Uniform bounds for robust mean estimators

Stas Minsker

Department of Mathematics, USC

February 14

ITA Workshop, Robust Learning

is one of the challenges in contemporary statistics and data science:

is one of the challenges in contemporary statistics and data science:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Presence of outliers of unknown nature:
 - \implies requires algorithms that are robust.

is one of the challenges in contemporary statistics and data science:

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Presence of outliers of unknown nature:
 - \implies requires algorithms that are robust.
- We would like to develop general methods that work under minimal assumptions.

is one of the challenges in contemporary statistics and data science:

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Presence of outliers of unknown nature:
 - \implies requires algorithms that are robust.
- We would like to develop general methods that work under minimal assumptions.
- A natural way to model "noisy" data is via heavy-tailed distributions.

is one of the challenges in contemporary statistics and data science:

- Presence of outliers of unknown nature:
 - → requires algorithms that are robust.
- We would like to develop general methods that work under minimal assumptions.
- A natural way to model "noisy" data is via heavy-tailed distributions.
- For the purpose of this talk, a random variable X has heavy-tailed distribution if

 $\mathbb{E}|X|^r = \infty$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for some r > 0 (for example, r = 2.1).

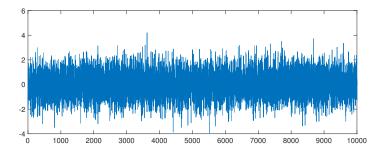


Figure: Standard normal distribution.

(日)

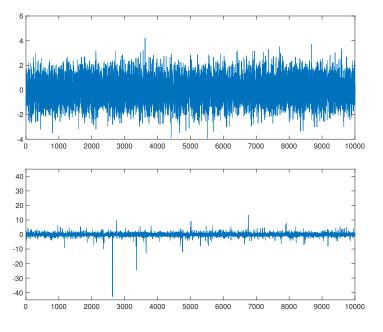


Figure: Student's t-distribution with 3 d.f.

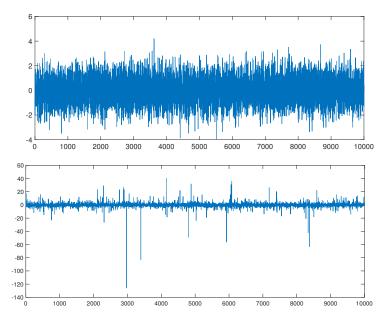


Figure: Student's t-distribution with 2.1 d.f.

(日)

• Motivation: risk minimization of the form

approximate the minimizer of the "risk" $\mathbb{E}\ell(Y, f(X))$ over the class \mathcal{F} .

• Motivation: risk minimization of the form

approximate the minimizer of the "risk" $\mathbb{E}\ell(Y, f(X))$ over the class \mathcal{F} .

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

• Benchmark: assume that X_1, \ldots, X_N are i.i.d. $\mathcal{N}(\mu, \sigma^2)$.

Motivation: risk minimization of the form

approximate the minimizer of the "risk" $\mathbb{E}\ell(Y, f(X))$ over the class \mathcal{F} .

- Benchmark: assume that X_1, \ldots, X_N are i.i.d. $\mathcal{N}(\mu, \sigma^2)$.
- The sample mean $\hat{\mu}_N := \frac{1}{N} \sum_{i=1}^N X_i$ satisfies

$$\Pr\left(\left|\hat{\mu}_{N}-\mu\right| \geq \sigma \sqrt{rac{2\log(1/lpha)}{N}}
ight) \leq 2lpha,$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

similar inequality holds for sub-Gaussian distributions.

• What if X_1, \ldots, X_N are i.i.d. copies of $X \sim \Pi$ such that

 $\mathbb{E}X = \mu$, $\operatorname{Var}(X) \leq \sigma^2$?

on Π – possibly asymmetric, with heavy tails.

• What if X_1, \ldots, X_N are i.i.d. copies of $X \sim \Pi$ such that

 $\mathbb{E}X = \mu$, $\operatorname{Var}(X) \leq \sigma^2$?

on Π – possibly asymmetric, with heavy tails.

• Guarantees for the sample mean $\hat{\mu}_n = \frac{1}{N} \sum_{j=1}^N X_j$ are not completely satisfactory:

$$\Pr\left(\left|\hat{\mu}_{N}-\mu\right|\geq\sigma\sqrt{\frac{(1/\alpha)}{N}}
ight)\leqlpha.$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

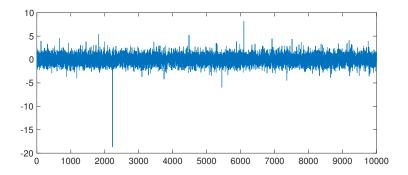


Figure: Rescaled Sample Means of Student's t-distribution with 3 d.f.

(a)

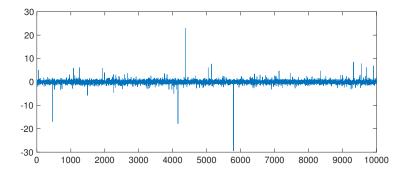
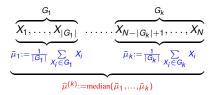


Figure: Rescaled Sample Means of Student's t-distribution with 2.1 d.f.

