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Noisy and corrupted data
is one of the challenges in contemporary statistics and data science:

@ Presence of outliers of unknown nature:

— requires algorithms that are robust.
@ We would like to develop general methods that work under minimal assumptions.
@ A natural way to model “noisy” data is via heavy-tailed distributions.
@ For the purpose of this talk, a random variable X has heavy-tailed distribution if

E|X|" = 0o

for some r > 0 (for example, r = 2.1).
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Figure: Standard normal distribution.
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Figure: Student’s t-distribution with 3 d.f.
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Question: how to estimate the mean?

@ Motivation: risk minimization of the form

approximate the minimizer of the "risk" E£( Y, f(X)) over the class F.

@ Benchmark: assume that Xi, ..., Xy are i.i.d. N'(u, o?).
N
e The sample mean iy := 4 > X; satisfies
J=1
2log(1
Pr (mN —ul o "g,(v/“)> <2,

similar inequality holds for sub-Gaussian distributions.
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Question: how to estimate the mean?

@ What if Xi,..., Xy are i.i.d. copies of X ~ I1 such that
EX = p, Var(X) < 02?
on N — possibly asymmetric, with heavy tails.

N
@ Guarantees for the sample mean jin = 1N >~ X; are not completely satisfactory:
j=1

Pr<|ﬂN—u)>a W,j’) <a
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Figure: Rescaled Sample Means of Student’s t-distribution with 3 d.f.
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Figure: Rescaled Sample Means of Student’s t-distribution with 2.1 d.f.



Question: how to estimate the mean?

@ Median-of-means (MOM) estimator: [A. Nemirovski, D. Yudin ‘83; N. Alon, Y. Matias, M. Szegedy ‘96; R. Oliveira,
M. Lerasle ‘11]
Split the sample into k = |log(1/a)| + 1 groups Gy, . .., Gk of size ~ N/k each:
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ﬁ(k) :=median(fq,...,HAk)



Question: how to estimate the mean?

@ Median-of-means (MOM) estimator: jA. Nemirovski, D. Yudin ‘83; N. Alon, Y. Matias, M. Szegedy ‘96; R. Oliveira,
M. Lerasle ‘11]
Split the sample into k = |log(1/a)| + 1 groups Gy, . .., Gk of size >~ N/k each:

G Gi
—_—
X, Xy e XN_ |G 410 XN
—_—
- 1 = 1
=g 2 X Pk =161 > X
16l Xi€Gy k! xic
ﬁ(k)::median(;hA,.A.,ﬁ,k)

@ Claim:

| o
Pr <|;’I(k) — | >640 og(I:I/(y)> <a



Question: how to estimate the mean?

@ Median-of-means (MOM) estimator: [A. Nemirovski, D. Yudin ‘83; N. Alon, Y. Matias, M. Szegedy ‘96; R. Oliveira,
M. Lerasle ‘11]
Split the sample into k = |log(1/a)| + 1 groups Gy, . .., Gk of size ~ N/k each:

@ Claim:
Pr (ﬁ(k) —ul > Cay Ifl) <e



Question: how to estimate the mean?

@ Median-of-means (MOM) estimator: [A. Nemirovski, D. Yudin ‘83; N. Alon, Y. Matias, M. Szegedy ‘96; R. Oliveira,
M. Lerasle ‘11]
Split the sample into k = [log(1/«)| + 1 groups Gy, ..., Gk of size ~ N/k each:

@ Claim:
Pr <ﬁ(k) —ul>Coyf Ifl) <ek

@ Has recently been extended to multivariate mean and covariance estimation, empirical risk
minimization, U-statistics.
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Lugosi, T. Matthieu, S. Mendelson, R. Oliveira, S. Hopkins, N. Zhivotovsky.



Question: how to estimate the mean?

@ Median-of-means (MOM) estimator: [A. Nemirovski, D. Yudin ‘83; N. Alon, Y. Matias, M. Szegedy ‘96; R. Oliveira,
M. Lerasle ‘11]
Split the sample into k = [log(1/«)| + 1 groups Gy, ..., Gk of size ~ N/k each:

@ Claim:
Pr (ﬁ(k) —ul>Coyf Ifl) <ek

@ Has recently been extended to multivariate mean and covariance estimation, empirical risk
minimization, U-statistics.
Quickly growing body of work: G. Chinot, L. Devroye, E. Joly, G. Lecué, M. Lerasle, G.
Lugosi, T. Matthieu, S. Mendelson, R. Oliveira, S. Hopkins, N. Zhivotovsky.

