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Noisy and corrupted data
is one of the challenges in contemporary statistics and data science:

Presence of outliers of unknown nature:

We would like to develop general methods that work under minimal assumptions.

A natural way to model “noisy” data is via heavy-tailed distributions.

For the purpose of this talk, a random variable X has heavy-tailed distribution if

E|X |r =∞

for some r > 0 (for example, r = 2.1).
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Figure: Standard normal distribution.
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Figure: Student’s t-distribution with 3 d.f.
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Figure: Student’s t-distribution with 2.1 d.f.



Question: how to estimate the mean?

Motivation: risk minimization of the form

approximate the minimizer of the "risk" E`(Y , f (X)) over the class F .

Benchmark: assume that X1, . . . ,XN are i.i.d. N (µ, σ2).

The sample mean µ̂N := 1
N

N∑
j=1

Xj satisfies

Pr

(∣∣µ̂N − µ
∣∣ ≥ σ√2 log(1/α)

N

)
≤ 2α,

similar inequality holds for sub-Gaussian distributions.
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Question: how to estimate the mean?

What if X1, . . . ,XN are i.i.d. copies of X ∼ Π such that

EX = µ, Var(X) ≤ σ2?

on Π – possibly asymmetric, with heavy tails.

Guarantees for the sample mean µ̂n = 1
N

N∑
j=1

Xj are not completely satisfactory:

Pr
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Figure: Rescaled Sample Means of Student’s t-distribution with 3 d.f.
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Figure: Rescaled Sample Means of Student’s t-distribution with 2.1 d.f.



Question: how to estimate the mean?

Median-of-means (MOM) estimator: [A. Nemirovski, D. Yudin ‘83; N. Alon, Y. Matias, M. Szegedy ‘96; R. Oliveira,

M. Lerasle ‘11]

Split the sample into k = blog(1/α)c+ 1 groups G1, . . . ,Gk of size ' N/k each:

G1︷ ︸︸ ︷
X1, . . . ,X|G1|︸ ︷︷ ︸
µ̄1:= 1

|G1|
∑

Xi∈G1

Xi

. . . . . .

Gk︷ ︸︸ ︷
XN−|Gk |+1, . . . ,XN︸ ︷︷ ︸
µ̄k := 1

|Gk |
∑

Xi∈Gk

Xi︸ ︷︷ ︸
µ̂(k):=median(µ̄1,...,µ̄k )

Claim:

Has recently been extended to multivariate mean and covariance estimation, empirical risk
minimization, U-statistics.
Quickly growing body of work: G. Chinot, L. Devroye, E. Joly, G. Lecué, M. Lerasle, G.
Lugosi, T. Matthieu, S. Mendelson, R. Oliveira, S. Hopkins, N. Zhivotovsky.

Similar results were obtained by J. Fan, W.-X. Zhou, Z. Ren, O. Catoni, I. Giulini using
different estimation techniques.
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Result so far:

Pr

(
|µ̂(k) − µ| ≥ C σ

√
k
N

)
≤ e−k := α

Need to recalculate the estimator for different values of confidence parameter α. Can one
"decouple" k and α?

How to choose k? Typically, want k as large as possible.

Limiting distribution: what happens when k ,N →∞?

Assume that many means need to be estimated simultaneously. Uniform deviation bounds?

Robust estimator that does not depend on the random partition of the index set?

Algorithms for robust Empirical Risk Minimization?



Result so far:

Pr

(
|µ̂(k) − µ| ≥ C σ

√
k
N

)
≤ e−k := α

Need to recalculate the estimator for different values of confidence parameter α. Can one
"decouple" k and α?

How to choose k? Typically, want k as large as possible.

Limiting distribution: what happens when k ,N →∞?

Assume that many means need to be estimated simultaneously. Uniform deviation bounds?

Robust estimator that does not depend on the random partition of the index set?

Algorithms for robust Empirical Risk Minimization?



Result so far:

Pr

(
|µ̂(k) − µ| ≥ C σ

√
k
N

)
≤ e−k := α

Need to recalculate the estimator for different values of confidence parameter α. Can one
"decouple" k and α?

How to choose k? Typically, want k as large as possible.

Limiting distribution: what happens when k ,N →∞?

Assume that many means need to be estimated simultaneously. Uniform deviation bounds?

Robust estimator that does not depend on the random partition of the index set?

Algorithms for robust Empirical Risk Minimization?



Result so far:

Pr

(
|µ̂(k) − µ| ≥ C σ

√
k
N

)
≤ e−k := α

Need to recalculate the estimator for different values of confidence parameter α. Can one
"decouple" k and α?