・ロト ・聞ト ・ヨト ・ヨト

ъ

• Median-of-means (MOM) estimator: [A. Nemirovski, D. Yudin '83; N. Alon, Y. Matias, M. Szegedy '96; R. Oliveira, M. Lerasle '11] Split the sample into $k = |\log(1/\alpha)| + 1$ groups G_1, \ldots, G_k of size $\simeq N/k$ each:



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 Median-of-means (MOM) estimator: [A. Nemirovski, D. Yudin '83; N. Alon, Y. Matias, M. Szegedy '96; R. Oliveira, M. Lerasle '11]

Split the sample into $k = \lfloor \log(1/\alpha) \rfloor + 1$ groups G_1, \ldots, G_k of size $\simeq N/k$ each:

$$\underbrace{\underbrace{\begin{array}{c} G_{1} \\ X_{1}, \dots, X_{|G_{1}|} \\ \overline{\mu}_{1} := \frac{1}{|G_{1}|} \sum_{X_{i} \in G_{1}} X_{i} \\ \widehat{\mu}_{k} := \frac{1}{|G_{k}|} \sum_{X_{i} \in G_{k}} X_{i} \\ \widehat{\mu}_{k} := \frac{1}{|G_{k}|} \sum$$

• Claim:

$$\Pr\left(|\widehat{\mu}^{(k)} - \mu| \geq 6.4 \, \sigma \sqrt{\frac{\log(1/\alpha)}{N}}\right) \leq \alpha$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Median-of-means (MOM) estimator: [A. Nemirovski, D. Yudin '83; N. Alon, Y. Matias, M. Szegedy '96; R. Oliveira, M. Lerasle '11] Split the sample into $k = |\log(1/\alpha)| + 1$ groups G_1, \ldots, G_k of size $\simeq N/k$ each:
- Claim:

$$\Pr\left(|\widehat{\mu}^{(k)} - \mu| \ge C \sigma \sqrt{\frac{k}{N}}\right) \le e^{-k}$$

 Median-of-means (MOM) estimator: (A. Nemirovski, D. Yudin '83; N. Alon, Y. Matias, M. Szegedy '96; R. Oliveira, M. Lerasle '11] Split the sample into $k = |\log(1/\alpha)| + 1$ groups G_1, \ldots, G_k of size $\simeq N/k$ each:

Claim:

$$\Pr\left(|\widehat{\mu}^{(k)} - \mu| \ge C \, \sigma \sqrt{\frac{k}{N}}\right) \le e^{-k}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 Has recently been extended to multivariate mean and covariance estimation, empirical risk minimization. U-statistics.

Quickly growing body of work: G. Chinot, L. Devroye, E. Joly, G. Lecué, M. Lerasle, G. Lugosi, T. Matthieu, S. Mendelson, R. Oliveira, S. Hopkins, N. Zhivotovsky.

Median-of-means (MOM) estimator: [A. Nemirovski, D. Yudin '83; N. Alon, Y. Matias, M. Szegedy '96; R. Oliveira, M. Lerasle '11]

Split the sample into $k = |\log(1/\alpha)| + 1$ groups G_1, \ldots, G_k of size $\simeq N/k$ each:

Claim:

$$\Pr\left(|\widehat{\mu}^{(k)} - \mu| \ge C \, \sigma \sqrt{\frac{k}{N}}\right) \le e^{-k}$$

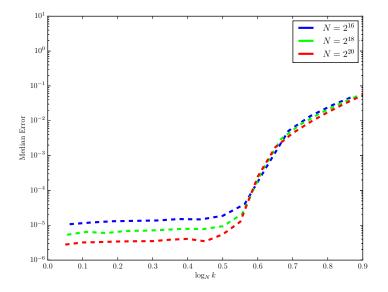
A D F A 同 F A E F A E F A Q A

 Has recently been extended to multivariate mean and covariance estimation, empirical risk. minimization. U-statistics.

Quickly growing body of work: G. Chinot, L. Devroye, E. Joly, G. Lecué, M. Lerasle, G. Lugosi, T. Matthieu, S. Mendelson, R. Oliveira, S. Hopkins, N. Zhivotovsky.

 Similar results were obtained by J. Fan, W.-X. Zhou, Z. Ren, O. Catoni, I. Giulini using different estimation techniques.

Perfomance as k changes



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ へ ○

$$\Pr\left(|\widehat{\mu}^{(k)} - \mu| \ge C \, \sigma \sqrt{\frac{k}{N}}\right) \le e^{-k} := \alpha$$

• Need to recalculate the estimator for different values of confidence parameter α . Can one "decouple" *k* and α ?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

$$\Pr\left(|\widehat{\mu}^{(k)} - \mu| \ge C \, \sigma \sqrt{\frac{k}{N}}\right) \le e^{-k} := \alpha$$

• Need to recalculate the estimator for different values of confidence parameter α . Can one "decouple" *k* and α ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

• How to choose *k*? Typically, want *k* as large as possible.

$$\Pr\left(|\widehat{\mu}^{(k)} - \mu| \ge C \sigma \sqrt{\frac{k}{N}}\right) \le e^{-k} := \alpha$$

• Need to recalculate the estimator for different values of confidence parameter α . Can one "decouple" *k* and α ?

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- How to choose *k*? Typically, want *k* as large as possible.
- Limiting distribution: what happens when $k, N \rightarrow \infty$?

$$\Pr\left(|\widehat{\mu}^{(k)} - \mu| \ge C \sigma \sqrt{\frac{k}{N}}\right) \le e^{-k} := \alpha$$

- Need to recalculate the estimator for different values of confidence parameter α . Can one "decouple" *k* and α ?
- How to choose k? Typically, want k as large as possible.
- Limiting distribution: what happens when $k, N \rightarrow \infty$?
- Assume that many means need to be estimated simultaneously. Uniform deviation bounds?