@ Similar results were obtained by J. Fan, W.-X. Zhou, Z. Ren, O. Catoni, |. Giulini using
different estimation techniques.
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Result so far:
Pr (;’I(k) —pu| > Coy/ Z) <eki=a

Need to recalculate the estimator for different values of confidence parameter a. Can one
"decouple" k and a?

How to choose k? Typically, want k as large as possible.

Limiting distribution: what happens when k, N — co?

Assume that many means need to be estimated simultaneously. Uniform deviation bounds?
Robust estimator that does not depend on the random partition of the index set?

Algorithms for robust Empirical Risk Minimization?
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Connections between symmetry and robustness

@ If the distribution P is symmetric, then its center of symmetry 6(P) can be approximated by a
robust estimator with a high breakdown point, e.g. a robust M-estimator

0:= argminzj’i1 p(z—X).
zeR

@ In order to obtain a robust estimator of a parameter (P) of (not necessarily symmetric)
distribution P based on the i.i.d. sample Xj, ..., Xy, create a new sample such that

(i) it is governed by an approximately symmetric distribution;
(ii) the center of symmetry of this distribution is close to 8(P).

How does one create such a "new sample"? A possible approach is based on the fact that

as sample size grows, the summary statistics of the data become asymptotically normal,
hence asymptotically symmetric. Examples: sample mean, MLE.
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Figure: Rescaled sample means with n = 10.




Figure: Centered exponential distribution

Figure: Rescaled sample means with n = 100.
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Robust estimators of the mean

@ Split the sample into k groups Gy, . .., Gk of size n; = |G| each:
Gy Gk
—— — e
)(17 7X\G1\ ...... XN_|GkH_1,..A,XN
N— ———
- 1 = 1
Ar=1g7 2 X Ak=Tg7 2 X
B X6, TG X6,

@ pis convex, even function such that p(z) — oo as |z] = oo and ||p’||cc < 0.

o i) = argmin,cp Yof 4 p (\/ﬁ, %), where A > 0.

@ Examples:

@ /,(x) = |x| yields the median-of-means estimator.
@ p(x) = Huber’s loss:
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@ Will assume that ny = ... = ng = nduring the talk.
@ &(t) - distribution function of N(0, 1), and

(f Xo—EX t)—cb(t)‘.

VvVar(x)y —

g(n) :=sup
teR
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@ &(t) - distribution function of N(0, 1), and

P(va s <) -],

9(n) = sup

e C > 0 are absolute constants,

A = max(A, o)

Theorem (M., 2018)

Foralls > 0 such that , /£ + g(n) < c(p),

3% — | < é(pﬂ(\/ﬁw(n)\/ﬁ)

"bias"

|

with probability at least 1 — 2e~*°.

o Moreover, if k < C/g?(n), then ]E‘ﬁ(k) - ,LL‘ < C(p)%



Non-asymptotic guarantees

@ &(t) - distribution function of N(0, 1), and

(Ve <) o).

g(n) :=sup
teR

@ ¢, C > 0 are absolute constants,

A = max(A, o)
Add O arbitrary (e.g., adversarially generated) outliers:

Theorem (M., 2018)

Forall© € N, s > 0 such that \/%-l- a(n) + £ < c(p) (1 =

~|Q

).
’ﬂ(k)—ulﬁé(p)ﬁ(\/»Jrg(n)\/»Jr)

with probability at least1 — 2e~5.




Theorem (M., 2018)

Forall© € N, s > 0 such that ||p'|| . (\/%-i- g(n) + %) <c (1 = %)

|38 — | < © max(8,0) Il ([w )\f+>

with probability at least 1 — 2e~5.

E|X—0,|°
o3ni/2

. - EX-60.Pk O 1
W) _yl<CAallp oo S EA-GITK U 1
7~ <ealdlle(\ = Nt kTR

that holds with probability > 1 — 2e~5.

@ For example, if E|X — u[® < oo, then g(n) <

and we get the bound



Theorem (M., 2018)

ForallO € N, s > 0 such that ||o/ll. (/5 +a(m + €) <c(1-2),

|4 — | < © max (8, 0) ||p’||oo<\/7+g )\/7+>

with probability at least 1 — 2e~5.

E|X—0,|°
o3ni/2

N - EX-0.3k O 1
(k) _ < CAllp i - 7
)u u‘, oo\ A/ N+ 53 NTRUN

that holds with probability > 1 — 2e~5.
@ If© =¢- N, then “optimal” k ~ £2/3N and resulting error is of order £2/3.

@ For example, if E[X — u|® < oo, then g(n) < and we get the bound
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Asymptotic results

@ Question: what happens when k, N — co?
@ Assume that vk - g(n) — 0as N — oo (if E[X — u[?>*% < oo, thenk = o (Nﬂ%) suffices).
e L(z):=Ep' (z+ Z),where Z ~ N(0,1).

