models (e.g., sparse PCA, sparse regression) [Li'17, Du-Balakrishan-Singh'17, Liu-Shen-Li-Caramanis'18, ...]
- List-Decodable Learning [Charikar-Steinhardt-Valiant '17, Meister-Valiant'18, D-Kane-Stewart'18]
- Robust PAC Learning [Klivans-Long-Servedio'10, Awasthi-Balcan-Long'14, D-Kane-Stewart'18]
- "Robust estimation via SoS" (higher moments, learning mixture models) [Hopkins-Li'18, Kothari-Steinhardt-Steurer'18, ...]
- "SoS Free" learning of mixture models [D-Kane-Stewart'18]
- Robust Regression [Klivans-Kothari-Meka'18, D-Kong-Stewart'18, ...]
- Robust Stochastic Optimization [Prasad-Suggala-Balakrishnan-Ravikumar'18, D-Kamath-Kane-Li-Steinhard-Stewart'18]
- Near-Linear Time Algorithms [Cheng-D-Ge'19, Cheng-D-Ge-Woodruff'19, ...]

THIS TALK

Malicious PAC Learning [**D-**Kane-Stewart'18]



THE PAC LEARNING PROBLEM [VALIANT'84]



- $\mathcal C$: known class of Boolean-valued functions on $\mathbb R^n$
- D : fixed (unknown) distribution on \mathbb{R}^n
- Input: labeled sample $\{(x^{(i)}, y_i)\}_{i=1}^m$ where $x^{(i)} \sim D$ and $y_i = f(x^{(i)})$
- Goal: compute hypothesis $h:\mathbb{R}^n\to\{\pm1\}$ such that $\Pr_{x\sim D}[h(x)\neq f(x)]$ is small

Question: Is there an *efficient* learning algorithm?

PAC LEARNING WITH ADVERSARIAL NOISE

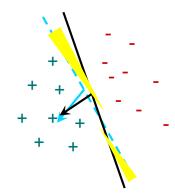
"nasty" PAC learning [Bshouty-Eiron-Khusilevitz'02]

Contamination Model:

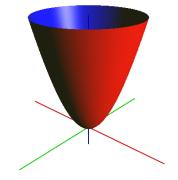
Fix $0 < \epsilon < 1/2$. We say that a set of *m* samples is ϵ -corrupted from C if it is generated as follows:

- $m \text{ samples } \{(x^{(i)}, y_i)\}_{i=1}^m \text{ are drawn, where } x^{(i)} \sim D \text{ and } y_i = f(x^{(i)}) \text{ for some unknown } f \in \mathcal{C}$
- An omniscient adversary inspects these samples and changes arbitrarily an ϵ fraction of them.
- cf. malicious PAC learning [Valiant'85, Kearns-Li'93] agnostic PAC learning [Haussler'92, Kearns-Shapire-Sellie'94]

THIS TALK: GEOMETRIC CONCEPT CLASSES

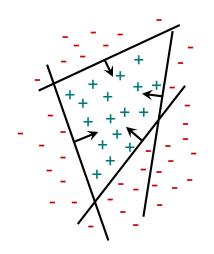


Polynomial Threshold Functions (PTFs) $f : \mathbb{R}^n \to \{\pm 1\}$ such that $f(x) = \operatorname{sgn}(p(x))$ where $p : \mathbb{R}^n \to \mathbb{R}$ is a degree-*d* real polynomial.



Linear Threshold Functions (Halfspaces) $f: \mathbb{R}^n \to \{\pm 1\}$ such that $f(x) = \operatorname{sgn}(w \cdot x - \theta)$ where $w \in \mathbb{R}^n, \theta \in \mathbb{R}$

Intersections of LTFs



PREVIOUS WORK: PAC LEARNING (NO CORRUPTIONS)

- Low-degree PTFs efficiently PAC learnable under **any** distribution [Blumer et al. '89]: "For all $\gamma > 0$, can achieve accuracy γ with $poly(n^d, 1/\gamma)$ samples and time."
- Intersection of 2 Halfspaces under **any** distribution:

?

 Intersection of any constant number of Halfspaces efficiently PAC learnable under "well-behaved" distributions
e.g., [Baum'91, Blum-Kannan'96, Klivans-O'Donnell-Servedio'02, Vempala'10].

PREVIOUS WORK: "ROBUST" PAC LEARNING

If $0 < \epsilon < 1/2$ is fraction of corruptions, information-theoretic optimal error is $\Theta(\epsilon)$.

Distribution *D* **is arbitrary**:

- Can efficiently achieve error $\epsilon \cdot n$ [Kearns-Li'93].
- "Hard" to get **dimension-independent** error, even for LTFs [Daniely'16].