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$\Pr\left(|\widehat{\mu}^{(k)} - \mu| \ge C \sigma \sqrt{\frac{k}{N}}\right) \le e^{-k} := \alpha$$

- Need to recalculate the estimator for different values of confidence parameter α . Can one "decouple" *k* and α ?
- How to choose k? Typically, want k as large as possible.
- Limiting distribution: what happens when $k, N \rightarrow \infty$?
- Assume that many means need to be estimated simultaneously. Uniform deviation bounds?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Robust estimator that does not depend on the random partition of the index set?

$$\Pr\left(|\widehat{\mu}^{(k)} - \mu| \ge C \sigma \sqrt{\frac{k}{N}}\right) \le e^{-k} := \alpha$$

- Need to recalculate the estimator for different values of confidence parameter α . Can one "decouple" *k* and α ?
- How to choose k? Typically, want k as large as possible.
- Limiting distribution: what happens when $k, N \rightarrow \infty$?
- Assume that many means need to be estimated simultaneously. Uniform deviation bounds?

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Robust estimator that does not depend on the random partition of the index set?
- Algorithms for robust Empirical Risk Minimization?

Connections between symmetry and robustness

• If the distribution *P* is symmetric, then its center of symmetry $\theta(P)$ can be approximated by a robust estimator with a high breakdown point, e.g. a robust M-estimator

$$\widehat{\theta} := \operatorname*{argmin}_{z \in \mathbb{R}} \sum_{j=1}^{N} \rho\left(z - X_{j}\right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Connections between symmetry and robustness

If the distribution *P* is symmetric, then its center of symmetry $\theta(P)$ can be approximated by a robust estimator with a high breakdown point, e.g. a robust M-estimator

$\widehat{\theta} := \operatorname*{argmin}_{z \in \mathbb{R}} \sum_{j=1}^{N} \rho\left(z - X_{j}\right).$

(日) (日) (日) (日) (日) (日) (日)

- **2** In order to obtain a robust estimator of a parameter $\theta(P)$ of (not necessarily symmetric) distribution *P* based on the i.i.d. sample X_1, \ldots, X_N , create a new sample such that
 - (i) it is governed by an approximately symmetric distribution;
 - (ii) the center of symmetry of this distribution is close to $\theta(P)$.

Connections between symmetry and robustness

If the distribution *P* is symmetric, then its center of symmetry $\theta(P)$ can be approximated by a robust estimator with a high breakdown point, e.g. a robust M-estimator

 $\widehat{\theta} := \operatorname*{argmin}_{z \in \mathbb{R}} \sum_{j=1}^{N} \rho\left(z - X_{j}\right).$

- In order to obtain a robust estimator of a parameter θ(P) of (not necessarily symmetric) distribution P based on the i.i.d. sample X₁,..., X_N, create a new sample such that
 - (i) it is governed by an approximately symmetric distribution;
 - (ii) the center of symmetry of this distribution is close to $\theta(P)$.

How does one create such a "new sample"? A possible approach is based on the fact that

as sample size grows, the summary statistics of the data become asymptotically normal, hence asymptotically symmetric. Examples: sample mean, MLE.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

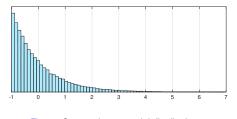


Figure: Centered exponential distribution

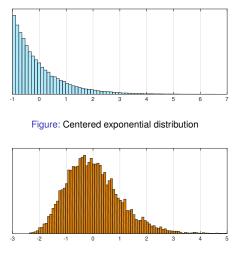


Figure: Rescaled sample means with n = 10.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

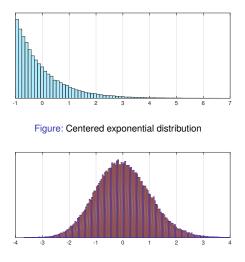
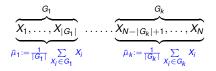


Figure: Rescaled sample means with n = 100.

Robust estimators of the mean

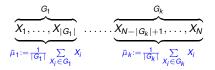
• Split the sample into *k* groups G_1, \ldots, G_k of size $n_i = |G_i|$ each:



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Robust estimators of the mean

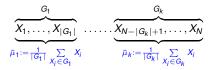
• Split the sample into *k* groups G_1, \ldots, G_k of size $n_j = |G_j|$ each:



• ρ is convex, even function such that $\rho(z) \to \infty$ as $|z| \to \infty$ and $\|\rho'\|_{\infty} < \infty$.

Robust estimators of the mean

• Split the sample into *k* groups G_1, \ldots, G_k of size $n_i = |G_i|$ each:

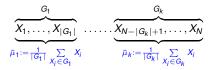


(日) (日) (日) (日) (日) (日) (日)

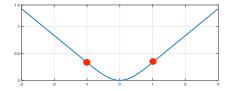
- ρ is convex, even function such that $\rho(z) \to \infty$ as $|z| \to \infty$ and $\|\rho'\|_{\infty} < \infty$.
- $\widehat{\mu}^{(k)} := \operatorname{argmin}_{z \in \mathbb{R}} \sum_{j=1}^{k} \rho\left(\sqrt{n_j} \frac{\overline{\mu}_j z}{\Delta}\right)$, where $\Delta > 0$.