How to choose k? Typically, want k as large as possible.

Limiting distribution: what happens when k ,N →∞?

Assume that many means need to be estimated simultaneously. Uniform deviation bounds?

Robust estimator that does not depend on the random partition of the index set?

Algorithms for robust Empirical Risk Minimization?



Result so far:

Pr

(
|µ̂(k) − µ| ≥ C σ

√
k
N

)
≤ e−k := α

Need to recalculate the estimator for different values of confidence parameter α. Can one
"decouple" k and α?

How to choose k? Typically, want k as large as possible.

Limiting distribution: what happens when k ,N →∞?

Assume that many means need to be estimated simultaneously. Uniform deviation bounds?

Robust estimator that does not depend on the random partition of the index set?

Algorithms for robust Empirical Risk Minimization?



Result so far:

Pr

(
|µ̂(k) − µ| ≥ C σ

√
k
N

)
≤ e−k := α

Need to recalculate the estimator for different values of confidence parameter α. Can one
"decouple" k and α?

How to choose k? Typically, want k as large as possible.

Limiting distribution: what happens when k ,N →∞?

Assume that many means need to be estimated simultaneously. Uniform deviation bounds?

Robust estimator that does not depend on the random partition of the index set?

Algorithms for robust Empirical Risk Minimization?



Connections between symmetry and robustness

1 If the distribution P is symmetric, then its center of symmetry θ(P) can be approximated by a
robust estimator with a high breakdown point, e.g. a robust M-estimator

θ̂ := argmin
z∈R

∑N
j=1 ρ

(
z − Xj

)
.

2 In order to obtain a robust estimator of a parameter θ(P) of (not necessarily symmetric)
distribution P based on the i.i.d. sample X1, . . . ,XN , create a new sample such that

(i) it is governed by an approximately symmetric distribution;
(ii) the center of symmetry of this distribution is close to θ(P).
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1 If the distribution P is symmetric, then its center of symmetry θ(P) can be approximated by a
robust estimator with a high breakdown point, e.g. a robust M-estimator

θ̂ := argmin
z∈R

∑N
j=1 ρ

(
z − Xj

)
.

2 In order to obtain a robust estimator of a parameter θ(P) of (not necessarily symmetric)
distribution P based on the i.i.d. sample X1, . . . ,XN , create a new sample such that

(i) it is governed by an approximately symmetric distribution;
(ii) the center of symmetry of this distribution is close to θ(P).

How does one create such a "new sample"? A possible approach is based on the fact that

as sample size grows, the summary statistics of the data become asymptotically normal,
hence asymptotically symmetric. Examples: sample mean, MLE.
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Figure: Rescaled sample means with n = 10.
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Figure: Rescaled sample means with n = 100.



Robust estimators of the mean

Split the sample into k groups G1, . . . ,Gk of size nj = |Gj | each:

G1︷ ︸︸ ︷
X1, . . . ,X|G1|︸ ︷︷ ︸
µ̄1:= 1

|G1|
∑

Xi∈G1

Xi

. . . . . .

Gk︷ ︸︸ ︷
XN−|Gk |+1, . . . ,XN︸ ︷︷ ︸
µ̄k := 1

|Gk |
∑

Xi∈Gk

Xi

ρ is convex, even function such that ρ(z)→∞ as |z| → ∞ and ‖ρ′‖∞ <∞.

µ̂(k) := argminz∈R
∑k

j=1 ρ
(√nj

µ̄j−z
∆

)
, where ∆ > 0.

Examples:

1 ρ(x) = |x| yields the median-of-means estimator.
2 ρ(x) = Huber’s loss:
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1.4
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Non-asymptotic guarantees

X1, . . . ,XN are i.i.d., with mean µ and variance σ2.

Will assume that n1 = . . . = nk = n during the talk.

Φ(t) - distribution function of N(0, 1), and

g(n) := sup
t∈R

∣∣∣∣P(√n X̄n−EX√
Var(X)

≤ t
)
− Φ(t)

∣∣∣∣ .

c
¯
, C̄ > 0 are absolute constants,

∆̃ = max(∆, σ)
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Theorem (M., 2018)

For all s > 0 such that
√

s
k + g(n) ≤ c

¯
(ρ),

∣∣∣µ̂(k) − µ
∣∣∣ ≤ C̄(ρ) ∆̃

(√
s
N

+ g(n)

√
k
N

)

with probability at least 1− 2e−s .



Non-asymptotic guarantees

X1, . . . ,XN are i.i.d., with mean µ and variance σ2.