Distribution *D* **is "well-behaved":**

- Agnostic learning model (label corruptions): " L_1 -regression" algorithm [KKMS'05] can get error $\epsilon + \gamma$ with samples and time $n^{poly(1/\gamma)}$
- Malicious learning model: $poly(n, 1/\epsilon)$ time algorithms for o*rigin-centered* LTFs [Klivans-Long-Servedio'09], [Awasthi-Balcan-Long'14/'17], [Daniely'15].

Origin-centered LTFs only concept class for which efficient malicious PAC learning algorithms known.

What about efficient robust estimation for more general concept classes?

Goal: Dimension-independent error guarantees.

THIS TALK: OUR CONTRIBUTION

First efficient robust learning algorithms with **dimension-independent** error guarantees for more general *geometric* concept classes.

- Efficient PAC learning algorithm in nasty noise model for that can tolerate a *constant* fraction of corruptions for:
 - low-degree PTFs
 - intersections of constantly many LTFs

under Gaussian distribution.

• Near-optimal error guarantee for all LTFs.

OUTLINE

Part I: Introduction

- Motivation
- PAC Learning, Geometric Concepts, Robustness
- Prior Work
- Our Contribution

Part II: Robust Learning of Geometric Concepts

- Statements of Results
- Overview of Algorithmic Ideas

Part III: Future Directions

OUTLINE

Part I: Introduction

- Motivation
- PAC Learning, Geometric Concepts, Robustness
- Prior Work
- Our Contribution

Part II: Robust Learning of Geometric Concepts

- Statements of Results
- Overview of Algorithmic Ideas

Part III: Future Directions

ROBUST PAC LEARNING OF LOW-DEGREE PTFS

Problem: Given *m* samples $\{(x^{(i)}, y_i)\}_{i=1}^m$ of which $(1 - \epsilon)m$ satisfy $x^{(i)} \sim D$ and $y_i = f(x^{(i)})$, for an unknown **degree**-*d* **PTF** *f*, compute hypothesis *h* such that $\Pr_{x \sim D}[h(x) \neq f(x)]$ is small.

Theorem: Let *D* be any log-concave distribution with known moments up to degree 2*d*. There is a $\operatorname{poly}(n^d, 1/\epsilon)$ time algorithm that outputs a degree-*d* PTF *h* such that $\Pr_{x \sim D}[h(x) \neq f(x)] \leq \epsilon^{\Omega(1/d)}$

Error Guarantee Independent of n !

- For d=1 under N(0, I), error is $O(\epsilon \sqrt{\log(1/\epsilon)})$
- For d=1, get dimension-independent error for uniform distribution on $\{\pm 1\}^n$

NEAR-OPTIMAL ROBUST PAC LEARNING OF LTFS

Problem: Given *m* samples $\{(x^{(i)}, y_i)\}_{i=1}^m$ of which $(1 - \epsilon)m$ satisfy $x^{(i)} \sim D$ and $y_i = f(x^{(i)})$, for an unknown LTF *f*, compute hypothesis *h* such that $\Pr_{x \sim D}[h(x) \neq f(x)]$ is small.

Theorem: Let *D* be N(0, I). There is a $poly(n, 1/\epsilon)$ time algorithm that outputs an LTF *h* such that

 $\Pr_{x \sim D}[h(x) \neq f(x)] \le O(\epsilon)$

Error guarantee optimal, up to constant factor

cf. [DKS'17] SQ lower bound for robust mean estimation within $o(\epsilon \sqrt{\log(1/\epsilon)})$.

ROBUST PAC LEARNING OF POLYTOPES

Problem: Given *m* samples $\{(x^{(i)}, y_i)\}_{i=1}^m$ of which $(1 - \epsilon)m$ satisfy $x^{(i)} \sim D$ and $y_i = f(x^{(i)})$, for an unknown **intersection of** *k* LTFs *f*, compute hypothesis *h* such that $\Pr_{x \sim D}[h(x) \neq f(x)]$ is small.

Theorem: Let *D* be N(0, I). There is an algorithm that draws $poly(n, k, 1/\epsilon)$ corrupted labeled examples, runs in time $poly_k(n, 1/\epsilon)$, and outputs an intersection of *k* LTFs *h* such that $\Pr_{x \sim D}[h(x) \neq f(x)] \leq k^{O(1)} \cdot \epsilon^{\Omega(1)}$

Error Guarantee Independent of n !

No non-trivial robust learning algorithm previously known even for k=2.