Robust estimators of the mean

• Split the sample into *k* groups G_1, \ldots, G_k of size $n_i = |G_i|$ each:



- ρ is convex, even function such that $\rho(z) \to \infty$ as $|z| \to \infty$ and $\|\rho'\|_{\infty} < \infty$.
- $\widehat{\mu}^{(k)} := \operatorname{argmin}_{z \in \mathbb{R}} \sum_{j=1}^{k} \rho\left(\sqrt{n_j} \frac{\overline{\mu}_j z}{\Delta}\right)$, where $\Delta > 0$.
- Examples:
 - $\rho(x) = |x|$ yields the median-of-means estimator.
 - 2 $\rho(x) =$ Huber's loss:



(ロ) (同) (三) (三) (三) (○) (○)

- X_1, \ldots, X_N are i.i.d., with mean μ and variance σ^2 .
- Will assume that $n_1 = \ldots = n_k = n$ during the talk.
- $\Phi(t)$ distribution function of N(0, 1), and

$$g(n) := \sup_{t \in \mathbb{R}} \left| \mathbb{P}\left(\sqrt{n} \frac{\bar{X}_n - \mathbb{E}X}{\sqrt{\operatorname{Var}(X)}} \leq t \right) - \Phi(t) \right|.$$

(ロ)、(型)、(E)、(E)、 E、のQの

- X_1, \ldots, X_N are i.i.d., with mean μ and variance σ^2 .
- Will assume that $n_1 = \ldots = n_k = n$ during the talk.
- $\Phi(t)$ distribution function of N(0, 1), and

$$g(n) := \sup_{t \in \mathbb{R}} \left| \mathbb{P}\left(\sqrt{n} \frac{\bar{X}_n - \mathbb{E}X}{\sqrt{\operatorname{Var}(X)}} \leq t \right) - \Phi(t) \right|.$$

• $\underline{c}, \overline{C} > 0$ are absolute constants,

$$\widetilde{\Delta} = \max(\Delta, \sigma)$$

- X_1, \ldots, X_N are i.i.d., with mean μ and variance σ^2 .
- Will assume that $n_1 = \ldots = n_k = n$ during the talk.
- $\Phi(t)$ distribution function of N(0, 1), and

$$g(n) := \sup_{t \in \mathbb{R}} \left| \mathbb{P}\left(\sqrt{n} \frac{\bar{\chi}_n - \mathbb{E}X}{\sqrt{\operatorname{Var}(X)}} \leq t \right) - \Phi(t) \right|.$$

• $\underline{c}, \overline{C} > 0$ are absolute constants,

$$\widetilde{\Delta} = \max(\Delta, \sigma)$$

- X_1, \ldots, X_N are i.i.d., with mean μ and variance σ^2 .
- Will assume that $n_1 = \ldots = n_k = n$ during the talk.
- $\Phi(t)$ distribution function of N(0, 1), and

$$g(n) := \sup_{t \in \mathbb{R}} \left| \mathbb{P}\left(\sqrt{n} \frac{\bar{\chi}_n - \mathbb{E}X}{\sqrt{\operatorname{Var}(X)}} \leq t \right) - \Phi(t) \right|.$$

• $\underline{c}, \overline{C} > 0$ are absolute constants,

$$\widetilde{\Delta} = \max(\Delta, \sigma)$$

- X_1, \ldots, X_N are i.i.d., with mean μ and variance σ^2 .
- Will assume that $n_1 = \ldots = n_k = n$ during the talk.
- $\Phi(t)$ distribution function of N(0, 1), and

$$g(n) := \sup_{t \in \mathbb{R}} \left| \mathbb{P}\left(\sqrt{n} \frac{\bar{X}_n - \mathbb{E}X}{\sqrt{\operatorname{Var}(X)}} \leq t \right) - \Phi(t) \right|$$

• $\underline{c}, \overline{C} > 0$ are absolute constants,

$$\widetilde{\Delta} = \max(\Delta, \sigma)$$

Theorem (M., 2018)

For all s > 0 such that $\sqrt{\frac{s}{k}} + g(n) \le \underline{c}(\rho)$,

$$\left|\widehat{\mu}^{(k)}-\mu\right|\leq \overline{C}(
ho)\,\widetilde{\Delta}\!\left(\sqrt{\frac{s}{N}}+g(n)\sqrt{\frac{k}{N}}\right)$$

with probability at least $1 - 2e^{-s}$.

◆□ → ◆□ → ◆三 → ◆三 → ○○ のへで

- X_1, \ldots, X_N are i.i.d., with mean μ and variance σ^2 .
- Will assume that $n_1 = \ldots = n_k = n$ during the talk.
- $\Phi(t)$ distribution function of N(0, 1), and

$$g(n) := \sup_{t \in \mathbb{R}} \left| \mathbb{P}\left(\sqrt{n} \frac{\bar{X}_n - \mathbb{E}X}{\sqrt{\operatorname{Var}(X)}} \leq t \right) - \Phi(t) \right|.$$

• $\underline{c}, \overline{C} > 0$ are absolute constants,

$$\widetilde{\Delta} = \max(\Delta, \sigma)$$

Theorem (M., 2018)

For all s > 0 such that $\sqrt{\frac{s}{k}} + g(n) \le \underline{c}(\rho)$,

$$\left|\widehat{\mu}^{(k)} - \mu\right| \leq \overline{C}(\rho) \,\widetilde{\Delta}\left(\sqrt{\frac{s}{N}} + \underbrace{g(n)\sqrt{\frac{k}{N}}}_{"bias"}\right)$$

with probability at least $1 - 2e^{-s}$.

• $\Phi(t)$ - distribution function of N(0, 1), and

$$g(n) := \sup_{t \in \mathbb{R}} \left| \mathbb{P}\left(\sqrt{n} \frac{\bar{X}_n - \mathbb{E}X}{\sqrt{\operatorname{Var}(X)}} \le t \right) - \Phi(t) \right|$$

• $\underline{c}, \overline{C} > 0$ are absolute constants,

$$\widetilde{\Delta} = \mathsf{max}(\Delta, \sigma)$$

Theorem (M., 2018)

For all s > 0 such that $\sqrt{\frac{s}{k}} + g(n) \le \underline{c}(\rho)$,

$$\left|\widehat{\mu}^{(k)} - \mu\right| \leq \overline{C}(
ho) \,\widetilde{\Delta}\left(\sqrt{rac{s}{N}} + \underbrace{g(n)\sqrt{rac{k}{N}}}_{"bias"}
ight)$$

with probability at least $1 - 2e^{-s}$.