Will assume that n1 = . . . = nk = n during the talk.

Φ(t) - distribution function of N(0, 1), and

g(n) := sup
t∈R

∣∣∣∣P(√n X̄n−EX√
Var(X)

≤ t
)
− Φ(t)

∣∣∣∣ .
c
¯
, C̄ > 0 are absolute constants,

∆̃ = max(∆, σ)

Theorem (M., 2018)

For all s > 0 such that
√

s
k + g(n) ≤ c

¯
(ρ),

∣∣∣µ̂(k) − µ
∣∣∣ ≤ C̄(ρ) ∆̃

(√
s
N

+ g(n)

√
k
N︸ ︷︷ ︸

"bias"

)

with probability at least 1− 2e−s .



Non-asymptotic guarantees

Will assume that n1 = . . . = nk = n during the talk.

Φ(t) - distribution function of N(0, 1), and

g(n) := sup
t∈R

∣∣∣∣P(√n X̄n−EX√
Var(X)

≤ t
)
− Φ(t)

∣∣∣∣ .
c
¯
, C̄ > 0 are absolute constants,

∆̃ = max(∆, σ)

Theorem (M., 2018)

For all s > 0 such that
√

s
k + g(n) ≤ c

¯
(ρ),

∣∣∣µ̂(k) − µ
∣∣∣ ≤ C̄(ρ) ∆̃

(√
s
N

+ g(n)

√
k
N︸ ︷︷ ︸

"bias"

)

with probability at least 1− 2e−s .
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N

.



Non-asymptotic guarantees

Will assume that n1 = . . . = nk = n during the talk.

Φ(t) - distribution function of N(0, 1), and

g(n) := sup
t∈R

∣∣∣∣P(√n X̄n−EX√
Var(X)

≤ t
)
− Φ(t)

∣∣∣∣ .
c
¯
, C̄ > 0 are absolute constants,

∆̃ = max(∆, σ)

Add O arbitrary (e.g., adversarially generated) outliers:

Theorem (M., 2018)

For all O ∈ N, s > 0 such that
√

s
k + g(n) + O

k ≤ c
¯
(ρ)
(

1− Ok
)

,

∣∣∣µ̂(k) − µ
∣∣∣ ≤ C̄(ρ) ∆̃
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s
N

+ g(n)

√
k
N

+
O
√

k

1
√

N

)

with probability at least 1− 2e−s .
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∣∣∣µ̂(k) − µ
∣∣∣ ≤ C̄ max (∆, σ) ‖ρ′‖∞

(√
s
N

+ g(n)

√
k
N

+
O
√

k

1
√

N

)

with probability at least 1− 2e−s .

For example, if E|X − µ|3 <∞, then g(n) . E|X−θ∗|3

σ3n1/2 , and we get the bound

∣∣∣µ̂(k) − µ
∣∣∣ ≤ C̄ ∆ ‖ρ′‖∞

(√
s
N

+
E|X − θ∗|3

σ3

k
N

+
O
√

k

1
√

N

)

that holds with probability ≥ 1− 2e−s .

If O = ε · N, then “optimal” k ' ε2/3N and resulting error is of order ε2/3.
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Asymptotic results

Question: what happens when k ,N →∞?

Assume that
√

k · g(n)→ 0 as N →∞ (if E|X − µ|2+δ <∞, then k = o
(

N
δ

1+δ

)
suffices).

L(z) := Eρ′ (z + Z ) , where Z ∼ N(0, 1).

∆2 =
E(ρ′(Z ))2

(L′(0))2 .
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Theorem (M., 2018)
Under these assumptions, √

N
(
µ̂(k) − µ

)
d−→ N

(
0,∆2σ2

)
.

ρ(x) = |x | =⇒ ∆2 = π
2 .

ρ(x) =

{
z2/2, |z| ≤ M,
M|z| −M2/2, |z| > M

=⇒ ∆2 =

∫ M
−M x2dΦ(x)+2M2(1−Φ(M))

(2Φ(M)−1)2 .

For instance, ∆2 ' 1.15 for M = 2 and ∆2 ' 1.01 for M = 3.



Uniform deviation bounds

X1, . . . ,XN i.i.d. copies of X ∈ S, F is a class of functions f : S 7→ R.

Problem: estimate Ef (X) for all f ∈ F (motivated by empirical risk minimization).