OUTLINE

Part I: Introduction

- Motivation
- PAC Learning, Geometric Concepts, Robustness
- Prior Work
- Our Contributions

Part II: Robust Learning of Geometric Concepts

- Statements of Results
- Overview of Algorithmic Ideas

Part III: Future Directions

ROBUST LEARNING ALGORITHM FOR LOW-DEGREE PTFS

Def: Let $f : \mathbb{R}^n \to [-1, 1]$ and D a distribution on \mathbb{R}^n . The degree-d Chow parameters of f with respect to D are $\mathbf{E}_{x \sim D}[f(x)m_i(x)]$ for all degree at most d monomials $m_i(x)$

Two-step Procedure:

Step 1: Robustly estimate the degree at most *d* "Chow parameters" of *f*.

Step 2: Find a degree-*d* PTF *h* with (approximately) these Chow parameters.

Output *h*.

ROBUST ESTIMATION OF LOW-DEGREE CHOW PARAMETERS (I)

Def: Let $f : \mathbb{R}^n \to [-1, 1]$ and D a distribution on \mathbb{R}^n . The degree-d Chow parameters of f with respect to D are $\mathbf{E}_{x \sim D}[f(x)m_i(x)]$ for all degree at most d monomials $m_i(x)$

Problem: Given *m* samples $\{(x^{(i)}, y_i)\}_{i=1}^m$ of which $(1 - \epsilon)m$ satisfy $x^{(i)} \sim D$ and $y_i = f(x^{(i)})$, for an unknown $f : \mathbb{R}^n \to [-1, 1]$, compute an approximation to the degree-*d* Chow parameters of f in l_2 - norm.

Theorem: Let D be N(0, I), uniform on $\{\pm 1\}^n$ or any log-concave distribution with known moments up to degree 2d. There is a $poly(n^d, 1/\epsilon)$ time algorithm that outputs an approximation with l_2 – error $O_d(\epsilon \cdot \log(1/\epsilon)^d)$.

ROBUST ESTIMATION OF LOW-DEGREE CHOW PARAMETERS (II)

- Let *S* be a set of samples from *D*. Then $\mathbf{E}_{x \sim_u S}[f(x)m_i(x)] \approx \mathbf{E}_{x \sim D}[f(x)m_i(x)]$
- Let *S* be an ϵ corrupted set of samples from *D*.

 $\mathbf{E}_{x \sim D}[f(x)p(x)]$ can be very far from $\mathbf{E}_{x \sim_u S}[f(x)p(x)]$ for some degree-*d* polynomials *p*.

Main Idea: "Fix the moments" by iterative filtering (inspired by [D-Kamath-Kane-Lee-Moitra-Stewart'16])

- Detect whether there is a degree-*d* polynomial whose *empirical* variance is much larger than its variance under *D*.
- If no such polynomial exists, use empirical.
- Otherwise, can detect and remove outliers.

ROBUST LEARNING ALGORITHM FOR POLYTOPES

Two-step Procedure:

Step 1: Robustly estimate the degree at most 2 "Chow parameters" of *f*.

Step 2: Project to an approximate k+1 dimensional subspace V and solve the problem by using a cover on V. Let g be the output.

Output $h(x) = g(\pi_V(x))$.

Main challenge: Analysis of Correctness

OUTLINE

Part I: Introduction

- Motivation
- PAC Learning, Geometric Concepts, Robustness
- Prior Work
- Our Contribution

Part II: Robust Learning of Geometric Concepts

- Statements of Results
- Overview of Algorithmic Ideas

Part III: Future Directions

SUMMARY AND CONCLUSIONS

- First computationally efficient robust PAC learners with dimension-independent error guarantees for low-degree PTFs and intersections of LTFs.
- Near-optimal error guarantees for robust PAC learning of LTFs.
- General procedure for robustly learning low-degree Chow parameters.

FUTURE DIRECTIONS

General Algorithmic Theory of Robustness

- Pick your favorite high-dimensional learning problem for which a (non-robust) efficient algorithm is known.
- Make it robust!

Concrete Open Questions:

- Near-optimal error guarantees, e.g., $O_d(\epsilon)$ error for degree-*d* PTFs
- More general classes of distributions
- Practical Algorithms? [D-Kamath-Kane-Moitra-Lee-Stewart, ICML'17] [DKKLSS'18]
- Alternate models of robustness?

Thank you! Questions?

Related Materials:

• TTI-Chicago Summer Workshop Program

http://www.ttic.edu/summer-workshop-2018/

(Aug. 13-17 2018, co-organized with Daniel Kane)

Simons Institute, Foundations of Data Science
Program

https://simons.berkeley.edu/data-science-2018-2

(Oct. 29-Nov. 2 2018, co-organized with Montanari, Candes, Vempala)