• Moreover, if $k \leq C/g^2(n)$, then $\mathbb{E}\left|\widehat{\mu}^{(k)} - \mu\right| \leq C(\rho) \frac{\widetilde{\Delta}}{\sqrt{N}}$.

• $\Phi(t)$ - distribution function of N(0, 1), and

$$g(n) := \sup_{t \in \mathbb{R}} \left| \mathbb{P}\left(\sqrt{n} \frac{\bar{X}_n - \mathbb{E}X}{\sqrt{\mathsf{Var}(X)}} \le t \right) - \Phi(t) \right|$$

• $\underline{c}, \overline{C} > 0$ are absolute constants,

$$\widetilde{\Delta} = \max(\Delta, \sigma)$$

Add \mathcal{O} arbitrary (e.g., adversarially generated) outliers:

Theorem (M., 2018)

For all
$$\mathcal{O} \in \mathbb{N}$$
, $s > 0$ such that $\sqrt{\frac{s}{k}} + g(n) + \frac{\mathcal{O}}{k} \leq \underline{c}(\rho) \left(1 - \frac{\mathcal{O}}{k}\right)$,

$$\left|\widehat{\mu}^{(k)}-\mu\right|\leq \overline{C}(
ho)\,\widetilde{\Delta}\left(\sqrt{rac{s}{N}}+g(n)\sqrt{rac{k}{N}}+rac{\mathcal{O}}{\sqrt{k}}rac{1}{\sqrt{k}}
ight)$$

with probability at least $1 - 2e^{-s}$.

Theorem (M., 2018)

For all $\mathcal{O} \in \mathbb{N}$, s > 0 such that $\|\rho'\|_{\infty} \left(\sqrt{\frac{s}{k}} + g(n) + \frac{\mathcal{O}}{k}\right) \leq c \left(1 - \frac{\mathcal{O}}{k}\right)$,

$$\left|\widehat{\mu}^{(k)} - \mu\right| \leq \bar{C} \max\left(\Delta, \sigma\right) \|\rho'\|_{\infty} \left(\sqrt{\frac{s}{N}} + g(n)\sqrt{\frac{k}{N}} + \frac{\mathcal{O}}{\sqrt{k}}\frac{1}{\sqrt{N}}\right)$$

with probability at least $1 - 2e^{-s}$.

• For example, if $\mathbb{E}|X - \mu|^3 < \infty$, then $g(n) \lesssim \frac{\mathbb{E}|X - \theta_*|^3}{\sigma^3 n^{1/2}}$, and we get the bound

$$\left|\widehat{\mu}^{(k)} - \mu\right| \leq \overline{C} \Delta \|\rho'\|_{\infty} \left(\sqrt{\frac{s}{N}} + \frac{\mathbb{E}|X - \theta_*|^3}{\sigma^3} \frac{k}{N} + \frac{\mathcal{O}}{\sqrt{k}} \frac{1}{\sqrt{N}}\right)$$

(日) (日) (日) (日) (日) (日) (日)

that holds with probability $\geq 1 - 2e^{-s}$.

Theorem (M., 2018)

For all $\mathcal{O} \in \mathbb{N}$, s > 0 such that $\|\rho'\|_{\infty} \left(\sqrt{\frac{s}{k}} + g(n) + \frac{\mathcal{O}}{k}\right) \leq \underline{c} \left(1 - \frac{\mathcal{O}}{k}\right)$,

$$\left|\widehat{\mu}^{(k)} - \mu\right| \leq \bar{C} \max\left(\Delta, \sigma\right) \|\rho'\|_{\infty} \left(\sqrt{\frac{s}{N}} + g(n)\sqrt{\frac{k}{N}} + \frac{\mathcal{O}}{\sqrt{k}}\frac{1}{\sqrt{N}}\right)$$

with probability at least $1 - 2e^{-s}$.

• For example, if $\mathbb{E}|X - \mu|^3 < \infty$, then $g(n) \lesssim \frac{\mathbb{E}|X - \theta_*|^3}{\sigma^3 n^{1/2}}$, and we get the bound

$$\left|\widehat{\mu}^{(k)} - \mu\right| \leq \bar{C} \Delta \|\rho'\|_{\infty} \left(\sqrt{\frac{s}{N}} + \frac{\mathbb{E}|X - \theta_*|^3}{\sigma^3} \frac{k}{N} + \frac{\mathcal{O}}{\sqrt{k}} \frac{1}{\sqrt{N}}\right)$$

(日) (日) (日) (日) (日) (日) (日)

that holds with probability $\geq 1 - 2e^{-s}$.

• If $\mathcal{O} = \varepsilon \cdot N$, then "optimal" $k \simeq \varepsilon^{2/3} N$ and resulting error is of order $\varepsilon^{2/3}$.

• Question: what happens when $k, N \rightarrow \infty$?

- Question: what happens when $k, N \rightarrow \infty$?
- Assume that $\sqrt{k} \cdot g(n) \to 0$ as $N \to \infty$ (if $\mathbb{E}|X \mu|^{2+\delta} < \infty$, then $k = o\left(N^{\frac{\delta}{1+\delta}}\right)$ suffices).

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

- Question: what happens when $k, N \rightarrow \infty$?
- Assume that $\sqrt{k} \cdot g(n) \to 0$ as $N \to \infty$ (if $\mathbb{E}|X \mu|^{2+\delta} < \infty$, then $k = o\left(N^{\frac{\delta}{1+\delta}}\right)$ suffices).

