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Preface

In recent years, the amount of available data in science and technology has
exploded and is currently expanding in an unprecedented rate. Such massive
high-dimensional datasets are typically too complex to precisely fit a pre-
specified model. This state of affairs poses significant challenges to our ability
to understand and extract useful information from such complex datasets, as it
requires the design of efficient estimators that are stable with respect to model
misspecification or the existence of arbitrary outliers.

The field of Robust Statistics studies the general problem of designing es-
timators that perform well even when the data significantly deviates from the
idealized modeling assumptions. The systematic study of robust statistical pro-
cedures dates back to the pioneering works by Tukey and Huber in the 1960s.
The classical statistical theory essentially characterizes the information-theoretic
limits of robust estimation for a number of statistical tasks. On the other hand,
until fairly recently, the computational aspects of this field were poorly un-
derstood. Specifically, no scalable methods for robust estimation were known
in high dimensions, even for the most basic task of mean estimation. Conse-
quently, the practical successes of robust statistical procedures were restricted
to the low-dimensional setting.

A recent line of work in computer science gave the first computationally
efficient robust estimators in high dimensions for a range of learning tasks.
Specifically, two independent and concurrent works in 2016 developed the first
efficient algorithms for basic high-dimensional robust statistics tasks, including
mean and covariance estimation. Since the dissemination of these works, there
has been a flurry of research activity on algorithmic high-dimensional robust
estimation in a variety of settings.

This book provides an overview of the recent developments in algorithmic
high-dimensional robust statistics. Our goal is to present the underlying ideas
in a clear and unified manner, while leveraging new ways of thinking about the
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High-Dimensional Robust Statistics by Ilias Diakonikolas and Daniel M. Kane.
This pre-publication version is free to view and download for personal use only. Not for
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8 Preface

developed techniques to provide the “correct” proofs of these results. As such,
we do not always follow the historical development of these ideas; although
the “related work” section in each chapter provides references and puts the
material into historical context. We also attempt to focus on the most basic and
most illustrative results in each chapter, relegating some of the more tangential
developments to the exercise sections.

The book is intended as an introduction to the field of algorithmic robust
statistics, and is suitable as a graduate text for a one-semester course. The
reader is assumed to have an understanding of algorithms at the undergraduate
level, including basic knowledge of convex programming techniques, as well
as a solid background in linear algebra and probability theory. Beyond these
topics, the book is intended to be largely self-contained, with background on a
few mathematical topics included in the appendix.

In terms of content, Chapter 1 contains a succinct overview of “classical”
robust statistics. Chapter 2 provides an introduction to the modern algorithmic
theory of high-dimensional robust statistics, including the key ideas behind the
developments of 2016. These ideas will be heavily relied upon throughout the
rest of the book. Chapters 1 and 2 are the most critical chapters in the book;
after covering them, the reader has some freedom to select what to study next
(though not complete impunity; see Figure 0.1 for the chapter dependencies).

Chapter 3 presents several refinements over the basic algorithms of Chap-
ter 2. Chapter 4 gives an algorithm for robustly estimating the covariance of
Gaussian-like distributions. Chapter 5 develops techniques for list-decodable
learning, corresponding to the regime that the outliers comprise a majority
of the dataset. Chapter 6 covers algorithmic techniques that leverage higher-
moment information for robust estimation, including techniques using the Sum-
of-Squares method. Chapter 7 develops robust algorithms for supervised learn-
ing problems. Finally, Chapter 8 presents a number of techniques for establish-
ing information-computation tradeoffs for robust statistical tasks.

Acknowledgements This book would not have been possible without the hard
work of many colleagues and researchers over the past several years in de-
veloping the theory of algorithmic robust statistics. Special thanks are due
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Kamath, Sushrut Karmalkar, Daniel Kongsgaard, Pravesh Kothari, Jerry Li,
Ankur Moitra, Ankit Pensia, Thanasis Pittas, Eric Price, Mahdi Soltanolkotabi,
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Notation Index

Asymptotic Notation

O(X) - denotes a quantity f where | f | ≤ CX for some absolute constant C.
Ω(X) - denotes a quantity f where f ≥ CX for some absolute constant C > 0.
Θ(X) - denotes a quantity f where X/C ≤ f ≤ CX for some absolute constant
C > 0. In other words, f is both O(X) and Ω(X).
o(X) - denotes a quantity f where the limit of | f |/X (with respect to some rel-
evant parameter) is 0.
ω(X) - denotes a quantity f where the limit of f /X (with respect to some rele-
vant parameter) is∞.

Oa(X) - denotes a quantity f where | f | ≤ C(a)X where C(a) is a function only
of the parameters listed in the subscript. Ωa(X) and Θa(X) are defined simi-
larly.
Õ(X) - denotes a quantity f such that | f | ≤ CX logC(X), where C is some ab-
solute constant.
Ω̃(X) - denotes a quantity f such that f ≥ X/(C logC(X)), where C > 0 is some
absolute constant.
Θ̃(X) - denotes a quantity f such that X/(C logC(X)) ≤ f ≤ CX logC(X) for
some absolute constant C > 0.

Probabilistic Notation

X ∼ D - X is a random variable distributed according toD.
X ∼u S - X is a random variable generated by taking a uniformly random ele-
ment of the finite set S .
D(x) - the probability that the distributionD assigns to the point x.
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Notation Index 11

D(S ) - the probability that the distributionD assigns to the set S .
E[X] - the expectation of the random variable X.
EX∼D[ f (X)] - The expectation of f (X), where X is a random variable dis-
tributed according toD.
µS - the (empirical) mean of the set S , i.e., µS = Ex∼uS [x].
µX - the mean of the distribution X, i.e., µX = Ex∼X[x].
Var[X] - the variance of the random variable X.
Cov[X] - the covariance matrix of the (multidimensional) random variable X.
Cov[S ] - the covariance of the set S , i.e., Cov[S ] = Ex∼uS [(x − µS )(x − µS )>].
ΣS - the covariance of the set S .
ΣX - the covariance of the distribution X, i.e., ΣX = Ex∼X[(x − µX)(x − µX)>].
‖X‖p - the Lp norm of the random variable X, given by E[|X|p]1/p.
dTV(X,Y) - the total variation distance between distributions X and Y .

N(µ,Σ) - the Gaussian distribution with mean µ and covariance matrix Σ.

aX + bY - this will usually refer to the corresponding mixture of the probabil-
ity distributions X and Y . In particular, this represents a distribution that with
probability a returns a random sample from X and with probability b returns
a random sample from Y . Occasionally, when the context is clear, this will in-
stead have the more standard meaning of the distribution obtained by sampling
x ∼ X and y ∼ Y and returning ax + by.

Linear Algebra

‖v‖p - the `p norm of the vector v ∈ Rd, given by
(∑d

i=1 |vi|
p
)1/p

.
‖M‖2 - the operator norm of a matrix M, given by supv,0 ‖Mv‖2/‖v‖2.
‖M‖F - the Frobenius norm of the matrix M, given by tr(M>M)1/2, or as the
square root of the sum of the squares of the entries of M.
A � B - the symmetric matrix A is greater than the symmetric matrix B in the
Loewner ordering. Namely, A − B is a positive semidefinite symmetric matrix.
A> - The transpose of the matrix A.

Other

Z+ - the set of non-negative integers.
R+ - the set of non-negative reals.
Sd−1 - the unit `2-ball in Rd.



1
Introduction to Robust Statistics

1.1 Introduction

Consider the following basic statistical task: Given n independent samples
from a Gaussian, N(µ, I), in Rd with identity covariance and unknown mean,
estimate its mean vector µ to within small error in the `2-norm. It is not hard
to see that the empirical mean has `2-error at most O(

√
d/n) with high prob-

ability. Moreover, this error upper bound is best possible among all n-sample
estimators.

The Achilles heel of the empirical estimator is that it crucially relies on
the assumption that the observations were generated by an identity covariance
Gaussian. The existence of even a single outlier can arbitrarily compromise
this estimator’s performance. However, the Gaussian assumption is only ever
approximately valid, as real datasets are typically exposed to some source of
contamination. Hence, any estimator that is to be used in practice must be
robust in the presence of outliers or model misspecification.

Learning in the presence of outliers is an important goal in statistics and
has been studied within the Robust Statistics community since the 1960s. In
recent years, the problem of designing robust and computationally efficient
estimators for high-dimensional statistical tasks has become a rather pressing
challenge in a number of data analysis applications. These include the analysis
of biological datasets, where natural outliers are common and can contami-
nate the downstream statistical analysis, and data poisoning attacks in machine
learning, where even a small fraction of fake data (outliers) can substantially
degrade the quality of the learned model.

While classical work in robust statistics managed to determine most of the
information-theoretic limits of robust estimation, the computational aspects
were left wide open in high dimensions. In particular, a number of known
robust estimators for basic high-dimensional statistical problems have been

This material will be published by Cambridge University Press as Algorithmic
High-Dimensional Robust Statistics by Ilias Diakonikolas and Daniel M. Kane.
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1.2 Contamination Model 13

shown to be computationally intractable. In fact, the conventional wisdom
within the statistics community was that some of these problems were not
solvable in a computationally efficient manner. In the conclusions chapter of
his book “Robust Statistical Procedures”, Peter J. Huber writes:

“ The bad news is that with all currently known algorithms the effort of computing those
estimates increases exponentially in d. We might say they break down by failing to give
a timely answer! [. . .]

The current trend toward ever-larger computer-collected and computer-managed data
bases poses interesting challenges to statistics and data-analysis in general. [. . .] Only
simple algorithms (i.e., with a low degree of computational complexity) will survive the
onslaught of huge data sets. This runs counter to recent developments in computational
robust statistics.

It appears to me that none of the above problems will be amenable to a treatment
through theorems and proofs. They will have to be attacked by heuristics and judge-
ment, and by alternative “what if” analyses. ”

In the subsequent decades, there was a striking tension between robustness
and computational efficiency in high dimensions. Specifically, even for the
most basic task of high-dimensional mean estimation, all known estimators
were either hard to compute or were very sensitive to outliers. This state of
affairs changed fairly recently with the development of the first computation-
ally efficient estimators for high dimensional robust statistics problems. This
book is dedicated to describing these developments and the techniques that
have built upon them in the intervening years.

Before getting into the core of these recent developments, it is prudent to
first describe the state of affairs before these algorithms were discovered. In
this chapter, we will cover this basic background by describing the underlying
models that we will be considering, analyzing basic robust estimators in one
dimension, and discussing some of the difficulties involved with generalizing
these estimators to higher dimensions.

1.2 Contamination Model

In order to specify a robust statistics problem, one needs to know three things:

1. What does the clean (uncorrupted) data look like?
2. What statistics of this data is the algorithm trying to estimate?
3. What kinds of contamination is the algorithm expected to deal with?

As we will see, most robust estimation tasks are provably impossible without
imposing some sort of niceness assumptions on the clean data (inliers). At a
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high level, this is because without assuming anything about the inlier data, one
would have no way of determining whether an extreme outlier is a corruption
or simply an uncorrupted datapoint that happens to be far from most of the
rest of the data. Thus, for most problems, we will need to make some assump-
tions on the distribution that the uncorrupted data is drawn from. One of the
strongest niceness assumptions is that the inliers are distributed according to
a Gaussian distribution. More generally, one might also consider what can be
accomplished with weaker assumptions, such as log-concavity or simply some
bounds on the higher moments of the inlier distribution. In fact, a lot of the
progress in algorithmic robust statistics has involved investigating what kinds
of assumptions about the inlier data can be relaxed without sacrificing compu-
tational efficiency.

In terms of what our algorithm is trying to estimate, we will usually focus
on fairly simple statistics like the mean or covariance of the uncorrupted data.
However, sometimes we will have more sophisticated goals, such as trying
to learn the entire distribution up to small error, or learn some other more
complicated underlying parameter.

Finally, the choice of contamination model bears a deeper discussion. We
will elaborate on various natural assumptions over the course of the next few
sections.

1.2.1 Contamination Model Basics

There are many ways that datasets might be corrupted, and many models to
describe such corruptions. If one is optimistic, one might assume that the cor-
ruptions are random; that is, some datapoints are randomly replaced by sam-
ples from a known error distribution or is otherwise corrupted by some known
random process. Given such an understanding of the underlying errors, robust
estimation tasks typically become much easier, as one can try to find efficient
ways to cancel out the effects of these predictable errors.

One might also assume that one is merely dealing with small measurement
errors. That is, perhaps every datapoint is corrupted in some unpredictable way,
but no datapoint is corrupted by very much. In this case, one might hope that
these small corruptions will not be enough to substantially change the outcome
of the estimator being used.

Unfortunately, these kinds of assumptions are too optimistic in a number of
applications. Random corruption models assume that the source of errors is
understood sufficiently well that they can essentially be incorporated as just
another parameter in the model. On the other hand, small errors depend on
there being no sources of outliers.
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The error models that we focus on in this book generally allow for worst-
case corruptions that affect only a small constant fraction (usually denoted by
ε) of our data. This means that, for example, 1% of our data is not coming from
the inlier distribution, but instead from some source of errors that we have no
control over. These errors might produce very extreme outliers, and they will
not necessarily come from any model that we could predict ahead of time. In
the worst case, one might even consider an adversary designing these errors
in such a way to best thwart our algorithm. The latter kind of error model
might be slightly more pessimistic than necessary about how bad our errors
are; but if we can design algorithms that work under these pessimistic models,
the results will apply very broadly. Such algorithms will work against any kind
of corruptions, as long as these corruptions do not affect too large a fraction of
our inputs.

That said, there are still a few things that we need to specify about these
corruption models, having to do with whether they add or remove points and
whether they are adaptive or not.

1.2.2 Additive and Subtractive Non-Adaptive Corruptions

Among the types of contamination models that we will consider in this book,
one important defining feature is what the errors are allowed to do to the clean
(inlier) data. At a high level, this will leave us with three basic types of error
models:

• Additive Contamination: In additive contamination models, the errors con-
sist of new, incorrect, datapoints being inserted into our dataset.

• Subtractive Contamination: In subtractive contamination models, the er-
rors consist of clean datapoints being selectively removed from our dataset.

• General Contamination: In general contamination models, both kinds of
errors can occur. Erroneous datapoints can be inserted and clean ones can be
removed. Equivalently, we can think of these corruptions as replacing our
clean datapoints with outliers.

We formally define the corresponding contamination models below.

Definition 1.1 (Additive, Non-adaptive Contamination (Huber Model)) Given
a parameter 0 < ε < 1 and a distribution D on inliers, we say that one can
sample from D with ε-additive contamination if one can obtain independent
samples from a distribution X of the following form: a sample from X returns
a sample from D with probability (1− ε), and otherwise returns a sample from
some (unconstrained and unknown) error distribution E.
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Figure 1.1 Example of a Gaussian with additive contamination. The error distri-
bution corresponds to the gray bump on the right.

See Figure 1.1 for an example of additive contamination.
The parameter ε is the proportion of contamination and quantifies the power

of the adversary. Among the samples, an unknown (1−ε) fraction are generated
from a distribution of interest; we will call these samples inliers. The remaining
samples are drawn from an arbitrary distribution; we will call these samples
outliers.

Note that the distribution X being sampled in Definition 1.1 is a mixture of
the distribution D over inliers (clean/good samples) and the distribution E over
outliers (errors or corruptions). As we will often want to talk about these kinds
of mixtures, we introduce the relevant notation.

Notation We will use linear combinations of probability distributions to de-
note the mixtures defined by the corresponding linear combination of the as-
sociated density functions. For example, if Xi are probability distributions and
pi ≥ 0 are real numbers summing to one, we will use p1X1+p2X2+. . .+pkXk or∑k

i=1 piXi to denote the mixture X, where a sample from X first picks a number
1 ≤ i ≤ k with a given i picked with probability pi, and then returns a sample
from the corresponding Xi.

For example, the distribution X sampled from in the additive contamination
model can be written as X = (1 − ε)D + εE.

We note that if the distributions Xi are random variables, this is also the
standard notation for taking a linear combination of the random variables Xi.
In this text, we will typically use this notation to denote mixtures, and will
make it clear from the context in the rare cases where we want it to denote a
linear combination instead.

For subtractive contamination, instead of inserting new samples (outliers),
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Figure 1.2 Example of a Gaussian with subtractive contamination. In particular,
the right tail of the distribution has been removed.

there is a probability of at most ε that samples are censored from the data that
the algorithm observes. One way to define this is as follows.

Definition 1.2 (Subtractive, Non-adaptive Contamination) Given a parameter
0 < ε < 1 and a distribution D on inliers, we say that one can sample from D
with ε-subtractive contamination if the following holds: for some event R with
probability 1 − ε, one can obtain independent samples from the distribution of
D conditioned on R.

See Figure 1.2 for an example of subtractive contamination.
In other words, with probability ε, the event Rc occurs and these samples

are removed from the data stream. This allows an adversary to remove an ε-
fraction of inlier samples. It is tempting to write that the observed distribution
is proportional to D − εE, where E is the distribution over samples of D con-
ditioned on Rc (i.e., the distribution over samples that are removed). We can
make this rigorous with a slight extension of our above notation.

Notation We define a pseudo-distribution to be a real-valued measure. This
means that a probability distribution is simply a non-negative pseudo-distribution
normalized to have total mass equal to one. More generally, for any pseudo-
distributions X1, . . . , Xk and real numbers p1, . . . , pk, we use p1X1+ p2X2+. . .+

pkXk or
∑k

i=1 piXi to denote the pseudo-distribution X whose density is given
by the corresponding densities of the pseudo-distributions Xi. In particular, for
any set S , X(S ) =

∑k
i=1 piXi(S ).

We will often want to think of pseudo-distributions as some kind of non-
normalized or non-positive probability distributions, and think of these linear
combinations as “mixtures” of these “distributions” even when neither term
really applies. For example, one can write the distribution X on the observed
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samples from subtractive contamination as

X =

(
1

1 − ε

)
D −

(
ε

1 − ε

)
E .

While this is not technically a mixture, it is useful to think of X as being ob-
tained from D by first “subtracting” an ε-fraction of the distribution E and then
renormalizing. Of course, this only makes sense if this εE was already con-
tained in the distribution D. To convey this type of information, we introduce
one further piece of notation.

Notation Given two pseudo-distributions X and Y , we use X ≤ Y to denote
that the density of X is pointwise at most the density of Y . Equivalently, for
every set S we have that X(S ) ≤ Y(S ).

This means for example that the distribution E in the subtractive contam-
ination model of Definition 1.2 must satisfy εE ≤ D. Equivalently, the final
distribution X must satisfy (1− ε)X ≤ D. Similarly, the additive contamination
model of Definition 1.1 is defined by X ≥ (1 − ε)D.

Finally, for the general contamination model, there are a few essentially
equivalent reasonable definitions depending on the relative amounts of addi-
tive and subtractive contamination allowed. Perhaps the easiest way to deal
with things is to allow the adversary to remove an ε-fraction of the probability
mass of the inlier distribution and replace it with equal mass from some other
distribution.

Definition 1.3 (General, Non-adaptive Contamination) Given a parameter
0 < ε < 1 and an inlier distribution D, we say that one can sample from
D with ε-general contamination if one can obtain independent samples from
a distribution of the form X = D − εL + εE, for distributions L and E with
εL ≤ D.

See Figure 1.3 for an example of general contamination.
This leads to a natural question as to which distributions X one can obtain

in the general contamination model. It turns out that it is those that are close to
D in total variation distance.

Definition 1.4 (Total Variation Distance) Given distributions X and Y , the
total variation distance between them, denoted dTV(X,Y), is defined to be half
the L1-norm of their difference, namely dTV(X,Y) := 1

2‖X − Y‖1. If X and Y
have probability density functions p(x) and q(x), we have that dTV(X,Y) =
1
2

∫
|p(x) − q(x)|dx. We also have the following equivalent definitions:



1.2 Contamination Model 19

Figure 1.3 Example of a Gaussian with general contamination. The right tail of
the distribution has been removed and replaced by the outlying bump on the right.

• The total variation distance is the biggest discrepancy between the probabil-
ities of X and Y on any set, i.e., dTV(X,Y) = supS (|X(S ) − Y(S )|).

• If Y is thought of as being a copy of the distribution X with some small
probability of error, the total variation distance characterizes how small that
error can be. In particular, we can write dTV(X,Y) = infA∼X,B∼Y Pr[A , B].

It is not hard to see that the general contamination model is equivalent to
saying that one can sample from a distribution X with dTV(X,D) ≤ ε. This
is particularly informative given the last of the above formulations of total
variation distance, as it essentially says that the algorithm is receiving samples
from D with probability 1 − ε and with probability ε is getting some kind of
error.

Remark 1.5 In many settings, the subtractive contamination model is much
easier to deal with than the additive contamination model. For example, if the
goal is to estimate the mean of the inlier distribution D, even a single additive
error can corrupt the sample mean by an arbitrary amount. Subtractive errors
on the other hand are limited in how much damage they can do, since they
are only allowed to remove existing samples. For a single removed sample to
have a large effect on the sample mean, it would need to be the case that the
initial sample set already had some extreme outliers which could be removed.
Because of this, most of this book will focus on the more challenging models
of additive or general contamination.

1.2.3 Adaptive Corruptions

There is one aspect in which even the general contamination model above is not
as strong as it could be. All of the contamination models from the last section
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are what might be called non-adaptive. That is, they replace the distribution D
over inlier samples by a distribution X by introducing some errors. But after
doing this, the algorithm is then given honest, independent samples from the
distribution X. A more insidious adversary might be able to choose what errors
to introduce and which samples to corrupt, based on a knowledge of what the
uncorrupted samples are. This idea leads us to our strongest contamination
model.

Definition 1.6 (Strong Contamination Model) Given a parameter 0 < ε < 1
and an inlier distribution D, an algorithm receives samples from D with ε-
contamination as follows: The algorithm specifies an integer number of sam-
ples n, and n samples are drawn independently from the distribution D. An
adversary is then allowed to inspect these samples, remove up to dεne of them,
and replace them with arbitrary points. The modified set of n points are then
given to the algorithm.

In analogy with this adaptive version of the general noise model, we can
devise an adaptive version of the additive noise model (that inserts dεn/(1− ε)e
new samples into the dataset) and the adaptive subtractive noise model (that
selects and removes dεne clean samples).

Although there are a few cases where it is useful to know that the errors
that an algorithm is observing are i.i.d. samples from some distribution, most
of the algorithms developed in this book can be shown to work in the strong
contamination model. As this is the most powerful of the corruption models,
we will state most of our results in this model.

1.3 Information-Theoretic Limits

Before we get into describing basic algorithms for robust estimation, we pro-
vide a succinct outline of the information-theoretic limits of such algorithms.
The most basic of these limits is the following: if the samples are ε-contaminated
(even by a non-adaptive adversary), then one cannot hope to learn the under-
lying distribution to total variation distance better than (approximately) ε. To
state this formally, we present the following proposition.

Proposition 1.7 Let X and Y be distributions with dTV(X,Y) ≤ 2ε for some
0 < ε < 1. A distribution D is taken to be either X or Y. Then an algorithm,
given any number of samples from D with ε-general contamination, cannot re-
liably distinguish between the cases D = X and D = Y. Furthermore, the same
holds if (i) dTV(X,Y) ≤ ε/(1 − ε) and the samples have ε-additive contamina-
tion or (ii) if dTV(X,Y) ≤ ε and the samples have ε-subtractive contamination.
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Figure 1.4 Illustration of construction of Z from X and Y: general contamination
(top left), additive contamination (top right), subtractive contamination (bottom).

Proof In all three cases, the basic idea is that the adversary can find a single
distribution Z such that Z is both an ε-contaminated version of X and an ε-
contaminated version of Y . If the algorithm is then presented with independent
samples from Z, there is no way to distinguish when these are contaminated
samples from D = X or contaminated samples from D = Y .

The constructions needed for our three types of contamination will be slightly
different. See Figure 1.4 for an example of the construction of Z in each of the
three cases.

In the case of general contamination, one can simply take Z = (X + Y)/2. In
this case, we have, for example, that

dTV(X,Z) =
1
2
‖X − Z‖1 =

1
2
‖X − (X + Y)/2‖1 =

1
2
‖(X − Y)/2‖1 =

1
4
‖X − Y‖1

= dTV(X,Y)/2 ≤ ε .

A similar bound on dTV(Y,Z) completes the argument.
For additive and subtractive contamination, the argument is slightly more

complicated. If X and Y have total variation distance δ, then writing X − Y as
a positive part and a negative part, we obtain that X = Y − δL + δA, for some
distributions L and A with δL ≤ Y . Writing this slightly more symmetrically,
we can take W = (Y − δL)/(1 − δ), and we have that X = (1 − δ)W + δA and
Y = (1 − δ)W + δL.

For the case of subtractive contamination, we can take Z = W as above.
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Then Z can be obtained from either X or Y by subtracting a δ-fraction of the
mass and renormalizing.

For additive contamination, we can take Z = ((1 − δ)W + δA + δL)/(1 + δ).
We note that this can be obtained by adding δ/(1 + δ) additive contamination
to either X and Y (adding L to X or A to Y). As long as δ ≤ ε/(1 − ε), we have
that δ/(1 + δ) ≤ ε, which completes our proof. �

Remark 1.8 The distances at which X and Y are indistinguishable given
corruptions, presented in Proposition 1.7, are essentially tight. See Exercise
1.3 for more details.

One interesting takeaway from Proposition 1.7 is that if ε ≥ 1/2 (in either the
general or the additive contamination model), then one cannot reliably distin-
guish between any pair of distributions X and Y , as the total variation distance
of any two distributions is at most one. This means that for essentially every
problem that we consider in this book (with the exception of topics covered in
Chapter 5), we will need to assume that the proportion of contamination ε is
less than 1/2 in order for any guarantees to be possible.

Another implication of Proposition 1.7 is that it puts limits on our ability
to robustly estimate basic statistics of the underlying distribution. For exam-
ple, if one makes no assumptions on the underlying distribution D, it will be
impossible (even with an unlimited number of samples) to learn the mean of
D to within any bounded error. This is simply because one can find pairs of
distributions X,Y with dTV(X,Y) < ε but with ‖E[X] − E[Y]‖ unbounded.

Consequently, in order for meaningful results to be possible, we will need
to consider settings where the inlier distribution is restricted to some well-
behaved family. Broadly speaking, the best we can hope to achieve is to learn
the underlying distribution within error O(ε) in total variation distance. If our
distribution family is one where no ε-fraction of the probability mass can con-
tribute too much to the mean (which is a measure of the concentration of the
distribution), then this may suffice to obtain relatively good estimates of the
mean. On the other hand, for families without this kind of concentration, we
will be limited in how well we can expect to do.

The information-theoretic limitations for some basic distribution families
are summarized below.

Lemma 1.9 Let D be the family of one-dimensional Gaussian distributions
with standard deviation 1. An algorithm with access to ε-corrupted samples
(additive, subtractive, or general contamination) from an unknown distribution
D ∈ D cannot reliably estimate E[D] to additive error o(ε).

Proof Let δ be a sufficiently small constant multiple of ε. It is not hard to see
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that dTV(N(0, 1),N(δ, 1)) < ε. Therefore, by Proposition 1.7, no algorithm can
reliably distinguish between G = N(0, 1) and G = N(δ, 1). However, these
distributions have means that differ by δ. If an algorithm could estimate the
mean to error better than δ/2, it could use this estimate to distinguish between
these distributions, yielding a contradiction. �

Using similar logic, we can obtain analogous results for some other natural
distribution families.

Lemma 1.10 Let D be the family of one-dimensional log-concave distri-
butions with standard deviation 1. An algorithm with access to ε-corrupted
samples from an unknown distribution D ∈ D cannot reliably estimate E[D]
to additive error o(ε log(1/ε)).

Lemma 1.11 Let D be the family of all one-dimensional distributions with
standard deviation at most 1. An algorithm with access to ε-corrupted samples
from an unknown distribution D ∈ D cannot reliably estimate E[D] to within
additive error o(

√
ε).

Lemma 1.12 LetD be the family of one-dimensional distributions D satisfy-
ing E[|D−µD|

k] < 1, for some k ≥ 2, and µD = E[D] (i.e., distributions with kth

central moment bounded above by 1). An algorithm with access to ε-corrupted
samples from an unknown distribution D ∈ D cannot reliably estimate E[D]
to additive error o(ε1−1/k).

1.4 One-Dimensional Robust Estimation

We begin our analysis of computationally efficient robust statistics by solving
some of the most fundamental estimation tasks for natural families of one-
dimensional distributions. This will allow us to gain a basic understanding of
some useful techniques and principles without having to deal with many of
the difficulties introduced by high-dimensional versions of these problems. In
particular, we focus on robust estimators of the mean and standard deviation. In
other words, we will assume that the distribution D over inlier samples comes
from some known familyD, and we will give algorithms that robustly estimate
the mean and variance of D, given access to ε-corrupted samples from D.

1.4.1 Estimators Based on Order Statistics

One of the difficulties of robust mean estimation is that the empirical mean it-
self is very far from being robust. In particular, a single extreme outlier can cor-
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rupt the mean of a finite sample set by an arbitrarily large error. This is not an
issue for the median and other order statistics, thus making them good candi-
dates for designing robust estimators. To set things up, we define the quantiles
of a distribution or a set.

Definition 1.13 (Quantiles) Let X be a distribution on R and q ∈ [0, 1].
We define the q-quantile of X to be the infimum over all t ∈ R such that
Pr[X ≤ t] ≥ q. If S is a multiset of real numbers, then the q-quantile of S is
the q-quantile of the uniform distribution over S .

The basic result about quantiles is that the empirical q-quantile of a distri-
bution is a fairly good empirical estimator of the true q-quantile.

Proposition 1.14 Let X be a distribution on R and let 0 < ε, δ < 1/2. Let S be
a set of n samples from X that are ε-corrupted under the strong contamination
model. Then with probability at least 1 − δ, the q-quantile of S is between the
(q − ε + O(

√
log(1/δ)/n))-quantile of X and the (q + ε + O(

√
log(1/δ)/n))-

quantile of X.

Proof We will show that with probability at least 1 − δ/2 the q-quantile of S
is at least the (q − ε + O(

√
log(1/δ)/n))-quantile of X. The upper bound will

follow similarly. By definition, the q-quantile of S is the minimum value that
is bigger than at least q n elements of S . In other words, we need to show that
if we take t to be the (q − ε − C(

√
log(1/δ)/n))-quantile of X (for C > 0 some

sufficiently large constant), then with probability at least 1 − δ/2 there are at
most q n elements of S greater or equal to t.

The proof is quite simple. The set S was generated by first sampling n in-
dependent elements from X. Each of these elements independently and with
probability at least (q − ε − C(

√
log(1/δ)/n)) are at least t. Therefore, by the

Chernoff bound, with probability at least 1 − δ/2, the number of original sam-
ples with value at least t was no more than (q−ε)n. Upon corrupting εn of these
samples, we still have at most q n samples greater than or equal to t. This com-
pletes the proof of the lower bound. The upper bound follows analogously. �

Proposition 1.14 is useful for estimating the mean of distributions for which
the mean can be related to an order statistic. Perhaps the most common such
case is that of distributions symmetric about their mean, as for such distri-
butions the mean and median will be the same. This result can be applied in
particular for the case of Gaussian distributions.

Corollary 1.15 Let D = N(µ, σ2) be a one-dimensional Gaussian distribu-
tion. Let S be an ε-corrupted set of n samples from D, for some ε < 1/3, and
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let m be its median. Then, for δ at least e−an for some sufficiently small a, with
probability 1 − δ we have that

|m − µ| = O(ε +
√

log(1/δ)/n)σ .

Proof By Proposition 1.14, with probability 1 − δ we have that m is between
the (1/2 − ε + O(

√
log(1/δ)/n))-quantile and the (1/2 + ε + O(

√
log(1/δ)/n))-

quantile of D. Since the (1/2 + η)-quantile of D is µ + O(ησ) for η < 2/5, the
result follows. �

In order to robustly estimate the standard deviation for certain distribution
families, one can express the standard deviation in terms of a difference be-
tween order statistics. For example, the Inter-Quartile-Range (IQR) is the dif-
ference between the 1/4-quantile and the 3/4-quantile. Specifically, it is not
hard to see that for Gaussian distributions, D = N(µ, σ2), the IQR of D is
equal to ciqr σ, for some universal constant ciqr. Using this fact, we can obtain
a robust estimator for the standard deviation of a Gaussian distribution.

Corollary 1.16 Let D = N(µ, σ2) be a one-dimensional Gaussian distribu-
tion. Let S be an ε-corrupted set of n samples from D, for some ε < 1/8, and
let r be the IQR of S . Let ciqr be the aforementioned universal constant. Then,
for δ at least e−an for some sufficiently small a, with probability 1 − δ we have
that

σ = ciqr r (1 + O(ε +
√

log(1/δ)/n)) .

Proof By Proposition 1.14, with probability at least 1 − δ, each of the em-
pirical quartiles correspond to the (1/4 ± ε + O(

√
log(1/δ)/n))-quantile and

the (3/4 ± ε + O(
√

log(1/δ)/n))-quantile of D. This means that they are each
within O(ε+O(

√
log(1/δ)/n))σ of the 1/4- and 3/4-quantiles. Thus, r is within

O(ε + O(
√

log(1/δ)/n))σ of the IQR of D, and the result follows. �

One point worth making about Corollaries 1.15 and 1.16 is that both have
error proportional to σ. This means that while the mean can be estimated to
an additive error of O(εσ), the standard deviation can only be estimated up to
multiplicative error. This is a fairly common phenomenon.

Unfortunately, while the above described estimators work quite well for
Gaussian distributions, they are fairly specific and not generalizable. The me-
dian estimator essentially requires that the mean and median be the same; this
works for symmetric distributions, but for skewed ones it does not work in
general. The IQR, as an estimator of the standard deviation, is even more frag-
ile. While it is not hard to show, using Chebyshev’s inequality, that the IQR is
never more than a constant factor larger than the standard deviation (and not
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much smaller for “nice” distributions), getting a precise relationship between
the two essentially only worked here because the family of Gaussians has only
one distribution up to affine transformation.

In order to obtain estimators for more complicated families, we will need
to do something more similar to computing an actual mean. However, we will
need to do this in such a way that an ε-fraction of samples being very extreme
errors will not significantly affect the estimate. One fairly straightforward way
to achieve this is by simply throwing away the few most extreme data points
on each side and computing a truncated mean.

1.4.2 Estimators Based on Truncation

In general, we need an estimator that is not too much affected by an ε-fraction
of the points being either very large or very small. A natural way to correct
this is to take any points in the top or bottom ε-fraction and either throw them
away or reduce them to something more manageable. There are a few ways
to define the relevant truncation operation; the following is perhaps the most
efficient version.

Definition 1.17 (Truncation) Given a distribution X on R and 0 < ε < 1/2,
we define the ε-truncation of X to be the distribution obtained by taking X
conditioned on the values lying between the ε-quantile and the (1−ε)-quantile.

See Figure 1.5 for an illustration of this definition.
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Figure 1.5 A Gaussian (dotted line) and its ε-truncation (solid line) for ε = 0.1.
The ε-tails of the distribution on both sides are removed and the remaining distri-
bution rescaled.

The following proposition shows that, under reasonable assumptions, the



1.4 One-Dimensional Robust Estimation 27

mean of the truncated empirical distribution can provide a good robust estimate
of the true mean.

Proposition 1.18 Let 0 < ε < ε′ < 1/2. Let D be a distribution on R with
mean µ such that removing any 2ε′-fraction of the mass of D changes the mean
by at most η > 0 in absolute value. Let n be an integer at least a sufficiently
large constant multiple of log(1/δ)/(ε′ − ε)2, for some 0 < δ < 1/2. Let S 0

be a set of n independent samples from D and let S be obtained from S 0 by
adversarially corrupting an ε-fraction of its elements. Then, with probability
at least 1−δ, the mean µ̂ of the ε′-truncated empirical distribution of S satisfies
|̂µ − µ| ≤ η.

Remark 1.19 Some version of the assumption made in Proposition 1.18 –
namely, that removing a 2ε′-fraction of the mass of D does not change the
mean by much – is essentially necessary for robust mean estimation to be
possible. For example, suppose that D′ can be obtained from D by remov-
ing a 2ε/(1 + 2ε)-fraction of its mass and that |E[D] − E[D′]| > η. Then,
dTV(D,D′) ≤ 2ε, so by Proposition 1.7 one cannot distinguish between D and
D′ with any number of samples. Therefore, one cannot hope to estimate the
mean to error better than η/2.

Proof First, we note that for any distribution X and any m ∈ R, we have that

E[X] − m =

∫ ∞

m
Pr[X > t]dt −

∫ m

−∞

Pr[X < t]dt .

If Xε is the ε-truncation of X, then we can write Pr[Xε > t] as

fε (Pr[X > t]) def
=


0 if Pr[X > t] < ε

(Pr[X > t] − ε)/(1 − 2ε) if 1 − ε > Pr[X > t] > ε

1 if Pr[X > t] > 1 − ε

.

In particular, letting m be the median of D, we have that

E[D] − m =

∫ ∞

m
Pr[D > t]dt −

∫ m

−∞

Pr[D < t]dt .

For the truncated version of S , we can write:

E[S ε′ ] − m =

∫ ∞

m
fε′ (Prx∼uS [x > t])dt −

∫ m

−∞

fε′ (Prx∼uS [x < t])dt .

By definition, the empirical probability Prx∼uS [x > t] is the fraction of ele-
ments of S that are bigger than t. This quantity is within ε of Prx∼uS 0 [x > t].
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For any given value of t, by our choice of n, with probability 1 − δ/2, it will
hold that ∣∣∣Prx∼uS 0 [x > t] − Pr[D > t]

∣∣∣ < (ε′ − ε) .

In fact, by the VC inequality (Theorem A.12), with probability 1−δ, this holds
simultaneously for all t. If this is the case, we have that

E[S ε′ ] − m =

∫ ∞

m
fε′ (Pr[D > t] ± ε′)dt −

∫ m

−∞

fε′ (Pr[D < t] ± ε′)dt .

This is at most

E[S ε′ ] − m ≤
∫ ∞

m
fε′ (Pr[D > t] + ε′)dt −

∫ m

−∞

fε′ (Pr[D < t] − ε′)dt

≤

∫ ∞

m
Pr[D > t]/(1 − 2ε′)dt −

∫ m

−∞

max(0,Pr[D < t] − 2ε′)/(1 − 2ε′)dt.

Letting D+
2ε′ be the distribution obtained by conditioning D on x being larger

than the 2ε′-quantile, then the above can be seen to equal E[D+
2ε′ ] − m. Since

D+
2ε′ is obtained from D by removing a 2ε′-fraction of the mass, we have that

µ̂ − µ = (E[S ε′ ] − m) − (E[D] − m)

≤ (E[D+
2ε′ ] − m) − (E[D] − m)

≤ η .

The lower bound follows similarly. �

Proposition 1.18 applies to a much broader family of distributions than just
Gaussians. Specifically, it is not hard to see that if D = N(µ, σ2) is a Gaussian
and ε′ is O(ε) and at most 1/3, the error η can be taken to be O(ε

√
log(1/ε)σ).

The exact same guarantee holds if D is any subgaussian distribution with stan-
dard deviation σ, i.e., a distribution whose tails decay at least as fast as the tails
of the Gaussian with the same standard deviation.

On the other hand, if D is a general log-concave distribution with standard
deviation σ, η is at most O(ε log(1/ε)σ). More generally, if D has kth central
moment at most 1, we have that η = O(ε1−1/k).

Finally, we note that if one wants to robustly compute the variance of D for
these more general families, the simplest technique is to first use a truncated
mean to obtain an estimate µ̂ for the mean of D, and then use another truncated
mean to estimate the average value of (D − µ̂)2.
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1.5 Higher-Dimensional Robust Mean Estimation

While the techniques in the previous section do a fairly good job of estimating
the mean of a one-dimensional random variable, generalizing these techniques
to higher dimensional problems is somewhat tricky. For concreteness, we will
work with perhaps the simplest problem in this family. Let D = N(µ, Id) be a
d-dimensional Gaussian with identity covariance matrix and unknown mean µ.
Given access to ε-corrupted samples from D, the goal is to estimate its mean µ
up to a small error in `2-norm.