µ̄j (f ) = 1
n
∑

i∈Gj
f (Xi ), σ

2(F) = supf∈F Var(f (X)), and

µ̂(k)(f ) := argminz∈R
1√
N

∑k
j=1 ρ

(√
n
µ̄j (f )−z

∆

)
, where ∆ > 0.

g(f ; n) := supt∈R

∣∣∣∣P(√n
µ̄j (f )−Ef (X)√

Var(f (X))
≤ t
)
− Φ(t)

∣∣∣∣.
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Uniform deviation bounds

σ2(F) = supf∈F Var(f (X)), ∆̃ = max(∆, σ(F))

Theorem (M., 2018/19)
Assume that ρ′ is Lipschitz continuous. Then for all s > 0 such that

max

 1
√

k ∆
E sup

f∈F

∣∣∣∣∣∣ 1
√

N

N∑
j=1

(
f (Xj )− Ef (X)

)∣∣∣∣∣∣,
√

s
k

+ sup
f∈F

g(f ; n)

 ≤ c
¯
(ρ),

the inequality

sup
f∈F

∣∣∣µ̂(k)(f )− Ef (X)
∣∣∣ ≤ C̄(ρ)

(
1
√

N

∆̃

∆
E sup

f∈F

∣∣∣∣∣∣ 1
√

N

N∑
j=1

(
f (Xj )− Ef (X)

)∣∣∣∣∣∣
+ ∆̃

(√
s
N

+ sup
f∈F

g(f ; n)

√
k
N

))

holds with probability ≥ 1− 2e−s .



Estimators of the mean of a random vector

X1, . . . ,XN – i.i.d. copies of a random vector X ∈ Rd with mean EX = µ and covariance
matrix E(X − µ)(X − µ)T = Σ.

‖·‖2 is the Euclidean norm in Rd .

Take F to be the class of linear functionals F = {fv (x) = 〈v , x〉, ‖v‖2 = 1}.
Then supf∈F

∣∣µ̂(k)(f )− Ef (X)
∣∣ =

∥∥µ̂(k) − µ
∥∥

2, σ(F) =
√
λmax(Σ) and

1
N

E sup
f∈F

∣∣∣∣∣∣
N∑

j=1

(
f (Xj )− Ef (X)

)∣∣∣∣∣∣ ≤
√

tr Σ

N
.

Can be used to construct the estimator µ̂(k) that satisfies “sub-Gaussian” bound

∥∥∥µ̂(k) − µ
∥∥∥

2
≤ C̄(ρ)

(√
tr Σ

N
+
√
λmax(Σ)

(√
s
N

+ sup
v :‖v‖2=1

g(fv ; n)

√
k
N︸ ︷︷ ︸

"bias" of smaller order

))

with probability ≥ 1− 2e−s , as long as k & tr Σ
λmax(Σ)

and s . k .
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Construction of µ̂(k) (previously been used in the papers by O. Catoni, I. Giulini, G. Lugosi, S.
Mendelson, E. Joly and R. Oliveira):

Let v be the unit vector, and define Xj (v) := 〈v ,Xj 〉, and µ̄1(v), . . . , µ̄k (v) accordingly.

"MOM in direction v":
µ̂(k)(v) := argminz∈R

1√
N

∑k
j=1 ρ

(√
n
µ̄j (v)−z

∆

)
.

Sv (ε) :=
{

y ∈ Rd :
∣∣〈y , v〉 − µ̂(k)(v)

∣∣ ≤ ε} , M(ε) :=
⋂

v :‖v‖2=1
Sv (ε).

Finally, let ε∗ := inf {ε > 0 : M(ε) 6= ∅}, and take µ̂(k) to be any element in M(ε∗).
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Remark: eliminating dependence on the partition

n = bN/kc

A(n)
N = {J ⊂ {1, . . . ,N} : |J| = n} – all subsets of size n; in particular, card(A(n)

N ) =
(N

n

)
µ̄J = average(Xj , j ∈ J)

µ̃
(k)
ρ := argmin

z∈R

∑
J∈A(n)

N

ρ

(√
n
µ̄J − z

∆

)

Does not depend on random partition and satisfies the same deviation guarantees as µ̂(k).
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Remark: eliminating dependence on the partition

n = bN/kc

A(n)
N = {J ⊂ {1, . . . ,N} : |J| = n} – all subsets of size n; in particular, card(A(n)

N ) =
(N

n

)
µ̄J = average(Xj , j ∈ J)

µ̃
(k)
ρ := argmin

z∈R

∑
J∈A(n)

N

ρ

(√
n
µ̄J − z

∆

)

Does not depend on random partition and satisfies the same deviation guarantees as µ̂(k).



Thank you for listening!