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

• $L(z) := \mathbb{E}\rho'(z+Z)$, where $Z \sim N(0, 1)$.

- Question: what happens when $k, N \rightarrow \infty$?
- Assume that $\sqrt{k} \cdot g(n) \to 0$ as $N \to \infty$ (if $\mathbb{E}|X \mu|^{2+\delta} < \infty$, then $k = o\left(N^{\frac{\delta}{1+\delta}}\right)$ suffices).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

• $L(z) := \mathbb{E}\rho'(z+Z)$, where $Z \sim N(0, 1)$.

•
$$\Delta^2 = \frac{\mathbb{E}(\rho'(Z))^2}{(L'(0))^2}$$

• Question: what happens when $k, N \rightarrow \infty$?

• Assume that
$$\sqrt{k} \cdot g(n) \to 0$$
 as $N \to \infty$ (if $\mathbb{E}|X - \mu|^{2+\delta} < \infty$, then $k = o\left(N^{\frac{\delta}{1+\delta}}\right)$ suffices).

•
$$L(z) := \mathbb{E}\rho'(z+Z)$$
, where $Z \sim N(0,1)$.
• $\Delta^2 = \frac{\mathbb{E}(\rho'(Z))^2}{(L'(0))^2}$.

Theorem (M., 2018)

Under these assumptions,

$$\sqrt{N}\left(\widehat{\mu}^{(k)}-\mu\right) \xrightarrow{d} N\left(0,\Delta^2\sigma^2\right).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- Question: what happens when $k, N \rightarrow \infty$?
- Assume that $\sqrt{k} \cdot g(n) \to 0$ as $N \to \infty$ (if $\mathbb{E}|X \mu|^{2+\delta} < \infty$, then $k = o\left(N^{\frac{\delta}{1+\delta}}\right)$ suffices).

•
$$\Delta^2 = \frac{\mathbb{E}(\rho'(Z))^2}{(L'(0))^2}.$$

Theorem (M., 2018)

Under these assumptions,

$$\sqrt{N}\left(\widehat{\mu}^{(k)}-\mu\right) \xrightarrow{d} N\left(0,\Delta^2\sigma^2\right).$$

• $\rho(x) = |x| \implies \Delta^2 = \frac{\pi}{2}.$ • $\rho(x) = \begin{cases} z^2/2, & |z| \le M, \\ M|z| - M^2/2, & |z| > M \end{cases} \implies \Delta^2 = \frac{\int_{-M}^{M} x^2 d\Phi(x) + 2M^2(1 - \Phi(M))}{(2\Phi(M) - 1)^2}.$ For instance, $\Delta^2 \simeq 1.15$ for M = 2 and $\Delta^2 \simeq 1.01$ for M = 3.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• X_1, \ldots, X_N i.i.d. copies of $X \in S$, \mathcal{F} is a class of functions $f : S \mapsto \mathbb{R}$.

- X_1, \ldots, X_N i.i.d. copies of $X \in S$, \mathcal{F} is a class of functions $f : S \mapsto \mathbb{R}$.
- Problem: estimate $\mathbb{E}f(X)$ for all $f \in \mathcal{F}$ (motivated by empirical risk minimization).

- X_1, \ldots, X_N i.i.d. copies of $X \in S$, \mathcal{F} is a class of functions $f : S \mapsto \mathbb{R}$.
- Problem: estimate $\mathbb{E}f(X)$ for all $f \in \mathcal{F}$ (motivated by empirical risk minimization).
- $\bar{\mu}_j(f) = \frac{1}{n} \sum_{i \in G_j} f(X_i), \sigma^2(\mathcal{F}) = \sup_{f \in \mathcal{F}} \operatorname{Var}(f(X)), \text{ and }$

 $\widehat{\mu}^{(k)}(f) := \text{argmin}_{z \in \mathbb{R}} \ \tfrac{1}{\sqrt{N}} \sum_{j=1}^{k} \rho\left(\sqrt{n} \ \tfrac{\overline{\mu}_{j}(f) - z}{\Delta}\right), \text{ where } \Delta > 0.$

(日) (日) (日) (日) (日) (日) (日)

- X_1, \ldots, X_N i.i.d. copies of $X \in S$, \mathcal{F} is a class of functions $f : S \mapsto \mathbb{R}$.
- Problem: estimate $\mathbb{E}f(X)$ for all $f \in \mathcal{F}$ (motivated by empirical risk minimization).
- $\bar{\mu}_j(f) = \frac{1}{n} \sum_{i \in G_j} f(X_i), \sigma^2(\mathcal{F}) = \sup_{f \in \mathcal{F}} \operatorname{Var}(f(X)), \text{ and}$

$$\begin{aligned} \widehat{\mu}^{(k)}(f) &:= \operatorname{argmin}_{z \in \mathbb{R}} \frac{1}{\sqrt{N}} \sum_{j=1}^{k} \rho\left(\sqrt{n} \frac{\overline{\mu}_{j}(f) - z}{\Delta}\right), \text{ where } \Delta > 0. \\ \bullet \ g(f; n) &:= \sup_{t \in \mathbb{R}} \left| \mathbb{P}\left(\sqrt{n} \frac{\overline{\mu}_{j}(f) - \mathbb{E}f(X)}{\sqrt{\operatorname{Var}(f(X))}} \leq t\right) - \Phi(t) \right|. \end{aligned}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\sigma^{2}(\mathcal{F}) = \sup_{f \in \mathcal{F}} \operatorname{Var}(f(X)), \ \widetilde{\Delta} = \max(\Delta, \sigma(\mathcal{F}))$$