We start by discussing the difficulties involved with robustly estimating
µ in higher dimensions. First, we would like to understand the information-
theoretic limits for this problem. By Proposition 1.7, we know that we cannot
hope to distinguish between a pair of Gaussians with total variation distance
at most ε. For the family of spherical Gaussians, it is not hard to show that
dTV(N(µ, Id),N(µ′, Id)) = Θ(min(1, ‖µ − µ′‖2)). Therefore, we cannot hope to
learn the mean to `2-error o(ε) in the presence of ε-corruptions.

Switching our attention to algorithms, perhaps the most natural approach
is to try to generalize the one-dimensional median-based estimator; alas, it is
unclear how to achieve this, as there are various ways to define a notion of
“median” in high dimensions. One natural idea is to use the coordinate-wise
median: that is, take a number of samples xi and for each coordinate j take
the median of the jth coordinates of the xi. Since the jth-coordinates are dis-
tributed as N(µ j, 1), this gives an O(ε)-approximation for each coordinate of
µ by Corollary 1.15. Unfortunately, an estimator that guarantees error O(ε) in
each coordinate might still have `2 error as large as Ω(ε

√
d), which is signifi-

cantly worse than our desired error.
Interestingly, it turns out that a generalization of this idea does work —

leading to a sample-efficient (but computationally inefficient) multivariate ro-
bust mean estimator. Note that if v is a unit vector in Rd, then v ·D is distributed
as N(v · µ, 1). Using a one-dimensional robust mean estimator for this Gaus-
sian random variable (such as the empirical median), we can obtain an estimate
mv such that with high probability |mv − v · µ| = O(ε). The idea of our high-
dimensional robust mean estimator is the following: If we can compute these
approximations for every unit vector v, this will suffice to estimate µ. In partic-
ular, if we can find any µ̂ ∈ Rd such that |mv− v · µ̂| = O(ε) for all unit vectors v
(note that such vectors µ̂ exist, since µ satisfies this requirement), then we have
that

‖µ − µ̂‖2 = sup
‖v‖2=1

|v · (µ − µ̂)| ≤ sup
‖v‖2=1

(
|v · µ − mv| + |v · µ̂ − mv|

)
= O(ε) . (1.1)

In order to be able to actually find such a µ̂, we will need that the median be a
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good estimator of the mean in every linear projection. Looking at the proof of
Proposition 1.14, it can be seen that this will hold if for our set S of uncorrupted
samples and every unit vector v and t ∈ R, we have that∣∣∣Prx∼uS [v · x > t] − Pr[v ·G > t]

∣∣∣ < ε .
By the VC Inequality (Theorem A.12), this holds with high probability, as
long as the number of samples is at least a sufficiently large constant multiple
of d/ε2.

The above argument shows that multivariate robust mean estimation of a
spherical Gaussian with `2-error of O(ε) — independent of the dimension!
— is in fact possible information-theoretically; alas, the implied estimator is
highly non-trivial to compute. Taken literally, one would first need to compute
mv for every unit vector v (i.e., for infinitely many directions), and then find
some appropriate µ̂. Via a slight relaxation of the aforementioned argument,
the situation is not this bad. If we modify Equation (1.1), we note that it is
actually sufficient to have |v · µ̂−mv| = O(ε) for all unit vectors v in some finite
cover C of the unit sphere. In particular, we will need to know that

‖µ − µ̂‖2 = O(sup
v∈C
|v · (µ − µ̂)|) .

Fortunately, there exist finite covers C of the unit sphere such that for any
x ∈ Rd

‖x‖2 = O(sup
v∈C
|v · x|) . (1.2)

See Theorem A.10. On the other hand, it is not hard to see that for Equation
(1.2) to hold for even a random x, we need to have |C| scale exponentially in d.

In summary, this relaxation does give us the following exponential-time al-
gorithm for robust mean estimation: Given such a set C of size 2O(d), we first
compute mv for each v ∈ C, and then solve a linear program (of exponential
size) to find a µ̂ satisfying |v · µ̂ − mv| = O(ε) for all v ∈ C. This yields an
algorithm with runtime poly(2d/ε).

The above discussion is summarized in the following proposition:

Proposition 1.20 There exists an algorithm that, on input of an ε-corrupted
set of samples from D = N(µ, Id) of size n = Ω((d + log(1/τ))/ε2), runs in
poly(n, 2d) time, and outputs µ̂ ∈ Rd such that with probability at least 1− τ, it
holds that ‖̂µ − µ‖2 = O(ε).

For distributions other than Gaussians, one can provide a similar analysis.
As long as there exists a one-dimensional robust mean estimator that can ap-
proximate v · µ to error δ for every unit vector v (and assuming that we can
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make this hold in all directions with a limited number of samples), then one
can use this to construct an estimator of µ with `2 error O(δ) in exponential
time (see Exercise 1.12)

Connection with Tukey Median A classical method for robust mean estima-
tion for symmetric distributions is called the Tukey median, and can be thought
of as a version of the above ideas using median-based estimators. In particular,
given a distribution D, we define the Tukey depth of a point y with respect to D
as the minimum over unit vectors v of Prx∼D[v · x > v · y]. The Tukey median
of a distribution D is then any point with maximum Tukey depth.

If D = N(µ, Id) is a Gaussian distribution, then the Tukey depth of the mean
µ will be 1/2. Similarly, for the sample case, the Tukey depth of µ with respect
to the uniform distribution over a sufficiently large number of samples from
D will be arbitrarily close to 1/2 with high probability. If D is replaced by an
ε-corruption of D (or if an ε-fraction of the samples are corrupted), then the
Tukey depth of µD will still be 1/2−O(ε). Moreover, it is not hard to show that
any point y with Tukey depth 1/2 − O(ε) with respect to the ε-corruption of D
(or its samples) will satisfy ‖x − y‖2 = O(ε) with high probability.

In summary, for Gaussians and other symmetric distributions, the Tukey me-
dian provides another method of robustly estimating the mean to near-optimal
error. Unfortunately, computing the Tukey median also leads to computational
issues. In particular, it has been shown that computing a Tukey median of an
arbitrary point set is NP-Hard.

The kind of results described above were the state of the art for several
decades. High-dimensional robust mean estimation, even for the simple case
of spherical Gaussians, had three kinds of algorithms: Those that were of an
entirely heuristic nature (i.e., without provable error guarantees); those that had
error guarantees which scaled polynomially in the dimension; and those that
had runtimes which scaled exponentially in the dimension. This held until a
new class of algorithms arose to circumvent both of these problems; we will
discuss these developments in the next chapter.

1.6 Connection with Breakdown Point

The focus of this book is on developing robust estimators to approximate a
desired parameter of a distribution given an ε-corrupted dataset. Specifically,
we want robust estimators that approximate a target parameter as accurately as
possible, and in particular with no dependence on the underlying dimension-
ality of the data. Until recently, such dimension-independent error guarantees
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could not be achieved in high dimensions with computationally efficient algo-
rithms.

Classical work in robust statistics largely focused on designing robust esti-
mators with large breakdown point. The breakdown point of an estimator is a
natural notion that quantifies the effect (or influence) of the outliers on its per-
formance. Here we define a population variant of the breakdown point, specif-
ically for the problem of robust mean estimation. Similar definitions exist for
various other parameter estimation tasks.

While estimators typically act on finite sample sets, for simplicity we think
about estimators as acting on distributions (by treating samples as the uniform
distribution over the samples and considering the infinite sample regime). That
is, we view an estimator T as a function mapping a distribution to the desired
parameter (mean vector). For a distribution p and an estimator T , we will de-
note by T (p) (the output of T on distribution p) the mean vector estimate that
T outputs given p.

Given this notation, we start by defining the notion of maximum bias.

Definition 1.21 (Maximum Bias) For a fixed distribution p and a contamina-
tion parameter 0 < ε < 1/2, the maximum ε-bias bT (p, ε) of the estimator T is
defined to be the supremum `2-distance between T (p) and T ( p̃), where p̃ is an
ε-corruption of p (under additive, subtractive, or general contamination). For
general contamination, we can write

bT (p, ε) = sup {‖T (p) − T ( p̃)‖2 | dTV( p̃, p) ≤ ε} .

The breakdown point ε∗(p) is defined as the minimum fraction of corrup-
tions that can drive the maximum bias to infinity.

Definition 1.22 (Breakdown Point) For a fixed distribution p, the breakdown
point ε∗(T, p) of the estimator T on p is defined to be the infimum value of ε
such that the maximum ε-bias of T on p is unbounded. For general contamina-
tion, we can write ε∗(T, p) = inf{ε | bT (p, ε) = ∞}. For a family of distributions
D, the breakdown point of an estimator T on D is the worst breakdown point
for any distribution p ∈ D, that is ε∗(T,D) = inf{ε∗(T, p), p ∈ D}.

While the notion of breakdown point can be quite informative in certain set-
tings, it is generally not sufficiently precise to quantify the robustness of an
estimator in high dimensions. We provide a few illustrative examples for the
problem of robust mean estimation when the inlier distribution is an identity
covariance Gaussian, i.e., when the family D is {N(µ, I), µ ∈ Rd}. A first ob-
servation is that the empirical mean has a breakdown point of 0. In particular,
arbitrarily small corruptions (in total variation distance) to the underlying dis-



Exercises 33

tribution can produce arbitrarily large errors in the mean. This agrees with the
intuition that the empirical mean is highly non-robust in the presence of out-
liers. A second example is that of the coordinate-wise median. It turns out that
the coordinate-wise median has breakdown point of 1/2 (which is the maxi-
mum possible) in any dimension d. This may suggest that the coordinate-wise
median is the most robust mean estimator in high dimensions. On the other
hand, it is not difficult to construct examples where the coordinate-wise me-
dian will have `2-distance of Ω(ε

√
d) from the true mean. A third example

is that of the Tukey median. Recall that the Tukey median is known to have
`2-error of O(ε) from the true mean (which is information-theoretically best
possible). On the other hand, for Gaussians in d ≥ 2 dimensions and additive
contamination, its breakdown point can be shown to be equal to 1/3 (see Ex-
ercise 1.8), i.e., it would be considered inferior to the coordinate-wise median
with respect to this criterion.

Exercises

1.1 (Definitions of Total Variation Distance) Prove that the different formu-
lations of total variation distance given in Definition 1.4 are equivalent.

1.2 (Contamination Models) In this exercise, we will compare three contam-
ination models — the strong contamination model, the total variation
distance model, and the Huber contamination model — in terms of the
difficulty they impose on a learner. In particular, we say that error model
A can simulate error model B for sample size N if for every strategy the
adversary for error model B can employ to corrupt a set of N samples,
an adversary for error model A can employ a corresponding strategy, so
that the distributions over sets of samples received by the algorithm are
close in total variation distance.

(a) Show that if error model A can simulate error model B for sample
size N, then any learning algorithm that works against corruptions of
type A will also work against corruptions of type B. In particular, this
shows that corruptions of type B are weaker than corruptions of type
A.

(b) Show that for any ε′ > ε > 0 the strong contamination model with
the ability to corrupt an ε′-fraction of samples can simulate the ε-total
variation distance error model over N samples, for any N a sufficiently
large function of ε, ε′.

(c) Show that the ε-error total variation distance contamination model can
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simulate the ε-error Huber contamination model for any number of
samples.

1.3 (Precise Limits of Robust Learning) Here we will show that Proposi-
tion 1.7 is tight in the following sense: Let X and Y be two given prob-
ability distributions with dTV(X,Y) = δ, for some δ > 0. Let D be a
distribution known to be either X or Y . An algorithm is given corrupted
samples from D and is asked to determine whether D = X or D = Y .
Show that it can reliably make this determination with a bounded num-
ber of samples if:

(a) The algorithm is given samples with ε-additive contamination and δ >
ε/(1 − ε).

(b) The algorithm is given samples with ε-subtractive contamination and
δ > ε.

(c) The algorithm is given samples with ε-general contamination and δ >
2ε.

(Hint: Note that there is a set S so that |X(S )−Y(S )| = δ. Consider the
fraction of samples that lie in S .)

1.4 (Robustness of the Median)

(a) We showed in this chapter that the median is a robust mean estimator
for N(µ, 1) with error O(ε). What is the optimal constant factor in the
O(·)?

(b) A distribution D on R with mean µ ∈ R is called (s, ε)-smooth, where
ε > 0 and s = s(ε), if it satisfies PrX∼D[X ≥ µ + s] ≤ 1/2 − ε and
PrX∼D[X ≤ µ − s] ≤ 1/2 − ε. Show that given a sufficiently large ε′-
corrupted set T of samples from D (for some ε > ε′ > 0), the median
of T is a robust estimator of the mean µ with error at most s.

(c) Construct a one-dimensional distribution D with subgaussian tails such
that the median of D does not perform well as a robust mean estimator.
What about a symmetric distribution D?

1.5 (Robust Mean Estimation Under Bounded k-th Moment) Let D be a dis-
tribution on R with bounded k-th moment, for some k ≥ 2. That is, D
satisfies EX∼D[|X − µ|k] ≤ σk, for some known parameter σ > 0 and
positive integer k, where µ is the mean of D.

(a) Show that the truncated mean of D is a robust mean estimator of the
mean µ with error O(σε1−1/k).

(b) Show that the above bound is minimax optimal by proving Lemma
1.12. In particular, show that if an algorithm is given an ε-corrupted set
of samples (in the Huber model) from a distribution D guaranteed to
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have bounded kth moments in the above sense (and for which nothing
else is known), it is information-theoretically impossible to learn the
mean of D within error better than Ω(σε1−1/k) with more than 2/3
probability of success.

1.6 (Robust Mean Estimation For Log-Concave Distributions) Let D be a
log-concave distribution on R with standard deviation at most 1. A stan-
dard result about such distributions tells us that D has exponential tails,
in the sense that the probability that a sample from D is at distance more
than t from its mean is O(exp(−Ω(t))).

(a) Show that the truncated mean of D is a robust mean estimator of the
mean µ with error O(ε log(1/ε)).

(b) Show that the above bound is minimax optimal by proving Lemma
1.10. In particular, show that if an algorithm is given an ε-corrupted set
of samples (even in the Huber model) from a distribution D guaranteed
to be log-concave with variance at most 1 (and for which nothing else
is known), it is information-theoretically impossible to learn the mean
of D within error better than Ω(ε log(1/ε)) with more than 2/3 success
probability.

1.7 (Obliviousness to Contamination Parameter) Note that, in contrast to the
median, the truncated mean requires a priori knowledge of the contami-
nation parameter ε > 0. In this problem, we will explore to what extent
this can be avoided.

(a) Let D be a distribution on R with variance at most σ > 0, where σ
is a known parameter. Consider the following estimator for the mean
µ of D: Draw n ε-corrupted points from D, where n � 1/ε2. Let
X1 ≤ X2 ≤ . . . ≤ Xn be an ordering of these points. Find the min-
imum 1 ≤ a ≤ n/2 such that the subsequence Xa ≤ Xa+1 ≤ . . . ≤

Xn+1−a has empirical variance at most 3σ. Output the empirical mean
of {Xa, Xa+1, . . . , Xn+1−a}. Show that this gives a robust estimator of µ
with error O(σ

√
ε).

(b) Let D be a distribution on R with variance at most σ > 0, where
σ is unknown. Show that it is information-theoretically impossible to
robustly estimate the mean of D without a priori knowledge of the
contamination parameter ε > 0. In particular, show that even given an
unlimited number of samples, no algorithm that does not know either
ε or σ can learn the mean of D to error O(σ

√
ε) with probability 2/3.

(c) Let D be a distribution on R with bounded k-th moment, for some
k ≥ 2 in the sense of Problem 1.5. Design an algorithm that learns
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the mean of D to error O(σε1−1/k) in the presence of an ε-fraction of
outliers without knowing ε.

1.8 (Breakdown Point Computations)

(a) Show that the breakdown point of the median of a continuous, one-
dimensional distribution is 1/2.

(b) Show that the breakdown point of the Tukey median of a 2-dimensional
Gaussian with additive contamination is at most 1/3.

(c) Show that the breakdown point of the Tukey median of any symmetric
distribution with respect to additive contamination is at least 1/3.

(d) Show that the breakdown point of the Tukey median of any symmetric
distribution with respect to total variation contamination is at most
1/4.

1.9 (Estimation Accuracy with Corruption Rate Close to 1/2) In this exer-
cise, we examine what happens to the error rates for robust mean esti-
mation problems when the fraction of outliers ε is close to 1/2 (note that
when equals 1/2, mean estimation is usually impossible, by Proposition
1.7).

(a) Let X = N(µ, 1) ∈ R be a Gaussian with unknown mean µ. Show
that if one is given sufficiently many samples from X with ε-general
contamination for some ε < 1/2, the empirical median estimates µ to
error O(

√
log(1/(1/2 − ε))) with high probability.

(b) Show that the bound in part (a) is best possible in the sense that no
algorithm given such ε-corrupted samples can reliably learn µ to error
o(

√
log(1/(1/2 − ε))) as ε approaches 1/2.

(c) Let X ∈ R be a distribution with variance at most 1 and unknown mean
µ. Show that if one is given sufficiently many samples from X with
ε-general contamination for some ε < 1/2, an appropriate truncated
mean can approximate µ to error O(1/

√
1/2 − ε) with high probabil-

ity.
(d) Show that the bound in part (c) is best possible in the sense that no

algorithm given such ε-corrupted samples can reliably learn µ to error
o(1/

√
1/2 − ε), as ε approaches 1/2.

1.10 (High Probability Mean Estimation) Estimation problems for heavy-tailed
distributions exhibit many of the same difficulties that problems of esti-
mating with adversarial noise do. These issues become particularly clear
when we want to construct estimators with very small probability of er-
ror. In this exercise, we explore some of these connections.
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(a) Consider the sample mean as an estimator of the mean of a one-
dimensional Gaussian N(µ, σ2). Show that for any δ ∈ (0, 1), given n
i.i.d. samples from N(µ, σ2), with probability 1 − δ, the sample mean
has distance O(σ

√
log(1/δ)/n) from the true mean.

(b) Show that the sample mean does not work well for general distribu-
tions with bounded variance. In particular, for n ∈ Z+, δ ∈ (0, 1), show
that there is a one-dimensional distribution X with standard deviation
at most σ such that with probability at least δ the empirical mean of X
computed from n i.i.d. samples differs from the true mean by at least
Ω(σ
√

1/(nδ)).
(c) Show that the above suboptimal rate can be fixed by taking an ap-

propriate truncated mean. In particular, given n, δ ∈ (0, 1) design an
estimator that given n i.i.d. samples from a distribution X with stan-
dard deviation at most σ produces an estimator that is within distance
O(σ

√
log(1/δ)/n) of the true mean of X with probability at least 1−δ.

Hint: You may need to make use of Bernstein’s Inequality (Theorem
A.7) in order to prove this.

(d) Show that the above can be made robust to contamination. In partic-
ular, in the presence of an ε-fraction of adversarial errors, the above
estimator can be modified to achieve error O(σ

√
log(1/δ)/n + σ

√
ε)

with probability at least 1 − δ.

1.11 (Robustness of Geometric Median) For a finite set S ⊂ Rd, define its
geometric median to be the point x ∈ Rd minimizing

∑
y∈S ‖x − y‖2. Let

S be an ε-corrupted set of samples from N(µ, I) ∈ Rd of sufficiently
large size.

(a) Show that the geometric median of S has `2-distance O(ε
√

d) from µ

with high probability.
(b) Show that this upper bound is tight for a worst-case adversary.

1.12 (Sample-Efficient Robust Estimation) Use the methodology we intro-
duced to establish Proposition 1.20 to obtain robust (and computationally
inefficient) estimators for the following tasks:

(a) Estimating the mean of a distribution X ∈ Rd with bounded k-th mo-
ments.

(b) Sparse mean estimation of N(µ, I). Here the goal is to estimate the
mean µ under the assumption that it is k-sparse, i.e., µ is supported on
an unknown subset of k coordinates. The sample complexity should
depend polynomially on k, but only logarithmically on the underlying
dimension.
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(c) Estimating the covariance ofN(0,Σ) under the assumption that Σ � I.
Specifically, find a Σ̂ that is close to Σ in spectral norm. What about
Frobenius norm?

1.7 Discussion and Related Work

The traditional approach in statistics is to design estimators that perform well
under the assumption that the underlying observations are i.i.d. samples from
a model of interest. Robust statistics aims to design estimators that are insensi-
tive or stable against small deviations from this classical assumption. That is, a
small change in the underlying distribution should result in a small change in
the performance of the estimator. Two closely related approaches of quantify-
ing the deviation from the standard i.i.d. assumption involve outlying observa-
tions or model misspecification.

As a subfield of Statistics, Robust Statistics was initiated in the pioneer-
ing works of [Tuk60], [Ans60], and [Hub64]. The latter work introduced the
contamination model of Definition 1.1. More general contamination models,
with respect to other metrics, were studied in [Ham68]. The reader is referred
to some early introductory textbooks from the statistics community [HR09,
HRRS86]. The quote by Peter Huber given in the introduction of this chapter
is from Chapter 8 of [Hub96].

Early work in the robust statistics community focused on the sample com-
plexity of robust estimation and on the notion of the breakdown point [Ham71,
Don82, DG92]. Interestingly, recent work in robust statistics [CGR18] advo-
cates that achieving robustness under Huber contamination is more general
than achieving large breakdown point, and provides a unified way of studying
robustness.

The Tukey median was defined by [Tuk75]. It is known that in the presence
of ε-contamination, when the inlier data is drawn from an unknown mean and
identity covariance Gaussian, the Tukey median achieves the optimal robust-
ness of O(ε). The same guarantee holds for other symmetric distributions as
well; see, e.g., [CGR18]. Several other depth functions have been studied in the
relevant statistics literature [RH99, SZ00, CGR18]. Unfortunately, the Tukey
median is NP-hard to compute in general [JP78] and the many heuristics pro-
posed to approximate it degrade in the quality of their approximation as the
dimension scales. Similar hardness results have been shown [Ber06, HM13]
for essentially all known classical estimators in robust statistics.

In recent years, learning in the presence of outliers has become a pressing
challenge in a number of high-dimensional data analysis applications. These
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include the analysis of biological datasets, where natural outliers are com-
mon [RPW+02, PLJD10, LAT+08] and can contaminate the downstream sta-
tistical analysis, and data poisoning attacks in machine learning [BNJT10],
where even a small fraction of fake data (outliers) can substantially degrade
the quality of the learned model [BNL12, SKL17]. In the following chapters
of this book, we develop a general algorithmic theory that leads to computa-
tionally efficient estimators for a wide range of high-dimensional estimation
tasks, including the mean estimation task considered in this chapter. These
efficient estimators have led to practical improvements in the analysis of ge-
netic data [DKK+17] and in adversarial machine learning [DKK+19a, TLM18,
HKSO21].



2
Efficient High-Dimensional Robust Mean

Estimation

2.1 Introduction

In Chapter 1, we analyzed some standard efficient robust estimators for the
one-dimensional setting and discussed the information-theoretic aspects of ba-
sic robust statistics problems in any dimension. Unfortunately, in high dimen-
sions, the methods discussed in that chapter are inherently unsatisfactory. In
particular, these approaches either incur runtime exponential in the dimension
or lead to error that scales polynomially in the dimension. In fact, over sev-
eral decades, this dichotomy persisted in all known algorithms for even the
most basic high-dimensional unsupervised problems in the presence of adver-
sarial outliers. The first algorithmic progress in this direction was made in the
context of high-dimensional robust mean estimation for Gaussians and other
well-behaved distributions. These developments form the basis for essentially
all algorithms in this book. Thus, it is natural for our discussion on algorithmic
high-dimensional robust statistics to begin there.

Recall that in order for robust mean estimation to be at all possible, one
needs to make some assumptions on the behavior of the inlier distribution X.
As we will see, these assumptions usually amount to certain concentration
properties. While many of the algorithms we present work for distributions
with only weak such assumptions (e.g., bounded covariance), the basic case of
Gaussians with identity covariance (i.e., distributions of the form X ∼ N(µ, I),
for some unknown mean µ) is particularly illuminating. As such, many of our
motivating examples will be specific to this case.

2.1.1 Key Difficulties and High-Level Intuition

Arguably the most natural attempt at robustly estimating the mean of a dis-
tribution would be to identify the outliers and output the empirical mean of

This material will be published by Cambridge University Press as Algorithmic
High-Dimensional Robust Statistics by Ilias Diakonikolas and Daniel M. Kane.
This pre-publication version is free to view and download for personal use only. Not for
re-distribution, re-sale or use in derivative works. c© Ilias Diakonikolas and Daniel M. Kane 2022.
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the remaining points. The key conceptual difficulty in high dimensions is the
fact that the outliers cannot be identified at an individual level, even when
they move the mean significantly. In a number of cases, we can easily identify
the “extreme outliers” — via a pruning procedure exploiting the concentration
properties of the inliers. Alas, such naive approaches typically do not suffice to
obtain nontrivial error guarantees.

The simplest example illustrating this difficulty is that of a high-dimensional
spherical Gaussian. Typical samples will be at `2-distance approximately Θ(

√
d)

from the true mean. Given this, we can apply a kind of basic, “naive filter-
ing”, by removing all points at Euclidean distance more than 10

√
d from the

coordinate-wise median. It is not hard to see that only a tiny fraction of inliers
will be removed by this procedure, while all of the sufficiently extreme out-
liers will be. Unfortunately, it is difficult to remove much else by this kind of
procedure. In particular, as any point at distance approximately

√
d from the

mean is just as likely to appear as any other, none of them can safely be elim-
inated without risking the removal of inliers as well. However, if an ε-fraction
of outliers are placed at distance

√
d in roughly the same direction from the

unknown mean (see Figure 2.1 below), an adversary can corrupt the sample
mean by as much as Ω(ε

√
d).

Figure 2.1 A hard instance for naive filtering. Note that the inlier samples (white)
for a high-dimensional spherical Gaussian are concentrated in a spherical shell
of distance approximately

√
d from the mean. If the outliers (black) are placed

within this shell, they will be difficult to detect. Moreover, if the outliers are all
placed in roughly the same location in the shell, they can corrupt the mean by as
much as ε

√
d.
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This leaves the algorithm designer with a dilemma of sorts. On the one hand,
potential outliers at distance Θ(

√
d) from the unknown mean could lead to

large `2-error, scaling polynomially with d. On the other hand, if the adversary
places outliers at distance approximately Θ(

√
d) from the true mean in ran-

dom directions, it may be information-theoretically impossible to distinguish
them from the inliers. The way out is the realization that, in order to obtain a
robust estimate of the mean, it is in fact not necessary to detect and remove
all outliers. It is only required that the algorithm can detect the “consequential
outliers”, i.e., the ones that can significantly impact our estimates of the mean.

So how can we make progress? To begin with, let us assume that there are no
extreme outliers (as these can be removed via naive filtering). Then we claim
that the only way that the empirical mean can be far from the true mean is
if there is a “conspiracy” of many outliers, all producing errors in approxi-
mately the same direction. Intuitively, if our corrupted points are at distance
O(
√

d) from the true mean in random directions, their contributions will on
average cancel out, leading to a small error in the sample mean. In conclusion,
it suffices to be able to detect these kinds of conspiracies of outliers.

The next key insight is simple and powerful. Let T be an ε-corrupted set of
points drawn fromN(µ, I). If such a conspiracy of outliers substantially moves
the empirical mean µT of T , it must move µT in some direction. That is, there
is a unit vector v such that these outliers cause v · (µT − µ) to be large. For
this to happen, it must be the case that these outliers are on average far from µ

in the v-direction. In particular, if an ε-fraction of corrupted points in T move
the sample average of v · (UT − µ), where UT is the uniform distribution on
T , by more than δ (δ should be thought of as small, but substantially larger
than ε), then on average these corrupted points x must have v · (x − µ) at least
δ/ε, as shown in Figure 2.2. This in turn means that these corrupted points
will have a contribution of at least ε · (δ/ε)2 = δ2/ε to the variance of v ·
UT . Fortunately, this condition can actually be algorithmically detected! In
particular, by computing the top eigenvector of the sample covariance matrix,
we can efficiently determine whether or not there is any direction v for which
the variance of v · UT is abnormally large.

The aforementioned discussion leads us to the overall structure of the al-
gorithms we will describe in this chapter. Starting with an ε-corrupted set of
points T (perhaps weighted in some way), we compute the sample covariance
matrix and find the eigenvector v∗ with largest eigenvalue λ∗. If λ∗ is not much
larger than what it should be (in the absence of outliers), by the above discus-
sion, the empirical mean is close to the true mean, and we can return that as
an answer. Otherwise, we have obtained a particular direction v∗ for which we
know that the outliers play an unusual role, i.e., behave significantly differently
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Figure 2.2 An example of an ε-fraction of outliers changing the empirical mean
of T by δ in the v-direction. The graph represents the projections of the samples
onto the v-direction. Notice that the errors must on average have v · x at least δ/ε-
far from v · µ. This means that they must contribute at least δ2/ε to the variance of
v · T .

than the inliers. The distribution of the points projected in the v∗-direction can
then be used to perform some sort of outlier removal. As to how exactly to
perform this outlier removal step, there are several different techniques that we
will discuss, some of which depend on particular features of the inliers.

2.2 Stability and Robust Mean Estimation

In the strong contamination model, we begin by drawing a set S of n inde-
pendent samples from the true distribution. We will typically call these un-
corrupted sample points inliers. The adversary can then select up to an ε-
fraction of these points, changing them arbitrarily and giving our algorithm
a new dataset T to work with.

For our algorithm to succeed, we want it to satisfy the fairly strong require-
ment that with high probability over the set S of inliers, no matter what corrup-
tions the adversary decides to make, our algorithm when run on T will output
a good approximation to the target parameter. To prove such a statement, we
typically want to define a deterministic condition on S under which our algo-
rithm is guaranteed to succeed. In particular, we will require a condition on the
set of uncorrupted samples such that:
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1. A sufficiently large collection S of independent samples from our inlier
distribution satisfies this condition with high probability.

2. If the set S of inliers satisfies this condition, our algorithm will succeed
when run on T no matter what corruptions the adversary chooses to apply.

Towards this goal, we introduce a condition called stability (Definition 2.1),
which will form the core of our conditions on the uncorrupted samples. In par-
ticular, we will show that if the uncorrupted samples are assumed to be stable,
then there is an efficiently checkable condition on the ε-corrupted dataset that
will imply that the true mean is close to the sample mean of the corrupted (i.e.,
including the outliers) dataset (see Lemma 2.6). Although some algorithms
presented later in this chapter (and in this book) may require stronger con-
ditions on their inliers in order to be effective, some version of this stability
condition will almost always be involved.

The robust mean estimation algorithms in this chapter will depend heavily
on computing means and covariances of various sets of samples. Although
additive corruptions will always have the power to induce large changes in the
sample mean and covariance, we will at least want to know that any large set
of inliers has close to the right value. It is this requirement that makes up the
core of the stability condition.

Definition 2.1 (Stability Condition) Fix 0 < ε < 1/2 and δ ≥ ε. A finite
set S ⊂ Rd is (ε, δ)-stable (with respect to a vector µ or a distribution X with
µX := E[X] = µ) if for every unit vector v ∈ Rd and every S ′ ⊆ S with
|S ′| ≥ (1 − ε)|S |, the following conditions hold:

1.
∣∣∣∣ 1
|S ′ |

∑
x∈S ′ v · (x − µ)

∣∣∣∣ ≤ δ , and

2.
∣∣∣∣ 1
|S ′ |

∑
x∈S ′ (v · (x − µ))2 − 1

∣∣∣∣ ≤ δ2/ε.

Similarly, we say that a distribution X on Rd is (ε, δ)-stable with respect to a
vector µ if for every unit vector v ∈ Rd and distribution X′ obtained from X by
ε-subtractive contamination, the following conditions hold:

1. |E[v · (X′ − µ)]| ≤ δ , and
2.

∣∣∣E[(v · (X′ − µ))2] − 1
∣∣∣ ≤ δ2/ε.

Some comments are in order. The first condition above (for the finite set
stability condition) is equivalent to ‖µS ′ − µ‖2 ≤ δ, where µS ′ is the empirical
mean of S ′. The second condition is equivalent to ‖Σ̄S ′ − I‖2 ≤ δ2/ε, where
Σ̄S ′ = (1/|S ′|)

∑
x∈S ′ (x−µ)(x−µ)> is the empirical second moment matrix of S ′

with respect to µ. Since µ is close to µS ′ by the first condition, this is equivalent
(up to changing δ by a constant factor) to saying that ‖Cov[S ′]− I‖2 = O(δ2/ε).
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In other words, removing any ε-fraction of the points will not change the mean
by more than δ nor the variance in any direction by more than δ2/ε.

It is also worth nothing that Definition 2.1 is intended for distributions X
with covariance ΣX � I. If one wants to perform robust mean estimation for
distributions X with other covariance matrices, one can usually reduce to this
case by applying the linear transformation x→ Σ

−1/2
X x to the data.

Finally, it is worth comparing the notions of stability for finite sets and distri-
butions. While these definitions are fairly similar, we believe it is important to
include both, as it is sometimes more convenient to work with one or the other.
The close relationship between these two definitions will also be important to
us, and can be made rigorous via the following simple lemma.

Lemma 2.2 If S is a set of points in Rd and δ > ε > 0 with ε|S | an integer,
then S is (ε, δ)-stable with respect to some vector µ if and only if the uniform
distribution over S is (ε, δ)-stable with respect to µ.

Proof The “only if” part here is immediate, since if S ′ is a subset S ′ ⊆ S
with |S ′| ≥ (1 − ε)|S |, then the uniform distribution over S ′ can be obtained
from the uniform distribution over S by ε-subtractive contamination. To show
the reverse, we note that for a specific choice of unit vector v, if one wants to
find a distribution X′ for which one of Conditions 1. or 2. above does not hold,
one will want to remove the ε-fraction of the distribution on which v · (X−µ) or
(v · (X′ − µ))2 − 1 takes its most extreme values. This is equivalent to throwing
away some ε |S | points from the support, but that will be insufficient by the
stability of S . �

Although Lemma 2.2 only applies when ε|S | is an integer, by combining
it with the results of Exercise 2.1, we find that, so long as |S | ≥ 1/ε, S is
(ε, δ)-stable if and only if the uniform distribution over S is (ε,Θ(δ))-stable.

The fact that the conditions of Definition 2.1 must hold for every large subset
S ′ of S might make it unclear if they can hold with high probability. It can in
fact be shown that these conditions are satisfied for various distribution classes
with appropriate concentration properties. Morally speaking, if a distribution
X is stable, then we would expect that a large enough set S of i.i.d. samples
from X to be stable (with comparable parameters) with high probability.

2.2.1 Sample Complexity Bounds for the Stability Condition

Before we explain how to leverage stability for the design of computationally
efficient algorithms, we show that for some natural distributions the stability
of the set of inliers can be achieved with high probability given a reasonable
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number of i.i.d. samples. The sample complexity bounds presented in this sec-
tion are intentionally rough; the reader interested in more precise bounds is
referred to Section 3.2.

We start with the class of subgaussian distributions. Recall that a distribution
on Rd is subgaussian if any univariate projection has subgaussian tails. For this
distribution class, we can show:

Proposition 2.3 If N is at least a sufficiently large degree polynomial in d/ε,
then a set of N i.i.d. samples from an identity covariance subgaussian distri-
bution in Rd is (ε,O(ε

√
log(1/ε))-stable with high probability.

In order to see why this is the correct value of δ, we note that the Gaussian
distribution, X = N(µ, I), is (ε,O(ε

√
log(1/ε)))-stable with respect to µ. This

is because removing an ε-fraction of the mass will have the greatest impact on
E[v·X] or Var[v·X] if we remove the ε-tails of v·X. A simple calculation shows
that this affects the mean by O(ε

√
log(1/ε)) and the variance by O(ε log(1/ε)).

To help formalize this intuition, we provide a proof sketch of Proposition 2.3
here. It turns out that the optimal sample complexity in Proposition 2.3 is
Θ̃(d/ε2). The reader is referred to Section 3.2 for the proof of this optimal
bound.

Proof Sketch. An easy way to prove this result is by noting that it suffices for
our dataset S to have the empirical distribution of v · S := {v · x, x ∈ S } mimic
the real distribution v · X for all unit vectors v. To formalize this, we consider
thresholds. In particular, we would like it to hold for every vector v and every
threshold t ∈ R that

|Prx∼uS [v · x > t] − Prx∼X[v · x > t]| (2.1)

should be small. By the VC Inequality (Theorem A.12), the error in (2.1) is
never more than η with high probability, as long as N is at least a sufficiently
large constant multiple of d/η2.

Note that the average value of v · (x − µ) or (v · (x − µ))2 can be computed
from these tail probabilities as

1
|S |

∑
x∈S

v · (x − µ) =

∫ ∞

v·µ
Prx∼uS [v · x > t]dt −

∫ v·µ

−∞

Prx∼uS [v · x < t]dt ,

and
1
|S |

∑
x∈S

(v · (x − µ))2 =

∫ ∞

0
2 t Prx∼uS [|v · x − v · µ| < t]dt .

Knowing that each probability above is within O(η) of the corresponding prob-
ability for x ∼ X is almost sufficient to show that the mean and covariance of S
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are close to µ and Cov[X] = I, respectively. A slight technical difficulty, how-
ever, comes from the fact that the above integrals have infinite range of t, and
thus an O(η) error for each given t produces an infinite error overall. We can
fix this slight glitch by noting that with high probability each x ∈ S satisfies
‖x − µ‖2 < O(

√
d log(dN)) (for example, because each coordinate of x − µ is

at most O(
√

log(dN))). This observation allows us to truncate the above inte-
grals to ones of finite length and show that ‖µS − µ‖2 = O(η

√
d log(dN)) and

‖Cov[S ] − I‖2 = O(ηd log(dN)).
Having established good bounds on the mean and covariance of the full set

S , we next need to prove a stronger statement. We actually need to bound these
quantities for S ′, where S ′ is any (1 − ε)-dense subset of S . To that end, we
note that∣∣∣Prx∼uS [v · x > t] − Prx∼uS ′ [v · x > t]

∣∣∣ ≤ min{Prx∼uS [v · x > t],O(ε)} .

The above inequality holds because removing elements can decrease a tail
probability by ε, but cannot decrease it to less than 0. This allows us to bound
the differences between the averages over S and S ′. For example, we have that∣∣∣∣∣∣∣ 1
|S |

∑
x∈S

v · (x − µ) −
1
|S ′|

∑
x∈S ′

v · (x − µ)

∣∣∣∣∣∣∣
≤

∫ O(
√

d log(dN))

0
min{Prx∼uS [v · (x − µ) > t], O(ε)}dt

+

∫ 0

−O(
√

d log(dN))
min{Prx∼uS [v · (x − µ) < t], O(ε)}dt

≤

∫ O(
√

d log(dN))

−O(
√

d log(dN))
min{exp(−Ω(t2)) + O(η), O(ε)}dt

≤ O(η
√

d log(dN)) +

∫ O(
√

log(1/ε))

−O(
√

log(1/ε))
O(ε)dt +

∫
|t|�
√

log(1/ε)
exp(−Ω(t2))dt

≤ O(η
√

d log(dN)) + O(ε
√

log(1/ε)) .

The latter quantity is O(ε
√

log(1/ε)) assuming that η is sufficiently small. A
similar argument can be used to bound the covariance term, and this completes
our proof. �

Note that the proof of Proposition 2.3 essentially boiled down to an argu-
ment about the tail bounds of the distribution X. Morally speaking, if X is an
identity covariance distribution where the ε-tails in any direction contribute no
more than δ to the mean and δ2/ε to the variance in that direction, sufficiently
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many samples from X will be (ε, δ)-stable with high probability (see Exercise
2.4).