2 _ E(V(@)?
° A% ="Cor

Theorem (M., 2018)

Under these assumptions,
VN (ﬁ(k) — ,u,) LYY <07 AZO'Z) .

° p(x)=|x| = A%Z=73.

2 < M 2 20
o px) = {z /2, |2l S M, o _ [ rder2nEi—em)

Miz| — M2/2, |z| > M @o(M)—1)?
For instance, A2 ~ 1.15for M = 2 and A% ~ 1.01 for M = 3.
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Uniform deviation bounds

@ Xi,...,Xyi.id. copies of X € S, Fis aclass of functions f : S +— R.
@ Problem: estimate Ef(X) for all f € F (motivated by empirical risk minimization).

® (f) = %ZIGG, f(X), o2(F) = supsc + Var(f(X)), and

K)(f) := argmin, g ﬁ Z/,'(ﬂ p (ﬁ %) , where A > 0.

,u,/ (f)—Ef( ) -~
p(VAAE < 1) <I>(t)‘.

@ g(f;n) :=supcpr



Uniform deviation bounds

02(F) = supse £ Var(f( X)), A = max(A, o(F))

Theorem (M., 2018/19)

Assume that p’ is Lipschitz continuous. Then for all s > 0 such that

\/E—i- sup g(f; n)) < ¢(p)s
tfeF

1
VN

N
1
max | —— Esup |— fX —Ef(X
( 7ra e 7 2 (09~ Ef00)

the inequality

feF

N
Z (X)) — Ef(X))

- S k
+8 (/3 mpotioy/3) )

A
sup ‘,u k)(f Ef( X)’ < C(p) (\)NA]ESUP

holds with probability > 1 — 2e~5.
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Estimators of the mean of a random vector

@ Xi,...,Xy—iid. copies of a random vector X € R? with mean EX = . and covariance
matrix E(X — u)(X — )T = .

@ |||, is the Euclidean norm in R¢.
@ Take F to be the class of linear functionals 7 = {fy(x) = (v, x), ||v|2 = 1}.

o Then supye |0 (f) — EF(X)| = [|2®) — ||, o(F) = \/Amax(E) and

- \/@
=

> (f(X) —Ef(X))| <
@ Can be used to construct the estimator 7i(K) that satisfies “sub-Gaussian” bound

j=1
2% = u|, < o) <\/T+ m<\/§+ e o(hin) ,I:I>>
—_—

"bias" of smaller order

— IE sup
feF

with probability > 1 — 26~%, as long as k 2 51

and s < k.
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@ Construction of 7i(k) (previously been used in the papers by O. Catoni, I. Giulini, G. Lugosi, S.
Mendelson, E. Joly and R. Oliveira):

@ Let v be the unit vector, and define X(v) := (v, X;), and fi1(v), ..., ik(v) accordingly.
@ "MOM in direction v": W

o~ . pi(v)—z

B (v) := argmin, g ﬁ Z/’.‘:1 o (ﬁ “!T) .
0 S(e)={yeR?: [(y,v) AW (V)| <}, M) = N Su(e):

vifvilz=1




[

Construction of 2K (previously been used in the papers by O. Catoni, I. Giulini, G. Lugosi, S.
Mendelson, E. Joly and R. Oliveira):

Let v be the unit vector, and define X;(v) := (v, X;), and fi1(v), .. ., ik (v) accordingly.
"MOM in direction v": W

~ f ni(v)—z

A®(v) = argmin,cp o Y p (VA HR)

Su(e) ={y eR?: [(y,v) —aW(v)| <e} . M(e):= N Su(e)
vif|v]l2=1
Finally, let e, := inf {&¢ > 0: M(e) # 0}, and take i(%) to be any element in M(s..).
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Remark: eliminating dependence on the partition

o n=|N/k|
° AS\',’) ={Jc{1,...,N}: |J|=n} - allsubsets of size n; in particular, card(A&’;)) ="
@ fiy = average(X;, j € J)
° -
;I(Pk) = argmin Z p (ﬁﬂ)
zeR (n) A
JeAll



Remark: eliminating dependence on the partition

n=|N/k|
AS\?) ={Jc{1,...,N}: |J|=n} - allsubsets of size n; in particular, card(Agg)) = (’,\{)
Ay = average(X;, j € J)

(k) _ . Ay —2Z
fip) :=argmin » " p (ﬁiA >

ZeR
JeA)

@ Does not depend on random partition and satisfies the same deviation guarantees as 7i(¥).



Thank you for listening!