Theorem (M., 2018/19)

Assume that ρ' is Lipschitz continuous. Then for all s > 0 such that

$$\max\left(\frac{1}{\sqrt{k}\Delta}\mathbb{E}\sup_{f\in\mathcal{F}}\left|\frac{1}{\sqrt{N}}\sum_{j=1}^{N}\left(f(X_{j})-\mathbb{E}f(X)\right)\right|,\sqrt{\frac{s}{k}}+\sup_{f\in\mathcal{F}}g(f;n)\right)\leq \underline{c}(\rho),$$

the inequality

$$\begin{split} \sup_{f\in\mathcal{F}} \left| \widehat{\mu}^{(k)}(f) - \mathbb{E}f(X) \right| &\leq \bar{\mathcal{C}}(\rho) \left(\frac{1}{\sqrt{N}} \frac{\widetilde{\Delta}}{\Delta} \mathbb{E} \sup_{f\in\mathcal{F}} \left| \frac{1}{\sqrt{N}} \sum_{j=1}^{N} \left(f(X_j) - \mathbb{E}f(X) \right) \right| \\ &+ \widetilde{\Delta} \left(\sqrt{\frac{s}{N}} + \sup_{f\in\mathcal{F}} g(f;n) \sqrt{\frac{k}{N}} \right) \end{split}$$

holds with probability $\geq 1 - 2e^{-s}$.

• X_1, \ldots, X_N – i.i.d. copies of a random vector $X \in \mathbb{R}^d$ with mean $\mathbb{E}X = \mu$ and covariance matrix $\mathbb{E}(X - \mu)(X - \mu)^T = \Sigma$.

X₁,..., X_N - i.i.d. copies of a random vector X ∈ ℝ^d with mean EX = μ and covariance matrix E(X − μ)(X − μ)^T = Σ.

• $\|\cdot\|_2$ is the Euclidean norm in \mathbb{R}^d .

• X_1, \ldots, X_N – i.i.d. copies of a random vector $X \in \mathbb{R}^d$ with mean $\mathbb{E}X = \mu$ and covariance matrix $\mathbb{E}(X - \mu)(X - \mu)^T = \Sigma$.

- $\|\cdot\|_2$ is the Euclidean norm in \mathbb{R}^d .
- Take \mathcal{F} to be the class of linear functionals $\mathcal{F} = \{f_v(x) = \langle v, x \rangle, \|v\|_2 = 1\}.$

- X₁,..., X_N − i.i.d. copies of a random vector X ∈ ℝ^d with mean EX = μ and covariance matrix E(X − μ)(X − μ)^T = Σ.
- $\|\cdot\|_2$ is the Euclidean norm in \mathbb{R}^d .
- Take \mathcal{F} to be the class of linear functionals $\mathcal{F} = \{f_v(x) = \langle v, x \rangle, \|v\|_2 = 1\}.$
- Then $\sup_{f \in \mathcal{F}} \left| \widehat{\mu}^{(k)}(f) \mathbb{E}f(X) \right| = \left\| \widehat{\mu}^{(k)} \mu \right\|_2, \sigma(\mathcal{F}) = \sqrt{\lambda_{\max}(\Sigma)}$ and

$$\frac{1}{N} \mathbb{E} \sup_{f \in \mathcal{F}} \left| \sum_{j=1}^{N} \left(f(X_j) - \mathbb{E}f(X) \right) \right| \leq \sqrt{\frac{\operatorname{tr} \Sigma}{N}}.$$

(日) (日) (日) (日) (日) (日) (日)

- X₁,..., X_N − i.i.d. copies of a random vector X ∈ ℝ^d with mean EX = μ and covariance matrix E(X − μ)(X − μ)^T = Σ.
- $\|\cdot\|_2$ is the Euclidean norm in \mathbb{R}^d .
- Take \mathcal{F} to be the class of linear functionals $\mathcal{F} = \{f_v(x) = \langle v, x \rangle, \|v\|_2 = 1\}.$
- Then $\sup_{f \in \mathcal{F}} \left| \widehat{\mu}^{(k)}(f) \mathbb{E}f(X) \right| = \left\| \widehat{\mu}^{(k)} \mu \right\|_2, \sigma(\mathcal{F}) = \sqrt{\lambda_{\max}(\Sigma)}$ and

$$\frac{1}{N} \mathbb{E} \sup_{f \in \mathcal{F}} \left| \sum_{j=1}^{N} \left(f(X_j) - \mathbb{E} f(X) \right) \right| \leq \sqrt{\frac{\operatorname{tr} \Sigma}{N}}$$

$$\left\| \hat{\mu}^{(k)} - \mu \right\|_{2} \leq \bar{C}(\rho) \left(\sqrt{\frac{\operatorname{tr} \Sigma}{N}} + \sqrt{\lambda_{\max}(\Sigma)} \left(\sqrt{\frac{s}{N}} + \underbrace{\sup_{v: \|v\|_{2}=1} g(f_{v}; n) \sqrt{\frac{k}{N}}}_{\text{"bias" of smaller order}} \right) \right)$$

with probability $\geq 1 - 2e^{-s}$, as long as $k \gtrsim \frac{\operatorname{tr} \Sigma}{\lambda_{\max}(\Sigma)}$ and $s \lesssim k$.

Construction of μ^(k) (previously been used in the papers by O. Catoni, I. Giulini, G. Lugosi, S. Mendelson, E. Joly and R. Oliveira):

Construction of
 µ^(k) (previously been used in the papers by O. Catoni, I. Giulini, G. Lugosi, S. Mendelson, E. Joly and R. Oliveira):

• Let v be the unit vector, and define $X_i(v) := \langle v, X_i \rangle$, and $\bar{\mu}_1(v), \ldots, \bar{\mu}_k(v)$ accordingly.