A more general setting considers inlier distributions with bounded and un-
known covariance matrix. For this more general class of bounded covariance
distributions, one can show the following.

Proposition 2.4 Let S be a multiset of N i.i.d. samples from a distribution
with covariance Σ � I, where N is at least a sufficiently large degree polyno-
mial in d/ε. With high probability, there exists a subset S ′ ⊆ S of cardinality
|S ′| ≥ (1 − ε)|S | such that S ′ is (ε,O(

√
ε))-stable.

It is worth pointing out a qualitative difference between Proposition 2.4 and
its analogue Proposition 2.3 (for identity covariance subgaussian distributions).
For the bounded covariance case, a sufficiently large set of i.i.d. samples S
from the inlier distribution is not guaranteed to be stable. On the other hand,
Proposition 2.4 shows that there exists a (1 − ε)-density stable subset S ′ (this
still suffices for our purposes, as T , the set of corrupted samples, will be an
O(ε)-corruption of S ′). This relaxation is necessary, as there are simple ex-
amples where the proposition fails if we do not consider such subsets (see
Exercise 2.3).

To see why Proposition 2.4 holds, we note that in order for a set S to be
(ε,O(

√
ε))-stable with respect to µ it suffices to check that ‖µS − µ‖2 = O(

√
ε)

and Cov[S ] = O(I). We note that all but an ε-fraction of the mass of a bounded
covariance distribution is within distance O(

√
d/ε) of its mean µ. Moreover, if

we throw away the points further away, this does not affect the mean by much.
Letting S ′ be the set of samples not too far from the mean µ will have roughly
the correct mean and covariance matrix with high probability.

The reader is referred to Chapter 3.2 for a proof of this result with the opti-
mal sample complexity, which turns out to be Θ̃(d/ε).

Remark 2.5 Analogous bounds can be shown for identity covariance distri-
butions with bounded higher central moments. For example, if our distribution
has identity covariance and its k-th central moment, where k ≥ 4, is bounded
from above by a constant, it can be shown that a set of Ω(d log(d)/ε2−2/k) sam-
ples contains a large subset that is (ε,O(ε1−1/k))-stable with high probability.

2.2.2 Stability and Algorithm Design

We now return to the use of the stability condition in algorithm design. In
particular, we show how one can certify – under certain conditions – that the
sample mean of an ε-corrupted version of a stable set is a good approximation
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to the true mean. This is perhaps the most important property of stability for
us and can be quantified in the following lemma:

Lemma 2.6 (Certificate for Empirical Mean) Let S be an (ε, δ)-stable set
with respect to a vector µ, for some δ ≥ ε > 0 and ε ≤ 1/3. Let T be an ε-
corrupted version of S . Let µT and ΣT be the empirical mean and covariance
of T . If the largest eigenvalue of ΣT is at most 1 + λ, for some λ ≥ 0, then
‖µT − µ‖2 ≤ O(δ +

√
ελ).

This lemma states that if our set of inliers S is stable and our set of corrupted
samples T has bounded covariance, then the empirical mean of T is certifiably
close to the true mean.

Lemma 2.6 follows by applying the following slightly more general state-
ment to the uniform distribution over S .

Lemma 2.7 (Certificate for Empirical Mean, Strong Version) Let X be an
(ε, δ)-stable distribution with respect to a vector µ, for some δ ≥ ε > 0 and
ε ≤ 1/3. Let Y be a distribution with dTV(X,Y) ≤ ε (i.e., Y is an ε-corrupted
version of X). Denote by µY and ΣY the mean and covariance of Y. If the largest
eigenvalue of ΣY is at most 1+λ, for some λ ≥ 0, then ‖µY −µ‖2 ≤ O(δ+

√
ελ).

Proof of Lemma 2.7 Let Y = (1− ε)X′+ εE for some distribution X′ obtained
from X by ε-subtractive contamination. Let µX , µX′ , µE and ΣX ,ΣX′ ,ΣE denote
the means and covariances of X, X′ and E, respectively. A simple calculation
gives that

ΣY = (1 − ε)ΣX′ + εΣE + ε(1 − ε)(µX′ − µE)(µX′ − µE)> .

Let v be the unit vector in the direction of µX′ − µE . We have that

1 + λ ≥ v>ΣYv = (1 − ε)v>ΣX′v + εv>ΣEv + ε(1 − ε)v>(µX′ − µE)(µX′ − µE)>v

≥ (1 − ε)(1 − δ2/ε) + ε(1 − ε)‖µX′ − µE‖
2
2

≥ 1 − O(δ2/ε) + (ε/2)‖µX′ − µE‖
2
2 ,

where we used the variational characterization of eigenvalues, the fact that ΣE

is positive semidefinite, and the second stability condition for X. By rearrang-
ing, we obtain that ‖µX′ − µE‖2 = O(δ/ε +

√
λ/ε). Therefore, we can write

‖µY − µ‖2 = ‖(1 − ε)µX′ + εµE − µ‖2 = ‖µX′ − µ + ε(µE − µX′ )‖2

≤ ‖µX′ − µ‖2 + ε‖µX′ − µE‖2 = O(δ) + ε · O(δ/ε +
√
λ/ε)

= O(δ +
√
λε) ,

where we used the first stability condition for X and our obtained upper bound
on ‖µX′ − µE‖2. �
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Remark 2.8 It is worth noting that the proof of Lemma 2.7 only used the
lower bound part in the second condition of Definition 2.1, i.e., that the vari-
ance of X′ in each direction is at least 1 − δ2/ε. Although this is sufficient for
certifying that our mean is close, the corresponding upper bound will be cru-
cially used in the design and analysis of our robust mean estimation algorithms
in the following sections.

Lemma 2.6 says that if our input set of points T is an ε-corrupted version of
any stable set S and has bounded covariance, the sample mean of T closely ap-
proximates the true mean of the original distribution. This lemma, or a variant
thereof, is a key result in all known robust mean estimation algorithms.

Unfortunately, we are not always guaranteed that the set T we are given has
this property. In particular, if the corrupted set T includes some large outliers,
or many outliers in the same direction, there may well be directions of large
variance. In order to deal with this, we will want to compute a subset, T ′, of
T such that T ′ has bounded covariance and large intersection with S . If we
can achieve this, then since T ′ will be a corrupted version of S with bounded
covariance, we can apply Lemma 2.6 to show that ‖µT ′ − µ‖2 is small.

For some of the algorithms presented, it will be convenient to find a prob-
ability distribution over T rather than a subset. For these cases, we can use
Lemma 2.7 applied to the appropriate distribution on T .

For the more general outlier removal procedure, we are given our initial ε-
corrupted set T , and we will attempt to find a distribution W supported on T
such that the “weighted” covariance matrix ΣW has no large eigenvalues. For
such a solution, the weight W(x) of an x ∈ T can be thought of as quantifying
our belief about whether point x is an inlier or an outlier. It will also be im-
portant for us to ensure that W is close to the uniform distribution over S in
total variation distance. This is complicated by the fact that we must be able to
guarantee this closeness without knowing exactly what the set S is. Intuitively,
we can do this by ensuring that W is obtained by removing at most ε mass from
the uniform distribution over T .

More concretely, the following general framework can be used for robust
mean estimation.

Definition 2.9 For a finite set T and ε ∈ (0, 1), we will denote by ∆T the
set of all probability distributions W supported on T , whose probability mass
function W(x) satisfies W(x) ≤ 1

|T |(1−ε) , for all x ∈ T .

Lemma 2.10 Let S be a (3ε, δ)-stable set with respect to µ and let T be an
ε-corrupted version of S for some ε < 1/6. Given any W ∈ ∆T such that
‖ΣW‖2 ≤ 1 + λ, for some λ ≥ 0, we have that ‖µ − µW‖2 = O(δ +

√
ελ).
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Proof We note that any distribution in ∆T differs from US , the uniform dis-
tribution on S , by at most 3ε. Indeed, for ε ≤ 1/3, we have that:

dTV(US ,W) =
∑
x∈T

max{W(x) − US (x), 0}

=
∑

x∈S∩T

max{W(x) − 1/|T |, 0} +
∑

x∈T\S

W(x)

≤
∑

x∈S∩T

ε

|T |(1 − ε)
+

∑
x∈T\S

1
|T |(1 − ε)

≤ |T |
(

ε

|T |(1 − ε)

)
+ ε|T |

(
1

|T |(1 − ε)

)
=

2ε
1 − ε

≤ 3ε .

Therefore, by Lemma 2.7 we have that ‖µ − µW‖2 = O(δ +
√
ελ). �

Lemma 2.10 provides us with a clear plan for how to perform robust mean
estimation. Given a set T (promised to be an ε-corruption of a (3ε, δ)-stable
set), we merely need to find a W ∈ ∆T with bounded covariance matrix.

A natural first question is whether such a distribution W exists. Fortunately,
this can be easily guaranteed. In particular, if we take W to be W∗, the uniform
distribution over S ∩T , the largest eigenvalue is at most 1+δ2/ε by the stability
of S . Thus, for this choice of W, we can take λ = δ2/ε, and we have that
‖µ − µW∗‖2 = O(δ).

At this point, we have an inefficient algorithm for approximating µ: Find any
W ∈ ∆T with covariance bounded above by (1 + δ2/ε)I and return its mean.
The remaining question is how we can efficiently find such a W. There are two
basic algorithmic techniques to achieve this, that we present in the subsequent
sections.

The first algorithmic technique we will describe is based on convex pro-
gramming. We will call this the unknown convex programming method. Note
that ∆T is a convex set and that finding a point in ∆T that has bounded covari-
ance is almost a convex program. It is not quite a convex program, because the
variance of v ·W, for fixed v, is not a convex function of W. However, one can
show that given a W with variance in some direction significantly larger than
1 + δ2/ε, we can efficiently construct a hyperplane separating W from W∗ (the
uniform distribution over S ∩ T ). This method works naturally under only the
stability condition. On the other hand, as it relies on the ellipsoid algorithm, it
is quite slow (although polynomial time). See Section 2.3 for more details.

Our second technique, which we will call (iterative) filtering, is an iterative
outlier removal method that is typically faster, as it relies only on spectral tech-
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niques. The main idea of the method is the following: If ΣW does not have large
eigenvalues, then the empirical mean is close to the true mean. Otherwise, there
is some unit vector v such that Var[v ·W] is substantially larger than it should
be. This can only be the case if W assigns substantial mass to elements of T \S
that have values of v · x very far from the true mean of v · µ. This observation
allows us to perform some kind of outlier removal, in particular by removing
(or down-weighting) the points x that have v · x inappropriately large.

An important conceptual point here is that one cannot afford to remove only
outliers. However, it is possible to ensure that more outliers are removed than
inliers. Given a W where ΣW has a large eigenvalue, one filtering step gives
a new distribution W ′ ∈ ∆T that is closer to W∗ than W was. Repeating the
process eventually gives a W with no large eigenvalues. The filtering method
and its variations are discussed in Section 2.4.

2.3 The Unknown Convex Programming Method

Given an ε-corruption T of a stable set S , we would like to estimate the mean of
the corresponding distribution X. To achieve this, by Lemma 2.10, it suffices to
find a distribution W ∈ ∆T such that ΣW has no large eigenvalues. We note that
this condition almost defines a convex program. This is because ∆T is a convex
set of probability distributions and the bounded covariance condition says that
Var[v·W] ≤ 1+λ for all unit vectors v. Unfortunately, the variance Var[v·W] =

E[|v · (W − µW )|2] is not quite linear in W. (If we instead had E[|v · (W − µ0)|2],
for some fixed vector µ0, this would be linear in W.) However, we will show
that a unit vector v for which Var[v ·W] is too large, can still be used to obtain
a separation oracle, i.e., a linear function L for which L(W) > L(W∗) where W∗

is the uniform distribution over S ∩ T .
In particular, suppose that we identify a unit vector v such that Var[v ·W] =

1 + λ, where λ > C (δ2/ε) for a sufficiently large universal constant C > 0.
Applying Lemma 2.10 to the one-dimensional projection v ·W, gives that

|v · (µW − µX)| ≤ O(δ +
√
ελ) = O(

√
ελ) .

For a probability distribution Y , let L(Y) := E[|v · (Y − µW )|2]. Note that L is
a linear function of the probability distribution Y with L(W) = 1 + λ. We can
write

L(W∗) = EW∗ [|v · (W∗ − µW )|2] = Var[v ·W∗] + |v · (µW − µW∗ )|2

≤ 1 + δ2/ε + 2|v · (µW − µX)|2 + 2|v · (µW∗ − µX)|2

≤ 1 + O(δ2/ε + ελ) < 1 + λ = L(W) .
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In summary, we have an explicit convex set ∆T of probability distributions
from which we want to find one with eigenvalues bounded by 1 + O(δ2/ε).
Given any W ∈ ∆T which does not satisfy this condition, we can produce a
linear function L that separates W from W∗. In fact, it is not hard to see that L
also separates W from some small neighborhood R of W∗. Using the ellipsoid
algorithm, we obtain the following general theorem.

Theorem 2.11 Let S be a (3ε, δ)-stable set with respect to a distribution X
for some ε > 0 sufficiently small. Let T be an ε-corrupted version of S . There
exists a polynomial time algorithm which given ε, δ and T returns µ̂ such that
‖̂µ − µX‖2 = O(δ).

Proof Sketch. Simply run the ellipsoid algorithm with the above separation
oracle. At each stage one of two things happens. On the one hand, we may
have found a W ∈ ∆T with Cov[W] � (1 + O(δ2/ε)) I. In this case, E[W] is an
appropriate approximation of µX by Lemma 2.10. Otherwise, we find a sepa-
ration oracle L, separating W from R. This lets us find a smaller ellipsoid con-
taining R. As the volume of this ellipsoid decreases by a (1− poly(1/d))-factor
at every iteration, after at most a polynomial number of rounds the ellipsoid
will be smaller than R. This shows that we must reach the first case after at
most a polynomial number of iterations, and thus our algorithm will run in
polynomial time. �

Implications for Concrete Distribution Families Combining Theorem 2.11
with corresponding stability bounds, we obtain concrete applications for vari-
ous distribution families of interest. Using Proposition 2.3, we obtain.

Corollary 2.12 (Identity Covariance Subgaussian Distributions) Let T be a
set of N ε-corrupted samples from an identity covariance subgaussian distri-
bution X on Rd, where N is at least a sufficiently large polynomial in d/ε.
There exists a polynomial time algorithm which given ε and T returns µ̂ such
that with high probability ‖̂µ − µX‖2 = O(ε

√
log(1/ε)).

We note that Corollary 2.12 can be immediately adapted for identity covari-
ance distributions satisfying weaker concentration assumptions. For example,
if X satisfies subexponential concentration in each direction, we obtain an ef-
ficient robust mean estimation algorithm with `2-error of O(ε log(1/ε)). If X
has identity covariance and bounded kth central moments, k ≥ 2, we obtain
error O(ε1−1/k). As shown in Chapter 1, these error bounds are information-
theoretically optimal up to constant factors.

For distributions with unknown and bounded covariance, using Proposi-
tion 2.4 we obtain.
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Corollary 2.13 (Unknown Bounded Covariance Distributions) Let T be a set
of N ε-corrupted samples from a distribution X on Rd with unknown covari-
ance ΣX � σ

2I, for some known σ > 0, where N is at least a sufficiently large
polynomial in d/ε. There exists a polynomial time algorithm which given ε, σ
and T returns µ̂ such that with high probability ‖̂µ − µX‖2 = O(σ

√
ε).

Similarly, as shown in Chapter 1, this error bound is information-theoretically
optimal up to constant factors.

2.4 The Filtering Method

As in the unknown convex programming method, the goal of the filtering
method is to find a distribution W ∈ ∆T such that ΣW has bounded eigen-
values. Given a W ∈ ∆T , ΣW either has bounded eigenvalues (in which case the
weighted empirical mean works) or there is a direction v in which Var[v ·W] is
too large. In the latter case, the projections v ·W must behave very differently
from the projections v·S or v·X. In particular, since an ε-fraction of outliers are
causing a much larger increase in the standard deviation, this means that the
distribution of v ·W will have many “extreme points” — more than one would
expect to find in v · S . This fact allows us to identify a nonempty subset of
extreme points the majority of which are outliers. These points can then be re-
moved (or down-weighted) in order to “clean up” our sample. Formally, given
a W ∈ ∆T without bounded eigenvalues, we can efficiently find a W ′ ∈ ∆T

such that W ′ is closer to W∗ than W was. Iterating this procedure eventually
terminates giving a W with bounded eigenvalues.

While it may be conceptually useful to consider the above scheme for gen-
eral distributions W over points, in most cases it suffices to consider only W
given as the uniform distribution over some set of points. The filtering step
in this case consists of replacing the set T by some subset T ′ = T \ R, where
R ⊂ T . To guarantee progress towards W∗ (the uniform distribution over S∩T ),
it suffices to ensure that at most a third of the elements of R are also in S , or
equivalently that at least two thirds of the removed points are outliers (perhaps
in expectation). The algorithm will terminate when the current set of points T ′

has bounded empirical covariance, and the output will be the empirical mean
of T ′.

Before we proceed with a more detailed technical discussion, we note that
there are several possible ways to implement the filtering step, and that the
method used has a significant impact on the analysis. In general, a filtering
step removes all points that are “far” from the sample mean in a large variance
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direction. However, the precise way that this is quantified can vary in important
ways.

2.4.1 Tail bound based Filtering

In this section, we present a filtering method that yields efficient robust mean
estimators with optimal error bounds for identity covariance (or, more gener-
ally, known covariance) distributions whose univariate projections satisfy ap-
propriate tail bounds. For the purpose of this section, we will restrict ourselves
to the Gaussian setting. We note however that this method immediately extends
to distributions with weaker concentration properties, e.g., subexponential or
even inverse polynomial concentration, with appropriate modifications.

We note that the filtering method presented here requires an additional con-
dition on our set of inlier samples, on top of the stability condition. This is
quantified in the following definition.

Definition 2.14 A set S ⊂ Rd is tail-bound-good (with respect to X =

N(µX , I)) if for every unit vector v and every t > 0, we have

Prx∼uS
[
|v · (x − µX)| > 2t + 2

]
≤ e−t2/2 . (2.2)

Since any univariate projection of X is distributed like a standard Gaussian,
Condition (2.2) should hold if the uniform distribution over S were replaced by
X. It can be shown that this condition holds with high probability if S is a set of
i.i.d. samples from X of a sufficiently large size. Unfortunately, the sample size
required for this condition to hold can be exponential in the dimension. In the
rest of this section, to avoid cluttering in the relevant expressions, we develop
and analyze our filtering algorithm under this condition. We will then explain
(see Remark 2.16) how a simple modification to Definition 2.14 suffices for
our algorithm to work and will be satisfied with a polynomial sample size.

Intuitively, the additional tail condition of Definition 2.14 means that the
univariate projections of our inlier set satisfy strong tail bounds. If we can find
a direction in which one of these tails bounds are substantially violated, we
will know that most of the extreme points in this direction must be outliers.
Formally, we have the following.

Lemma 2.15 Let ε > 0 be a sufficiently small constant. Let S ⊂ Rd be
both (2ε, δ)-stable and tail-bound-good with respect to X = N(µX , I), with
δ = C ε

√
log(1/ε), for C > 0 a sufficiently large constant. Let T ⊂ Rd be

such that |T ∩ S | ≥ (1 − 2ε) max(|T |, |S |) and assume we are given a unit
vector v ∈ Rd for which Var[v ·T ] > 1+2δ2/ε and Var[v ·T ] > ‖Cov[T ]‖2− ε.
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There exists a polynomial-time algorithm that returns a subset R ⊂ T satisfying
|R ∩ S | < |R|/3.

To see why Lemma 2.15 suffices for our purposes, note that by replacing T
by T ′ = T \ R, we obtain a less noisy version of S than T was. In particular,
it is easy to see that the size of the symmetric difference between S and T ′

is strictly smaller than the size of the symmetric difference between S and T .
From this it follows that the hypothesis |T ∩ S | ≥ (1 − 2ε) max(|T |, |S |) still
holds when T is replaced by T ′, allowing us to iterate this process until we are
left with a set with small variance.

Proof Let Var[v · T ] = 1 + λ. Our goal will be to compute some threshold L
such that the substantial majority of the samples x with |v · (x − µT )| > L are
outliers, as is shown in Figure 2.3. This ought to be possible since by assump-
tion the inliers are well-concentrated about the mean. On the other hand, we
must have many far-away outliers in order to cause Var[v · T ] so large.

Figure 2.3 Illustration of tail bound based filtering. The figure shows the graph of
v · x for samples x, with the bump on the right representing the error distribution.
The greyed out portions represent the points with |v ·(x−µT )| > L that are removed
by the filtering algorithm. Notice that the majority of these points are outliers.

We know that since the set S is tail-bound-good, the univariate projection
v ·S is well-concentrated about v ·µX . Unfortunately, the algorithm only knows
µT . However, applying Lemma 2.6 to the set T (and noting that ‖Cov[T ]‖2 ≤
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1 + O(λ)), we get that |v · µX − v · µT | ≤ C
√
λε. Thus, by Condition (2.2),

Prx∼uS

[
|v · (x − µT )| > 2t + 2 + C

√
λε

]
≤ e−t2/2 .

We claim that there exists a threshold t0 such that

Prx∼uT

[
|v · (x − µT )| > 2t0 + 2 + C

√
λε

]
> 4e−t2

0/2 . (2.3)

Given this claim, the set R = {x ∈ T : |v · (x − µT )| > 2t0 + 2 + C
√
λε} will

satisfy the conditions of the lemma.
To prove our claim, we analyze the variance of v · T and note that much of

the excess must be due to points in T \ S . In particular, by our assumption on
the variance in the v-direction, we have that∑

x∈T

|v · (x − µT )|2 = |T |Var[v · T ] = |T |(1 + λ) ,

where λ > 2δ2/ε. The contribution from the points x ∈ S ∩ T is at most∑
x∈S

|v · (x − µT )|2 = |S |
(
Var[v · S ] + |v · (µT − µS )|2

)
≤ |S |(1 + δ2/ε + 2C2λε)

≤ |T |(1 + 2C2λε + 3λ/5) ,

where the first inequality uses the stability of S , and the last inequality uses
that |T | ≥ (1 − 2ε)|S |. If ε is sufficiently small relative to C, it follows that∑

x∈T\S |v · (x − µT )|2 ≥ |T |λ/3. On the other hand, by definition we have that∑
x∈T\S

|v · (x − µT )|2 = |T |
∫ ∞

0
2tPrx∼uT

[
|v · (x − µT )| > t, x < S

]
dt . (2.4)

Assume for the sake of contradiction that there is no t0 for which Condition
(2.3) is satisfied. Then the RHS of (2.4) is at most

|T |
( ∫ 2+C

√
λε+10

√
log(1/ε)

0
2tPrx∼uT [x < S ]dt

+

∫ ∞

2+C
√
λε+10

√
log(1/ε)

2tPrx∼uT
[
|v · (x − µT )| > t

]
dt

)
≤|T |

ε(2 + C
√
λε + 10

√
log(1/ε))2 +

∫ ∞

5
√

log(1/ε)
16(2t + 2 + C

√
λε)e−t2/2dt


≤|T |

(
O(C2λε2 + ε log(1/ε)) + O(ε2(

√
log(1/ε) + C

√
λε))

)
≤|T |O(C2λε2 + (δ2/ε)/C) < |T |λ/3 ,

which is a contradiction. Therefore, the tail bounds and the concentration vio-
lation together imply the existence of such a t0 (which can be efficiently com-
puted by simple enumeration). �



58 Robust Mean Estimation

Remark 2.16 We note that although exponentially many samples are re-
quired to ensure that Condition (2.2) holds with high probability, one can care-
fully weaken this condition so that it can be achieved with polynomially many
samples without breaking the aforementioned analysis. Specifically, it suffices
to add an inverse polynomially small slack term in the right hand side to ac-
count for the difference between the empirical and population values of the
corresponding probability. Using the VC Inequality (Theorem A.12), one can
show that this weaker condition holds for the uniform distribution over S with
high probability, where S is a set of i.i.d. samples from X of a sufficiently large
polynomial size. This slightly alters the analysis, as one needs to add this slack
term to all of the relevant probability integrals. However, these integrals can
still be truncated to cover only a polynomial range (using the fact that likely
no inliers will be too far from the true mean), and thus the total integral of this
additional error will remain small.

2.4.2 Randomized and Weighted Filtering

The filtering method described in Section 2.4.1 works by guaranteeing that
(assuming the set of inliers is stable and tail bound good) each filtering step
removes more outliers than inliers. For some of the more general settings one
instead requires a randomized filtering method that merely removes more out-
liers in expectation. In this section, we will develop the general theory of such
randomized filters. This will then be applied in Section 2.4.3, where we pro-
duce a specific randomized filter that works assuming only the stability of the
set of inliers.

Randomized Filtering The tail bound based filtering method of the previous
section is deterministic, relying on the violation of a concentration inequality
satisfied by the inliers. In some settings (such as robust estimation of the mean
of a bounded covariance distribution), deterministic filtering seems to fail to
give optimal results, and we require the filtering procedure to be randomized.

The main idea of randomized filtering is simple: Suppose we can identify
a nonnegative function f (x), defined on the samples x, for which (under some
high probability condition on the inliers) it holds that

∑
T f (x) ≥ 2

∑
S f (x),

where T is an ε-corrupted set of samples and S is the corresponding set of
inliers. Then we can create a randomized filter by removing each sample point
x ∈ T with probability proportional to f (x). This ensures that the expected
number of outliers removed is at least the expected number of inliers removed.
The analysis of such a randomized filter is slightly more subtle, so we will
discuss it in the following paragraphs.



2.4 The Filtering Method 59

The key property the above randomized filter ensures is that the sequence of
random variables

(# Inliers removed) − (# Outliers removed)

(where “inliers” are points in S and “outliers” points in T \S ) across iterations
is a supermartingale. Since the total number of outliers removed across all
iterations accounts for at most an ε-fraction of the total samples, this means
that with probability at least 2/3, at no point does the algorithm remove more
than a 2ε-fraction of the inliers. A formal statement follows.

Theorem 2.17 (Randomized Filtering) Let S ⊂ Rd be a (4ε, δ)-stable set
with respect to some distribution X, for ε < 1/12, and let T be an ε-corrupted
version of S . Suppose that given any T ′ ⊆ T with |T ′ ∩ S | ≥ (1 − 4ε)|S | for
which Cov[T ′] has an eigenvalue bigger than 1 + λ, for some λ ≥ 0, there is
a polynomial-time algorithm that computes a nonzero function f : T ′ → R+

such that
∑

x∈T ′ f (x) ≥ 2
∑

x∈T ′∩S f (x). Then there exists a polynomial-time
randomized algorithm that computes a vector µ̂ that with probability at least
2/3 satisfies ‖̂µ − µX‖2 = O(δ +

√
ελ).

The algorithm is described in pseudocode below:

Algorithm Randomized-Filtering

1. Compute Cov[T ] and its largest eigenvalue ν.
2. If ν ≤ 1 + λ, return µT = (1/|T |)

∑
x∈T x.

3. Else

• Compute f as guaranteed in the theorem statement.
• Remove each x ∈ T with probability f (x)/maxx∈T f (x) and return

to Step 1 with the new set T .

Proof of Theorem 2.17 First, it is easy to see that this algorithm runs in poly-
nomial time. Indeed, as the point x ∈ T attaining the maximum value of f (x)
is definitely removed in each filtering iteration, each iteration reduces |T | by at
least one. To establish correctness, we will show that, with probability at least
2/3, it holds throughout the algorithm that |S ∩T | ≥ (1−4ε)|S |. Assuming this
claim, Lemma 2.6 implies that our final error will be as desired.

To prove the desired claim, we consider the sequence of random variables

d(Ti) := |(S ∩ T ) \ Ti| + |Ti \ S | ,

where Ti denotes the version of T after the ith iteration of our algorithm. Note
that d(Ti) is essentially the number of remaining outliers plus the number of
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inliers that our algorithm has removed so far. We note that, initially, d(T0) ≤
ε|S | and that d(Ti) cannot drop below 0. Finally, we note that at each stage
of the algorithm d(Ti) increases by (# Inliers removed)− (# Outliers removed),
and that the expectation of this quantity is∑

x∈S∩Ti

f (x) −
∑

x∈Ti\S

f (x) = 2
∑

x∈S∩Ti

f (x) −
∑
x∈Ti

f (x) ≤ 0 .

This means that the sequence of random variables d(Ti) is a supermartingale
(at least until we reach a point where |S ∩ T | ≤ (1− 4ε)|S |). However, if we set
a stopping time at the first occasion where this condition fails, we note that the
expectation of d(Ti) is at most ε |S |. Since it is always at least 0, Proposition A.5
implies that with probability at least 2/3 it is never more than 3ε|S |, which in
turn implies that |S ∩ T | ≥ (1 − 4ε)|S | throughout the algorithm. If this is the
case, the inequality |T ′ ∩ S | ≥ (1 − 4ε)|S | will continue to hold throughout our
algorithm, thus eventually yielding such a set with the variance of T ′ bounded.
By Lemma 2.6, the mean of this subset T ′ will be a suitable estimate for the
true mean, completing the proof of Theorem 2.17. �

Methods of Point Removal The randomized filtering method described above
only requires that each point x is removed with probability f (x)/maxx∈T f (x),
without any assumption of independence. Therefore, given an f , there are sev-
eral ways to implement this scheme. A few natural ones are given here:

• Randomized Thresholding: Perhaps the easiest method for implementing
our randomized filter is generating a uniform random number y in the in-
terval [0,maxx∈T f (x)] and removing all points x ∈ T for which f (x) ≥ y.
This method is practically useful in many applications. Finding the set of
such points is often fairly easy, as this condition may well correspond to a
simple threshold.

• Independent Removal: Each x ∈ T is removed independently with proba-
bility f (x)/maxx∈T f (x). This scheme has the advantage of leading to less
variance in d(T ). A careful analysis of the random walk involved allows one
to reduce the failure probability to exp(−Ω(ε|S |)) (see Exercise 2.11).

• Deterministic Reweighting: Instead of removing points, this scheme allows
for weighted sets of points. In particular, each point will be assigned a
weight in [0, 1], and we will consider weighted means and covariances. In-
stead of removing a point x with probability proportional to f (x), we can
multiplicatively reduce the weight assigned to x by a quantity proportional
to f (x). This ensures that the appropriate weighted version of d(T ) is defi-
nitely nonincreasing, implying deterministic correctness of the algorithm.
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Weighted Filtering The last of the aforementioned methods being determin-
istic is useful in some settings, and so the algorithm is worth explicitly stating.
To begin, for a weight function w : T → R+, we define the weighted mean and
covariance of T by

µw[T ] :=
1
‖w‖1

∑
x∈T

wxx ,

Covw[T ] :=
1
‖w‖1

∑
x∈T

wx(x − µw)(x − µw)> .

One can observe that these quantities are simply the mean and covariance of
the probability distribution on T that assigns each point x ∈ T probability of
wx/‖w‖1.

With this setup, we have the following theorem, a direct analogue of Theo-
rem 2.17.

Theorem 2.18 (Weighted Filtering) Let S ⊂ Rd be a (4ε, δ)-stable set with
respect to some distribution X, for ε < 1/12, and let T be an ε-corrupted ver-
sion of S . Suppose that for any weight vector w : T → R+ for which the cor-
responding probability distribution is (3ε)-close to the uniform distribution on
S in total variation distance and for which Covw[T ] has an eigenvalue larger
than 1 +λ, for some λ ≥ 0, there is a polynomial-time algorithm that computes
a nonzero function f : T → R+ such that

∑
x∈S∩T wx f (x) ≤ (1/2)

∑
x∈T wx f (x).

Then there exists a polynomial-time algorithm that outputs a vector µ̂ which
with probability at least 2/3 satisfies ‖̂µ − µX‖2 = O(δ +

√
ελ).

Proof The algorithm is described in pseudocode below.

Algorithm Weighted-Filtering

1. Set t = 1 and w(1)
x = 1/|T | for all x ∈ T .

2. While Covw(t) [T ] has an eigenvalue larger than 1 + λ:

1. Compute a weight function f (x) as described above.
2. Let fmax be the maximum value of f (x) over x ∈ T with w(t)

x , 0.
3. Let w(t+1)

x = w(t)
x (1 − f (x)/ fmax). Set t to t + 1.

3. Return µw(t) .

To analyze this algorithm we make the following observations. First, at each
iteration, the support of w decreases by at least one, as w(t+1)

x = 0 for x with
f (x) = fmax. This implies that the algorithm will terminate after polynomially
many iterations.
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To prove correctness, as long as the distribution defined by w(t) is close to
the uniform distribution on S , we have that∑
x∈S∩T

w(t+1)
x =

∑
x∈S∩T

[w(t)
x − w(t)

x f (x)/ fmax] =
∑

x∈S∩T

w(t)
x − (1/ fmax)

∑
x∈S∩T

w(t)
x f (x)

≥
∑

x∈S∩T

w(t)
x −

1
2

(1/ fmax)
∑
x∈T

w(t)
x f (x) ,

where the first equality follows from the definition of w(t+1)
x and the inequality

follows from the definition of f . On the other hand, we can write∑
x∈T

w(t+1)
x =

∑
x∈T

[w(t)
x − w(t)

x f (x)/ fmax] =
∑
x∈T

w(t)
x − (1/ fmax)

∑
x∈T

w(t)
x f (x) .

This means that in each iteration the weight function w(t)
x decreases half as

much over S as it does over T as a whole. Thus, the amount that w(t)
x decreases

on S ∩T is at most the amount it decreases on T \S . Since initially we have that∑
x∈T\S w(1)

x = |T \ S |/|T | ≤ ε, this means that at every stage t of the algorithm
the following holds ∑

x∈S∩T

w(t)
x ≥ 1 − 2ε .

This implies that the distribution defined by w(t) remains (3ε)-close to the uni-
form distribution on S , even at the end of the algorithm when Covw(t) [T ] �
(1 + λ) I. Thus, by Lemma 2.7, we have that ‖µw(t) − µS ‖2 = O(δ +

√
ελ),

completing our proof. �

Practical Considerations While the aforementioned point removal methods
have similar theoretical guarantees, recent implementations suggest that they
have different practical performance on real datasets. The deterministic reweight-
ing method is somewhat slower in practice as its worst-case runtime and its
typical runtime are comparable. In more detail, one can guarantee termination
by setting the constant of proportionality so that at each step at least one of the
nonzero weights is set to zero. However, in practical circumstances, we will
not be able to do better. That is, the algorithm may well be forced to undergo
ε|S | iterations. On the other hand, the randomized versions of the algorithm are
likely to remove several points of T at each filtering step.

Another reason why the randomized versions may be preferable has to do
with the quality of the results. The randomized algorithms only produce bad
results when there is a chance that d(Ti) ends up being very large. However,
since d(Ti) is a supermartingale, this will only ever be the case if there is a
corresponding possibility that d(Ti) will be exceptionally small. Thus, although
the randomized algorithms may have a probability of giving worse results some
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of the time, this will only happen if a corresponding fraction of the time, they
also give better results than the theory guarantees. This consideration suggests
that the randomized thresholding procedure might have advantages over the
independent removal procedure, precisely because it has a higher probability of
failure. This has been observed experimentally: In real datasets poisoned with a
constant fraction of adversarial outliers, the number of iterations of randomized
filtering is typically bounded by a small constant.

2.4.3 Universal Filtering

In this section, we show how to use randomized filtering to construct a uni-
versal filter that works under only the stability condition (Definition 2.1) —
not requiring the tail-bound condition of the tail bound filter (Lemma 2.15).
To do this, we construct an appropriate score function f , as in the statement of
Theorem 2.17. Formally, we show the following.

Proposition 2.19 Let S ⊂ Rd be a (2ε, δ)-stable set for ε, δ > 0 suffi-
ciently small constants with δ at least a sufficiently large multiple of ε. Let
T be an ε-corrupted version of S . Suppose that Cov[T ] has largest eigen-
value 1 + λ > 1 + 8δ2/ε. Then there exists a polynomial time algorithm
that, on input ε, δ,T, computes a nonzero function f : T → R+ satisfying∑

x∈T f (x) ≥ 2
∑

x∈T∩S f (x).

By combining Theorem 2.17 and Proposition 2.19, we obtain a randomized
filtering algorithm establishing Theorem 2.11.

Proof of Proposition 2.19. The algorithm to construct f is the following. We
start by computing the sample mean of T , µT , and the top (unit) eigenvector v
of Cov[T ]. For x ∈ T , we define the function

g(x) = (v · (x − µT ))2 .

Let L be the set of ε · |T | elements of T on which g(x) is largest. We define f
to be

f (x) =

0 x < L

g(x) x ∈ L
(2.5)

Our basic plan of attack is as follows: First, we note that the sum of g(x) over
x ∈ T is the variance of v · T, which is substantially larger than the sum of g(x)
over x ∈ S , which is approximately the variance of v · S . Therefore, the sum
of g(x) over the ε|S | elements of T \ S must be quite large. In fact, using the
stability condition, we can show that the latter quantity must be larger than the
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sum of the largest ε|S | values of g(x) over x ∈ S . However, since |T \ S | ≤ |L|,
we have that

∑
x∈T f (x) =

∑
x∈L g(x) ≥

∑
x∈T\S g(x) ≥ 2

∑
x∈S f (x) .

We now proceed with the detailed analysis. First, note that∑
x∈T

g(x) = |T |Var[v · T ] = |T |(1 + λ) .

Moreover, for any S ′ ⊆ S with |S ′| ≥ (1 − 2ε)|S |, we have that∑
x∈S ′

g(x) = |S ′|(Var[v · S ′] + (v · (µT − µS ′ ))2). (2.6)

By the second stability condition, we have that |Var[v · S ′] − 1| ≤ δ2/ε. Fur-
thermore, the stability condition and Lemma 2.6 give

‖µT − µS ′‖2 ≤ ‖µT − µX‖2 + ‖µX − µS ′‖2 = O(δ +
√
ελ) .

Since λ ≥ 8δ2/ε, combining the above gives that∑
x∈T\S

g(x) ≥
∑
x∈T

g(x) −
∑
x∈S

g(x) ≥ (2/3)|S |λ .

Moreover, since |L| ≥ |T \S | and since g takes its largest values on points x ∈ L,
we have that ∑

x∈T

f (x) =
∑
x∈L

g(x) ≥
∑

x∈T\S

g(x) ≥ (16/3)|S |δ2/ε .

Comparing the results of Equation (2.6) for S ′ = S and S ′ = S \ L, we find
that ∑

x∈S∩T

f (x) =
∑

x∈S∩L

g(x) =
∑
x∈S

g(x) −
∑

x∈S \L

g(x)

= |S |(1 ± δ2/ε + O(δ2 + ελ)) − |S \ L|(1 ± δ2/ε + O(δ2 + ελ))

≤ 2|S |δ2/ε + |S |O(δ2 + ελ) .

The latter quantity is at most (1/2)
∑

x∈T f (x) when δ and ε/δ are sufficiently
small constants. This completes the proof of Proposition 2.19. �

Remark 2.20 One can straightforwardly obtain a weighted version of Propo-
sition 2.19 (essentially by replacing subsets by “weighted subsets”), which
provides the function f required in the statement of Theorem 2.18. By doing
so, we obtain a weighted filtering algorithm establishing Theorem 2.11.
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Exercises

2.1 (Scaling Stability) Show that if the set S ⊂ Rd is (ε, δ)-stable with respect
to µ, and if ε′ > ε is less than a sufficiently small constant, then S is
(ε′,O(δε′/ε))-stable with respect to µ.

2.2 (Resilience) Suppose that S is a set of points in Rd such that for every
S ′ ⊆ S with |S ′| ≥ (1 − 2ε)|S | we have that ‖µS ′ − µS ‖2 ≤ δ. (Note
that this is the first condition in the definition of (2ε, δ)-stability, but not
the second.) Show that if one is given a set T obtained by adversarially
corrupting an ε-fraction of the points in S , it is information-theoretically
possible to find a 2δ-approximation of the mean of S .

Remark This condition was referred to as resilience by [SCV18]. That
work showed that it is information-theoretically sufficient to robustly
learn to error O(δ), and computationally sufficient to learn to error O(δ/

√
ε).

Although robust learning is possible with this weaker condition information-
theoretically, it is believed that obtaining error O(δ) is computationally
intractable without additional assumptions.

2.3 (Stability for Bounded Covariance) Recall that in Proposition 2.4 we
needed to restrict to a subset of the sample points to ensure that the result-
ing subset is stable with high probability. Show that this assumption is
necessary. In particular, show that for any positive integers N, d and real
ε > 0 sufficiently small, there is a distribution X on Rd with Cov[X] � Id

such that, with probability at least 1/2, the empirical distribution of N
samples from X is not (ε,

√
dε/2)-stable with respect to X.

(Hint: Produce a distribution that has a 1/N probability of returning a
very large vector.)

2.4 (Generic Stability Bound) Suppose that X is a probability distribution in
Rd with mean µ with ‖X − µ‖2 ≤ R almost surely, and such that no ε-
fraction of the mass of X contributes more than δ2/ε to the expectation of
(v · (X − µ))2 for any unit vector v. Prove that, for some N = poly(Rd/ε),
a set of N i.i.d. samples from X is (ε,O(δ))-stable with respect to µ with
high probability.
(Hint: use the VC Inequality, Theorem A.12, to show that with high prob-
ability the empirical distribution satisfies tail bounds similar to those that
X does.)

2.5 (Other Tail-Bound-Based Filters) Devise filtering algorithms along the
lines of the tail-bound-based filter for Gaussians that work for the fol-
lowing inlier distributions X:
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(a) X is isotropic and logconcave. [Here you should be able to achieve
error O(ε log(1/ε)).]

(b) X is isotropic and has E[|v · (X − µX)|k] ≤ M (for some constants M
and k > 2). [Here you should be able to achieve error Ok(M1/kε1−1/k).]

(c) X is an arbitrary distribution with Cov[X] ≤ I. [Although one can
get sample sets that are (ε,O(

√
ε))-stable here, it seems impossible to

achieve error O(
√
ε) with a filter of this type. Show that it is possible

to get error O(
√
ε log(d/ε)).]

2.6 (Dimension Halving) Another approach for robust mean estimation of
spherical Gaussians uses a dimension-halving technique. This method
proceeds as follows:

(a) Use a naive filter to remove all points at distance more than roughly
√

d from the mean.
(b) Compute the sample covariance matrix. Let V be the subspace spanned

by eigenvalues larger than 1 + Ω(ε).
(c) Use the sample mean as an estimate for the projection of the true mean

onto V⊥, and recursively approximate the projection of the mean onto
V .

Show that an algorithm along these lines can be used to obtain error
O(ε

√
log(d)) with polynomial time and sample complexity.

(Hint: Show that dim(V) ≤ d/2.)

Remark The dimension-halving technique was developed in [LRV16].

2.7 (Robust Estimation in Other `p-Norms) Let 1 ≤ p < 2 and let 1/p+1/q =

1. Suppose that S is a set of points such that Var[v · S ] ≤ 1 for all v with
‖v‖q ≤ 1. Show that there is an algorithm that given p, ε and T , an ε-
corrupted version of S , computes in polynomial time an estimate µ̂ such
that with high probability ‖̂µ − µS ‖p = O(

√
ε).

(Hint: Show that it suffices to find a large (weighted) subset T ′ of T for
which the variance of v · T ′ is O(1) for any v with ‖v‖q ≤ 1. In order to
find such a subset, you may need the following result of [Nes98]:
For any positive-definite matrix A, the following holds

sup
‖v‖q=1

v>Av = Θ

 sup
Y�0,‖Diag(Y)‖q/2≤1

tr(AY)

 .
This is particularly convenient, as the right hand side can be efficiently
computed using convex programming.)
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2.8 (Learning from Untrusted Batches) In the learning from untrusted batches
problem, one is attempting to learn a distribution p over a finite domain
[n] := {1, 2, . . . , n}, in a distributed setting where many samples are parti-
tioned across a few servers, but a constant fraction of the servers may be
corrupted. More precisely, we are given m i.i.d. samples from p divided
into batches of k samples each. However, an ε-fraction of these batches
are allowed to be adversarially corrupted (usually in the Huber sense).
The goal is to learn a distribution p̂ that is close to p in total variation
distance.

(a) Show that for k = 1 one cannot learn p to error better than ε, no matter
how large m is.

(b) Show that for any subset S ⊆ [n], there is a polynomial-time algorithm
to estimate the probability p(S ) that p assigns to S within error of
O(ε/

√
k). Use this to devise an inefficient algorithm to estimate p to

error O(ε/
√

k) in total variation distance.

(c) Show that the learning from untrusted batches problem is equivalent
to estimating the mean of a multinomial distribution to small `1 error,
given access to ε-corrupted samples. Show that the algorithm from
Exercise 2.7 can be used to efficiently learn p to `1-error O(

√
ε/k).

(d) One can actually do somewhat better than the above. The idea is to
find sets S ⊂ [n] such that the empirical variance of the number of
samples in a batch from S is substantially larger than the variance over
just the good batches, and using this set to filter. This can be done by
comparing the sample covariance matrix to an approximation of the
true covariance, and using a known result that gives a polynomial-time
algorithm for the following task: given a matrix M, compute a vector v
with ‖v‖∞ ≤ 1 and v>Mv � sup‖w‖∞≤1 w>Mw. Give a polynomial-time
algorithm that estimates p to error O(ε

√
log(1/ε)/k) in total variation

distance.

Remark The learning from untrusted batches problem was introduced
by [QV18] and subsequently studied in a sequence of works [CLM20a,
JO20b, CLM20b, JO20a, JO21].

2.9 (Robust Mean Estimation for Balanced Product Distributions) Let X be a
balanced product distribution on {0, 1}d. Namely, Xi is 1 with probability
pi and 0 otherwise, for some 1/3 ≤ pi ≤ 2/3, and the coordinates Xi are
independent of one another. Note that Σ := Cov[X] is a diagonal matrix
with entries pi(1−pi). Give an efficient algorithm to estimate the mean of
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X to `2-error O(ε
√

log(1/ε)) from a polynomial number of ε-corrupted
samples.

(Hint: Compute an approximation to Σ and find a way to adjust for the
fact that Σ is not close to I.)

2.10 (Achieving Breakdown Point of 1/2) The algorithms presented in this
chapter all require that the fraction of corruptions ε is at most a suffi-
ciently small positive constant. Adaptations of these algorithms can be
made to work for ε approaching 1/2. (For the more challenging setting
when ε > 1/2, see Chapter 5). Show that for all 0 < ε < 1/2 there is an
algorithm that takes poly(d/(1/2 − ε)) samples from X = N(µ, I) in Rd,
runs in polynomial time, and with high probability computes an estimate
µ̂ with ‖̂µ − µ‖2 ≤ f (ε), for some function f .

(Hint: Some version of a filter should work, though you may need to
either be more careful about the ratio of inliers versus outliers removed,
or be more careful about the properties that you can assume for S ∩ T .)

2.11 (High-Probability Guarantees in Randomized Filtering) Consider the ver-
sion of the randomized filter where each sample is removed indepen-
dently with probability f (x)/ fmax. Show that if this algorithm is given
a set T , which is an ε-corruption of a set S , the probability that the al-
gorithm ever reaches a state where more than 3ε|S | samples have been
removed from S is at most exp(−Ω(ε|S |)).

(Hint: Consider the expectation E
[
exp(η(2|Ti\S | + |(S ∩ T )\Ti|))

]
for η >

0 some sufficiently small constant.)
2.12 (Different Scores for the Universal Filter) Recall that for our universal

filter we let g(x) = |v · (x − µT )|2 and defined our scores to be g(x) if x
was in the top ε-fraction of values and 0 otherwise.

(a) Show that if instead g(x) is used directly as the score function, this
may throw away more good samples than bad ones, unless δ �

√
ε.

(b) Let m be an O(1)-additive approximation to v · µS (for example, the
median of v · T often works). Let g(x) = |v · x − m|2 and

f (x) :=

g(x) if g(x) > C(δ/ε)2

0 otherwise

for C > 0 some suitably large constant. Show that this score function
works. Namely, show that if T is an ε-corruption of S , S is (ε, δ)-
stable and if Var[v · T ] > 1 + C′δ2/ε, for some sufficiently large C′,
then

∑
x∈S∩T f (x) < 1

2
∑

x∈T f (x).
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2.5 Discussion and Related Work

The first computationally efficient algorithms for high-dimensional robust mean
estimation with dimension-independent error guarantees were obtained in [DKK+16].
The same work introduced both the unknown convex programming and filter-
ing techniques described in this chapter. The filtering technique was further
refined in [DKK+17], specifically for the class of bounded covariance distri-
butions. In this chapter, we gave a simplified and unified presentation of these
techniques. In more detail, the stability condition of Definition 2.1 first ap-
peared in [DK21], although a special case was implicitly used in [DKK+16].
Similarly, the universal filtering method that succeeds under the stability con-
dition first appeared in [DK21].

The idea of removing outliers by projecting on the top eigenvector of the
empirical covariance goes back to [KLS09], who used it in the context of
learning linear separators with malicious noise. That work [KLS09] used a
“hard” filtering step which only removes outliers, and consequently leads to
errors that scale logarithmically with the dimension. Subsequently, the work
of [ABL17] employed a soft-outlier removal step in the same supervised set-
ting as [KLS09], to obtain improved bounds for that problem. It should be
noted that the soft-outlier method of [ABL17] is similarly insufficient to ob-
tain dimension-independent error bounds for the unsupervised setting.

Contemporaneously with [DKK+16], [LRV16] developed a recursive dimension-
halving technique for high-dimensional robust mean estimation. Their tech-
nique leads to error O(ε

√
log d) for Gaussian robust mean estimation in Hu-

ber’s contamination model. The algorithm of [LRV16] begins by removing
extreme outliers from the input set of ε-corrupted samples. This ensures that,
after this basic outlier removal step, the empirical covariance matrix has trace
d(1 + Õ(ε)), which in turn implies that the d/2 smallest eigenvalues are all at
most 1 + Õ(ε). This allows [LRV16] to show, using techniques akin to Lemma
2.6, that the projections of the true mean and the empirical mean onto the
subspace spanned by the corresponding (small) eigenvectors are close. The
[LRV16] algorithm then uses this approximation for this projection of the
mean, projects the remaining points onto the orthogonal subspace, and recur-
sively finds the mean of the other projection. See Exercise 2.6 for more details.

In addition to robust mean estimation, [DKK+16, LRV16] developed ef-
ficient robust learning algorithms for a number of more complex statistical
tasks, including robust covariance estimation, robust density estimation for
mixtures of spherical Gaussians and binary product distributions (see Exer-
cise 2.9), robust independent component analysis (ICA), and robust singular
value decomposition (SVD). Building on the techniques of [DKK+16], a line
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of works [CDKS18, CL21, DKSS21] gave robust parameter estimation algo-
rithms for Bayesian networks (with known graph structure) and Ising models.
Another extension of these results was given in [SCV18], who obtained an ef-
ficient algorithm for robust mean estimation with respect to all `p-norms (see
Exercise 2.7 for more details).

The algorithmic approaches described in this chapter robustly estimate the
mean of a spherical Gaussian within `2 error O(ε

√
log(1/ε)) in the strong con-

tamination model. A more sophisticated filtering technique that achieves the
optimal error of O(ε) in the additive (adaptive) contamination model was de-
veloped in [DKK+18]. This method will be described and analyzed in Chap-
ter 3. Very roughly, this algorithm proceeds, by using a novel filtering method,
to remove corrupted points if the empirical covariance matrix has many eigen-
values of size 1 + Ω(ε). Otherwise, the algorithm uses the empirical mean to
estimate the mean on the space spanned by small eigenvectors, and then uses
brute-force to estimate the projection onto the few principal eigenvectors. For
the total variation contamination model (and, therefore, the strong contamina-
tion model), [DKS17] gave evidence (in the form of Statistical Query lower
bounds) that any improvement on the O(ε

√
log(1/ε)) error requires super-

polynomial time. These developments will be described in Chapter 8.
The focus of this chapter was on developing efficient robust mean estimation

algorithms in high dimensions that succeed if the fraction of outliers is ε <
ε0, where ε0 > 0 is a sufficiently small universal constant. In principle, it is
possible to do better than this, i.e., obtain efficient robust mean estimators with
breakdown point of 1/2. This goal can be achieved by conceptually simple
adaptations of the filtering method. The reader is referred to [HLF20, ZJS21,
DM22] and Exercise 2.10.

A related problem is that of high probability mean estimation. If one is
given independent samples from a Gaussian (with no corruptions), the em-
pirical mean gives a good estimate of the true mean, and furthermore one can
show that this estimate is accurate with high probability. However, if the un-
derlying distribution is replaced by a heavy-tailed distribution (for example,
one with merely bounded covariance), these high probability bounds may no
longer hold without a more sophisticated estimator. A sequence of works in
the mathematical statistics community determined the optimal sample com-
plexity of heavy-tailed mean estimation both without outliers [LM19b] and
in the strong contamination model [LM21b]. (See also [LM19a] for a related
survey.)

Interestingly, there is a connection between high probability mean estima-
tion and robust mean estimation, obtained by treating the extreme points from
the heavy-tailed distribution (which make the high probability estimation task



2.5 Discussion and Related Work 71

challenging) as outliers; see, e.g., [PBR19]. In particular, [DKP20] showed that
robust mean estimation techniques could be used to obtain essentially optimal
high probability mean estimation algorithms.

The first sample-optimal and polynomial-time algorithm for heavy-tail mean
estimation (without outliers) was developed in [Hop20]. Subsequent works [DL22,
CFB19] developed simpler algorithms with significantly improved asymptotic
runtime that also succeed with additive contamination. More recently, the work
of [DKP20] showed that any robust mean estimation algorithm that succeeds
under the stability condition when combined with a simple preprocessing step
achieves optimal rates for finite covariance distributions and works even in the
strong contamination model. The latter work also establishes the sample com-
plexity bounds stated in Remark 2.5 for identity covariance distributions with
bounded k-th central moments.



3
Algorithmic Refinements in

Robust Mean Estimation

3.1 Introduction

The goal of Chapter 2 was to lay down the basic algorithmic techniques that
lead to the first computationally efficient algorithms for high-dimensional ro-
bust mean estimation. Given this groundwork, in this chapter we present a
number of improvements and refinements. Although the algorithms in the pre-
vious chapter have sample complexities and runtimes polynomial in d and 1/ε,
they can be further optimized in a number of ways. The goal of this chapter
will be to describe some of these improvements.

The first direction concerns obtaining robust mean estimation algorithms
with near-optimal sample complexity and runtime. In Section 3.2, we establish
(near-)optimal sample complexity bounds for stability-based algorithms, i.e.,
robust mean estimation algorithms that rely only on the stability condition. To
achieve this, we give a tighter analysis that leads to near-optimal bounds on the
number of samples required to obtain stable sets for various classes of distri-
butions. In Section 3.3, we describe a robust mean estimation algorithm with
near-optimal computational complexity. This algorithm builds on the filtering
technique of the previous chapter.

Another direction of improvement comes from being able to leverage stronger
assumptions on the contamination model. For example, all the algorithms in
Chapter 2 worked in the strong contamination model and obtained error of
O(ε

√
log(1/ε)) for Gaussian mean estimation. There is reason to believe (see

Chapter 8) that this is the best error that can be obtained computationally ef-
ficiently in the strong contamination model, despite the fact that O(ε) error is
possible information-theoretically. On the other hand, if one weakens the con-
tamination model to allow only additive noise or only subtractive noise, then it
is possible to efficiently obtain O(ε) error. We will give an efficient algorithm
achieving this error guarantee in Section 3.4.

This material will be published by Cambridge University Press as Algorithmic
High-Dimensional Robust Statistics by Ilias Diakonikolas and Daniel M. Kane.
This pre-publication version is free to view and download for personal use only. Not for
re-distribution, re-sale or use in derivative works. c© Ilias Diakonikolas and Daniel M. Kane 2022.
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Along similar lines, the algorithms developed thus far rely only on some
stability-related assumptions on the underlying distribution. In a number of set-
tings, we may have additional prior information about the target mean that we
would like to take advantage of. Of substantial interest are sparsity-related as-
sumptions, in particular that the mean has relatively few nonzero coordinates.
In Section 3.6, we discuss how to adapt our previously developed algorithmic
techniques for leveraging this kind of sparsity structure.

A final direction of improvement concerns algorithmic simplicity. The filter-
ing and unknown convex programming techniques are somewhat conceptually
complicated, involving some kind of iterative noise reduction and require care-
fully tuned parameters. It turns out that one can perform robust mean estima-
tion more directly using standard first-order optimization methods. We discuss
these ideas in Section 3.5.

3.2 Near-Optimal Sample Complexity of Stability

In Chapter 2, we described various polynomial-time robust mean estimation
algorithms. Each of these algorithms succeeds assuming that the uncorrupted
samples satisfy an appropriate condition (usually the stability condition given
in Definition 2.1). While showing that a polynomial (in the dimension d and
1/ε, where ε is the fraction of outliers) number of independent samples from
the distribution of interest satisfies the stability condition (with high probabil-
ity) is typically relatively easy (as was done in Section 2.2.1), obtaining a tight
sample complexity analysis often requires more careful arguments.

In this section, we establish nearly tight sample complexity bounds for two
prototypical families of distributions:

1. Identity covariance Gaussian distributions, and
2. Distributions with unknown bounded covariance.

It should be noted that in order to learn the mean of such a distribution to `2

error δ (even without corruptions) requires Ω(d/δ2) samples. With a careful
analysis, one can show that even in the presence of corruptions, O(d/δ2) sam-
ples suffice in the Gaussian setting (assuming the noise rate is not too high),
and that Õ(d/δ2) samples suffice for general bounded covariance distributions.

The techniques required to obtain these near-optimal bounds are classical
in probability theory. The purpose of this section is to obtain a direct and
self-contained analysis in tandem with introducing the necessary probabilis-
tic tools.
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A first useful lemma we will require for our analysis is the following sim-
plified characterization of stability.

Lemma 3.1 (Alternate Characterization of Stability) Let 0 < ε ≤ δ < 1/2. A
finite set S ⊂ Rd is (ε,O(δ))-stable with respect to a distribution X with mean
µ if the following conditions hold:

1.
∥∥∥∥ 1
|S |

∑
x∈S x − µ

∥∥∥∥
2
≤ δ.

2. For every unit vector v ∈ Rd, we have that
∣∣∣∣ 1
|S |

∑
x∈S |v · (x − µ)|2 − 1

∣∣∣∣ ≤ δ2/ε.

3. For every unit vector v ∈ Rd and every subset T ⊂ S with |T | ≤ ε|S |, we
have that

∣∣∣∣ 1
|S |

∑
x∈T |v · (x − µ)|2

∣∣∣∣ ≤ δ2/ε.

Remark 3.2 It is easy to see that a set S satisfying the original definition of
stability (Definition 2.1) also satisfies the conditions of Lemma 3.1. Therefore,
Lemma 3.1 can be seen as an alternative characterization of stability.

Proof We will show that a set S satisfying the above conditions also satisfies
the definition of stability. Specifically, we will need to show that after replacing
S by any S ′ ⊆ S with |S ′| ≥ (1−ε)|S |, the sample mean and sample covariance
of S ′ in any direction v ∈ Rd are approximately correct. To do this, we relate
these sums over S ′ by taking the difference between the sum over S and the
sum over T := S \ S ′, noting that T is a subset of S with |T | ≤ ε|S |. Proving
the covariance stability condition boils down to a direct computation. To prove
the mean condition, we need to use the bounds on the second moments of
v · (x−µ) over T and the Cauchy-Schwarz inequality to get appropriate bounds
on the error.

For the mean estimation error, we let v ∈ Rd be a unit vector and let T =

S \ S ′ with |S ′| ≥ (1 − ε)|S |. We have that∣∣∣∣∣∣∣ 1
|S ′|

∑
x∈S ′

v · (x − µ)

∣∣∣∣∣∣∣ =

(
|S |
|S ′|

)  1
|S |

∣∣∣∣∣∣∣∑x∈S v · (x − µ) −
∑
x∈T

v · (x − µ)

∣∣∣∣∣∣∣


≤ (1 + O(ε))


∣∣∣∣∣∣∣ 1
|S |

∑
x∈S

v · (x − µ)

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣ 1
|S |

∑
x∈T

v · (x − µ)

∣∣∣∣∣∣∣


≤ (1 + O(ε))

δ +
1
|S |

√∑
x∈T

|v · (x − µ)|2
√∑

x∈T

1


≤ (1 + O(ε))(δ +

√
|S |δ2/ε

√
|T |/|S |)

= O(δ) ,

where the third line above used the Cauchy-Schwarz inequality. Since the
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above holds for any unit vector v, it follows that
∥∥∥∥ 1
|S ′ |

∑
x∈S ′ x − µ

∥∥∥∥
2

= O(δ),
as desired.

For the covariance condition, we again let v ∈ Rd be a unit vector and let
T = S \ S ′ with |S ′| ≥ (1 − ε)|S |. We have that∣∣∣∣∣∣∣ 1

|S ′|

∑
x∈S ′
|v · (x − µ)|2 − 1

∣∣∣∣∣∣∣
=

(
|S |
|S ′|

)  1
|S |

∣∣∣∣∣∣∣∑x∈S (|v · (x − µ)|2 − 1) −
∑
x∈T

(|v · (x − µ)|2 − 1)

∣∣∣∣∣∣∣


≤ (1 + O(ε))


∣∣∣∣∣∣∣ 1
|S |

∑
x∈S

|v · (x − µ)|2 − 1

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣ 1
|S |

∑
x∈T

|v · (x − µ)|2 − 1

∣∣∣∣∣∣∣


≤ (1 + O(ε))

δ2/ε +

∣∣∣∣∣∣∣ 1
|S |

∑
x∈T

|v · (x − µ)|2
∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣ 1
|S |

∑
x∈T

1

∣∣∣∣∣∣∣


≤ (1 + O(ε))
(
δ2/ε + δ2/ε + |T |/|S |

)
≤ O(δ)2/ε ,

recalling that ε ≤ δ. This completes the proof. �

We can now proceed with the proofs of the sample complexity bounds in
our two contexts. In both cases, we want to show that given an appropriately
large number of samples, the conditions of Lemma 3.1 are satisfied with high
probability. This will amount to proving some sort of concentration bounds.

3.2.1 Sample Complexity for Spherical Gaussians

In this subsection, we will prove a sample complexity bound for the setting that
the inliers are drawn from an unknown mean and identity covariance Gaussian.

Proposition 3.3 Let µ ∈ Rd and 0 < ε < 1/2. Let N be an integer, with
N at least a sufficiently large constant multiple of d/(log(1/ε)ε2), and let S
be a set of N i.i.d. samples from X = N(µ, I). Then, with probability at least
1 − exp(−Ω(Nε2 log(1/ε))), we have that S is (ε,O(ε

√
log(1/ε)))-stable with

respect to X.

We will show that with high probability S satisfies the conditions of Lemma
3.1, for some δ = O(ε

√
log(1/ε)). The first condition will be relatively easy to

show, while the latter two will be somewhat more challenging. At a high level,
the proof proceeds by a cover argument. In particular, we will show that for
any fixed unit vector v, these conditions hold, except with exponentially small
probability. Once we establish this, we will use a union bound to show that
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these conditions hold for all vectors v in a relatively dense subset of the unit
sphere. Finally, with some additional work, we can show that the conditions
hold for every unit vector v.

First Condition: The first condition of Lemma 3.1 says that the empirical
mean of S is close to µ. We note that

µ̂ :=
1
|S |

∑
x∈S

(x − µ) ∼ N
(
0, (1/

√
N) I

)
.

While it is not hard to show directly that this has `2 norm O(
√

d/N) with high
probability, it will be instructive for us to show it by demonstrating that with
high probability |v · µ̂| ≤ δ for all unit vectors v. In particular, for any given
unit vector v, by Gaussian concentration, we have that |v · µ̂| ≤ δ, except with
probability exp(−Ω(Nδ2)). It turns out that it suffices that this holds for every
unit vector v in a cover of the unit sphere. We will use the following standard
fact (see Theorem A.10):

Fact 3.4 There exists a set C of 2O(d) unit vectors in Rd such that for any
vector w ∈ Rd there exists a v ∈ C with v · w ≥ (9/10)‖w‖2.

Note that if we considered all unit vectors v, we could always find a v so that
v · w = ‖w‖2. The cover C needs to have a vector v that is sufficiently close to
every possible unit vector.

By a union bound over all points in C, we have that except with probability
exp(O(d)−Ω(Nδ2)), for every v ∈ C it holds that |v · µ̂| ≤ δ. Since by definition
there must be a v ∈ C with v · µ̂ ≥ (9/10) ‖̂µ‖2, this implies that ‖̂µ‖2 ≤ (10/9)δ.
Choosing δ to be an appropriate constant multiple of ε

√
log(1/ε) and noting

that Nδ2 � d, we have that the first condition holds with high probability.
Second and Third Conditions: We begin by showing that for any given v

these conditions hold with high probability.
For the second condition, we note that v · (x − µ) is distributed as a standard

Gaussian, and thus the individual terms |v · (x − µ)|2 − 1 are independent mean
zero random variables. Showing that their average is close to zero amounts to
some kind of concentration bound. A natural attempt to prove a high probabil-
ity bound on this event would involve an application of Bernstein’s inequality.

Theorem 3.5 (Bernstein’s Inequality) Let X1, . . . , Xn be independent, mean
0 random variables with |Xi| ≤ M almost surely. Then

Pr

∣∣∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣∣∣ ≥ t

 ≤ 2 exp
− t2/2∑n

i=1 E[X2
i ] + Mt/3

 .
Unfortunately, we cannot apply this inequality directly in our setting, as the
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|v · (x− µ)|2 terms are not bounded. To fix this technical issue, we apply a stan-
dard probabilistic technique known as truncation. We pick r to be a sufficiently
large constant multiple of

√
log(1/ε) and define:

gv
r(x) :=

|v · (x − µ)|2 − 1 , if |v · (x − µ)| ≤ r

0 , otherwise

hv
r(x) :=

0 , if |v · (x − µ)| ≤ r

|v · (x − µ)|2 − 1 , otherwise

By construction, we have that gv
r(x) + hv

r(x) = |v · (x − µ)|2 − 1 and that gv
r(x) is

bounded, allowing us to apply Theorem 3.5. On the other hand, while hv
r(x) is

unbounded, it returns zero except with small probability, and we can analyze
it using first principles. We now commence with this analysis.

Lemma 3.6 For any fixed unit vector v in Rd, except with probability
exp(−Ω(Nδ2)) over the choice of S , we have that 1

|S |

∣∣∣∑x∈S gv
r(x)

∣∣∣ ≤ δ .
Proof The proof essentially amounts to an application of Bernstein’s inequal-
ity. A small technical complication arises from the fact that E[gv

r(x)] is not zero.
Recall that without the truncation this would be the case, but the truncation
process might slightly alter the expectation.

An elementary calculation gives that the expected value m = Ex∼N(µ,I)[gv
r(x)]

satisfies |m| < ε. For S = {x1, x2, . . . , xN}, we note that gv
r(xi) − m are i.i.d.

zero mean random variables that satisfy |gv
r(xi) − m| < 2r2 almost surely and

E[|gv
r(xi) − m|2] = O(1). Thus, applying Theorem 3.5 with t = Nδ/2, we have

that

Pr

∣∣∣∣∣∣∣∑x∈S (gv

r(x) − m)

∣∣∣∣∣∣∣ > Nδ/2

 < 2 exp
(
−

N2δ2/8
O(N + Nδr2)

)
= exp(−Ω(Nδ2)) .

Noting that m < δ/2, the lemma follows. �

We next bound the sum
∑

x∈S hv
r(x). This step requires a less black-box ar-

gument. The fact that hv
r(x) is not bounded means that we cannot readily use

out-of-the-box concentration bounds. However, most of these concentration
bounds for sums of independent random variables X1, . . . , Xn are proved by
bounding the expectation of exp (

∑
Xi). It turns out that this technique works

in our setting.

Lemma 3.7 For any fixed unit vector v in Rd, except with probability
exp(−Ω(Nδ)) over the choice of S , we have that 1

|S |
∑

x∈S hv
r(x) ≤ δ .
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Proof We begin by estimating the quantity Ex∼N(µ,I)
[
exp

(
hv

r(x)/4
)]

. This is
easily seen to be

Pr(|v·(x−µ)| < r)+
2
√

2π

∫ ∞

r
exp(−x2/2) exp((x2−1)/4)dx ≤ 1+r2 exp(−Ω(r2)) ,

which is at most eε since r is a sufficiently large constant multiple of
√

log(1/ε).
Letting S = {x1, . . . , xN} with the xi’s independent, we have that

E
exp

∑
x∈S

hv
r(x)

 /4 =

N∏
i=1

E[exp(hv
r(xi)/4)]

≤ exp(Nε) .

Thus, by Markov’s inequality, we have that
∑

x∈S hv
r(x) > Nδ with probability

at most exp(N(ε − δ/4)) = exp(−Ω(Nδ)). This completes the proof. �

Using Lemmas 3.6 and 3.7, it can be easily deduced that Conditions 2 and 3
of Lemma 3.1 hold for any given v with probability 1− exp(−Ω(Nδ2)). Condi-
tion 2 follows by noting that∣∣∣∣∣∣∣ 1

|S |

∑
x∈S

|v · (x − µ)|2 − 1

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣ 1
|S |

∑
x∈S

gv
r(x) +

1
|S |

∑
x∈S

hv
r(x)

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣ 1
|S |

∑
x∈S

gv
r(x)

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣ 1
|S |

∑
x∈S

hv
r(x)

∣∣∣∣∣∣∣ .
Lemmas 3.6 and 3.7 immediately imply that this is at most 2δ except with
probability exp(−Ω(Nδ2)).

To prove Condition 3, we note that |v · (x − µ)|2 ≤ r2 + hv
r(x) for all x, where

we used that r ≥ 1. Therefore, we have that

1
|S |

∑
x∈T

|v · (x − µ)|2 ≤
1
|S |

∑
x∈T

r2 +
1
|S |

∑
x∈S

hv
r(x)

≤
r2|T |
|S |

+
1
|S |

∑
x∈S

hv
r(x) .

Noting that r2|T |/|S | = O(ε log(1/ε)) and applying Lemma 3.7, we have that
the above is O(εlog(1/ε)) except with probability at most exp(−Ω(Nδ)).

By applying a union bound over v ∈ C, we have that except with probabil-
ity exp(−Ω(Nδ2)), Conditions 2 and 3 of Lemma 3.1 hold for all v ∈ C and
some δ = O(ε

√
log(1/ε)). We claim that this actually suffices to show that the

conditions hold (with slightly worse value δ) for all unit vectors v.
To show this, we note that after fixing the set T , the conditions in question

say that for some specific symmetric matrix M it holds that |v>Mv| ≤ δ2/ε, for
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all unit vectors v. We claim that if such a statement holds for all v ∈ C, then it
will hold that |v>Mv| ≤ O(δ2/ε) for all unit vectors v. This will finish our proof
of Proposition 3.3.

Specifically, we have the following lemma.

Lemma 3.8 Let M be a real symmetric matrix with |v>Mv| ≤ B for all v ∈ C
and some B ≥ 0. Then, it holds that v>Mv = O(B) for all unit vectors v ∈ Rd.

Proof Diagonalizing M, we can write M =
∑

i λiwiw>i for some real numbers
λi and orthonormal vectors wi. We sort the indices so that |λ1| ≥ |λ2| ≥ . . ..
It is clear that for any unit vector v it holds |v>Mv| ≤ |λ1|. It remains to show
that |λ1| = O(B). To show this, we note that by the defining property of C
there exists a v ∈ C with v · w1 ≥ 9/10. We can write this v as

∑
i aiwi with

1 = ‖v‖22 =
∑

i a2
i and a1 ≥ 9/10. It is easy to see that

|v>Mv| =

∣∣∣∣∣∣∣∑i

λia2
i

∣∣∣∣∣∣∣ ≥ |λ1|a2
1−

∑
i>1

|λi|a2
i ≥ |λ1|((9/10)2−(1−(9/10)2)) ≥ |λ1|/2 .

Therefore, B ≥ |λ1|/2, which completes the proof. �

This completes the proof of Proposition 3.3. We note that a similar proof
holds for samples drawn from any subgaussian distribution with identity co-
variance.

3.2.2 Sample Complexity for Bounded Covariance Distributions

In this section, we analyze the next most important case: that of a random
variable X with bounded covariance matrix Cov[X] � I.

One might reasonably expect that a sufficiently large sample of i.i.d. points
from X is (ε,O(

√
ε))-stable with reasonable probability. As we will see, this

statement turns out to hold only after a slight – but necessary – modification
(to see why this is necessary, see Exercise 2.3).

In this section, we establish the following proposition.

Proposition 3.9 Let 0 < ε < 1/2 be a real number, and N be an integer, with
N at least a sufficiently large constant multiple of d log(d)/ε. Let S be a set of
N i.i.d. samples from a distribution X with bounded covariance Cov[X] � I.
Then, with probability at least 9/10, there exists a set S ′ obtained by changing
an ε-fraction of the points of S such that S ′ is (ε,O(

√
ε))-stable with respect

to X.

Remark 3.10 Note that if the set T is an ε-corruption of S , then T is also
a 2ε-corruption of S ′. Since S ′ is stable with respect to X, running a standard
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robust mean estimation algorithm on T will still give an O(
√
ε) error estimate

of the mean of X.

We start with the following simple reformulation of stability for our setting:

Lemma 3.11 A set S is (ε,O(
√
ε))-stable with respect to a distribution X if

and only if the following conditions hold:

1. ‖µS − µX‖2 = O(
√
ε).

2. Cov[S ] � O(I).

Proof The “only if” part is easy to see. For the “if” part, we use Lemma 3.1
to show that S is (ε,O(

√
ε))-stable if

1. ‖µS − µX‖2 = O(
√
ε).

2. For every unit vector v, it holds that 1
|S |

∑
x∈S (|v · (x − µX)|2 − 1) = O(1).

3. For every unit vector v, and T ⊂ S with |T | ≤ ε|S |, we have that

1
|S |

∑
x∈T

|v · (x − µX)|2 = O(1) .

Observe that the second condition here is equivalent to 1
|S |

∑
x∈S |v · (x−µX)|2 =

O(1), which subsumes the third. We note that the left hand side above is

v>
 1
|S |

∑
x∈S

(x − µX)(x − µX)>
 v = v>(Cov[S ] + (µX − µS )(µX − µS )>)v

= v>Cov[S ]v + O(ε) ,

assuming that the first condition holds. This is O(1) for all unit vectors v if and
only if Cov[S ] � O(I), which completes the proof. �

The first of these new conditions is relatively easy to verify. If S is a set of N
i.i.d. samples drawn from X — a distribution with mean µX and covariance at
most I — then µS − µX is a random vector with mean 0 and covariance at most
(1/N) I. Thus, the expected squared `2-norm of this random vector is at most
d/N. Hence, for N � d/ε, the Markov inequality implies that ‖µS − µX‖2 =

O(
√
ε) with large constant probability.

Unfortunately, the second condition need not be true even for arbitrarily
large sets of samples. In particular, consider the probability distribution on Rd

that (a) with probability 1/N returns a random vector of length
√

Nd, and (b)
otherwise returns the zero vector. It is not hard to see that this distribution
has mean zero and identity covariance. However, a sample of size N will have
constant probability of containing exactly one vector v of norm

√
Nd, and the
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empirical covariance matrix will be (1/N)(1 − 1/N)vv>, which has spectral
norm d(1 − 1/N).

The aforementioned problem can arise only when some reasonable fraction
of the covariance of X comes from points very far from the mean. However,
the fact that X has bounded covariance implies that such points cannot have
a large impact on the mean, and if we ignore them we will be able to get
a better analysis of the stability. In particular, since Cov[X] � I, we have that
E[‖X−µX‖

2
2] ≤ d. By the Markov inequality, it follows that ‖X−µX‖2 ≤ 2

√
d/ε

except with probability ε/2. We can therefore think of these additional points
as “outliers”. In particular, we can define a new distribution X′, which is equal
to X when ‖X − µX‖2 ≤ 2

√
d/ε and equal to µX otherwise. Note that

Cov[X′] � E[(X′ − µX)(X′ − µX)>] � E[(X − µX)(X − µX)>] = Cov[X] � I .

That is, X and X′ both have bounded covariance and differ with only ε proba-
bility. The bound on the covariance along with the Cauchy-Schwarz inequality
imply that the ε-probability event on which X and X′ differ can only contribute
O(
√
ε) to their respective means, and thus ‖E[X] − E[X′]‖2 = O(

√
ε).

Since a collection of N i.i.d. samples from X′ will with high probability
contain at most εN points that were truncated, and since the means of X and
X′ differ by O(

√
ε), it suffices to show that N samples from X′ are stable with

respect to X′ with high probability. We can show this by demonstrating that a
sufficiently large sample of i.i.d. points drawn from X′ has bounded covariance
with high probability.

While this goal might seem itself challenging, there is a well-known in-
equality that suffices for this purpose. In particular, we will make use of the
Matrix-Chernoff bound.

Theorem 3.12 (Matrix Chernoff Inequality) For d ∈ Z+ and R > 0, let {Xk}

be a sequence of independent random d × d symmetric matrices with 0 � Xk �

R · I almost surely. Let µmax =
∥∥∥E

[∑
k Xk

]∥∥∥
2. Then, for any δ > 0, we have that

Pr


∥∥∥∥∥∥∥∑k

Xk

∥∥∥∥∥∥∥
2

> (1 + δ)µmax

 ≤ d
[

eδ

(1 + δ)1+δ

]µmax/R

.

We apply Theorem 3.12 as follows: Letting S = {x1, x2, . . . , xN} be a set of
i.i.d. samples from the distribution X′, we define the matrices

Xk = (xk − µX′ )(xk − µX′ )>/N .

We can take R to be the maximum possible value of ‖x − µX′‖
2
2/N, i.e., R =
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O(d/(εN)). We note that

E
∑

k

Xk

 = Cov[X′] � I ,

and therefore µmax ≤ 1. Setting δ = 2/µmax ≥ 2, Theorem 3.12 gives that

Pr


∥∥∥∥∥∥∥ 1
|S |

∑
x∈S

(x − µX′ )(x − µX′ )>
∥∥∥∥∥∥∥

2

≥ 2 + µmax

 ≤ d(e/(1 + δ))δµmax/R

≤ d exp(−Ω(Nε/d)) .

Therefore, so long as N is at least a sufficiently large constant multiple of
d log(d)/ε, with probability at least 1 − 1/d, we have that

Cov[S ] �
1
|S |

∑
x∈S

(x − µX′ )(x − µX′ )> � (2 + µmax)I � 3 I .

This completes the proof of Proposition 3.9.

Discussion The above sample complexity upper bound is nearly optimal. In
particular, learning the mean of X to error

√
ε, even from uncorrupted samples,

will require N ≥ d/ε. Removing the extra logarithmic factor turns out to be
somewhat subtle, as explained below.