Construction of
 ^(k)
 (previously been used in the papers by O. Catoni, I. Giulini, G. Lugosi, S. Mendelson, E. Joly and R. Oliveira):

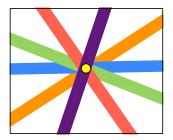
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Let v be the unit vector, and define $X_i(v) := \langle v, X_i \rangle$, and $\bar{\mu}_1(v), \ldots, \bar{\mu}_k(v)$ accordingly.
- "MOM in direction v":

 $\widehat{\mu}^{(k)}(\mathbf{v}) := \operatorname{argmin}_{z \in \mathbb{R}} \frac{1}{\sqrt{N}} \sum_{j=1}^{k} \rho\left(\sqrt{n} \, \frac{\overline{\mu}_{j}(\mathbf{v}) - z}{\Delta}\right).$

- Construction of
 µ^(k) (previously been used in the papers by O. Catoni, I. Giulini, G. Lugosi, S. Mendelson, E. Joly and R. Oliveira):
- Let v be the unit vector, and define $X_i(v) := \langle v, X_i \rangle$, and $\bar{\mu}_1(v), \ldots, \bar{\mu}_k(v)$ accordingly.
- "MOM in direction v":

 $\widehat{\mu}^{(k)}(v) := \operatorname{argmin}_{z \in \mathbb{R}} \frac{1}{\sqrt{N}} \sum_{j=1}^{k} \rho\left(\sqrt{n} \frac{\overline{\mu}_{j}(v) - z}{\Delta}\right).$ • $S_{v}(\varepsilon) := \left\{ y \in \mathbb{R}^{d} : \left| \langle y, v \rangle - \widehat{\mu}^{(k)}(v) \right| \le \varepsilon \right\}, M(\varepsilon) := \bigcap_{v : \|v\|_{z} = 1} S_{v}(\varepsilon).$



A D F A 同 F A E F A E F A Q A

Construction of
 ^(k)
 (previously been used in the papers by O. Catoni, I. Giulini, G. Lugosi, S. Mendelson, E. Joly and R. Oliveira):

(日) (日) (日) (日) (日) (日) (日)

- Let v be the unit vector, and define $X_i(v) := \langle v, X_i \rangle$, and $\bar{\mu}_1(v), \ldots, \bar{\mu}_k(v)$ accordingly.
- "MOM in direction *v*":

 $\widehat{\mu}^{(k)}(v) := \operatorname{argmin}_{z \in \mathbb{R}} \frac{1}{\sqrt{N}} \sum_{j=1}^{k} \rho\left(\sqrt{n} \, \frac{\overline{\mu}_{j}(v) - z}{\Delta}\right).$

• $S_{\nu}(\varepsilon) := \{ y \in \mathbb{R}^d : |\langle y, v \rangle - \widehat{\mu}^{(k)}(v)| \le \varepsilon \}, M(\varepsilon) := \bigcap_{v : \|v\|_2 = 1} S_{\nu}(\varepsilon).$

Finally, let ε_{*} := inf {ε > 0 : M(ε) ≠ ∅}, and take μ^(k) to be any element in M(ε_{*}).

• $n = \lfloor N/k \rfloor$

•
$$n = \lfloor N/k \rfloor$$

• $\mathcal{A}_N^{(n)} = \{J \subset \{1, \dots, N\} : |J| = n\}$ – all subsets of size *n*; in particular, $\operatorname{card}(\mathcal{A}_N^{(n)}) = {N \choose n}$

• $n = \lfloor N/k \rfloor$

• $\mathcal{A}_N^{(n)} = \{J \subset \{1, \dots, N\} : |J| = n\}$ - all subsets of size *n*; in particular, card $(\mathcal{A}_N^{(n)}) = {N \choose n}$ • $\overline{\mu}_J = \operatorname{average}(X_j, j \in J)$

• $n = \lfloor N/k \rfloor$

٠

• $\mathcal{A}_N^{(n)} = \{J \subset \{1, \dots, N\} : |J| = n\}$ – all subsets of size *n*; in particular, $\operatorname{card}(\mathcal{A}_N^{(n)}) = {N \choose n}$ • $\overline{\mu}_J = \operatorname{average}(X_j, j \in J)$

$$\widetilde{\mu}_{\rho}^{(k)} := \operatorname*{argmin}_{z \in \mathbb{R}} \sum_{J \in \mathcal{A}_{N}^{(n)}} \rho\left(\sqrt{n} \frac{\overline{\mu}_{J} - z}{\Delta}\right)$$

•
$$n = \lfloor N/k \rfloor$$

• $\mathcal{A}_N^{(n)} = \{J \subset \{1, \dots, N\} : |J| = n\}$ - all subsets of size *n*; in particular, $\operatorname{card}(\mathcal{A}_N^{(n)}) = \binom{N}{n}$
• $\bar{\mu}_J = \operatorname{average}(X_j, j \in J)$
• $\tilde{\mu}_\rho^{(k)} := \operatorname{argmin}_{Z \in \mathbb{R}} \sum_{J \in \mathcal{A}_N^{(n)}} \rho\left(\sqrt{n} \frac{\bar{\mu}_J - Z}{\Delta}\right)$

Does not depend on random partition and satisfies the same deviation guarantees as
 ^{µ(k)}.

(ロ)、

Thank you for listening!

・ロ・・日・・ヨ・・ヨ・ ヨ・ シタク