On the one hand, consider the distribution X that with probability ε returns
plus or minus

√
d/ε times a random basis vector ei. This distribution has zero

mean and identity covariance, and cannot be readily simplified by throwing
away its largest samples. Unfortunately, if N = o(d log(d)/ε) samples are taken
from X, it will usually be the case that there is some coordinate i such that
more than an ε/d-fraction of the samples taken are ±

√
d/ε ei. This will cause

the variance of X in the ei-direction to be too large.
On the other hand, the above example is not necessarily enough to prevent

the existence of robust mean estimation algorithms with optimal sample com-
plexity. In particular, in [DKP20] it is shown that for ε a small constant, for any
distribution X with bounded covariance, a set S of Ω(d) i.i.d. samples from X
will contain a subset S ′ ⊂ S with |S ′| ≥ (1 − ε)|S | such that S ′ is (ε,O(1))-
stable. This suffices to robustly learn the mean of X to error O(1), even after
introducing an ε-fraction of corruptions. That is, O(d/ε) samples are sufficient
for ε a constant. Whether or not this still holds for smaller ε remains an open
question. Interestingly, using a slightly different algorithm, we can still effi-
ciently and robustly learn the mean to error O(

√
ε) with O(d/ε) samples (see

Exercise 3.2).
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3.3 Robust Mean Estimation in Near-Linear Time

Thus far, we have developed polynomial-time robust mean estimation algo-
rithms without focusing on their precise runtimes. While the unknown convex
programming approach leads to polynomial-time algorithms, the inherent use
of the ellipsoid method renders such algorithms impractical. The iterative fil-
tering technique on the other hand relies on spectral methods that are somewhat
more practical. However, we did not provide a detailed analysis of its runtime.

We start this section by analyzing the runtime of the vanilla filtering-based
algorithm, given as input ε, δ and a set T of n points in Rd. Roughly speaking,
each iteration of the algorithm requires the following steps:

1. Compute v, an approximate largest eigenvector of Σ := Cov[T ] and
the corresponding eigenvalue λ.

2. If λ > 1 + Cδ2/ε, for a sufficiently large constant C > 0:

(a) Compute v · x for all x ∈ T .
(b) Sort the projected points.
(c) Determine which elements to filter.
(d) Apply filter and go back to Step 1 on the filtered set T .

3. Else

Return the sample mean of the final dataset T .

Runtime per Iteration With careful implementation, each iteration of the fil-
tering algorithm can be made to run in near-linear, i.e., Õ(dn), time. For most of
the steps of the algorithm, it is straightforward to establish this runtime upper
bound. Note that the initial eigenvector computation in Step 1 requires some
care, as naively it would take time Ω(d2n) to even compute Σ. Fortunately,
an approximate largest eigenvector can be computed using the power iteration
method. In particular, taking v = Σtw/‖Σtw‖2, for w a random unit vector, and
t = O(log(d/τ)), it is not hard to show that with probability 1 − τ we have that
v>Σv ≥ (0.99)‖Σ‖2. Applying this procedure to the matrix Σ − (1 − Cδ2/ε)I
(which will be positive definite for sufficiently large C), gives a suitably good
approximate largest eigenvector.

It remains to show how to multiply a vector by Σ efficiently. This can be
done by noting that Σ = 1

|T |
∑

x∈T (x − µT )(x − µT )>, and thus,

Σw =
1
|T |

∑
x∈T

(w · (x − µT ))(x − µT ) ,

which can be computed in O(dn) time.



84 Algorithmic Refinements in Robust Estimation

Number of Iterations The thornier issue with the runtime analysis of a fil-
tering algorithm has to do with the number of iterations. A naive analysis can
only show that at each iteration the number of remaining points decreases by
at least 1. This bounds from above the number of iterations somewhat sub-
optimally at εn for a final runtime of Õ(dn2). While this worst-case number
of iterations may not appear in practice, it is not hard to construct examples
where the standard implementation of the filtering method will be required to
undergo many iterations.

For example, consider the following instance in the additive contamination
model, where the true mean µ is 0. Suppose that the top m eigenvectors of
the sample covariance matrix of the inliers are v1, v2, . . . , vm respectively. An
adversary then adds εn/m outliers at the points

√
dvi, for each 1 ≤ i ≤ m, as

shown in Figure 3.1. (We note that the outliers should be at distance at most
√

d
from the origin, so that they cannot be discovered by naive filtering.) It is not
hard to see that after adding these outliers the vectors v1, v2, . . . , vm will remain
the top m eigenvectors of the empirical covariance matrix. Unfortunately, when
filtering in direction vi, the algorithm will pick up only one of the batches
of outliers. Thus, the filtering method will take m filter iterations to remove
all of these outliers; and even after only m/2 iterations the remaining outliers
will still contribute to the mean an error of

∑m
i=m/2 viε

√
d/m , which has `2-

norm Ω(ε
√

d/m). If we are in the Gaussian case, and if m is much less than
d/ log(1/ε), it will take at least m/2 iterations of the filter in order to obtain
optimal error.

The above example shows that, in the worst case, the filter may be forced
to apply Ω(d) iterations in order to obtain good error bounds. Therefore, if we
want our algorithm to run in Õ(dn) time, we will need a new approach.

In this section, we show that the standard guarantees of robust mean estima-
tion can be achieved in near-linear time. In particular, we will show:

Theorem 3.13 (Robust Mean Estimation in Near-linear Time) Let S ⊂ Rd

be a set of n points such that S is (ε, δ)-stable with respect to µ for some
1 ≥ δ ≥ ε > 0 with ε sufficiently small. Let T be obtained from S by arbitrarily
corrupting an ε-fraction of the points. There exists a randomized algorithm
that given T, ε, δ runs in time Õ(dn) and with probability at least 3/5 computes
a µ̂ such that ‖̂µ − µ‖2 = O(δ).

High-level Intuition To get some intuition for how such an algorithm might
work, it is instructive to consider the hard example described above. Essen-
tially, this example works by carefully constructing the set of outliers with
foreknowledge of the filtering directions that the algorithm is going to use.
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Figure 3.1 Illustration of hard instance for the standard filtering algorithms. The
sphere represents the projection of the inliers into the space spanned by the top
three eigenvectors v1, v2, v3. Outliers are then placed at distance about

√
d from

the mean along each of these axes. The standard filtering algorithms will only
remove one batch of outliers per iteration.

This allows the adversary to arrange things in such a way that each filtering
step will only remove a small number of outliers. A natural approach towards
counteracting the adversary’s power is via slightly randomizing the filter di-
rections. In the setting of the example defined above, it is natural to define the
subspace V = span({v1, v2, . . . , vm}) (which can be approximated as the span
of the top eigenvectors of the sample covariance matrix), and filtering in a di-
rection v given by a random unit vector in V . It is not hard to see that for such
a v, the projection of an outlier onto v will have size |v · (

√
dvi)|, which will

typically be on the order of
√

d/m. On the other hand, a typical inlier will have
|v · x| typically on the order of 1. Recalling that we need d/m � log(1/ε) in
order for the outliers to substantially corrupt the sample mean, a typical outlier
has a good chance of being far enough from the mean in the v-direction to be
detectable. Thus, at least in this simple hard example — where the sample co-
variance matrix has m large, approximately equal, eigenvalues and many small
eigenvalues — this sort of “filtering in a random direction (in the appropriate
subspace)” approach suffices to detect a constant fraction of outliers in each
iteration.

Unfortunately, while it is relatively easy to pick a good choice of random
filter direction in the above simple setting, the choice of an appropriate filtering
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direction v in more complicated situations is far from obvious. Specifically, one
needs to find a way to balance different directions with eigenvalues of different
sizes against each other. It turns out that taking v proportional to Σlog(d)w, for a
random vector w, works reasonably well. Intuitively, this is because the matrix
Σlog(d) can be thought of as an approximation to the projection matrix onto the
set of eigenvectors of Σ whose eigenvalues are within a factor of 2 of the largest
one. This is because taking the log(d)-power means that even d eigenvectors
with half the eigenvalue will contribute less to the final trace than the single
largest eigenvector. Actually, we will want to consider instead a random vector
v proportional to Blog(d)w, where B is Σ minus an appropriate multiple of the
identity. This is necessary so that when ‖Σ‖2 is close to 1 our algorithm will
be able to distinguish between the eigenvalues of magnitude 1 + δ2/ε (which
correspond to directions where we want to filter) and eigenvalues of 1 (which
correspond to directions in which we do not).

Once we have the direction v, we will filter in the v-direction. This should
be achieved via a variation of our randomized, universal filter. However, it is
not sufficient to filter only a single time. This is because if there is one very
extreme outlier in the v-direction, there may be a reasonable probability that
a filter will remove only that one outlier. Instead, in order to ensure that our
algorithm makes significant progress, we will need to repeatedly filter in the
v-direction until enough of the outliers have been removed. However, the stan-
dard randomized filtering guarantee will still hold at each step. The expected
number of inliers removed will be less than the expected number of outliers
removed, and thus with constant probability, the algorithm will never remove
more than O(ε) fraction of elements of S .

The above discussion explains what happens to the inliers, but it remains to
understand what happens to the outliers. In particular, suppose that v is chosen
to be Mw, for some symmetric matrix M and w a standard Gaussian vector.
We note that E[‖v‖22] = E[w>M>Mw] = tr(M2). Our filter will tend to remove
points x where |v · (x − µS )|2 is substantially larger than ‖v‖22 ≈ tr(M2). On the
other hand, we have that:

E[|v · (x− µS )|2] = E[w>M(x− µS )(x− µS )>Mw] = tr(M(x− µS )(x− µS )>M) .

Thus, roughly speaking, our filter will remove some reasonable fraction of the
points x for which tr(M(x−µS )(x−µS )>M) is substantially larger than tr(M2).
Morally, this means that after the filtering step the average value of (x−µS )(x−
µS )> (a stand-in for the new covariance matrix) will approximate the identity
matrix, at least in the directions that M cares about. Specifically, this means
that tr(MΣ′M) will be substantially less than tr(MΣM) = tr(Σ2 log(d)+1), unless
the eigenvalues of Σ are already small. From this, we conclude (using Fact
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3.15 below) that tr(Σ2 log(d)+1) decreases by a constant factor at every iteration.
By performing some basic naive filtering at the start, we can ensure that the
initial value of tr(Σ2 log(d)+1) is only quasi-polynomial, and therefore, after only
polylogarithmically many iterations, it will become manageable, leading to a
case where Cov[T ] is bounded; so by the stability condition we will have that
‖µT − µS ‖2 is small.

The pseudocode of the algorithm is given below.

Algorithm Near-Linear-Time Randomized-Filtering

1. Let C > 0 be a sufficiently large constant.
2. Let x be a random element of T and R = 4n, where n = |T | is the size

of the original dataset T . Remove from T all points at distance more
than R/2 from x.
/*We will henceforth use T to denote the remaining dataset.*/

3. Repeat the following r = C log(R/ε) log(d) times:

(a) Let Σ = Cov[T ], B = (|T |/n)Σ − (1 −Cδ2/ε)I and M = Blog(d).
/*We do not actually compute these matrices.*/

(b) Let w ∼ N(0, I) be a Gaussian random vector.
(c) Let v = Mw.

/* Compute v efficiently using iterated multiplication by Σ.*/

(d) Let m be an O(δ‖v‖2)-approximation of v · µS (computed e.g., via a
trimmed mean of v · x for x in the original set T ).

(e) For x ∈ T , let f (x) = |v · x − m|2. Let

τ(x) :=

 f (x) if f (x) > 10(δ/ε)2‖v‖22
0 otherwise

(f) If
∑

x∈T τ(x) > C(nδ2/ε) ‖v‖22, pick t uniformly at random from
[0,maxx∈T τ(x)]; remove from T all elements x ∈ T with τ(x) > t,
and repeat this step.

4. Return µT , the sample mean of T .

Runtime Analysis To begin with, we provide the runtime analysis of this al-
gorithm. We note that the main loop has only r = polylog(nd/ε) iterations.
In each iteration, we compute v, which requires logarithmically many matrix
multiplications by Σ (each of which can be done in Õ(dn) time, as described
above). We note that the filter in Step 3(f) may need to be performed sev-
eral times. However, at each iteration the largest value of τ(x) is at most the
value of t selected in the previous iteration. This means that in expectation



88 Algorithmic Refinements in Robust Estimation

t decreases by a factor of 2 in each iteration. Since τ(x) is never larger than
(R‖v‖2)2 nor smaller than ‖v‖22 (unless it is 0), this step will terminate in an
expected O(log(R))-iterations. All other steps can be straightforwardly imple-
mented in Õ(dn) time.

Correctness Analysis Next we need to show that if T is (ε, δ)-stable with
respect to µ, the output of this algorithm will with 2/3 probability return an
O(δ)-approximation of µ. For this analysis, we begin with Step 2. This is a
naive filtering step designed to ensure that all points of T are contained in a
ball of radius R about µS . We note that if the chosen x was in S , then all other
points in S must be within distance R/2 of x. Otherwise, we would have that
Cov[S ] = 1

n2

∑
x,y∈S (x − y)(x − y)> would have a direction in which the norm

was at least 4 (coming from a single term in the sum), violating the stability
condition, given that δ ≤ 1.

The next few steps compute an appropriate random direction v to consider,
and the loop in Step 3 is just a particular instantiation of a randomized filter
along the lines of our universal filter from Chapter 2. The correctness of the
trimmed mean for approximating v · µ follows from Proposition 1.18 and the
first condition in the definition of stability (Definition 2.1).

To establish correctness, we need to verify that our randomized filter has
the property that in expectation it removes fewer good points (i.e., elements
of T ∩ S ) than bad ones. Recall, that this condition amounts to showing that∑

x∈S∩T τ(x) < (1/2)
∑

x∈T τ(x) whenever the filter is being applied. To show
this, we note that S has at most εn elements with positive τ(x) (as otherwise
removing them would alter the variance of S in the v-direction by 10δ2/ε, vio-
lating stability). If

∑
x∈S τ(x) were more than (C/2)nδ2/(2ε), removing the (at

most εn) elements with positive τ(x) would again change the variance in the
v-direction by too much and violate stability. Thus, when the initial condition
in Step 3(f) holds, at most half of the total sum of τ(x) comes from good ele-
ments, i.e.,

∑
x∈S∩T τ(x) ≤ (1/2)

∑
x∈T τ(x). Since the probability of removing

x is proportional to τ(x), the expected number of good elements removed is at
most half the total.

Remark 3.14 Note that the filter we used here is essentially the alternative
universal filter discussed in Exercise 2.12. This has the advantage over the
universal filter discussed in Section 2.4.3 that the scores do not change as we
remove samples.

The above discussion along with the martingale argument used in the proof
of Theorem 2.17 implies that with probability at least 2/3 we have that |T ∩ S |
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never drops below n(1−4ε) throughout the course of our algorithm. We assume
in the following that this holds.

Next, we need to analyze what happens to the bad points. Our goal is to
show that after filtering, the value of tr(B2 log(d)+1) will decrease in expectation
unless it was already small. Although the intuition behind this is relatively
straightforward, the mechanics of proving it require some work.

We note that x is likely to be filtered out when |v · (x − µS )| is substantially
larger than (δ/ε)‖v‖2. On the one hand, note that

E[‖v‖22] = E[w>MM>w] = E[tr(Mww>M)] = tr(M2) .

On the other hand, we have that

v · (x − µS ) = (Mw) · (x − µS ) = w · (M(x − µS )) .

This latter term is a Gaussian random variable with mean zero and variance
‖M(x− µS )‖22 = tr(M(x− µS )(x− µS )>M). Notice that with probability at least
1/2, we have

|v · (x − µS )|2 > tr(M(x − µS )(x − µS )>M)/10 .

Therefore, for every x, with probability at least 1/2 over the choice of w, we
have that

τ(x) ≥ Ω(tr(M(x − µS )(x − µS )>M)) − O(δ/ε)2‖v‖22 . (3.1)

Call x satisfying Condition (3.1) full and other x empty.
The other condition we have to use is that after applying our filters if we end

up with a new set T ′, we have that
∑

x∈T ′ τ(x) = O(n(δ2/ε)‖v‖22). In particular,
this holds if we just sum over x ∈ T ′ \ S with x full. Thus, we have that∑

x∈T ′\S
x full

(
Ω(tr(M(x − µS )(x − µS )>M)) − O(δ/ε)2‖v‖22

)
≤

∑
x∈T ′\S
x full

τ(x) ≤ O(n(δ2/ε)‖v‖22) .

Noting that |T ′ \ S | = O(nε), this gives∑
x∈T ′\S
x full

tr(M(x − µS )(x − µS )>M) ≤ O(n(δ2/ε)‖v‖22) . (3.2)

Taking the expectation over w of the right hand side of Condition (3.2) gives
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O(n(δ2/ε))tr(M2). On the other hand, we have that∑
x∈T ′\S

tr(M(x − µS )(x − µS )>M)

=
∑

x∈T ′\S
x full

tr(M(x − µS )(x − µS )>M) +
∑

x∈T ′\S
x empty

tr(M(x − µS )(x − µS )>M) .

Employing Condition (3.2) and the fact that any given x has at most a 1/2
probability of being empty, we have that

E

 ∑
x∈T ′\S

tr(M(x − µS )(x − µS )>M)


≤

1
2

∑
x∈T\S

tr(M(x − µS )(x − µS )>M) + O(n(δ2/ε))tr(M2) .

On the other hand, we can write∑
x∈T ′∩S

tr(M(x − µS )(x − µS )>M) = tr

M

 ∑
x∈T ′∩S

(x − µS )(x − µS )>
 M


= n tr(M2)(1 + O(δ2/ε)) ,

where the last equality is because the stability of S implies that the matrix∑
x∈T ′∩S (x−µS )(x−µS )> has eigenvalues n(1 + O(δ2/ε)). Therefore, we obtain

E
tr M

1
n

∑
x∈T ′

(x − µS )(x − µS )> − (1 −Cδ2/ε)I

 M


≤ O(δ2/ε)tr(M2) + tr

M

1
n

∑
x∈T

(x − µS )(x − µS )> − (1 −Cδ2/ε)I

 M

 /2
= O(δ2/ε)tr(M2) + tr(MBM)/2 .

We note that the term ((1/n)
∑

x∈T ′ (x − µS )(x − µS )> − (1 − Cδ2/ε)I) above
is very close to the value of B computed from T ′ (call it B′). In fact, the two
differ only by an additive (|T ′|/n)(µT ′ −µS )(µT ′ −µS )>. On the other hand, it is
not hard to see that this is less than O(δ2)I + O(ε)B′ in the Loewner ordering.
Combining this with the above, we obtain the critical result that

E
[
tr(MB′M)

]
≤ O(δ2/ε)tr(M2) + tr(MBM)/2 .

At this point, we would like to relate this quantity to tr((B′)2 log(d)+1). For that,
we will require the following simple linear-algebraic fact.

Fact 3.15 Let A, B be symmetric PSD matrices such that A � B. For all
k ∈ Z+, we have that tr(Bk) ≤ tr(Ak−1B).
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To verify the hypotheses of Fact 3.15, we need two things: First, it is not
hard to see that because of the stability of S and because |S \ T ′| = O(εn), we
have that B′ is positive definite. Next, we note that

(|T ′|/n)Cov[T ′] =
1
n

∑
x∈T ′

(x − µ′T )(x − µ′T )> �
1
n

∑
x∈T ′

(x − µT )(x − µT )>

�
1
n

∑
x∈T

(x − µT )(x − µT )> = (|T |/n)Cov[T ] .

Thus, B′ � B. This allows us to conclude that

E[tr((B′)2 log(d)+1)] ≤ E[tr(MB′M)] ≤ O(δ2/ε)tr(B2 log(d)) + tr(B2 log(d)+1)/2 .
(3.3)

Finally, we claim that tr(B2 log(d)+1) = Θ(‖B‖2)tr(B2 log(d)). Morally, this holds
because B2 log(d) already approximates a projection onto the largest eigenvalues
(within a factor of 2 of the biggest) of B. Formally, we have that if B has
eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λd ≥ 0, then

tr(B2 log(d)+1) =

d∑
i=1

λ
2 log(d)+1
i ≤ λ1

d∑
i=1

λ
2 log(d)
i = λ1tr(B2 log(d)) .

On the other hand, we have the following chain of inequalities

tr(B2 log(d)+1) =

d∑
i=1

λ
2 log(d)+1
i ≥ (λ1/2)

d∑
i=1

λ
2 log(d)
i − (λ1/2)

∑
i:λi<λ1/2

λ
2 log(d)
i

≥ (λ1/2)tr(B2 log(d)) − dλ2 log(d)+1
1 /d2 ≥ (λ1/3)tr(B2 log(d)) .

Thus, tr(B2 log(d)+1) = Θ(‖B‖2) tr(B2 log(d)) for any positive semidefinite B.
Combining this with Condition (3.3), we have that unless ‖B‖2 = O(δ2/ε),

each iteration of our main loop will decrease tr(B2 log(d)+1) (in expectation) by
a constant factor. In particular, this means that the expectation of tr(B2 log(d)+1)
times the indicator function of the event that ‖B‖2 is bigger than a sufficiently
large multiple of δ2/ε decreases by a constant factor in every iteration. Note
that this quantity initially takes a value of at most dR2 log(d)+1, and at the end is
either zero or at least dε2 log(d)+1. Therefore, after r � log(R/ε)(2 log(d) + 1)
rounds, the Markov inequality implies that the probability that ‖B‖2 is larger
than a constant multiple of δ2/ε is small.

Thus, with probability at least 3/5, by the end of our algorithm we have a set
T that differs from S on at most O(εn) points and has Cov[T ] = I + O(δ2/ε).
This property and the stability of S implies that ‖µT − µ‖2 = O(δ).

This completes the proof of Theorem 3.13.
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3.4 Robust Mean Estimation with Additive or Subtractive
Corruptions

The robust mean estimation algorithms presented thus far can approximate
the mean of an ε-corrupted Gaussian to `2-error Θ(ε

√
log(1/ε)). On the other

hand, it is information-theoretically possible to achieve `2-error of O(ε) (e.g.,
via Proposition 1.20 or the Tukey median). Unfortunately, there is a good rea-
son for this gap. Consider an adversary that removes the ε-tails of a Gaus-
sian along some random direction. It is easy to see that this operation moves
the mean by Θ(ε

√
log(1/ε)) and decreases the variance in this direction by

Θ(ε log(1/ε)). By changing the values of the removed points and adding them
back at distance Θ(

√
log(1/ε)) from the mean in the opposite direction, the ad-

versary can restore the variance of the corrupted distribution (in the direction
under consideration) to what it was originally, while leaving the mean off by
Θ(ε

√
log(1/ε)).

Recall that the robust mean estimation algorithms we have studied look for
discrepancies in the sample covariance matrix (in order to find directions to
filter along). Therefore, such algorithms will be unable to correct for these
errors, and thus cannot achieve a final error rate better than Ω(ε

√
log(1/ε)). In

fact, as we shall see in Chapter 8, there is reason to believe that achieving error
o(ε

√
log(1/ε)) may not be possible in polynomial time.

Crucially, the above example makes essential use of the strong contamina-
tion model and the ability of the adversary to both add outliers and remove
inliers. The former increases the variance by Θ(ε log(1/ε)) in the critical di-
rection and the latter decreases it by the same amount to render the net change
undetectable. It turns out that if only one kind of corruption is allowed (either
additive or subtractive contamination), more accurate computationally efficient
robust mean estimation algorithms are possible. In this section, we will prove
the following theorem.

Theorem 3.16 Given a set of N = poly(d/ε) ε-corrupted samples from
X = N(µ, I) on Rd, where the corruptions are either only additive or only
subtractive, there exists a poly(N, d) time algorithm that with high probability
returns an estimate µ̂ such that ‖̂µ − µ‖2 = O(ε).

Our first lemma shows that if purely additive or purely subtractive errors
alter the sample mean by more than a sufficiently large constant multiple of ε
in some direction, they must also change the variance in this direction by Ω(ε)
— an effect that is algorithmically detectable.

Lemma 3.17 Let S ⊆ Rd be such that Cov[S ] � O(I). Let 0 < ε < 1/3 and
T ⊆ Rd be such that either:
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1. S ⊆ T and |T | ≤ (1 + ε)|S | (additive contamination) , or
2. S ⊇ T and |T | ≥ (1 − ε)|S | (subtractive contamination).

Suppose that for some unit vector v ∈ Rd it holds that |v · (µS −µT )| � ε. Then,
we have that

|v>(Cov[T ] − Cov[S ])v| = Ω(ε)

with v>(Cov[T ] − Cov[S ])v being positive in Case 1 and negative in Case 2.

Note that there exists such a unit vector v if and only if ‖µS − µT ‖2 � ε.

Proof As in the proof of Lemma 2.7, we leverage the fact that if a small
fraction of corruptions has a large influence on the mean, it must also have a
correspondingly large influence on the covariance.

For Case 1, let T = S ∪ E with |E| = δ |T | for some δ ≤ ε/(1 + ε). A simple
calculation gives that

µT = (1 − δ)µS + δµE = µS + δ(µE − µS )

and

Cov[T ] = (1 − δ)Cov[S ] + δCov[E] + δ(1 − δ)(µS − µE)(µS − µE)>

= Cov[S ] + δ(Cov[E] − Cov[S ]) + δ(1 − δ)((µT − µS )/δ)((µT − µS )/δ)>

� Cov[S ] − O(εI) + ((1 − ε)/ε)(µS − µT )(µS − µT )> .

Thus, if |v · (µS − µT )| is at least a sufficiently large constant multiple of ε, we
have that

v>(Cov[T ] − Cov[S ])v ≥ −O(ε) + Ω(|v · (µS − µT )|2/ε) = Ω(ε) ,

as desired.
For Case 2, we note that Cov[T ] � Cov[S ]/(1 − ε), and so interchanging

the roles of S and T , and appealing to Case 1, we have that if |v · (µT − µS )| is
at least a sufficiently large constant multiple of ε, then v>(Cov[S ] − Cov[T ])v
will be Ω(ε). This completes the proof. �

Lemma 3.17 allows us to either (1) detect when additive or subtractive errors
may have been sufficient to move the sample mean by at least Ω(ε), or (2)
certify that the mean has not been corrupted by this much. Unfortunately, if
we do detect some direction v in which the mean might be far off, we do not
have any obvious way to make progress. In particular, the filtering techniques
we developed so far will not work in this setting. For the case of subtractive
contamination, the reason is quite simple: there is no real way to build a filter
to add back removed points.
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For additive contamination, an error of ε can be introduced by adding an
ε-fraction of outliers at distance Θ(1) from the true mean, as shown in Figure
3.2. Unfortunately, a constant fraction of the inliers will also be located in this
range, and it may be information-theoretically impossible to separate the two.
In particular, there may be no way to construct a filter that is guaranteed to
remove more outliers than inliers.

Figure 3.2 Illustration of univariate instance where the additive contamination is
at distance Θ(1) from the true mean and it is information-theoretically impossible
to separate from the inliers. Notice that the density of outliers (gray curve) at
any point is substantially less than the density of inliers at that point (dotted black
curve). Thus, if one removes any collection of points based on their x-coordinates,
one will remove substantially more inliers than outliers.

To circumvent the above obstacle, we introduce two new ingredients. The
first ingredient allows us to efficiently and robustly learn the mean when re-
stricted to any low-dimensional subspace. In particular, for any given sub-
space V , our inefficient algorithm from Proposition 1.20 allows us to robustly
estimate ProjV (µ), the projection of µ onto V , within `2-error O(ε) in time
2O(dim(V))poly(d/ε), simply by robustly estimating the mean of ProjV (X). We
would like to apply this algorithm where V is the subspace defined by the large
eigenvalues of the empirical covariance matrix. Unfortunately, this leads to a
problem where the subspace V we are using is no longer independent of the
samples we have received (and in fact might even depend on the adversarial
corruptions). To deal with this issue, we will need a subtly stronger version of
the algorithm from Proposition 1.20. Specifically, we want to know that with
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high probability over the samples from X for any subspace V and any set of
corruptions our algorithm will still work. In particular we prove.

Lemma 3.18 There exists an algorithm, A, with the following behavior: Let
N be a sufficiently large polynomial in d/ε. If a set S of N i.i.d. samples are
drawn from a Gaussian N(µ, I), then with high probability over the samples
the following holds: For any subspace V of dimension dim(V) = m and any
ε-corruption S ′ of S , when A is called on V, S ′ it runs in time poly(N, 2m) and
returns a µ̂ ∈ Rd such that ‖ProjV (̂µ − µ)‖2 = O(ε).

Proof The basic idea is to run the exponential-time robust mean estimation
algorithm from Proposition 1.20 applied to the set of projections of our sample
points onto the subspace V .

We note that in order for that algorithm to work, it only had to hold that for
every halfspace v·x ≥ t the fraction of the points of S in this halfspace is within
O(ε) of the probability that a random sample from N(µ, I) is in the halfspace.
Fortunately, the VC-Inequality (Theorem A.12) implies that this holds for all
halfspaces with high probability, as long as N is a sufficiently large constant
multiple of d/ε2. �

As a corollary of Lemma 3.18, we can efficiently approximate the projec-
tion of µ onto any low-dimensional subspace. In particular, if we take m =

dim(V) = O(log(1/ε)), the algorithm from Lemma 3.18 runs in poly(d/ε) time.
Suppose that our initial set of clean samples (inliers) S was sufficiently large

(poly(d/ε) size suffices). Then we know that with high probability we have
that Cov[S ] = I + O(εI) and ‖µS − µ‖2 = O(ε). Given access to an (addi-
tive or subtractive) ε-corrupted set of samples T , Lemma 3.17 implies that
|v · (µ − µT )| = O(ε), so long as the unit direction v is orthogonal to every
eigenvector corresponding to an Ω(ε)-sized eigenvalue of Cov[T ] − Cov[S ],
or equivalently an eigenvalue of Cov[T ] − I with absolute value Ω(ε). In par-
ticular, if we let V be the span of the eigenvectors of Cov[T ] − I with eigen-
value whose absolute value is at least a sufficiently large constant multiple of
ε, we have that ‖ProjV⊥ (µ − µT )‖2 = O(ε). If dim(V) = O(log(1/ε)), we can
use Lemma 3.18 to compute a µ̂ with ‖ProjV (µ − µ̂)‖2 = O(ε). Piecing these
two components together, we get an O(ε) `2-approximation to µ, as desired.
In summary, we have described an efficient robust mean estimation algorithm
with optimal error O(ε), as long as there are not too many large eigenvalues of
Cov[T ] − I.

It remains to handle the case that Cov[T ]−Cov[S ] has many large eigenval-
ues. For this to happen, we must have added or removed many points not only
far from the mean in one of these directions, but far from the mean in many
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directions. It turns out that while looking at any given direction is insufficient
to distinguish these outliers from the inliers, considering many directions si-
multaneously suffices.

In particular, for a point x ∈ Rd the sum of its contributions to the eigenvec-
tors in a subspace W will be ‖ProjW (x − µ)‖22. For good samples (inliers), this
quantity will be approximately m = dim(W) with high probability. However,
for an ε-fraction of outliers to corrupt all these m eigenvalues by Ω(ε) in the
same direction, the average outlier will need to have

∣∣∣‖ProjW (x − µ)‖22 − m
∣∣∣ =

Ω(m). It is not hard to show that only an exp(−Ω(m))-fraction of inliers will
satisfy ∣∣∣‖ProjW (x − µ)‖22 − m

∣∣∣ > m/10 .

This suggests that we should be able to reliably distinguish outliers from in-
liers, as long as m is sufficiently large. However, we will need something
slightly more precise than this for the following reason: while on average an
outlier x will satisfy

∣∣∣‖ProjW (x − µ)‖22 − m
∣∣∣ = Ω(m), it might be that in real-

ity only a small fraction of outliers satisfy this condition, and those that do
have much larger discrepancies. What we will need in practice is a lemma that
says that the total discrepancy coming from outliers exceeds that coming from
inliers.

Lemma 3.19 Let W ⊂ Rd be an m-dimensional subspace, for some m ≤ d,
and X = N(µ, I). Then we have that

Ex∼X

[
1
{∣∣∣‖ProjW (x − µ)‖22 − m

∣∣∣ > m/10
}
‖ProjW (x − µ)‖22

]
= exp(−Ω(m)) .

(3.4)
Furthermore, if S is a set of poly(d/ε) i.i.d. samples from X, for some suffi-
ciently large constant degree polynomial, (3.4) holds for x ∼u S for all sub-
spaces W of dimension O(log(1/ε)) with high probability.

Proof The first statement is a simple computation, and the latter statement
can be proved by an application of the VC-inequality (Theorem A.12). The
details are left as an exercise. �

The above lemma motivates our robust mean estimation algorithm for both
subtractive and additive contamination.

Subtractive Contamination. Lemma 3.19 implies that for subtractive errors the
covariance matrix of T , Cov[T ], cannot have more than Ω(log(1/ε)) eigenval-
ues of magnitude less than 1 − 3ε. For the sake of contradiction, suppose that
Cov[T ] has m + 1 = Θ(log(1/ε)) eigenvalues less than 1− 3ε, and let W be the
span of the corresponding m + 1 eigenvectors, and let W ′ be the subspace of W
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orthogonal to µT − µ. Then we have that

Cov[T ] =
1
|T |

∑
x∈T

(x − µ)(x − µ)> − (µT − µ)(µT − µ)>

�Cov[S ] −
1
|T |

∑
x∈S \T

(x − µ)(x − µ)> − (µT − µ)(µT − µ)> .

For a matrix M and a subspace W, define the trace of M over W to be

trW (M) := tr(ΠW M ΠW ) ,

where ΠW is the corresponding projection matrix. With this notation, the above
gives that

(1 − 3ε)m ≥ trW′ (Cov[T ]) ≥ trW′ (Cov[S ]) −
1
|T |

∑
x∈S \T

‖ProjW′ (x − µ)‖22

≥ m(1 − ε/2) −
1
|T |

∑
x∈S \T

‖ProjW′ (x − µ)‖22 .

This in turn gives that

1
|T |

∑
x∈S \T

‖ProjW′ (x − µ)‖22 ≥ 5mε/2 .

Since |S \ T | ≤ 2ε|T |, by Lemma 3.19, the left hand side above is at most

2ε(1.1)m +
2
|S |

∑
x∈S

1{
∣∣∣‖ProjW′ (x − µ)‖22 − m

∣∣∣ > m/10}‖ProjW′ (x − µ)‖22

= 2.2εm + exp(−Ω(m)) .

The right hand side above fails to be large enough for m a sufficiently large
constant multiple of log(1/ε), which provides the desired contradiction.

Therefore, the robust mean estimation algorithm for dealing with subtractive
contamination is surprisingly simple: Let V be the span of all eigenvectors of
Cov[T ] with eigenvalue less than 1− 3ε. With high probability dim(V) will be
less than O(log(1/ε)). Use Lemma 3.18 to compute the projection of µ onto V
and use the sample mean for the projection onto V⊥.

Additive Contamination. For the case of additive outliers, it will not necessarily
be the case that Cov[T ] − Cov[S ] will have few small eigenvalues. When the
dimension is large, the existence of many large eigenvalues means that we have
many outliers with large projection onto the relevant subspace. This property
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turns out to be sufficient for some sort of filtering. More specifically, we have
that

Cov[T ] �
1
|T |

∑
x∈T

(x − µ)(x − µ)>

� Cov[S ] + (µS − µ)(µS − µ)> +
1
|T |

∑
x∈T\S

(x − µ)(x − µ)> .

Considering the trace on a subspace W of dimension m, we have that

trW (Cov[T ])

≤ trW (Cov[S ]) + O(ε) +
1
|T |

∑
x∈T\S

‖ProjW (x − µ)‖22

≤m + O(εm) +
1
|T |

∑
x∈T\S

1
{∣∣∣‖ProjW (x − µ)‖22 − m

∣∣∣ > m/10
}
‖ProjW (x − µ)‖22 .

This means that the trace of Cov[T ] on W is at most m(1 + O(ε)), unless the
expectation over x ∼u T of the quantity

1
{∣∣∣‖ProjW (x − µ)‖22 − m

∣∣∣ > m/10
}
‖ProjW (x − µ)‖22

is more than ε. However, we know from Lemma 3.19 that the expectation of
this quantity over x ∼u S is at most exp(−Ω(m)).

Suppose that Cov[T ] has at least m eigenvectors whose eigenvalue is each
at least 1 + Cε, where C is a sufficiently large constant. Then, if m is itself
a sufficiently large constant multiple of log(1/ε), we can let W be the span
of these eigenvectors. Applying the above, we find that the expectation of the
function

f (x) := 1
{∣∣∣‖ProjW (x − µ)‖22 − m

∣∣∣ > m/10
}
‖ProjW (x − µ)‖22

over x ∼u T is more than ε, but the expectation over x ∼u S is less than
ε2. Using f (x) as a score function for a randomized filter, we have that in
expectation the number of good samples removed is at most an ε-fraction of
the number of bad samples removed.

One caveat here is that the algorithm does not know the exact value of µ, and
thus cannot compute the function f (x) as provided. However, one can compute
an O(ε)-approximation of the projection of µ onto W, and it is not hard to show
that computing f using this approximation suffices.

This allows us to create a filter-based algorithm. The algorithm will repeat-
edly compute the sample covariance of the remaining samples. If there are
fewer than C log(1/ε) eigenvalues larger than 1 + Cε, for C some sufficiently
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large constant, then we let V be the span of the eigenvectors with large eigen-
values, and compute an approximation to ProjV (µ) (using the algorithm of
Lemma 3.18) and approximate ProjV⊥ (µ) by ProjV⊥ (µT ). Otherwise, if there
are many large eigenvalues, we let W be the span of the C log(1/ε) top eigen-
vectors and define the function f as above, using it to create a randomized
filter.

The analysis of this algorithm is relatively straightforward, with the caveat
that we need all of the above arguments to still work even if we have potentially
removed an O(ε2)-fraction of the original good samples. Fortunately, this is not
difficult as if S ′ is any subset of S of size at least (1 − ε2)|S |, we will still have
that Cov[S ′] = I + O(εI) and µS ′ = µ + O(ε).

3.5 Robust Estimation via Non-Convex Optimization

Although the algorithms that we have presented until this point can be quite
efficient, they are also somewhat complicated and have several constants that
must be pinned down in order to actually implement them. It turns out that
there is a fairly simple optimization framework that can be used in a black
box-manner in order to efficiently solve robust mean estimation problems. Al-
though this formulation is likely not as computationally efficient (especially
compared to the near-linear time algorithm presented in Section 3.3), its sim-
plicity and lack of extra parameters to tune makes it desirable in some settings.

To motivate our approach, we note that by the analysis of Section 2.2.2 if
T is an ε-corrupted version of a (3ε, δ)-stable set S , then if we can find a set
of weights w on T such that 0 ≤ wx ≤

1
(1−ε)|T | and

∑
x wx = 1 for which the

weighted covariance matrix Σw :=
∑

x∈T wx(x − µw)(x − µw)> has maximum
eigenvalue 1 + O(δ2/ε), then we can conclude that ‖µw − µS ‖2 = O(δ), giving
us a good approximation to the mean of S .

A natural way to attempt to compute such a set of weights is to formulate it
as an optimization problem. In particular, we would like to solve the following
optimization problem:

Find w : T → R such that: (3.5)

0 ≤ wx ≤
1

(1 − ε)|T |
for all x ∈ T∑

x∈T

wx = 1

Minimizing: ‖Σw‖2 .

A first observation is that there exists a reasonably good set of weights. Specif-
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ically, by taking w∗ to assign 1
|S∩T | to x ∈ S ∩ T and 0 to other x, we know

by the stability condition that ‖Σw∗‖2 = 1 + O(δ2/ε). The question is if can we
efficiently find such a w.

We note that the optimization problem (3.5) is quite nice. The constraints are
convex and the objective function is almost convex. In particular, the function∥∥∥∥∥∥∥∑x∈T wx(x − µ)(x − µ)>

∥∥∥∥∥∥∥
2

for some fixed vector µ is convex in the weights wx. Unfortunately, as µw de-
pends on w, our actual objective will not in general be convex. This means
that we cannot simply use convex optimization to find a global minimum of
our objective function. Fortunately, it turns out that we do not have to do this.
Specifically, we will show that any local minimum will suffice for our pur-
poses. In particular, we show.

Theorem 3.20 If T is an ε-corruption of a (3ε, δ)-stable set S for some
ε sufficiently small and w is any local minimum of (3.5), then it holds that
‖Σw‖2 ≤ 1 + O(δ2/ε).

In particular, this means that in order to robustly estimate the mean of S ,
we do not necessarily need to find a global minimum of (3.5) (which might be
hard), but merely a local minimum. This can be done much more generally. In
particular, any gradient-descent type algorithm should allow one to find an (ap-
proximate) local minimum. While there are some technicalities involved with
this strategy (in particular, the objective is not always differentiable, however
one can solve a linear program to find a direction of decrease if it exists), they
can be resolved by more-or-less standard methods. See Exercise 3.6 for more
details.

Instead, we will work towards a proof of Theorem 3.20. To begin with, we
want to understand the derivative of Σw. Since w is constrained, we cannot vary
it in all directions. So we will consider the derivative in the direction of another
weight vector u.

Lemma 3.21 Let T be a set of points in Rd. Let u and w be weight vectors
satisfying the constraints of (3.5). Then, for 0 ≤ t ≤ 1, we have that

Σ(1−t)w+tu = (1 − t)Σw + tΣu + t(1 − t)(µw − µu)(µw − µu)> .

In particular, the derivative in the u − w direction of Σw at w is

Du−wΣw = Σu − Σw + (µw − µu)(µw − µu)> .

Proof The proof follows by noting that the distribution defined by (1−t)w+tu
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is a mixture of the distributions defined by u and w. Applying the standard
formula for the covariance of a mixture then yields

Σ(1−t)w+tu = (1 − t)Σw + tΣu + t(1 − t)(µw − µu)(µw − µu)> .

Taking the derivative of this quantity with respect to t at t = 0 gives the second
statement of the lemma, concluding our proof. �

To prove Theorem 3.20, we need to show that for any weight vector with
‖Σw‖2 large, there exists another weight vector u such that moving in the u
direction causes ‖Σw‖2 to decrease. We note that Lemma 3.21 is quite promis-
ing for this. If we take u to be a weight with ‖Σu‖2 small, then the −Σw-term
in the derivative will cause the largest eigenvalues of Σ to decrease substan-
tially, while the Σu term will only cause them to increase by a small amount.
Unfortunately, we also have to deal with the remaining (µw − µu)(µw − µu)>

term.
For this, we note that the measure defined by w is 3ε-close to the uniform

distribution over S . This and Lemma 2.10 imply that

‖µw − µS ‖2 = O(δ +
√
ε‖Σw − I‖2) .

By taking u = w∗ to be the uniform distribution over S ∩T , we therefore obtain
that ‖µw∗ − µS ‖2 = O(δ). Combining these we find that

‖µw − µw∗‖
2
2 = O(δ2 + ε‖Σw − I‖2) .

In particular, if Σw has largest eigenvalue 1 + λ, for some λ > 0, we have that

‖Σ(1−t)w+tw∗‖2 = ‖(1 − t)Σw + tΣw∗ + t(1 − t)(µw − µw∗ )(µw − µw∗ )>‖2
≤ (1 − t)‖Σw‖2 + t‖Σw∗‖2 + t(1 − t)‖(µw − µw∗ )‖22
≤ (1 − t)(1 + λ) + t(1 + O(δ2/ε)) + tO(δ2 + ελ)

≤ ‖Σw‖2 − t(λ + O(δ2/ε + ελ)) .

Therefore, so long as λ is at least a sufficiently large constant multiple of δ2/ε

and ε is less than a sufficiently small constant, then for any 1 > t > 0 (and in
particular for any sufficiently small t > 0) we have that (1 − t)w + tw∗ has a
smaller value of the objective of (3.5) than w does. This shows that w can only
be a local minimum if λ = O(δ2/ε) or in other words if ‖Σw‖2 ≤ 1 + O(δ2/ε).

This completes the proof of Theorem 3.20. �

Theorem 3.20 gives us our simple robust mean algorithm. We can use stan-
dard optimization methods to find any (approximate) local minimum of (3.5).
We can then return µ̂ =

∑
x∈T wxx. This will then give an O(δ) approximation

of the true mean by Lemma 2.6.
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3.6 Robust Sparse Mean Estimation

Leveraging sparsity in high-dimensional datasets is a fundamental problem of
significant practical importance. Various formalizations of this problem have
been investigated in statistics and machine learning for at least the past two
decades. Specifically, sparse mean estimation is arguably one of the most fun-
damental sparse estimation tasks and is closely related to the Gaussian se-
quence model.

In this section, we study sparse mean estimation in the strong contamina-
tion model. In robust sparse mean estimation, we are given an ε-corrupted set
of samples from a structured distribution, where the unknown mean µ ∈ Rd

is k-sparse (i.e., supported on an unknown subset of k coordinates), and we
want to compute a good approximation µ̂ close to µ. Importantly, we want
to achieve this using much fewer samples than in the dense case — namely,
poly(k, log(d)) instead of poly(d) samples.

We will require the following notation to describe vectors and matrices sub-
sets of their coordinates.

Definition 3.22 If x ∈ Rd and C ⊆ [d], let xC denote the vector in R|C|

obtained by taking the coordinates of x whose indices lie in C. For a matrix
M ∈ Rd×d, we let MC denote the |C| × |C| submatrix given by keeping the rows
and columns corresponding to the elements of C.

Arguably the simplest version of robust sparse mean estimation is the fol-
lowing: One is given ε-corrupted samples from the GaussianN(µ, Id) with the
guarantee that µ is a k-sparse vector, and the goal is to approximate µ in `2

norm. Of course, ignoring the sparsity assumption, we can efficiently obtain
an O(ε

√
log(1/ε))-approximation of µ with O(d/ε2) samples. However, with

the sparsity assumption, we can hope to significantly improve the sample com-
plexity of this algorithm.

This improvement is readily apparent in the uncorrupted setting. In partic-
ular, if one takes N samples, with N a sufficiently large constant multiple of
klog(d)/ε2, it is not hard to show that with high probability the sample mean,
µ̂, approximates the true mean to error at most ε/

√
k in each coordinate. Of

course, this leads to `2 error on the order of ε
√

d/k; but this is mostly because
we keep the errors from coordinates not in the support of µ. To overcome this
issue, we can truncate µ̂ to its top k coordinates. In particular, letting tk(x) be
the vector obtained from x by setting all but the k coordinates with largest ab-
solute value to 0, it is not hard to see that tk (̂µ) will be O(ε)-close to µ. This
holds because on Supp(µ) ∪ Supp(tk (̂µ)) we have that µ and µ̂ are close, where
Supp(x) denotes the set of coordinates i where xi , 0.
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In fact, µ and µ̂ are close on every set of small support. This in particular
motivates the following definition.

Definition 3.23 For x ∈ Rd define the `2,k-norm of x, denoted ‖x‖2,k :=
‖tk(x)‖2, to be the `2-norm over the k biggest coordinates of x. Equivalently,
we have that ‖x‖2,k

def
= sup‖v‖2=1,|Supp(v)|≤k v · x.

For k-sparse vectors, finding an approximation in `2,k-norm is sufficient to
find an approximation in `2-norm. In particular, we have the following simple
structural result.

Lemma 3.24 For x, y ∈ Rd with y a k-sparse vector, we have that

‖tk(x) − y‖2 ≤
√

6‖x − y‖2,k .

Proof We consider the contributions to ‖tk(x) − y‖2 coming from three sets
of coordinates: (i) C1 = Supp(y) ∩ Supp(tk(x)), (ii) C2 = Supp(tk(x))\Supp(y),
and (iii) C3 = Supp(y)\Supp(tk(x)).

For the first of these, we note that (tk(x) − y)C1 = (x − y)C1 . Since |C1| ≤ k,
we have that ‖(tk(x) − y)C1‖2 ≤ ‖x − y‖2,k. A similar argument holds for the C2,
because |C2| ≤ k and (tk(x) − y)C2 = (x − y)C2 .

To analyze C3, we bound ‖(tk(x)−y)C3‖2 ≤ ‖(x−y)C3‖2+‖(tk(x)−x)C3‖2. Once
again, we have that ‖(x−y)C3‖2 ≤ ‖x−y‖2,k. We also claim that ‖(tk(x)−x)C3‖2 ≤

‖x − y‖2,k. This is because tk truncates x to the k largest coordinates. In partic-
ular, this means that

‖(tk(x) − x)C3‖2 = ‖xC3‖2 ≤ ‖xC2‖2 = ‖(tk(x) − y)C2‖2 ≤ ‖x − y‖2,k .

Note that tk(x) − y is supported on the three sets of coordinates above. The
`2-norm on the first and second sets are at most ‖x − y‖2,k and on the third set
is at most twice this bound. Therefore, we have that

‖tk(x) − y‖22 ≤ ‖x − y‖22,k + ‖x − y‖22,k + (2‖x − y‖2,k)2 = 6‖x − y‖22,k .

This completes our proof. �

Lemma 3.24 and the above discussion show that in the uncorrupted case we
can estimate µ to `2,k-error ε (and thus to `2-error O(ε)) using O(klog(d)/ε2)
samples. Achieving a qualitatively similar guarantee in the robust setting re-
quires additional work.

We start with an information-theoretic argument. If we take a set S of N >

k log(2d/k)/ε2 samples from N(µ, Id), Proposition 3.3 implies that for some
δ = O(ε

√
log(1/ε)), for any given set C ⊂ [d] with |C| = k, with probability

1 − exp(−k log(2d/k)) the set of samples {xC : x ∈ S } is (ε, δ)-stable with
respect to µC . Taking a union bound over C, with high probability, for each C
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we can compute a µ̂(C) such that ‖̂µ(C)−µC‖2 ≤ δ. Thus, if we can find a single
vector µ̂ such that for every such C it holds ‖̂µ(C) − µ̂C‖2 ≤ δ, we will have
that ‖̂µ−µ‖2,k ≤ 2δ. Clearly, such a µ̂ exists (since µ is such a vector). It is thus
information-theoretically possible to estimate µ to `2,k error O(ε

√
log(1/ε))

with O(k log(2d/k)/ε2) samples.
The question is whether or not we can make some version of the above

information-theoretic argument algorithmic. A first attempt at doing so would
be to use a standard filtering method. Given a set T of ε-corrupted samples,
one can try to find a subset T ′ ⊂ T that still contains most of the inliers and has
bounded covariance. We of course cannot expect that the full covariance matrix
ΣT ′ will be bounded, as not even the covariance of the set of inlier samples will
be (unless we take at least d of them). However, we can hope that ‖(ΣT ′ )C‖2 ≤

1+O(ε log(1/ε)) for every subset C ⊂ [d] of size k. If this holds, by Lemma 2.7
applied to {xC : x ∈ T ′}, we will have that ‖(µT ′ − µ)C‖2 = O(ε

√
log(1/ε)) for

every |C| ≤ k, or equivalently that ‖µT ′ − µ‖2,k = O(ε
√

log(1/ε)).
Unfortunately, it appears quite challenging to make the above approach

computationally efficient for the following reason. The required condition (i.e.,
that ‖(ΣT ′ )C‖2 ≤ 1 + O(ε log(1/ε)) for all |C| ≤ k) is equivalent to the bound
v>ΣT ′v ≤ 1 + O(ε log(1/ε)) for all k-sparse vectors v with ‖v‖2 ≤ 1. It turns out
that this condition is not checkable in polynomial time, even approximately
(under plausible complexity assumptions).

In order to obtain a computationally efficient algorithm, we will need to
relax the aforementioned condition. Note that v>ΣT ′v = tr(ΣT ′vv>), where vv>

is a matrix satisfying: (i) vv> is symmetric, (ii) vv> � 0, (iii) tr(vv>) ≤ 1, (iv)
‖vv>‖F ≤ 1, (v) the `1-norm of the `2-norms of the rows/columns of vv> is at
most

√
k, and (vi) ‖vv>‖1 ≤ k, where by ‖vv>‖1 we denote the `1-norm of the

coefficients of vv>. This last two conditions hold because k-sparsity implies
‖v‖1 ≤

√
k‖v‖2 ≤

√
k.

Using these conditions, we define a convex relaxation (obtained by dropping
the rank-1 requirement). Let C(H) be the set of matrices satisfying the follow-
ing conditions: (i) H is symmetric, (ii) H � 0, (iii) tr(H) ≤ 1, (iv) ‖H‖F ≤ 1,
(v) the `1-norm of the `2-norms of the rows/columns of H is at most

√
k, and

(vi) ‖H‖1 ≤ k.
We now consider the following natural convex relaxation:

sup
‖v‖2≤1,|Supp(v)|≤k

v>Σv ≤ sup
C(H)

tr(ΣH). (3.6)

Inequality (3.6) is useful for us because the right hand side can be efficiently
approximated using semidefinite programming. Thus, our new plan is to use
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the filtering method in order to find some T ′ ⊆ T such that

sup
C(H)

tr(ΣT ′H) ≤ 1 + O(ε log(1/ε)) . (3.7)

This will imply the necessary bounds on ‖(ΣT ′ )C‖2 and give our result. Unfor-
tunately, finding such a T ′ might not be possible unless we take more sam-
ples. In particular, using o(k2) samples it might not even be the case that
supC(H) tr(ΣS H) is small (see Exercise 3.8).

This problem can be resolved by drawing more samples. In particular, if we
take N � k2 log(d)/ε2 samples, then with high probability each coordinate of
(ΣS − Id) will have absolute value O(ε/k). In such a case, for H satisfying the
necessary conditions, we have that

tr(ΣS H) = tr(H) + tr((ΣS − Id)H) ≤ 1 + ‖ΣS − Id‖∞‖H‖1 ≤ 1 + O(ε) .

Furthermore, for any subset S ′ ⊆ S with |S ′| ≥ (1 − ε)|S |, we have that
ΣS ′ � (1 + O(ε))ΣS . Combined with the fact that H is positive semidefinite,
we conclude that tr(ΣS ′H) ≤ 1 + O(ε).

Our next goal is to efficiently find a large subset T ′ of T such that Condi-
tion (3.7) holds. A convenient way to formulate this is by using the unknown
convex programming approach for robust estimation (explained in Section
2.3). In particular, let ∆T be the set of probability distributions W on T sat-
isfying W(x) ≤ 1

(1−ε)|T | for all x. Let W∗ be the uniform distribution on T ∩ S .
We need to show that if we have a W ∈ ∆T for which ΣW does not satisfy (3.7),
we can find a linear function L with L(W) > L(W∗).

Towards this end, we note that we have a positive semidefinite, trace 1 matrix
H with ‖H‖1 ≤ k and tr(ΣW H) = 1 + λ, where λ > Cε log(1/ε), for C a
sufficiently large constant. We can rewrite the left hand side as

tr(ΣW H) =
∑
x∈T

W(x)tr((x − µW )(x − µW )>H) .

As this quantity is abnormally large, this suggests that we define the function

L(U) :=
∑
x∈T

U(x)tr((x − µW )(x − µW )>H) .

That is, L(W) ≥ 1 + Cε log(1/ε). On the other hand, we have that

L(W∗) =
∑
x∈T

W∗(x)tr((x − µW )(x − µW )>H)

= tr
(
Ex∼W∗ [(x − µW )(x − µW )>]H

)
= tr

((
ΣW∗ + (µW∗ − µW )(µW∗ − µW )>

)
H

)
= 1 + O(ε) + (µW∗ − µW )>H(µW∗ − µW ) .
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To deal with the last term above, we note that for any k-sparse unit vector v
we have that v>ΣWv ≤ 1 + λ. Thus, applying Lemma 2.7 to (ΣW )C for any
|C| ≤ k, we find that ‖(µW −µ)C‖2 = O(ε

√
log(1/ε) +

√
ελ). Thus, we have that

‖µW − µ‖2,k = O(ε
√

log(1/ε) +
√
ελ). By stability of the restrictions to each

set of k coordinates, we have that ‖µW∗ − µ‖2,k = O(ε
√

log(1/ε)). Combining
the above, we have that ‖µW − µW∗‖2,k = O(

√
ελ). This means that the top-k

coordinates of (µW − µW∗ ) have `2-norm at most O(
√
ελ), and that the other

coordinates are all smaller than O(
√
ελ/k). In particular, this means that we

can write (µW − µW∗ ) = v + w, where ‖v‖2 = O(
√
ελ) and ‖w‖∞ = O(

√
ελ/k).

Thus, we have that

(µW∗−µW )>H(µW∗−µW ) = (v+w)>H(v+w) = v>Hv+v>Hw+w>Hv+w>Hw .

By the `2-bound on v and the Frobenius bound on H, we have that |v>Hv| ≤
‖v‖22‖H‖F = O(ελ). Since the `1-norm of the `2-norms of the rows of H is
at most

√
k, we have that ‖Hv‖1 = O(

√
εkλ), and thus |w>Hv| = O(ελ). We

bound v>Hw similarly. Finally, we have that |w>Hw| ≤ ‖w‖2∞‖H‖1 = O(ελ).
Thus, combining with the above we have that

L(W∗) = 1 + O(ε) + O(ελ) < L(W) .

In summary, we have shown the following theorem:

Theorem 3.25 Let d, k > 0 be integers and ε > 0 sufficiently small. Let N be
a sufficiently large constant multiple of k2 log(d)/ε2. There exists a polynomial-
time algorithm that given ε and N ε-corrupted samples fromN(µ, Id) computes
a µ̂ such that with high probability ‖̂µ − µ‖2,k = O(ε

√
log(1/ε)).

A few remarks are in order about Theorem 3.25. First, the final error of
O(ε

√
log(1/ε)) achieved by our algorithm is the best known guarantee even

in the non-sparse case. Interestingly, there does appear to be an inherent gap
in the sample complexity. Specifically, we showed that O(k log(d/k)/ε2) sam-
ples information-theoretically suffice; but we gave an efficient algorithm when
given Ω(k2 log(d)/ε2) samples. While we can do better than this when k ≥

√
d

(since the dense algorithm only uses O(d/ε2) samples), there is some evidence
(see Chapter 8) that this information-computation tradeoff is inherent.

Exercises

3.1 (Sample Complexity for Subexponential Tails) Let X be a distribution
on Rd with identity covariance and Pr[X · v > t] � exp(−c t) for some
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constant c > 0 and any unit vector v. Let x1, x2, . . . , xN be i.i.d. samples
from X.

(a) Use a cover to show that for some N = Õ(d2/ε2), with high probability
over the choice of xi, the multiset {xi}

N
i=1 is (ε,O(ε log(1/ε))-stable.

Note: a simple cover cannot do much better than this, as it is not hard
to show that for smaller values of N, the expected number of v’s in our
cover for which the stability condition is violated will be more than 1.
The next few parts will show how to improve the sample complexity.

(b) Show that with high probability we have that ‖xi‖2 �
√

d log(N) for
all i.

(Hint: Note that for a fixed x and v a random unit vector, it holds that
|v · x| � ‖x‖2/

√
d with probability at least 1/2.)

(c) Show that for any positive integer m < N/2 with high probability
over our samples the following holds: For any 2m distinct samples
y1, y2, . . . , ym and z1, z2, . . . , zm in {x1, x2, . . . , xN}, if vz is the unit vec-
tor in the direction of (z1 + z2 + . . . + zm), then

vz · (y1 + y2 + . . . + ym) � m log(N) .

(Hint: Show that for yi, z i.i.d. samples from X that this happens except
with probability N−2m. Note that vz is some unit vector so vz · X is
stochastically dominated by an exponential distribution.)

(d) Show that if the conditions from parts (b) and (c) hold for every m,
then for any m distinct samples y1, y2, . . . , ym in {x1, . . . , xN} we have
that ∥∥∥∥∥∥∥

m∑
i=1

yi

∥∥∥∥∥∥∥
2

�
√

dm log(N) + m log(N) .

(Hint: Use induction on m a power of 2. Write
∑m

i=1 yi =
∑m/2

i=1 yi +∑m
i=m/2+1 yi and use the condition from (c) to bound the inner product

of the two halves.)
(e) Show that for N = Ω̃(d/ε2) (with sufficiently large implied constants)

the set {x1, . . . , xN} is (ε,O(ε log(1/ε))-stable with high probability.

(Hint: Assume that the condition from part (d) holds. Use a cover ar-
gument, but use part (d) to bound the contribution from terms with
|v · xi| � log(N).)

3.2 (Bounded Covariance Sample Complexity) Let X be a random variable
with Cov[X] � Id. For constant ε0, there is a polynomial-time algorithm
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that given O(d) ε0-corrupted samples from X computes and O(1) approx-
imation to E[X]. Given this, show that for any ε0 > ε > 0 there exists a
polynomial time algorithm that given O(d/ε) ε-corrupted samples from
X computes an O(

√
ε) approximation to E[X].

3.3 (Robust Estimation in Small Space) The robust mean estimation algo-
rithms described in the current and the previous chapters require essen-
tially the entire dataset in memory. That is, the standard implementation
of these algorithms requires memory scaling quadratically in the dimen-
sion d. Provide an algorithm that performs robust mean estimation, in the
total variation contamination model, using dpolylog(d/ε) bits of storage
(in addition to read-only access to the data). How many passes over the
dataset does your algorithm require? Can you develop an algorithm with
similar guarantees in the strong contamination model?

(Hint: The near-linear time algorithm of Section 3.3 can be used as a
starting point to achieve this goal.)

Remark The reader is referred to [DKPP22] for a systematic investi-
gation of robust statistics in the streaming model.

3.4 (Sample Complexity for the Huber Noise Algorithm) Show that the ro-
bust mean estimation algorithm for obtaining O(ε)-error with Huber con-
tamination (for spherical Gaussians) can be made to work with high
probability with Õ(d/ε2) samples.

3.5 (Non-Convex Optimization for Huber Noise) Show that we can get an
efficient algorithm to obtain O(ε) error with Huber contamination using
non-convex optimization.

(Hint: Find a weight function that is a local minimum of the sum of the
top O(log(1/ε)) eigenvalues of the covariance matrix. Show that this has
the sum of these eigenvalues O(ε log(1/ε)).)

3.6 (Finding Stationary Points) It is not quite trivial to find an approximate
stationary point of the optimization problem (3.5), as the objective func-
tion is not smooth. Show however that given a non-stationary point w, it
is possible to efficiently find a direction v in which the objective function
decreases. Use this to give an efficient algorithm to find an approximate
stationary point.

3.7 (Smooth Formulation of Non-Convex Optimization) Show that the non-
convex optimization technique for robust mean estimation also works if
the objective function in (3.5) is replaced by

tr
(
(Σw − (1 −Cδ2/ε)I)log(d)

)
,
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for C > 0 a sufficiently large constant. This has the slight advantage of
the objective function being smooth, and thus allowing one to use simple
gradient descent.

3.8 (Sample Complexity of Robust Sparse Estimation) Show that for k ≤
√

d
if one takes S to be a set of k2 i.i.d. samples fromN(0, Id), then with high
probability

sup
C(H)

tr(ΣS H) > 1 + Ω(1) .

(Hint: Consider H a k2 × k2 submatrix.)

3.7 Discussion and Related Work

The sample upper bounds given in Section 3.2 were established in the works
by [DKK+16, DKK+17, DKP20]. In more detail, for the case of identity covari-
ance (sub)-Gaussians, the optimal sample complexity for the stability condi-
tion was given in [DKK+16]. For the case of bounded covariance distributions,
a near-optimal sample upper bound was implicitly shown in [DKK+17] for the
constant probability error regime. For the high probability regime, a nearly-
tight bound was given in [DKP20]. Section 3.2 gives a unified and simplified
exposition of these results. The reader is also referred to [ZJS22] for related
sample size upper bounds.

The design of near-linear time algorithms for robust mean estimation was
initiated in [CDG19]. That work gave a robust mean estimation algorithm for
bounded covariance distributions on Rd that has near-optimal sample com-
plexity, achieves the optimal `2-error guarantee of O(

√
ε), and runs in time

Õ(nd)/poly(ε), where n is the sample size and ε is the fraction of outliers. That
is, the algorithm of [CDG19] has the same (optimal) sample complexity and
error guarantee as previous polynomial-time algorithms [DKK+16, DKK+17],
while running in near-linear time when the fraction of outliers ε is a small
constant.

At the technical level, [CDG19] builds on the convex programming ap-
proach of Section 2.3. Specifically, the algorithm of [CDG19] reduces ro-
bust mean estimation to the task of solving a polylogarithmic number of cov-
ering/packing SDPs. Combined with the fact that such SDPs can be solved
in near-linear time, using techniques from continuous optimization [ALO16,
PTZ16], [CDG19] obtain the desired near-linear time algorithm. Roughly speak-
ing, their algorithm starts by fixing a guess ν for the true mean. Given this
guess, they consider an SDP whose solution gives a good set of weights (as-
suming the guess is sufficiently accurate). Even though this guess ν may not be
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correct, [CDG19] establish a win-win phenomenon: either ν is a good guess of
the target mean µ in which case we get a good set of weights, or ν is far from
µ and we can efficiently find a new guess ν′ that is closer to µ by a constant
factor.

Subsequent work [DL22] observed that a simple preprocessing step allows
one to reduce to the case when the fraction of corruptions is a small univer-
sal constant. As a corollary, a simple modification of the [CDG19] algorithm
obtains the same guarantees in Õ(nd) time. More importantly, [DL22] gave
a probabilistic analysis that leads to a fast mean estimation algorithm that is
simultaneously outlier-robust and achieves optimal sample complexity in the
high success probability regime. Independently and concurrently to [DL22],
[DHL19] used the matrix multiplicative weights (MMW) method to develop a
filtering-based algorithm with Õ(nd) runtime. The near-linear time algorithm
of Section 3.3 was inspired by the MMW-based approach of [DHL19] and
can be viewed as a simplification of their work. At a high-level, a conceptual
commonality of these works [CDG19, DL22, DHL19] is that they leverage
algorithmic techniques from continuous optimization in order to develop iter-
ative methods (with each iteration taking near-linear time) that are able to deal
with multiple directions in parallel.

The O(ε)-error robust mean estimator for spherical Gaussians under additive
contamination presented in Section 3.4 was developed in [DKK+18]. The cor-
responding algorithm for subtractive contamination is based on the same ideas
and first appears in this chapter.

The connection between non-convex optimization given in Section 3.5 and
robust mean estimation was first established in [CDGS20]. The reader is re-
ferred to [ZJS21] for a similar approach and generalizations to other estimation
tasks, and to [CDG+21] for a refinement of these ideas in the context of robust
sparse estimation. In this chapter, we presented a simplified proof of the main
structural result of [CDGS20]. Finally, the reader is referred to [CFB19] for a
non-convex gradient method in the context of heavy-tailed mean estimation.

The study of robust estimation under sparsity constraints (and robust sparse
mean estimation in particular) was initiated in [BDLS17]. The latter work em-
ployed the unknown convex programming method to obtain sample-efficient
and polynomial-time robust estimators for a number of sparse estimation tasks,
including mean estimation for spherical Gaussians and sparse PCA in the
spiked covariance model. Subsequent work developed practical provable al-
gorithms for these tasks, under weaker distributional assumptions, by adapting
the filtering technique [DKK+19b] and the aforementioned connection to non-
convex optimization [CDG+21].



4
Robust Covariance Estimation

4.1 Introduction

In the previous chapters, we developed algorithmic techniques for robust mean
estimation when the inlier distribution has known or bounded covariance ma-
trix. These results suffice for example to robustly learn an unknown mean and
identity covariance Gaussian to within small total variation distance. The im-
mediate next question is how to efficiently and robustly learn an unknown mean
and unknown covariance Gaussian in small total variation distance. More gen-
erally, the techniques of the previous chapters suffice to robustly estimate the
mean of a distribution, assuming we have some prior knowledge about the co-
variance. It is natural to ask if this assumption is inherent or whether it is pos-
sible to robustly estimate the mean without a priori bounds on the covariance
matrix.

Such results do not follow from the techniques we have developed so far.
In particular, not knowing the covariance matrix makes the robust learning
problem significantly more challenging. In fact, it is not immediately clear in
what metric one should robustly learn the covariance to obtain total variation
distance error guarantees, even in the Gaussian setting.

In this chapter, we develop efficient algorithms for robust covariance esti-
mation of high-dimensional Gaussians and other distributions satisfying ap-
propriate moment bounds. As an immediate corollary, we obtain the desired
near-optimal total variation distance guarantees.

At a high-level, the basic idea underlying robust covariance estimation al-
gorithms is fairly simple: If X is a centered random variable (i.e., satisfies
E[X] = 0), the covariance of X is exactly the expectation of the random vari-
able Y = XX>. That is, robustly estimating the covariance matrix of X is equiv-
alent to robustly estimating the mean of the random variable Y = XX>. In other

This material will be published by Cambridge University Press as Algorithmic
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This pre-publication version is free to view and download for personal use only. Not for
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words, the problem of robust covariance estimation can be “reduced” to the
problem of robust mean estimation of a more complicated random variable.

Given this observation, one might hope to use robust mean estimation al-
gorithms directly. Unfortunately, it will typically not be quite this easy for the
following reason: Our algorithms for robustly estimating the mean of a ran-
dom variable require that we have an a priori upper bound (or, better yet, an
approximation to) its covariance (or equivalently its second moments). Since
robustly learning the covariance of X can be thought of as learning the second
moments of X, we would require knowing some kind of bound on the fourth
moments of X (i.e., Cov[Y]). If we knew an a priori upper bound on Cov[Y],
we could use it directly with our robust mean estimation techniques to learn
the covariance of X. Unfortunately, such bounds do not hold for the random
variable Y = XX>, even if X is a Gaussian distribution. To handle this issue,
we need to use additional structural properties of X.

Specifically, if X ∼ N(0,Σ), we can leverage the fact that the covariance
of Y , Cov[Y], can be expressed as a known function of the covariance of X,
Cov[X]. An upper bound on Σ will give us an upper bound on the covariance
of Y , which can then be used to obtain a better approximation of Σ. Applying
this idea iteratively will allow us to bootstrap better and better approximations,
until we end up with an approximation to Σ with error close to the information-
theoretic optimum.

In this chapter, we develop in detail the techniques alluded to above for es-
timating the covariance of a random variable. We will assume throughout that
the random variables we work with have mean zero. A more critical assump-
tion is that the random variables in question have a Gaussian-like relationship
between their second and fourth moments. The reader is encouraged to con-
sider the prominent special case of learning the covariance of a single Gaus-
sian, although these assumptions will apply more generally.

Note that although these techniques can be used to learn the covariance of
a Gaussian even if that covariance is degenerate, for the sake of ease of ex-
position, throughout this chapter we will be assuming that the covariance Σ is
non-degenerate. See Remark 4.11 for more details.

4.2 Efficient Algorithm for Robust Covariance Estimation

Notation. Before we begin, we introduce some additional notation. Our algo-
rithm will make use of linear algebraic tools in order to transform our datasets
into appropriate spaces. In order to notate this cleanly, if f is a function on Rd

and S a set of points in Rd, we will use f (S ) to denote the set { f (x) : x ∈ S }.
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4.2.1 Additional Intuition and Basic Facts

Before we proceed with a detailed outline of our technique, we should clarify
the metric we will use to approximate the covariance matrix. Recall that for
mean estimation we used the `2-norm between vectors. Natural choices for the
case of the covariance matrix could be either the spectral norm or the Frobenius
norm.

In this chapter, we will use a stronger metric, known as Mahalanobis (or
relative Frobenius) distance. This is an affine invariant metric that corresponds
to multiplicative approximation.

Definition 4.1 (Mahalanobis Distance) Let Σ1,Σ2 ∈ Rd×d be invertible PSD
matrices. We define the Mahalanobis distance between these matrices to be
‖Σ
−1/2
2 Σ1Σ

−1/2
2 − I‖F .

We note that the Mahalanobis distance does not define a metric, though it
does satisfy the identity axiom along with weak versions of the symmetry and
transitivity axioms.

Definition 4.2 (Robust Covariance Estimation) Fix 0 < ε < 1/2. Given ac-
cess to an ε-corrupted set of samples from a distribution X on Rd with unknown
covariance Σ, the goal of a robust covariance estimation algorithm is to com-
pute Σ̂ such that ‖Σ−1/2Σ̂Σ−1/2 − I‖F is small.

To understand the need to define a more complicated notion of distance as
in Definition 4.1, we note that, unlike robust mean estimation, covariance esti-
mation does not have a natural scale to it. Specifically, if one wants to estimate
the mean of a Gaussian X = N(µ, σ2 I), there is a natural scale to the problem.
As differences between points in X are proportional to σ, we expect that the
achievable error should also be proportional to σ (and, in fact, the information-
theoretically optimal error is Θ(σε)). On the other hand, if one wants to esti-
mate the covariance of a Gaussian X = N(0,Σ), the situation is rather different.
More precisely, there is a natural scale to the problem, but that scale is given
by the unknown covariance Σ itself! This suggests that one should measure the
error between Σ and Σ̂ only after normalizing both of them. This can be done
by replacing Σ by Σ−1/2ΣΣ−1/2 = I and Σ̂ by Σ−1/2Σ̂Σ−1/2. This leaves open
the question of what metric we want to use to compare these matrices. While
it might be natural to use something like the spectral norm in some settings,
the Frobenius norm turns out to be more useful in our context. This is because
the Frobenius norm is in fact the strongest norm that one can expect to learn
in, and in particular because it is proportional to the total variation distance
between the underlying Gaussians.
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Fact 4.3 Let Σ1,Σ2 ∈ Rd×d be positive-definite matrices such that

‖Σ
−1/2
2 Σ1Σ

−1/2
2 − I‖F = δ .

Then we have that

dTV(N(0,Σ1),N(0,Σ2)) = Θ(min(δ, 1)) .

In particular, as it is usually impossible to robustly learn a distribution to
total variation distance better than ε, we cannot expect to learn the covariance
to Mahalanobis distance better than Ω(ε). As we will see, it is possible to ef-
ficiently learn to Mahalanobis distance Õ(ε). This shows that this algorithmic
result is close to the strongest that one could hope for.

Let X = N(0,Σ). Since our goal is to robustly learn the mean of the random
variable Y = XX>, we first need to understand the relationship between Cov[Y]
and Σ = Cov[X]. Towards this objective, it will be useful to consider the ran-
dom variables X′ = Σ−1/2X ∼ N(0, I) and Y ′ = (X′)(X′)> = Σ−1/2YΣ−1/2.

By definition, to get a handle on Cov[Y ′], it suffices to understand the vari-
ance of the scalar random variable Var[tr(AY ′)] for any d × d matrix A. Note
that tr(AY ′) is a homogeneous degree-2 polynomial in X′. It is not hard to see
that an orthonormal basis for the homogeneous degree-2 polynomials in X′

(with respect to the inner product given by 〈p, q〉 := Cov(p(X′), q(X′))) is the
set consisting of X′i X′j for i , j and (X′i )

2/
√

2.
Using the above, it is easy to see that

Var[tr(AY ′)] = 2

∥∥∥∥∥∥A + A>

2

∥∥∥∥∥∥2

F
. (4.1)

Making a change of variables, we can see that

Var[tr(AY)] = Var[tr((Σ1/2AΣ1/2)Y ′)] = 2

∥∥∥∥∥∥Σ1/2
(

A + A>

2

)
Σ1/2

∥∥∥∥∥∥2

F
. (4.2)

We note that in some very real sense Equation (4.2) gives the covariance of Y ,
in that it gives the quadratic form that maps a linear function, L(Y), of Y to its
variance.

Writing this covariance matrix explicitly is somewhat more challenging. In
particular, Y is naturally valued in matrices rather than vectors. This means that
the covariance “matrix” of Y should most naturally be viewed as a 4-tensor, or a
matrix over matrices, which is somewhat more difficult to think about. In order
to turn the covariance of Y into a matrix, one would first need to associate the
space of d × d symmetric matrices with vectors in some space. It turns out that
there is a nice way to do this, at least for Y ′.
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In particular, we need to find the correct way of flattening matrices into
vectors. To this end, we introduce the following definition.

Definition 4.4 (Flattening Operator) Let ei j denote the d×d matrix with a 1 in
the (i, j)-entry and 0’s elsewhere. We define Ld to be the linear transformation
taking d × d symmetric matrices to elements of R(d+1

2 ), such that Ld maps the
elements (ei j + e ji)/2 (for 1 ≤ i < j ≤ d), and eii/

√
2 (for 1 ≤ i ≤ d) to the

standard basis vectors in R(d+1
2 ). Likewise, it’s inverse, L−1

d is a bijection from(
d+1

2

)
-dimensional vectors to d × d symmetric matrices.

It is not hard to see that for any symmetric matrix A we have that 2‖A‖2F =

‖Ld(A)‖22. Given this fact, it is easy to see that Equation (4.1) is equivalent to
Cov[Ld(Y ′)] = 4I.

4.2.2 Algorithm Description

As in our algorithms for robust mean estimation, we will introduce a set of
deterministic conditions on the inliers. Our robust covariance estimation algo-
rithm will be shown to succeed subject to these deterministic conditions. In
the following section, we show that these conditions will be satisfied with high
probability given a polynomial-sized sample from the inlier distribution.

Since our general strategy will be to leverage some version of a robust mean
estimation algorithm on the random variable Y = XX>, we will require that the
set of these points (properly normalized) satisfy some version of the standard
stability condition (see Definition 2.1 in Chapter 2). To quantify our notion of
“properly normalized”, we need to use Equation (4.2). Formally, we introduce
the following definition.

Definition 4.5 (Covariance Stability Condition) Let δ ≥ ε > 0. Let S ⊂ Rd

be a multiset of points with |S | > 1/ε. We say that S is (ε, δ)-covariance stable
if for Σ = Ex∼uS [xx>] and MΣ(x) = Ld(Σ−1/2xx>Σ−1/2), we have that the set
MΣ(S ) is (ε, δ)-stable (with respect to Ld(Id)).

Given this definition, the main theorem of this section is as follows.

Theorem 4.6 (Robust Covariance Estimation Algorithm) Let S ⊂ Rd be an
(ε, δ)-covariance stable set with ε and δ less than a sufficiently small constant.
Let T be an ε-corrupted version of S . Let Σ = Ex∼uS [xx>]. Then there exists an
algorithm that given T , ε and δ runs in poly(|T |d/ε) time and returns a Σ̂ such
that ‖Σ−1/2 (̂Σ − Σ)Σ−1/2‖F = O(δ).

Before we proceed with the proof of Theorem 4.6, a remark is in order.
In several natural settings, the error guarantee achieved by this result is nearly
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sharp. For example, if S consists of i.i.d. samples fromN(0,Σ) then (as we will
show in the next section) with high probability we will be able to take δ = Õ(ε).
By Fact 4.3, the error metric ‖Σ−1/2 (̂Σ − Σ)Σ−1/2‖F is proportional to the total
variation distance between the GaussiansN(0,Σ) andN(0, Σ̂). This means that
we are able to efficiently learn the target Gaussian to within total variation
distance error Õ(ε). On the other hand, achieving total variation distance error
smaller than Ω(ε) is information-theoretically impossible. That is, for the case
of Gaussians, our algorithm matches the best possible error within logarithmic
factors.

We now proceed to describe and analyze our algorithm. The basic idea of our
approach will be to use an adaptation of the filtering technique. This is fairly
reasonable, since the goal is to approximate the expectation of ZZ>, where
Z ∼u S , and we know that the transformed version of ZZ>, namely MΣ(S ),
satisfies an appropriate stability condition. The obvious complication is that
the necessary transformation involves knowledge of the real Σ, which is what
we are trying to approximate in the first place. Instead, we can use the next
best thing, i.e., the empirical approximation to Σ. The key result here is that
this approximation of the desired transform still produces a set of sufficiently
good stability parameters.

In more detail, we establish the following.

Proposition 4.7 Let S ,T, ε, δ be as in the statement of Theorem 4.6. Let Σ′ =

Ex∼uT [xx>]. Suppose that the largest eigenvalue of Cov[MΣ′ (T )] is 1 + λ, for
some λ ≥ 0. Then the set MΣ′ (S ) is (ε, δ′)-stable for

δ′ = O
(
δ + min

(√
ε, ε3/4λ1/4

))
,

where the stability is taken with respect to the mean Ld

(
(Σ′)−1/2Σ(Σ′)−1/2

)
.

Proof The basic idea of the proof will be to show that Σ′ is not too far away
from Σ. Since we know that applying the transformation MΣ to S yields a stable
set, it is not hard to show that the related transform MΣ′ also gives a stable set.
To show that Σ is close to Σ′, we will take advantage of the fact that the largest
eigenvalue of Cov[MΣ(T )] is not too large along with Lemma 2.7 to show that

Ld(Σ−1/2Σ′Σ−1/2) = E[MΣ(T )] ≈ E[MΣ(S )] = Ld(I) .

Unfortunately, this requires knowing that MΣ′ (S ) is already stable, so we need
somewhere to get started. We begin with the following lemma.

Lemma 4.8 Suppose that Σ′ � Σ/2, then we have that MΣ′ (S ) is (ε, δ′)-stable
for

δ′ = O
(
δ +

√
ε min

(
1,

∥∥∥(Σ′)−1/2Σ(Σ′)−1/2 − I
∥∥∥

2

))
.
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Proof We know that MΣ(S ) is stable by the covariance stability of S . We
would like to understand the stability of MΣ′ (S ). We do this by noting that
MΣ(S ) and MΣ′ (S ) are linearly related, namely that MΣ′ (S ) = CΣ

Σ′
(MΣ(S )),

where CΣ
Σ′

: R(d+1
2 ) → R(d+1

2 ) is given by

CΣ
Σ′ (v) := Ld

(
(Σ′)−1/2Σ1/2L−1

d (v)Σ1/2(Σ′)−1/2
)
,

since CΣ
Σ′

(Ld(Σ−1/2xx>Σ−1/2)) = Ld((Σ′)−1/2xx>(Σ′)−1/2). Using the notation
H(A) = Ld(Σ−1/4AΣ−1/4), for symmetric d × d matrices A, the above can be
rewritten as

CΣ
Σ′ (v) = H

((
Σ1/4(Σ′)−1/2Σ1/4)H−1(v)

(
Σ1/4(Σ′)−1/2Σ1/4)) .

Note that this means that CΣ
Σ′

is conjugate (via H) to the operator

A 7→
(
Σ1/4(Σ′)−1/2Σ1/4

)
A

(
Σ1/4(Σ′)−1/2Σ1/4

)
, (4.3)

and therefore has the same eigenvalues.
Suppose that the matrix B = (Σ′)−1/2Σ(Σ′)−1/2 has eigenvalues νi. Then the

matrix C = (Σ1/4(Σ′)−1/2Σ1/4) (which is conjugate to B−1/2) has eigenvalues
ν−1/2

i . Writing A in the eigen-basis of C, we find that the operator in Equa-
tion (4.3) multiplies the (i, j)-entry of A by (νiν j)−1/2. Therefore, the eigenval-
ues of (4.3), and thus of CΣ

Σ′
, are (νiν j)−1/2.

Let S ′ be a subset of S of size at least (1 − ε)|S |. By the covariance stability
condition, we have that Cov[MΣ(S ′)] has eigenvalues 1+O(δ2/ε). To establish
stability of MΣ′ (S ), we need to bound the eigenvalues of

Cov[MΣ′ (S ′)] = Cov
[
CΣ

Σ′MΣ(S ′)
]

= CΣ
Σ′Cov[MΣ(S ′)](CΣ

Σ′ )
> .

Using our knowledge of the eigenvalues of each term in the above product,
we obtain that the eigenvalues of Cov[MΣ′ (S ′)] are between mini(νi)−1(1 −
O(δ2/ε)) and maxi(νi)−1(1 + O(δ2/ε)). Moreover, it is clear that the biggest
distance from 1 of any of these eigenvalues is

O
(
δ2/ε + min

(
1,max

i
(|νi − 1|)

))
.

This implies that MΣ′ (S ) is (ε,O(δ +
√
ε min(1, ‖Σ−1/2Σ′Σ−1/2 − I‖2)))-stable,

completing the proof of Lemma 4.8. �

Once again, applying Lemma 4.8 requires that we already know that Σ′ is
not too far from Σ. However, we note that as long as we have a lower bound,
this is not too hard to show.

Lemma 4.9 With the above notation, we have that Σ′ � Σ(1 − O(δ)).
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Proof Define S 0 = S ∩ T . Since T ⊃ S 0 and |S 0| ≥ (1 − ε)|T |, we have that

Σ′ = Ex∼uT [xx>] � (1 − ε)Ex∼uS 0 [xx>] := Σ0 .

We will show that Σ0 � Σ(1 − O(δ)). By the (ε, δ)-stability of MΣ(S ), we have
that

‖Ex∼uS 0 [MΣ(x)] − Ex∼uS [MΣ(x)]‖2 = O(δ) .

For the second term above, we can write that

Ex∼uS [MΣ(x)] = Ld

(
Σ−1/2Ex∼uS [xx>]Σ−1/2

)
= Ld

(
Σ−1/2ΣΣ−1/2

)
.

Similarly, we can express the first term as follows

Ex∼uS 0 [MΣ(x)] = Ld

(
Σ−1/2Ex∼uS 0 [xx>]Σ−1/2

)
= Ld

(
Σ−1/2Σ0Σ−1/2

)
.

Combining the above, we obtain that

O(δ) =
∥∥∥∥Ld

(
Σ−1/2(Σ0 − Σ)Σ−1/2

)∥∥∥∥
2

=
√

2
∥∥∥Σ−1/2(Σ0 − Σ)Σ−1/2

∥∥∥
F

≥
√

2
∥∥∥Σ−1/2(Σ0 − Σ)Σ−1/2

∥∥∥
2 .

This implies that

Σ−1/2(Σ − Σ0)Σ−1/2 � O(δ) I ,

and rearranging we get that Σ0�Σ(1 − O(δ)). This completes the proof of
Lemma 4.9. �

Combining Lemmas 4.8 and 4.9, it follows that MΣ′ (S ) is (ε,O(
√
ε))-stable.

To do better than this, we need to show that Σ′ is likely already a good
approximation Σ, which we can achieve by leveraging Lemma 2.7.

Lemma 4.10 Suppose Σ′ � Σ/2 and that MΣ′ (S ) is (ε, η)-stable. Then it is
(ε, η′)-stable for

η′ = O
(
δ + min(

√
ε,
√
εη + ε3/4λ1/4)

)
.

Proof We apply Lemma 2.7 to the sets MΣ′ (S ) and MΣ′ (T ), which are ε-
corrupted versions of each other. Since MΣ′ (S ) is (ε, η)-stable by assumption,
and since Cov[MΣ′ (T )] has eigenvalues bounded by 1 + λ by assumption, we
can apply Lemma 2.7 to show that the means of MΣ′ (S ) and MΣ′ (T ) have `2-
distance of at most O(η+

√
ελ). Moreover, we can express each mean as follows

E [MΣ′ (S )] = Ld

(
(Σ′)−1/2Ex∼uS [xx>](Σ′)−1/2

)
= Ld

(
(Σ′)−1/2Σ(Σ′)−1/2

)
,

and

E [MΣ′ (T )] = Ld

(
(Σ′)−1/2Ex∼uT [xx>](Σ′)−1/2

)
= Ld

(
(Σ′)−1/2Σ′(Σ′)−1/2

)
.
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Therefore, we have that

O(η+
√
ελ) =

∥∥∥∥Ld

(
(Σ′)−1/2(Σ − Σ′)(Σ′)−1/2

)∥∥∥∥
2

=
√

2
∥∥∥(Σ′)−1/2(Σ − Σ′)(Σ′)−1/2

∥∥∥
F .

(4.4)
This implies that the eigenvalues of (Σ′)−1/2Σ(Σ′)−1/2 are within O(η+

√
ελ) of

1. Applying Lemma 4.8 gives Lemma 4.10. �

To apply Lemma 4.10, we need to know that Σ′ � Σ/2. However, we have
that

Σ′ = Ex∼uT [xx>] � (2/3)Ex∼uS∩T [xx>] � Σ/2 ,

where the last inequality is by the covariance-stability of S .
We note that η′ < η in Lemma 4.10, unless η = O(δ + min(

√
ε, ε3/4λ1/4)).

Therefore, iterating Lemma 4.10 yields Proposition 4.7. �

We are now prepared to prove Theorem 4.6.

Proof The basic strategy of our algorithm will be to iteratively apply a filter
to MΣ′ (T ). More specifically, at any stage in our algorithm, we will maintain a
set R (initially taken to be T ) that is an O(ε)-noisy version of S . We compute
Σ′ = Ex∼uR[xx>] and Cov[MΣ′(R)] letting it have largest eigenvalue 1 + λ.

By Proposition 4.7, MΣ′ (S ) is (O(ε),O(δ′))-stable with

δ′ = O(δ + min(
√
ε, ε3/4λ1/4)) .

Unless λ is bounded above by a constant multiple of (δ′)2/ε, we can apply the
universal filter to R and obtain a new set R′ that is closer to S than R was.

If this is not the case, it means that

λ ≤ O(δ2/ε + min(1,
√
ελ)) ,

which implies that λ ≤ O(δ2/ε). Therefore, applying Equation (4.4), we have
that

‖(Σ′)−1/2(Σ − Σ′)(Σ′)−1/2‖F = O(δ) .

Given this, it is easy to see that ‖Σ−1/2(Σ − Σ′)Σ−1/2‖F = O(δ). Indeed, since Σ

and Σ′ must agree to within a factor of 2 (in Loewner order), the two different
normalizations only change things by a constant factor.

Thus, at each stage, our algorithm can either find an R′ closer to S than R
was, or can return Σ′, which will have an appropriate error. By iterating this
technique, our algorithm will eventually land in the latter case and return an
appropriate approximation.

In particular, the pseudocode of our algorithm is as follows:
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Algorithm Robust-Covariance
Input: Dataset T ⊂ Rd that is an ε-corruption of an (ε, δ)-covariance
stable set S .

1. Let C be a sufficiently large constant.
2. Let R = T , and Σ′ = Ex∼uT [xx>].
3. While Cov[MΣ′ (R)] has largest eigenvalue 1 + λ for λ > C4δ2/ε:

1. Let δ′ = C(δ + min(
√
ε, ε3/4λ1/4)).

2. Noting that MΣ′ (R) is (ε, δ′)-stable, and that C(δ′)2/ε < λ, apply a
randomized universal filter to R obtaining R′ ⊆ R.

3. Set R← R′ and Σ′ ← Ex∼uR[xx>].

4. Return Σ′.

To analyze this algorithm, we note that so long as R is an O(ε)-corrupted
version of S , by Proposition 4.7, the set MΣ′ (R) is (ε, δ′)-stable. Thus, since λ >
C(δ′)2/ε, our universal filter will remove in expectation fewer elements of R∩S
than elements of R \ S . Combining these with the martingale arguments from
the proof of Theorem 2.17, we have that with probability at least 2/3, the size
of the symmetric difference between R and S will remain O(ε|S |) throughout
the algorithm.

If this holds, we will eventually find such an R, where Cov[MΣ′ (R)] has
largest eigenvalue O(δ2/ε). By Proposition 4.7, this implies that MΣ′ (R) is
(ε,O(δ))-stable, and thus by Equation (4.4), we have that

‖(Σ′)−1/2(Σ − Σ′)(Σ′)−1/2‖F = O(δ) ,

which implies the desired bound. �

Remark 4.11 (Handling Degenerate Covariances) Note that the algorithm
as presented above only works when Σ is non-singular. This is because when
renormalizing vectors, we need to multiply by Σ−1/2. In fact, we need to be able
to multiply by Σ−1/2 to even define our notion of covariance stability. However,
there is a reasonable notion of covariance stability for sets S that are not full-
rank. One can think about this by first restricting S to the subspace given by its
span and then checking covariance stability on this subspace (over which Σ is
full-rank).

Using this notion, the above algorithm can be shown to still work with the
slight modification that (Σ′)−1/2 be replaced by the square root of a pseudo-
inverse of Σ in the definition of MΣ′ . The rest of the analysis follows mutatis
mutandis. This allows us to learn an ε-corrupted Gaussian N(0,Σ) to error
O(ε log(1/ε)) in total variation distance, even if Σ is degenerate.
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Although this generalization is not particularly difficult, the additional com-
plications interrupt the clarity of the key ideas, so throughout this chapter, we
will assume that the covariances we are trying to learn are non-degenerate.

4.3 Applications to Concrete Distribution Families

Theorem 4.6 tells us that we can efficiently and robustly learn the covariance of
a distribution from samples that satisfy the covariance stability condition. We
have yet to show that this condition is satisfied (with reasonable probability)
for sample sets from specific families. In this section, we will show that this
is in fact the case. In particular, in Section 4.3.1, we show that a polynomial
number of samples from a zero-mean Gaussian suffice with high probability.
In Section 4.3.2, we show that this even holds for a mixture of Gaussians as
long as the components are not too far apart.

4.3.1 Robustly Learning the Covariance of a Gaussian

Perhaps the most natural application of Theorem 4.6 is that of robustly learning
the covariance of a Gaussian G = N(0,Σ). For this basic case, our algorithm
achieves Mahalanobis distance O(ε log(1/ε)), which is within a logarithmic
factor from the information-theoretic optimum of Θ(ε).

It is clear that by taking sufficiently many i.i.d. samples fromN(0,Σ), we can
ensure that the sample covariance matrix is arbitrarily close to Σ. The question
is for what values of δ will a set of random samples be (ε, δ)-covariance stable.
This is quantified in the following proposition.

Proposition 4.12 Let ε > 0 be sufficiently small. Let G = N(0,Σ) and let S be
a set of a sufficiently large polynomial number of i.i.d. samples from G. Then,
with high probability, S is (ε, δ)-covariance stable for some δ = O(ε log(1/ε)).

Proof We start by noting that this problem is invariant under linear transfor-
mations. This allows us to take Σ = I. Moreover, it is easy to see that with suf-
ficiently many samples, we can ensure with high probability that the empirical
expectation Ex∼uS [xx>] is 1/poly(d)-close to the identity matrix, in Frobenius
norm. Given these observations, it suffices to show that with high probability
the set of points {Ld(xx>) : x ∈ S } is (ε, δ)-stable.

To establish this using the alternative characterization of stability from Lemma
3.1, it suffices to show that for any S ′ ⊆ S with |S ′| ≥ (1 − ε)|S | and for any
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unit vector v ∈ R(d+1
2 ), the following holds:∣∣∣∣∣∣∣∣ 1
|S |

∑
x∈S \S ′

(
v · Ld(xx> − I)

)2

∣∣∣∣∣∣∣∣ = O(ε log2(1/ε)) . (4.5)

We define the truncation function

f (x) =

(v · Ld(xx> − I))2 , if |v · Ld(xx> − I)| > C log(1/ε)

0 , otherwise

for some large universal constant C > 0. Then it suffices to show that

1
|S |

∑
x∈S

f (x) = O(ε log2(1/ε)) .

We can bound the LHS above as follows∫ ∞

C log(1/ε)
2tPrx∼uS [|v · Ld(xx> − I)| > t]dt

+ (C2 log2(1/ε))Prx∼uS [|v · Ld(xx> − I)| > C log(1/ε)] .

With high probability, no point x ∈ S has norm more than B =
√

dpolylog(d/ε).
Thus, we can bound the upper range of the integral by B instead of at ∞. Fur-
thermore, given sufficiently many samples, we will have that for each t and
v, the empirical probability Prx∼uS [|v · Ld(xx> − I)| > t] will approximate
Pr[|v · (Ld(GG>) − I)| > t]. Note that v · (Ld(GG>) − I) is a quadratic poly-
nomial in G with mean 0 and variance 1. To bound from above the correspond-
ing tail probability, we use the following standard concentration inequality for
low-degree polynomials over Gaussians (see Theorem A.9). In particular,

Fact 4.13 For any quadratic polynomial p and a Gaussian G ∼ N(0, 1), we
have that Pr[|p(G)| > t‖p(G)‖2] < 2e−Ω(t).

Fact 4.13 immediately implies that Pr[|v · Ld(GG> − I)| > t] < 2e−Ω(t).
Plugging this in to the bounds above gives Proposition 4.12. �

4.3.2 Robustly Learning the Covariance of Gaussian Mixtures

Another important application of these techniques is for Gaussian mixture
models, i.e., distributions of the form X =

∑k
i=1 wiN(µi,Σi). Robustly esti-

mating the covariance of X is an important ingredient when trying to robustly
learn mixtures of Gaussians.

While general mixtures of Gaussians do not necessarily satisfy the covari-
ance stability condition, it turns out that if the component Gaussians are not too
far from each other, this will be the case. Specifically, we show the following.
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Proposition 4.14 Let X =
∑k

i=1 wiN(µi,Σi) be a mixture of Gaussians with
E[X] = 0 and Cov[X] = I. Then a set of sufficiently large polynomial number
of samples from X is (ε, δ)-covariance stable with high probability for

δ = O
(√

ε max
i

(1 + ‖Σi − I‖F + ‖µi‖
2
2)
)
.

Two remarks are in order about this proposition. First, the assumption that
Cov[X] = I is simply a normalization assumption. In particular, for any mix-
ture of Gaussians X with Cov[X] = Σ, we can reduce to this case by consid-

ering Σ−1/2. This has the effect of replacing the ‖µi‖2 terms with
√
µ>i Σ−1µi

and the ‖Σi − Σ j‖F terms by ‖Σ−1/2(Σi − Σ j)Σ−1/2‖F . Second, we note that the
parameter δ will be small so long as the component Gaussians of X are not too
far apart in total variation distance from each other.

Proof First, note that since Cov[X] = I and δ2/ε > 1, it suffices to show that
for a polynomially large sample set S , the following holds

‖Covx∼uS [xx>]‖2 ≤ δ2/ε .

This is because restricting S to a subset will not increase the covariance by
much, i.e., the covariance will still be bounded above by O(δ2/ε), and because
Chebyshev’s inequality implies that removing any ε-fraction of S will change
the mean by at most O(

√
ε(δ2/ε)) = O(δ). As Covx∼uS [xx>] will approxi-

mate Cov[XX>] with enough samples, it suffices to show that ‖Cov[XX>]‖2 ≤
δ2/(2ε).

To show this, we recall that the covariance of a mixture Y =
∑k

i=1 wiYi is
given by

Cov[Y] =

k∑
i=1

wiCov[Yi] + Cov[m] ,

where m is the random variable that has value E[Yi] with probability wi. In our
case, we take Yi to be (µi + Zi)(µi + Zi)>, where Zi ∼ N(0,Σi). We note that
ZiZ>i has covariance corresponding to the operator A 7→ 2‖Σi((A + A>)/2)Σi‖

2
F ,

which has operator norm O(‖Σi‖
2
F). The other terms, µiZ>i , Ziµ

>
i and µiµ

>
i have

covariances with norms bounded by O(‖µi‖2 + ‖Σi‖F)2. Therefore, the sum, Yi,
has covariance bounded by O(‖µi‖2 + ‖Σi‖F)2.

For the other terms, we note that E[Yi] = µiµ
>
i +Σi. Therefore, the remaining

term, Cov[m], is given by

1
2

∑
i, j

wiw j((µiµ
>
i + Σi) − (µ jµ

>
j + Σ j))((µiµ

>
i + Σi) − (µ jµ

>
j + Σ j))> .
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The spectral norm of this matrix is bounded above by the maximum value of
‖(µiµ

>
i +Σi)−(µ jµ

>
j +Σ j)‖2F , which in turn is clearly O(maxi(‖Σi− I‖F +‖µi‖

2
2))2.

Thus, our set will be (ε, δ)-covariance stable so long as δ2/ε is at least a
sufficiently large multiple of

max
i

(1 + ‖µi‖2 + ‖Σi‖F + ‖Σi − I‖F + ‖µi‖
2
2)2 .

It is not hard to see that it suffices to replace this with maxi(1+‖Σi−I‖F +‖µi‖
2
2),

which gives our result. �

4.4 Reduction to Zero-Mean Case

Throughout this chapter, we have been restricting ourselves to the case where X
is centered, i.e., E[X] = 0. In this case, computing the covariance of X becomes
equivalent to computing the expectation of the variable Y = XX>. While many
cases that we would like to consider do not satisfy this assumption, there is a
relatively simple reduction to this case.

In particular, given a random variable X, we can define a new random vari-
able X′ = (X1 − X2)/

√
2, where X1 and X2 are two independent copies of X.

The following important properties are all easy to verify:

1. E[X′] = 0.
2. Cov[X′] = Cov[X].
3. A sample from X′ can be computed from two samples of X. Furthermore, if

we have access to a source of ε-corrupted samples from X, we can use this
to obtain a source of 2ε-corrupted samples from X′.

This means that if we want to robustly estimate the covariance of X, it suffices
to robustly estimate the covariance of X′ instead. Since the mean of X′ is 0,
the techniques of this chapter will apply. For example, if X = N(µ,Σ), then we
have that X′ = N(0,Σ), which we can learn robustly.

The following proposition shows that we can efficiently and robustly learn
an arbitrary Gaussian N(µ,Σ) within small total variation distance.

Proposition 4.15 Let d ∈ Z+ and ε at most a sufficiently small universal
constant. There is an algorithm that given n = poly(d/ε) ε-corrupted samples
from an arbitrary Gaussian distribution X on Rd, runs in poly(n) time, and
learns X to error O(ε log(1/ε)) in total variation distance.

Proof Let X ∼ N(µ,Σ). First, we consider the variable X′ as described above.
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Given 2ε-corrupted samples from X′, we can use Proposition 4.12 and Theo-
rem 4.6 to learn a Σ̂ with

‖Σ−1/2 (̂Σ − Σ)Σ−1/2‖F = O(ε log(1/ε)) .

Note that Σ̂−1/2X ∼ N (̂Σ−1/2µ, Σ̂−1/2ΣΣ̂−1/2) has covariance Σ̂−1/2ΣΣ̂−1/2, and
that

(1 − O(ε log(1/ε))I � Σ̂−1/2ΣΣ̂−1/2 � (1 + O(ε log(1/ε))I .

From this it is easy to see that taking sufficiently many samples from Σ̂−1/2X
gives an (ε, δ)-stable set with δ = O(ε log(1/ε)). We can then use our stan-
dard mean estimation techniques to compute a µ̂ so that ‖Σ̂−1/2(µ − µ̂)‖2 =

O(ε log(1/ε)). Since Σ̂ is close to Σ, this implies that ‖Σ−1/2(µ−µ̂)‖2 = O(ε log(1/ε)).
Using standard facts, it is easy to see that dTV(N (̂µ, Σ̂),N(µ,Σ)) = O(ε log(1/ε)).

�

One potential issue with this reduction technique is that computing the mo-
ments of (X′)(X′)> might be non-trivial. Fortunately, there is a relatively simple
formula for it.

Lemma 4.16 Let X be a random variable with finite fourth moments, where
E[X] = µ and Cov[X] = Σ. Let X′ = (X1 − X2)/

√
2, where Xi are independent

copies of X. Finally, let Y = (X − µ)(X − µ)> and Y ′ = (X′)(X′)>. Then for any
symmetric matrix A we have that

Var[tr(AY ′)] =
Var[tr(AY)] + 2‖Σ1/2AΣ1/2‖2F

2
.

In other words, the covariance of Y ′ is the average of what it would need to
be in order to be covariance stable, and the covariance of Y . This allows us for
example to take the results on the covariance of a mixture of Gaussians from
Section 4.3.2, and show that under similar conditions we can robustly learn the
covariance of a mixture of Gaussians even if the mean is not 0.

Proof Note that X′ = (X1 − µ) − (X2 − µ). Therefore, we can equivalently
rewrite

Y ′ = ((X1 − µ)(X1 − µ)> − 2(X1 − µ)(X2 − µ)> + (X2 − µ)(X2 − µ)>)/2 .

Therefore, Var[tr(AY ′)] equals

1
4

Var
[
tr((X1 − µ)(X1 − µ)>A) − 2tr((X1 − µ)(X2 − µ)>A) + tr((X2 − µ)(X2 − µ)>A)

]
.

We claim that the three terms in the variance above are pairwise uncorrelated.
Indeed, the random variables tr((X1 −µ)(X1 −µ)>A) and tr((X2 −µ)(X2 −µ)>A)
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are clearly independent. Also, we have that the mean of the random variable
tr((X1 − µ)(X2 − µ)>A) is 0 (since the term inside the trace has mean 0), and

E[tr((X1 − µ)(X1 − µ)>A)tr((X1 − µ)(X2 − µ)>A)] = 0 ,

since for any X1, the expectation over X2 is 0. The third comparison follows
similarly. Therefore,

Var[tr(AY ′)] =Var[tr((X1 − µ)(X1 − µ)>A)]/4 + Var[tr((X1 − µ)(X2 − µ)>A)]

+ Var[tr((X2 − µ)(X2 − µ)>A)]/4 .

The first and last terms are clearly each equal to Var[tr(YA)]. The middle term
equals

E[tr((X2 − µ)>A(X1 − µ))2] = E[tr((X2 − µ)>A(X1 − µ)(X1 − µ)>A(X2 − µ))]

= E[tr((X2 − µ)(X2 − µ)>A(X1 − µ)(X1 − µ)>A)]

= tr(ΣAΣA)]

= tr(Σ1/2AΣAΣ1/2)

= tr((Σ1/2AΣ1/2)(Σ1/2AΣ1/2)>)

= ‖Σ1/2AΣ1/2‖2F .

This completes the proof of Lemma 4.16. �

Exercises

4.1 (Robust PCA) Suppose that one has access to ε-corrupted samples from
X = N(0,Σ), a Gaussian in Rd with unknown covariance Σ, but instead
of learning all of Σ one merely wants to learn (an approximation to)
the principal eigenvector of Σ. In particular, if λ = ‖Σ‖2 is the largest
eigenvalue, one wants to compute a unit vector v such that v>Σv ≥ λ(1−
O(ε log(1/ε))). Give an efficient algorithm for this task using Õ(d/ε2)
samples.

(Hint: Compute the principal eigenvector v̂ of Σ̂ and filter in the v̂ direc-
tion if necessary.)

4.2 (Sample Complexity of Robust Covariance Estimation) Let d ∈ Z+, ε >

0. Show that there is an N = Õ(d2/ε2) such that if one takes N i.i.d.
samples from a d-dimensional Gaussian X = N(0,Σ), the resulting set is
(ε, εpolylog(d/ε))-covariance stable with high probability.

(Hint: Assuming Σ = I, you will need to bound
∑

x∈S ′ x>Mx for sym-
metric matrices M and any S ′ ⊂ S of size at most εN. Try writing M as
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a linear combination of projections onto subspaces of dimension 2k for
various values of k. You can use the fact that a cover of the set of such
projections will have size roughly 2O(dk) along with the Hanson-Wright
inequality, which states that for a degree-2 polynomial p and t > 0,
Pr[|p(X)| > t] � exp(−min(t2/E[p2(X)], t/λ)), where λ is the largest
absolute value of an eigenvalue of the quadratic form associated to p.)

4.3 (Sample Complexity of Robust Covariance Estimation in Relative Op-
erator Norm) This chapter discussed attempts to estimate the covariance
Σ of a distribution to small error in relative Frobenius norm. Namely,
to compute a Σ̂ such that ‖Σ−1/2Σ̂Σ−1/2 − I‖F is small. Although this is
a natural error metric, there are other reasonable ones to consider. For
example, one could instead try to find a good estimator in the relative
operator norm. That, is computing a Σ̂ such that ‖Σ−1/2Σ̂Σ−1/2 − I‖2 is
small.

Show that if X = N(0,Σ) is a zero-mean Gaussian in Rd there is an
(inefficient) algorithm that given N = O(d/ε2) ε-corrupted samples from
X (for some ε < 1/3) learns Σ to relative operator norm O(ε).
(Hint: Robustly estimate Var(v · X) for each v in a cover of the unit
sphere.)

Remark 4.17 This sample complexity is better than the complexity of
Ω(d2/ε2) that is needed to learn Σ to relative Frobenius norm O(ε), even
without any corruptions. Unfortunately, while information-theoretically
O(d/ε2) samples suffice to learn to error O(ε) in relative operator norm, it
is believed that any computationally efficient estimator may well require
Ω(d2/ε2) samples (see Exercise 8.12).

4.4 (Robustly Learning the Mean and Covariance Simultaneously) While
considering samples from X − X′ in order to reduce to the zero-mean
case is convenient, it is not necessary. Show how one can robustly learn
the mean and covariance of an unknown Gaussian simultaneously. In
particular, if we have an upper bound Σ̂ on Σ, we can use it to learn an
estimate µ̂ of µ. We can then robustly estimate E[(x − µ̂)(x − µ̂)>] to get
a better estimate for Σ and iterate. Formalize and analyze this algorithm.

4.5 (Higher Moments of Gaussian Mixtures) Let X be as in Proposition 4.14.
For m ∈ Z+, let hm(x) be the rank-m tensor whose ( j1, j2, . . . , jm)-entry is∏d

i=1 hai (xi), where ai is the number of j’s equal to i, and hai are the Her-
mite polynomials (see Chapter A.2). Show that Cov[hm(X)] has spectral
norm bounded by poly(1 + max(‖µi‖2 + ‖Σi − I‖F)m). Use this to show
that one can robustly estimate E[hm(X)] for mixtures of Gaussians that
are all close to N(0, I).
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(Hint: For the first part you might want to note that hm(x) is proportional
to the sum of all possible tensor products of x and −I that leave a rank-m
tensor.)
Note: This procedure is a useful step towards developing an efficient
algorithm to robustly learn arbitrary Gaussian mixtures.

4.6 (Learning Finite Markov Chains) Consider the following finite Markov
chain. One obtains samples X ∈ {0, 1}d generated in the following way:
X1 = 1 with probability p1, and then one sequentially generates ran-
dom variables X1, X2, . . . , Xd ∈ {0, 1}, where Xi = 1 with probability
p0,i if Xi−1 = 0 and probability p1,i if Xi−1 = 1. For simplicity, we as-
sume that these probabilities are balanced, in particular that p1, p j,i are all
in [1/3, 2/3]. Give a polynomial-time algorithm that given poly(d/ε) ε-
corrupted samples from X computes the vector of p j,i’s to `2-error Õ(ε).

(Hint: Ideally, one would like to produce a (noisy) random variable whose
mean is the vector of p j,i. Conditioned on Xi−1 = j, Xi is an unbiased es-
timator of p j,i. How do we handle the case of Xi−1 , j? One strategy
would be to use our current best guess p̂ j,i. Of course, this introduces
some error if p̂ j,i , p j,i. However, by iterating this technique one can
obtain better and better approximations.)

4.5 Discussion and Related Work

The robust covariance estimation algorithm under relative Frobenius norm
given in this chapter was essentially developed in [DKK+16, DKK+17] for the
case of Gaussian distributions. This algorithm was improved in [CDGW19]
where new techniques were developed to obtain a faster runtime, again in the
Gaussian case. The reader is also referred to the work of [LY20] for an algo-
rithm whose runtime dependence on d matches [CDGW19] and improved run-
time dependence on ε. The application of Section 4.3.2 on robustly estimating
the covariance of Gaussian mixtures was obtained in [Kan21], and the overall
approach of this chapter is based on that work; the more precise statements of
the stability condition are new.

The work by [LRV16] gave a robust covariance estimation algorithm with
respect to the Frobenius norm under explicit upper bounds on certain mo-
ments of degree up to eight of the inlier distribution X. Their algorithm com-
putes an estimate Σ̂ of the target covariance that with high probability satisfies
‖Σ̂−Σ‖F = O(ε1/2

√
log(d) ‖Σ‖2), where the hidden constant in the O(·) depends

on the assumed moment upper bound. Their covariance estimation algorithm
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amounts to an application of a robust mean estimator from that work to the ran-
dom variable XX>. We note that using the robust mean estimation for bounded
covariance distributions from Chapter 2 instead, one can obtain an error guar-
antee of O(ε1/2 ‖Σ‖2) under an analogous fourth moment assumption.

The robust covariance estimation algorithm presented in this chapter achieves
error guarantee of O(ε log(1/ε)) with respect to the (relative) Frobenius norm
in the strong contamination model. On the other hand, it is information-theoretically
possible to achieve error O(ε). Similarly to the case of robust mean estimation,
there is evidence (in the form of a Statistical Query lower bound) that this
gap may be inherent for computationally efficient algorithms, and in particular
that any improvement over the O(ε log(1/ε)) error requires super-polynomial
time. These developments are described in Chapter 8. In the presence of addi-
tive contamination, [DKK+18] gave a robust covariance estimation algorithm
achieving the optimal error of O(ε) using poly(d/ε) samples and running in
time poly(d)2polylog(1/ε). Whether the quasi-polynomial dependence in 1/ε can
be improved to polynomial remains an interesting open problem.

Finally, it is worth mentioning that [KSS18] used the sum-of-squares method
to develop robust covariance estimation algorithms with respect to a relative
version of the spectral norm for a broader class of subgaussian distributions
satisfying additional properties. Interestingly, for the distribution class con-
sidered in [KSS18], obtaining distribution-independent error with respect to
the (relative) Frobenius norm is information-theoretically impossible. Using a
similar methodology, [BK20] developed alternative robust covariance estima-
tion algorithms in relative Frobenius norm for a subclass of the aforementioned
class, which includes Gaussian distributions.



5
List-Decodable Learning

5.1 Introduction

5.1.1 Background and Motivation

In the previous chapters, we focused on the classical robust statistics setting,
where the outliers constitute the minority of the dataset, quantified by the pro-
portion of contamination ε < 1/2, and the goal is to obtain estimators whose
error scales as a function of ε (and, in particular, is independent of the dimen-
sion d). A related setting of interest focuses on the regime where the fraction
α of clean data (inliers) is small – at most 1/2.

There are several settings of practical interest where these kinds of highly
noisy datasets might be expected to appear. For example, in many settings
there is a tradeoff between the amount and the quality of the collected data. A
prototypical application domain is crowdsourcing. For a fixed budget, it may be
possible to collect either a very small clean dataset or a large and highly noisy
dataset. A concrete scenario is when we collect a large dataset of customer
evaluations of products, and we are interested on the preferences of a small
demographic of customers.

Perhaps surprisingly, it turns out that even with an overwhelming majority
of the samples being outliers strong positive results are still possible given
reasonable assumptions on the clean data. Moreover, as we will see later in
this chapter (Section 5.4), robust learning with a minority of inliers can be
used as a crucial ingredient for learning mixture models of various kinds.

The setting studied in this chapter is the following: We observe n points
in Rd, an α-fraction of which (for some 0 < α ≤ 1/2) are samples from an
unknown distribution X in a known familyD. The goal is to estimate the mean
µ of X. As is standard in robust statistics, no assumptions are made about the
remaining (1 − α)-fraction of the points. The major difference with what we

This material will be published by Cambridge University Press as Algorithmic
High-Dimensional Robust Statistics by Ilias Diakonikolas and Daniel M. Kane.
This pre-publication version is free to view and download for personal use only. Not for
re-distribution, re-sale or use in derivative works. c© Ilias Diakonikolas and Daniel M. Kane 2022.
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have previously studied is that in the current setting the outliers constitute the
majority of the dataset.

A first observation is that it is information-theoretically impossible to es-
timate the mean with a single hypothesis. Indeed, an adversary can produce
Ω(1/α) clusters of points, each drawn from a distribution Di ∈ D such that
the Di’s have very different means. In this case, even if we could learn the
distribution of the samples exactly, it still would not be possible to identify
which of the clusters is the “correct” one (see Lemma 5.3). Interestingly, it
turns out that this “symmetry breaking” is essentially the only real bottleneck.
To circumvent this issue, we relax the definition of learning by allowing the
algorithm to return a small list of hypotheses with the guarantee that at least
one of the hypotheses is reasonably close to the true mean (see Definition 5.4).
We will call this the list-decodable learning model. It follows from the above
example that the list of hypotheses must have size at least Ω(1/α). As we will
see, one can typically construct estimators for many problems that output a list
of size O(1/α).

Another notable difference here from the classical robust statistics setting
has to do with the size of the errors. In particular, while robust statistics ques-
tions with bounded error rates ε usually allow one to produce estimators with
bounded error for all ε, in the list decoding setting, this is usually not the case.
In particular, suppose that given a sufficiently large dataset, with an α-fraction
of inliers, one can find a list of O(1/α) many hypotheses at least one of which
is within distance f (α) of the true mean. For many problems, this will be im-
possible unless the function f (α) goes to ∞ as α goes to 0. This being said,
finding the optimal asymptotic form for f (α) is often an interesting question
and usually depends on the distributional assumptions made on the good data-
points.

The algorithmic frameworks developed in previous chapters do not suffice to
obtain efficient estimators in the presence of a minority of inliers. In this chap-
ter, we build on these algorithmic ideas to develop methodologies for efficient
robust estimation in the list-decodable setting.

5.1.2 Problem Formulation and Basic Facts

The setup for the problems studied in this chapter is similar to what we have
been studying thus far. Given corrupted samples from a distribution X, we want
to estimate a pre-specified statistic of the distribution (e.g., the mean). The ma-
jor difference with the previous chapters is that instead of the contamination
parameter ε being some small constant (less than 1/2), we instead have that
ε = 1 − α, for some α ≤ 1/2 representing the fraction of clean samples in the
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dataset. Similarly to our corruption models in previous chapters, the contam-
ination can be additive, subtractive or both. Moreover, the adversary can be
adaptive or oblivious, as before.

The literature on list-decodable learning has focused on the case of addi-
tive contamination. Throughout this chapter, we study the following model of
adaptive additive contamination:

Definition 5.1 (Additive Contamination Model) Given a parameter 0 < α ≤

1/2 and a distribution family D on Rd, the adversary operates as follows: The
algorithm specifies a number of samples n, and bαnc samples are drawn from
some unknown distribution D ∈ D. The adversary is allowed to inspect these
samples and adds a multiset of n − bαnc many arbitrary points to the dataset.
This modified dataset of n points is then given as input to the algorithm. We
say that a set of samples is additively (1−α)-corrupted if it is generated by the
above process.

Remark 5.2 Some works in the literature instead use n for the number of
inliers samples (and dn/αe) for the total number of samples. This mostly re-
flects a philosophical difference about whether or not the algorithm should be
“charged” for the bad samples or just for the clean ones. In the end, the theory
is largely the same, though the sample complexity bounds will of course differ
by a factor of α.

In the corruption model of Definition 5.1 the adversary is not allowed to
alter the clean samples (inliers). One can consider an even more powerful ad-
versary that is allowed to remove an arbitrary (1 − α) fraction of the clean
samples as well. We note that in some cases such an adversary can be reduced
to the additive adversary. For example, suppose we want to estimate the mean
of a distribution X with bounded covariance Σ � σ2I. Then, after removing a
(1 − α)-fraction of the clean samples, we obtain a new distribution X′ whose
mean is within distance O(σ/

√
α) of the mean of X and whose covariance is

Σ′ � (σ2/α) I, essentially reducing the learning problem to learning a distribu-
tion with covariance bounded by (σ2/α) I with only additive noise.

A qualitatively similar contamination model is the following: One obtains
i.i.d. samples from a distribution X of the form X = αD + (1 − α)E, for an
unknown D ∈ D and some adversarially chosen distribution E. This is essen-
tially a weaker model than that of Definition 5.1, as roughly an α-fraction of the
points will be taken i.i.d. from D. More formally, if one takes n � 1/(α′ − α)2

samples from X′ = α′D + (1 − α′)E for some α′ > α, it is likely that this will
include αn i.i.d. samples from G. This model may in fact be weaker than that
of Definition 5.1 as it is non-adaptive, i.e., the adversary must pick their distri-
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bution over the outliers before seeing the clean samples chosen. That said, this
is a model worth considering, especially when proving lower bounds.

This chapter will focus on list-decodable mean estimation. The algorithms
presented here succeed under appropriate deterministic conditions on the clean
data, analogous to the stability conditions in previous chapters. We start with
a simple lemma, establishing that even very weak approximations to the mean
are impossible without relaxing our definition of learning.

Lemma 5.3 Let G = N(µ, I) be an identity covariance, unknown mean Gaus-
sian and 0 < α ≤ 1/2. Let X be a distribution of the form αG + (1−α)E, where
E is an adversarially chosen distribution. Then, for any M ∈ R+ and N ∈ Z+

there is no algorithm that given N i.i.d. samples from X returns an estimate µ̂
satisfying ‖̂µ − µ‖2 ≤ M with probability greater than 1/b1/αc.

Lemma 5.3 implies that no algorithm given any number of (1−α)-corrupted
samples fromN(µ, I) can learn an M-approximation to µ with probability bet-
ter than 1/b1/αc (though when 1/α is an integer, a slightly different argument
is needed to ensure that exactly an α-fraction of samples come from each clus-
ter).

Proof First assume for simplicity that 1/α is an integer. We choose the noise
distribution E such that E =

∑k
i=1(1/k)N(µ(i), I), where k = 1/α − 1, and the

pairwise `2-distances between the µ(i)’s, i = 0, 1, . . . , k (where µ(0) = µ) are
each greater than 2M, as shown in Figure 5.1.

That is, X is a mixture of 1/α many identity covariance Gaussians whose
means are pairwise far from each other. Then, even if the algorithm knows the
distribution of X exactly (with the corresponding mean vectors µ(i)), it will not
be able to determine which of these 1/α candidate means is the true µ. It is easy
to see that the best thing an algorithm can do in this case is guess the correct
mean from this set; this succeeds with probability α. If 1/α is not an integer,
we can replace α by 1/b1/αc ≥ α in the previous argument. Since we have
increased the fraction of inliers, this step only makes the problem easier. �

Lemma 5.3 is not specific to the Gaussian distribution. It is easily seen to
hold for any class of distributions without an a priori bound on their mean.
The lemma implies that it is impossible to obtain a non-trivial estimator of
the mean with a single hypothesis that succeeds with probability better than
1/2. The essential problem here is that if the corrupted distribution consists of
several clusters, then the algorithm may have no way of knowing which cluster
is the correct one to output. One way around this is to allow the algorithm to
instead return a small list of hypotheses with the guarantee that at least one is
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Figure 5.1 Illustration of a hard instance for Lemma 5.3 when α = 1/4. Notice
that each of the four equal clusters of points could be the set of “good” points.
However, since their means are pairwise separated by more than 2M, any guess
the algorithm provides will be within distance M of at most one of the cluster
means.

close to the target (see Figure 5.2 for an illustration). We formalize this idea
with the following definition.

Definition 5.4 (List-Decodable Mean Estimation) A list-decoding algorithm
for mean estimation with error β, failure probability δ, and list size s, is an
algorithm that given a multiset of (1−α)-corrupted samples from a distribution
X with unknown mean µ, returns a list H of hypotheses of size |H| ≤ s such
that with probability at least 1 − δ there exists h ∈ H such that ‖h − µ‖2 ≤ β.

Note that there is a natural tradeoff between the size of the output list and
the best attainable error. For example, if the list-size is allowed to be very
large (e.g., exponential in the dimension), we can make the error very small by
returning a fine cover of an appropriately chosen region. Arguably, allowing for
very large list-size trivializes the problem and we will not be interested in this
regime. On the other hand, if the list-size is sufficiently small, no non-trivial
error guarantees are possible.

We have the following corollary of Lemma 5.3.
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Figure 5.2 An example of a distribution consisting of several clusters (circles)
and a list of hypotheses (crosses). Note that at least one hypothesis is close to the
mean of the cluster of inlier samples (in gray), thus satisfying the guarantee of
Definition 5.4.

Corollary 5.5 Let 0 < α ≤ 1/2. Any list-decoding algorithm that learns the
mean of (1 − α)-corrupted, identity-covariance Gaussians within finite error
must either return at least s ≥ b1/(2α)c hypotheses or have error probability
δ ≥ 1/2.

Proof If the algorithm returns a list (h1, h2, . . . , hs) of hypotheses, by Lemma
5.3, the probability that hi is close to the true mean is at most 1/d1/αe for each
i. Therefore, by a union bound, the probability that any hypothesis is close is
at most s/d1/αe ≤ 1/2. �

It turns out that the most interesting regime is the case that the list-size is a
polynomially bounded function of 1/α. As we will see later in this chapter, it
usually suffices to take s = O(1/α).

Chapter Organization The structure of this chapter is as follows: In Sec-
tion 5.2, we explore the information-theoretic limits of list-decodable mean
estimation. In Section 5.3, we develop our algorithmic techniques for list-
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decodable mean estimation. In Section 5.4, we show how to use a list-decodable
mean estimator to learn mixture models.

5.2 Information-Theoretic Limits of List-Decodable
Learning

5.2.1 Information-Theoretic Upper Bounds

In this section, we present list-decodable mean estimators whose error guaran-
tees are information-theoretically optimal (within constant factors), assuming
the distribution of the inliers satisfies certain concentration (or bounded mo-
ment) properties. We note that these estimators are not computationally effi-
cient. In particular, they correspond to algorithms whose runtime is exponen-
tial in the dimension. In Section 5.3, we will discuss some efficient algorithms
with worse error guarantees.

The high-level intuition for our information-theoretically optimal estimators
is the following: Since the underlying distribution familyD is assumed to have
good concentration, with high probability the set of inliers S will be concen-
trated around the target mean µ. In more detail, the target mean µ satisfies the
following property: It is associated with a subset S of the input dataset T of
size |S | ≥ α|T | such that S is concentrated around µ.

Therefore, any reasonable candidate hypothesis h in our list should be as-
sociated with a subset (cluster) S h of the input dataset T of size |S h| ≥ α|T |,
such that S h is similarly concentrated around h. If two of these clusters are
close to each other, then they can share the same hypothesis. On the other
hand, if two such clusters are sufficiently separated, then (because of the as-
sumed concentration) they will necessarily have small overlap (see, for exam-
ple, Claim 5.8). Using this fact along with a simple counting argument, one can
show that the number of pairwise separated clusters will be small. For exam-
ple, in Lemma 5.7 we show that there are at most O(1/α) such clusters. Indeed,
if we had many separated clusters, then we would run out of data points. Our
estimator then returns one hypothesis for each such cluster.

More formally, we establish the following proposition:

Proposition 5.6 Let D be a distribution family on Rd and let 0 < α ≤ 1/2.
Suppose that there exists t > 0 such that for every G ∈ D and every unit vector
v it holds Pr[v · (G − µG) > t] ≤ α/20.

Then there exists an (inefficient) algorithm with the following guarantee:
Given a multiset of N ≥ Cd/α3 additively (1 − α)-corrupted points from an
unknown G ∈ D, where C > 0 is a sufficiently large constant, the algorithm
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returns a list of O(1/α) many hypotheses such that with high probability at
least one such hypothesis is within `2-distance 2t from the target mean µG of
G.

The proof of Proposition 5.6 makes essential use of the following geometric
lemma.

Lemma 5.7 Let T ⊂ Rd be a set of points, t > 0, 0 < α ≤ 1/2, and k ∈ Z+.
Suppose that there exist potentially overlapping subsets S 1, S 2, . . . , S k ⊆ T
with |S i| ≥ α|T | with the following property: For each S i, i ∈ [k], there is an
associated vector µi ∈ Rd such that for any unit vector v ∈ Rd, it holds

Pr
x∼uS i

[v · (x − µi) > t] ≤ α/10 . (5.1)

If the set of µi’s are pairwise separated by `2-distance at least 2t, then we have
that k ≤ 2/α.

Furthermore, this holds even if Condition (5.1) is satisfied only for unit vec-
tors v in the direction of µi − µ j for all pairs i , j.

Proof The proof proceeds by contradiction. Suppose that there exist sets
S 1, . . . , S k and points µ1, . . . , µk ∈ Rd with k > 2/α so that ‖µi − µ j‖2 ≥ 2t, for
all i , j. By ignoring some of these points if necessary, we can assume that
k = d2/αe.

By definition, each S i satisfies |S i| ≥ α|T | and for any unit vector v, it holds
that Prx∼uS i [v · (x − µi) > t] ≤ α/10. Our first key claim is that the pairwise in-
tersection between the S i’s is small. Specifically, we show the following.

Claim 5.8 For each i , j, i, j ∈ [k], we have that |S i∩S j| ≤ (α/10)(|S i|+|S j|).

Proof Since ‖µi − µ j‖2 ≥ 2t, if vi j is the unit vector in the direction of µi − µ j,
every point y ∈ Rd must satisfy (i) |vi j · (y − µi)| ≥ t, or (ii) |vi j · (y − µ j)| ≥ t.
By the assumed concentration property (5.1) of the µi’s, at most α/10-fraction
of points y ∈ S i satisfy (i) and at most α/10-fraction of points y ∈ S j satisfy
(ii). If L is the subset of points y ∈ S i ∩ S j satisfying (i), then we have that
|L| ≤ (α/10)|S i|. Similarly, if R is the subset of points y ∈ S i ∩ S j satisfying
(ii), then it holds that |R| ≤ (α/10)|S j|. Therefore, it follows that |S i ∩ S j| ≤

(α/10)(|S i| + |S j|), proving the claim. �

Given Claim 5.8, the proof of Lemma 5.7 follows by a simple counting
argument. In particular, by the approximate inclusion-exclusion formula, we
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have that

|T | ≥ | ∪k
i=1 S i| ≥

k∑
i=1

|S i| −
∑

1≤i< j≤k

|S i ∩ S j|

≥

k∑
i=1

|S i| −
∑

1≤i< j≤k

(α/10)(|S i| + |S j|)

=

k∑
i=1

|S i| − (α/10)(k − 1)
k∑

i=1

|S i|

≥ (1 − (k − 1)α/10)
k∑

i=1

|S i|

≥ (4/5)
k∑

i=1

α|T | = (4/5)(kα)|T | ≥ (8/5)|T | ,

where the second line follows from Claim 5.8, the third line follows from the
elementary fact that

∑
1≤i< j≤k(|S i|+ |S j|) = (k−1)

∑k
i=1 |S i|, and the last line uses

the assumption that |S i| ≥ α|T | and the definition of k. This yields the desired
contradiction, proving Lemma 5.7. �

With this lemma in hand, we can show that there can only be O(1/α) many
clusters of plausible means.

Proof of Proposition 5.6 Let T be a set of N additively (1−α)-corrupted sam-
ples from an unknown distribution G ∈ D, where N ≥ Cd/α3 for C is a suffi-
ciently large constant. By definition, there exists a set S ⊆ T of i.i.d. samples
from G with |S | = α|T | � d/α2.

We claim that the set S is a representative sample of the distribution G in the
sense that, with high probability over the randomness in S , for any unit vector
v we have that

Pr
X∼uS

[|v · (X − µG)| > t] ≤ α/10 , (5.2)

where µG is the mean of G. Recall that we have Pr[v · (G − µG) > t] ≤
α/20, by assumption. Condition (5.2) then follows by an application of the VC
inequality (Theorem A.12), given our assumption on N and the fact that the
class of halfspaces has VC-dimension O(d). We henceforth condition on this
event.

Let H be the set of all points in Rd with the following property: A point
x ∈ Rd is in H if there exists a subset S x ⊆ T of cardinality |S x| ≥ α|T | such
that, in any direction, all but an α/10-fraction of the points in S x are within
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distance t of x. That is, for any unit vector v, we have that:

Pr
X∼uS x

[|v · (X − x)| ≥ t] ≤ α/10 . (5.3)

By the above conditioning, we have that µG ∈ H. Consider a maximal subset,
C, of elements of H that are pairwise separated by a distance of at least 2t.
By Lemma 5.7, |C| ≤ 2/α. On the other hand, every element of H must be
within distance 2t of some element in C, as otherwise it could be added to C,
contradicting maximality.

The list-decoding algorithm now merely needs to return the set C. As µG ∈

H, we know that the true mean µG must be within distance 2t of some element
in C. This completes the proof of Proposition 5.6. �

Proposition 5.6 yields tight error upper bounds for a number of distribu-
tion families. We explicitly state its implications for the following families:
subgaussian distributions, distributions with bounded covariance, and distribu-
tions with bounded low-degree moments.

Corollary 5.9 Let 0 < α ≤ 1/2. Given a sufficiently large multiset of ad-
ditively (1 − α)-corrupted samples from a distribution G ∈ D, there exists
a list-decodable mean estimation algorithm for G that outputs a list of size
O(1/α) whose error guarantee is at most:

• O(
√

log(1/α))σ, ifD is the family of subgaussian distributions with param-
eter σ.

• O(1/
√
α)σ, if D is the family of distributions with covariance matrix Σ �

σ2I.
• O((C/α)1/k), ifD is the family of distributions whose kth central moments in

any direction, for some even k > 0, are at most C.

Proof These statements follow from Proposition 5.6 using the appropriate
concentration inequality.

Recall that if G is subgaussian on Rd with mean vector µ and parameter
σ > 0, then for any unit vector v ∈ Rd we have that PrX∼G

[
|v · (X − µ)| ≥ t

]
≤

exp(−t2/(2σ2)). By taking t = Θ(
√

log(1/α))σ, the assumption in the state-
ment of Proposition 5.6 is satisfied.

If G has covariance matrix Σ � σ2I, by Chebyshev’s inequality, we can
apply Proposition 5.6 for t = Θ(1/

√
α)σ.

Finally, If E[(v · (X −µ))k] ≤ C, then Pr[|v · (X −µ)| ≥ t] = Pr[(v · (X −µ))k ≥

tk] ≤ C/tk. Therefore, if G has its first k central moments bounded, we can take
t = (20C/α)1/k in Proposition 5.6. This completes the proof. �
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5.2.2 Information-Theoretic Lower Bounds

In this section, we show that upper bounds on the errors for list decoding algo-
rithms proved in Corollary 5.9 are information-theoretically optimal to within
constant factors. Specifically, we will establish lower bounds of the following
form: Any list-decodable mean estimator that returns a small list of hypothe-
ses (i.e., of size poly(1/α), independent of d) will inherently have either large
error or large failure probability. In particular, this statement implies that the
required error will necessarily go to infinity as α goes to 0.

It is interesting to note that the lower bounds we give in this section do not
depend on the number of samples drawn from the underlying distribution. In
particular, these lower bounds apply even if the learner is allowed to take an
unlimited number of samples and spend an unlimited amount of computation
time. In order to achieve this goal, we will ensure that the lower bounds hold
even if the algorithm is able to successfully learn the complete distribution X
that the samples in question are being drawn from.

The proof will be along the same lines as the proof of Lemma 5.3. In partic-
ular, we will construct a distribution X consisting of many possible “clusters”
any one of which could be the good distribution. However, while in Lemma
5.3 our goal was to have b1/αc many clusters that were pairwise separated by
an arbitrarily large distance, here we want to have a much larger number of
clusters separated by a large but bounded distance.

Our results will make essential use of the following fundamental lemma.

Lemma 5.10 Let D be a class of distributions on Rd, 0 < α ≤ 1/2, and s ∈
Z+. Suppose that there is a distribution X on Rd and distributions G1,G2, . . . ,Gs

in D such that (i) αGi ≤ X for each i ∈ [s], and (ii) ‖µGi − µG j‖2 > 2β for all
i , j. Then any list-decodable mean estimation algorithm for D that is given
access to an (1 − α)-additively corrupted set of samples and achieves error at
most β with failure probability at most 1/2 must return a list of size at least
s/2.

Proof We construct an adversarial distribution as follows: The distribution G
of the inliers is defined to be equal to Gi, for a uniformly random i ∈ [s]. The
distribution of the outliers E is defined by E = (X − αG)/(1− α). The assump-
tion that X ≥ αGi, for all i ∈ [s], implies that E is a well-defined probability
distribution. By construction, we note that the underlying distribution of the
data is equal to X = αG + (1 − α)E. Since X is independent of the choice of i,
and since the output of the algorithm correlates with i only through its samples
(which in turn depend only on X), we have that the output of the algorithm is
independent of i.
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Figure 5.3 Illustration of hard instance given in Proposition 5.11. The diagram on
the left shows the overall plan for the distribution. The large Gaussian X0 (shown
in gray) is nearly above each of the αYµ (shown in black). By adding a small
amount of extra mass to accommodate the difference, we end up with a distribu-
tion X such that X ≥ αYµ for many Gaussians Yµ with widely separated means.
The diagram on the right shows a one-dimensional projection of X0 and one of the
αYµ. The shaded gray region denotes the small gap between the two.

Let H be the list of hypotheses output by a list-decodable mean estimator
for D. To prove the lemma, we need to bound from above the probability that
there exists an h ∈ H such that ‖h − µG‖2 ≤ β, where µG is the target mean.
Since the µGi ’s are pairwise separated by at least 2β in `2-distance, any h ∈ H
can be within `2-distance β of at most one µGi . This means that for any given
h ∈ H the probability that ‖h − µG‖2 ≤ β is at most 1/s. Given that |H| ≤ s/2,
a union bound implies that with probability at least 1/2 the distance between
µG and the closest element of h is more than β. This completes the proof of the
lemma. �

Given Lemma 5.10, proving explicit lower bounds for a given class of distri-
butions reduces to finding an appropriate distribution X. We perform this step
for two natural distribution families in the following subsections.

5.2.2.1 Lower Bounds in the Gaussian Setting
For identity covariance Gaussian distributions, we show:

Proposition 5.11 LetD be the class of identity covariance Gaussians on Rd

and let 0 < α ≤ 1/2. Then any list-decoding algorithm that learns the mean of
an element ofD, with failure probability at most 1/2, given access to (1 − α)-
additively corrupted samples, must either have error bound β = Ω(

√
log(1/α))

or return min{2Ω(d), (1/α)ω(1)} many hypotheses.

See Figure 5.3 for an illustration of the hard distribution on points.
We note that as long as d = ω(log(1/α)), Proposition 5.11 along with Corol-

lary 5.9 imply a tight error bound for this problem. That is, assuming that the
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learner is only allowed to output a list of size poly(1/α), an error bound of
Θ(

√
log(1/α)) is both necessary and sufficient.

Proof We assume throughout that α is sufficiently small. Let X0 be the pseudo-
distribution (i.e., a positive measure) X0 = N(0, I)/2. Consider G = N(µ, I)
for some µ with ‖µ‖2 = c

√
log(1/α), where c < 1 is sufficiently small. We note

that X0 is already nearly larger than αG for any such choice of G. In particular,
the ratio of their probability density functions is

X0

αG
=

1
2α

e(−‖x‖22+‖x−µ‖22)/2 =
1

2α
e−x·µ+‖µ‖22/2 .

We note that the RHS above is more than 1, unless |x · µ| � log(1/α), or if
the projection of x in the µ-direction is at least some sufficiently large multiple
of c−1

√
log(1/α). The latter event happens with probability at most poly(αc−2

)
with respect to either X0 or G. Therefore, there is another pseudo-distribution
Yµ = max(0, αG − X0) with total mass poly(αc−2

) such that X0 + Yµ ≥ αG.
Let N be an integer such that N = min{2cd, 1/(2‖Yµ‖1)}, where µ is any vec-

tor with ‖µ‖2 = c
√

log(1/α) as described above. For 1 ≤ i ≤ N, we define
Gi = N(µi, I), where ‖µi‖2 = c

√
log(1/α), such that ‖µi − µ j‖2 � c

√
log(1/α),

for all i , j. The latter constraint can be ensured since N ≤ 2cd and Theo-
rem A.10 implies that one can find N unit vectors in Rd with pairwise distances
at least a constant. Multiplying these vectors by c

√
log(1/ε) yields our µi’s.

Let X be any distribution satisfying X ≥ X0 +
∑N

i=1 Yµi . We note that since
N ≤ 1/(2‖Yµi‖1) for any such µi, the RHS has total probability mass at most 1
and therefore such a distribution X exists.

For such a choice of X, it is easy to see that X ≥ αGi for each i ∈ [N]. Thus,
by Lemma 5.10, any list-decodable mean estimation algorithm will need to
either output a list of size N/2 = (1/2) min{2d, poly(α−c−2

)} or incur error at
least Ω(c

√
log(1/α)). This completes our proof. �

5.2.2.2 Lower Bounds for Distributions with Bounded Moments
In this subsection, we establish tight error lower bounds for distributions with
bounded moments. Recall that we say that a distribution G has kth central mo-
ments bounded by C, if for every unit vector v we have that E[|v · (G−µG)|k] ≤
C. For this class of distributions, we show:

Proposition 5.12 LetD be the class of distributions on Rd whose kth central
moments are at most 1 for some positive even integer k, and let 2−k−1 > α > 0.
Then any list-decoding algorithm that learns the mean of an element ofD with
failure probability at most 1/2, given access to (1 − α)-additively corrupted
samples, must either have error bound β = Ω(α−1/k) or return a list of at least
d hypotheses.
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Proposition 5.12 along with Corollary 5.9 imply a tight error bound for dis-
tributions in this class. In particular, if the list-decodable mean estimation algo-
rithm for distributions with bounded kth central moments is required to output
a list whose size is independent of the dimension, an error bound of Θ(α−1/k)
is necessary and sufficient.

Note also that if we scale the distributions by C1/k, we find that for distri-
butions whose kth moments are bounded by C, we obtain a lower bound of
Ω((C/α)1/k). By taking k = 2, we get a lower bound of σ/

√
α for distributions

with covariance bounded by σ2I.

Proof We start by constructing an appropriate one-dimensional distribution.
Our family of high-dimensional distributions will simply be the product of d
independent copies from this family.

For 1 ≤ i ≤ d, we define Xi to be the distribution on the real line such
that: Xi = 0 with probability 1 − 2α, Xi = (2α)−1/k with probability α, and
Xi = −(2α)−1/k with probability α. Note that the kth central moment of Xi is
equal to 1.

Let X =
∏

i∈[d] Xi, i.e., X is the product distribution with marginals Xi. We
will show that X satisfies the kth bounded central moments property. For any
unit vector v, we have that

E[|v · X|k] =
∑

a1,...,ad≥0,
∑

ai=k

(
k

a1, . . . , ad

) d∏
i=1

vai
i E

 d∏
i=1

Xai
i

 .
Since the Xi’s are symmetric and independent, we note that the quantity

E

 d∏
i=1

Xai
i

 =

d∏
i=1

E
[
Xai

i

]
is equal to 0 unless all of the ai’s are even. If all the ai’s are even, let bi = ai/2
and let c be the number of non-zero bi’s. Then we have that E

[∏d
i=1 Xai

i

]
=

(2α)c−1. Therefore, we can write

E[|v · X|k] =
∑

∑
i bi=k/2

(
k

2b1, . . . , 2bd

) d∏
i=1

v2bi
i (2α)c−1 .

We proceed to compare this quantity to

1 = (‖v‖22)k/2 =
∑

∑
i bi=k/2

(
k/2

b1, . . . , bd

) d∏
i=1

v2bi
i .

Noting that
(

k
2b1,...,2bd

)
≤ ck, it is easy to see that the latter expression dominates

termwise. Hence, we have that E[|v · X|k] ≤ 1.
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We will now construct 2d distributions G j satisfying αG j ≤ X such that the
means of the G j’s differ by Ω(α−1/k). We let G j be the product of the Xi’s in all
dimensions except for i = j. The jth coordinate of G j will either be the constant
(2α)1/k or the constant −(2α)1/k. By the above, it is easy to see that G j’s has
bounded kth central moments (as G j is a translation of a (d − 1)-dimensional
version of X), and that αG j ≤ X. Note that there are 2d different G j’s, as
there are d possibilities for the coordinate j and two possibilities for the sign.
Finally, it is clear that each G j has mean ±(2α)−1/ke j, and that these means
differ pairwise by `2-distance Ω(α−1/k). The proposition now follows directly
from Lemma 5.10. �

5.3 Efficient Algorithms for List-Decodable Mean
Estimation

Given our understanding of the information-theoretic possibilities and limita-
tions of list-decodable mean estimation, in this section we consider the more
challenging question of what can actually be achieved in a computationally
efficient manner. A number of algorithmic techniques for list-decodable learn-
ing have been developed in the literature. Here we focus on two distinct such
techniques. In Section 5.3.1, we develop efficient algorithms based on a tech-
nique we will call multifiltering, a generalization of the filtering technique of
Chapter 2. In Section 5.3.2, we present a different algorithmic technique for the
problem that is arguably simpler and can be advantageous in certain settings.

5.3.1 List-Decodable Learning via MultiFiltering

Recall the regime where the outliers constitute a minority of the dataset. The
goal of a filtering algorithm is quite simple. By iterative outlier removal, we
wish to find a subset T ′ of the original sample set T such that T ′ still contains
a large fraction of inliers, and so that the covariance of T ′ is not too large.
This condition suffices to ensure that the sample mean of T ′ is close to the
true mean. Interestingly, this structural result still qualitatively holds with a
majority of outliers. Specifically, we have the following simple lemma.

Lemma 5.13 Let T ⊂ Rd be a multiset such that Cov[T ] has maximum
eigenvalue λ. Then for any S ⊂ T with |S | ≥ α|T | we have that ‖µS − µT ‖2 ≤√
λ/α.

Proof Let R = T \ S . Noting that the uniform distribution on T is a mixture
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of the uniform distributions over S and R, we can write:

Cov[T ] =
|S |
|T |

Cov[S ] +
|R|
|T |

Cov[R] +
|S |
|T |

(µS − µT )(µS − µT )>

+
|R|
|T |

(µR − µT )(µR − µT )> (5.4)

� α(µS − µT )(µS − µT )> ,

where we used the assumption that |S |/|T | ≥ α and the fact that the remaining
terms in the right hand side of Equation (5.4) are PSD. Since by assumption
Cov[T ] has no eigenvalue bigger than λ, it follows that the largest eigenvalue
of the rank-one term, α(µS − µT )(µS − µT )>, is at most λ. That is, we have that
α‖µS − µT ‖

2
2 ≤ λ, which completes the proof. �

Lemma 5.13 is the basis of the list-decoding algorithms in this subsection.
Specifically, if we can find a subset T ′ of the input dataset T that still contains
at least an α-fraction of inliers and has bounded covariance, then we can use it
to approximate the true mean of our distribution (by outputting the empirical
mean of T ′). A natural attempt to achieve this is via a filtering algorithm. The
basic strategy here is the same as in the minority-outlier regime: Given a set
T of samples, if Cov[T ] is small, we return the sample mean of T . Otherwise,
we project the sample points onto the direction of largest variance and use the
structure of projected points to remove outliers.

At a high-level, it turns out that this strategy still works in the list-decodable
setting. Of course, in the list-decodable setting, the “outlier removal” step is
necessarily more complicated. Recall the main idea of the outlier removal step
in the minority-outlier regime. After projecting the points on a large-variance
direction, the true mean in this direction must not be very far from the empir-
ical mean. Since the inliers exhibit tight concentration around their mean, we
can conclude that points that lie far from the sample mean (which must exist
due to the large variance in this direction) are almost all outliers. Therefore,
removing these points will increase the fraction of inliers. Unfortunately, this
basic strategy breaks down in the first step. Although Lemma 5.13 implies that
the true mean cannot be too far from the empirical mean, the bound it provides
will be qualitatively too weak for our purposes. In particular, the true mean
might be many standard deviations away from the sample mean, and thus, re-
moving samples far from the sample mean will risk throwing away the inliers.

The following examples illustrate the difficulties that can arise in our setting.

Example 1 Consider the case where after projecting the set T onto the largest
variance direction, we are left with a dataset approximating the uniform distri-
bution over an interval of length Θ(1/α). If the inlier distribution is known to
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Figure 5.4 Illustration of instances in Example 1 (top) and Example 2 (bottom).
In both bases, the black graphs correspond to plausible locations for the set of
inliers.

have identity covariance, then the true mean could plausibly be almost any-
where in this interval, as any unit length subinterval will consist of an α-
fraction of points with appropriate concentration. Therefore, only points whose
projections onto this direction lie far from this interval can confidently be de-
clared to be outliers. Unfortunately, there might not be any such points, leaving
us with a direction of variance Θ(1/α2), but no way to filter.

Example 2 An arguably worse example arises when the projected samples
form two distinct clusters that are at very large distance from each other. An
algorithm can potentially determine that the true mean must be within one of
these clusters and that the other cluster will consist almost entirely of outliers.
However, there is no way for the algorithm to determine which cluster is the
correct one. This example illustrates the necessity of list-decoding. If our algo-
rithm is going to succeed in this setting, it will need to consider both clusters
as possible hypotheses.

See Figure 5.4 for an illustration of the two examples above.

Intuition The question that needs to be addressed is how to adapt the basic
filtering idea into a principled method that can return multiple hypotheses. The
basic filtering method maintains a single set of samples that eventually allows it
to return a single hypothesis. In order to develop a list-decoding algorithm, we
will need a method that maintains several sets of samples. A natural solution
to the second example above is the following: If the projection of the points
contains two clusters of points, our algorithm will produce two sets of samples
(one corresponding to each cluster), each of which will lead to an eventual
hypothesis (after potentially being further refined in subsequent iterations).
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Alas, it is less clear how to address our first example. If the samples are
approximately uniform within a short interval, there is not a straightforward
way to partition them into subsets. Simply cutting the interval in two pieces,
might cause an issue in the case that the true mean lies near the boundary of
this division. Indeed, in such a case, we may lose roughly half of the inliers on
either side; and it may well be the case that neither side has a higher fraction of
inliers than our original set of samples. To resolve this, we allow the algorithm
to split our sample set into two overlapping subsets. By ensuring that our sets
have sufficient overlap on the boundary, we can ensure that no matter where
the true mean is, at least one of the two new sets contains almost all of the
inliers, as shown in Figure 5.5.

One wrinkle with this strategy is that if we split our dataset into multiple
subsets, we may need to divide the two initial subsets into smaller subsets,
and so on. If we do this poorly, we may end up with potentially exponentially
many subsets in total, which will imply both that our number of hypotheses
will be very large and that our final runtime is exponential. To avoid this po-
tential problem, we will ensure that whenever we subdivide, the corresponding
subsets are not too large. One way of achieving this is by enforcing the con-
dition that whenever a set T is divided into subsets T1 and T2, we have that
|T1|

2 + |T2|
2 ≤ |T |2. This condition guarantees that, no matter how many sub-

divisions we perform, the sum of the squares of the sizes of the sets does not
increase.

�---·-·-·-·-·-·-·-·-·-·-·-· 

T ·-·-·-·-·-·-·- 1· - · - ·  

·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-►

Figure 5.5 Example of sets T1 and T2 produced by a multifilter. The projected
samples here are given by the gray curve with the inlier samples given by the black
curve. Note that almost all of the inlier samples are contained in T2. However, the
overlap between T1 and T2 is sufficiently large here that no matter where the inlier
samples were located (so long as they have similar concentration properties), at
least one of T1 and T2 would contain almost all of the inliers.
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Algorithm Description We are now ready to present the basic version of our
multifilter step. In the proceeding discussion, we consider the points after they
have been projected onto one dimension. We use T to denote the set of all
(projected) samples and S to denote the set of good samples (inliers). As is
typically the case, we will make some concentration assumptions on S and
will only be able to apply the multifiltering step if Var[T ] is sufficiently large.
Our algorithm considers two cases. If the points of T are mostly concentrated
enough that we can identify the approximate location of the true mean, we will
be able to run a vanilla filtering step, where we remove a few likely outliers.
For technical reasons (that will make the later analysis of our algorithm easier),
we design this step to remove only a single likely-outlier point. If we cannot
identify a small interval that must contain the true mean, we instead split the
dataset into two overlapping sets, as described in the previous paragraph.

A basic version of our multifiltering step is the following.

Proposition 5.14 Let S ,T ⊂ R and let M, α, β, t > 0 be parameters with
α ≤ 1/2 sufficiently small such that |S ∩ T | ≥ max{|S |/2, α|T |}. Furthermore
assume that (i) Var[S ] ≤ 2, (ii) Var[T ] is at least a sufficiently large multiple
of [(t log log(1/α) + 8)2 + M], and (iii) all but a β-fraction of the points in
S lie in an interval of length t. Then there exists a computationally efficient
algorithm that given T, α, β, t and M, returns either:

1. A point x ∈ T such that x ∈ S with probability at most 2|S |
M|T | .

2. A pair of subsets T1,T2 ⊂ T such that (i) |T1|
2 + |T2|

2 ≤ |T |2, and (ii) for at
least one value of i ∈ {1, 2}, we have that

|S ∩ (T \ Ti)|
|T \ Ti|

≤ O
(
β|S |
α|T |

)
. (5.5)

Before we proceed with the proof of Proposition 5.14, some comments are
in order. First, we note that the set S is assumed to be highly concentrated and
contains at least an α-fraction of the points of T . The algorithm either finds a
point that is almost certainly an outlier (i.e., not in S ), or divides the set T into
two (not too large) subsets T1,T2 such that for at least one of the Ti’s almost
all of the points in T \ Ti are not in S (i.e., almost all of the points removed are
outliers).

Proof The pseudocode for the algorithm is given below:
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Algorithm Basic-Multifilter
Input: Dataset T ⊂ R, 0 < α ≤ 1/2, parameters β, t,M > 0.

1. Let a be the α|T |/4th smallest element of T and b the α|T |/4th largest
element.

2. If b − a ≤ Ct log log(1/α):

Return a random element of T with x ∈ T selected with probability
proportional to

f (x) := min
t∈[a−4,b+4]

(x − t)2 =


(a − 4 − t)2 , if t < a − 4

0 , if a − 4 ≤ t ≤ b + 4

(t − b − 4)2 , if t > b + 4

.

3. Otherwise:

(a) Find a real number x ∈ [a, b− t] such that for T1 := T ∩ (−∞, x + t]
and T2 := T ∩ [x,∞) we have |T1|

2 + |T2|
2 ≤ |T |.

(b) Return T1,T2.

Our algorithm starts by computing I = [a, b], the interval spanning the dis-
tance between the α|T |/4th smallest element of T to the α|T |/4th largest ele-
ment of T . We consider two cases based on whether the length of I is larger
than L = Ct log log(1/α), for a sufficiently large constant C > 0.

If the length of I is at most L, we will be in the situation where we remove a
single outlier. We begin by observing that the mean of S cannot be far outside
of I. In particular, by Chebyshev’s inequality, all but a 1/4 fraction of the ele-
ments of S are within distance 4 of its mean. Since |S ∩T | ≥ |S |/2, at least half
of the points of S ∩ T are within distance 4 of the mean of S . Note that this set
contains at least α|T |/4 points. That is, the mean of S cannot be less than a− 4
or more than b + 4, since otherwise there would not be enough points.

The above means that points far away from the interval I are likely to be
outliers. In order to make this rigorous, we will want to define a weight function
that assigns large weight to the points far away. In particular, we define the
function

f (x) := min
t∈[a−4,b+4]

(x − t)2 =


(a − 4 − t)2 , if t < a − 4

0 , if a − 4 ≤ t ≤ b + 4

(t − b − 4)2 , if t > b + 4

.

We note that f (x) ≤ (x − µS )2, and therefore we have that

Ex∼uS [ f (x)] ≤ Ex∼uS [(x − µS )2] = Var(S ) ≤ 2 .
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On the other hand, it is not hard to see that

f (x) ≥ (x − (a + b)/2)2/4 − (b − a + 8)2 .

This is because if |x − (a + b)/2| ≤ (b − a + 8), the right hand side is negative
and f is not; and otherwise, |x − t| ≥ |x − (a + b)/2|/2 for any t ∈ [a− 4, b + 4],
and so f (x) ≥ (x − (a + b)/2)2/4. Therefore, we have that

Ex∼uT [ f (x)] ≥ Ex∼uT [(x−(a+b)/2)2/4−(b−a+8)2] ≥ Var(T )/4−(b−a+8)2 ≥ M .

The algorithm now picks a point x ∈ T with probability proportional to f (x).
The probability that a point in S is selected is∑

x∈S∩T f (x)∑
x∈T f (x)

≤

∑
x∈S f (x)∑
x∈T f (x)

=
|S |Ex∼uS [ f (x)]
|T |Ex∼uT [ f (x)]

≤
2|S |
M|T |

.

Next we consider the remaining case, where I = [a, b] has length at least
L = Ct log log(1/α). In this case, our algorithm will find a point x ∈ R such
that a ≤ x ≤ b− t and corresponding sets T1 = T ∩ (−∞, x+ t],T2 = T ∩ [x,∞).
We will argue that this condition suffices to guarantee that the fraction of good
points removed from one of the Ti’s is small. In particular, we know that all but
a β-fraction of the points in S lie in some interval J of length t. It is not hard to
see that no matter what J is, we have that either J ⊂ (−∞, x + t] or J ⊂ [x,∞).
In the former case, we have that |S ∩ (T \ T1)| ≤ β|S |, and in the latter case we
have that |S ∩ (T \ T2)| ≤ β|S |. In either case, it holds that |T \ Ti| ≥ α|T |/4,
since |T ∩ (−∞, a)| = |T ∩ (b,∞)| = α|T |/4. This suffices to verify Condition
(5.5).

It remains to ensure that |T1|
2 + |T2|

2 ≤ |T |2. We claim that this is always
possible as long as the length of I is at least a sufficiently large constant
multiple of t log log(1/α). To facilitate our analysis, we define the function
g(x) = |T ∩ (−∞, x]|/|T | to be the fraction of the points in T that are at most
x. In order for our sets to have appropriate size, we need to find an x such that
g(x + t)2 + (1− g(x))2 ≤ 1. We assume for sake of contradiction that there is no
a ≤ x ≤ b − t that satisfies this condition.

Note that if g(x) ≤ 1/2 and x + t ≤ b, we have that g(x + t)2 + (1 − g(x))2 =

1 − Ω(g(x)) + g(x + t)2. This is more than 1 only if g(x) = O(g(x + t))2, or
equivalently g(x + t) = Ω(g(x))1/2. Recall we know that g(a) = α/4. If the
above holds for all x, we will have that g(a + t) = Ω(α1/2) and g(a + 2t) =

Ω(α1/4). Repeating this process, we find that g(a + kt) = Ω(α1/2k
). Setting k

to be log log(1/α), we obtain that g(a + kt) must be constant sized; from this
point, it is not hard to see that the median m of T (i.e., the value for which
g(m) = 1/2) satisfies m − a = O(t log log(1/α)). Similarly, we obtain that
b − m = O(t log log(1/α)). This means that if there is no x for which our set
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sizes are sufficient, it must be the case that b − a = O(t log log(1/α)), which
yields a contradiction.

Thus, our algorithm can always find an x ∈ [a, b − t] such that g2(x + t) +

(1 − g(x))2 ≤ 1. Using this x, we obtain appropriate sets T1 and T2. This
completes the proof of Proposition 5.14. �

Proposition 5.14 is the basis of our list-decodable mean estimation algo-
rithm. We will require the following definition of a good set.

Definition 5.15 Given t, α > 0, we call a set T ⊂ Rd (t, α)-good if there exists
a subset S ⊆ T such that (i) |S | ≥ α|T |, and (ii) S is (β, tβ)-stable, where β is a
sufficiently small constant multiple of α/ log(1/α).

We are ready to describe our list-decodable mean estimator based on the
multifilter technique.

Theorem 5.16 There exists an algorithm that given a (t, α)-good set T ⊂ Rd

runs in time poly(|T |, d) and returns a set H of hypotheses with |H| = O(1/α2)
such that with high constant probability at least one h ∈ H satisfies

‖µS − h‖2 = O((t log log(1/α) +
√

log(1/α))/
√
α) .

Proof The pseudocode for our algorithm is as follows:

Algorithm List-Decoding-Multifilter
Input: (t, α)-good set T ⊂ Rd, 0 < α ≤ 1/2, t > 0.

1. Let C be a sufficiently large constant, and M = C log(1/α).
2. Let T = {T }.
3. While there exists a T ′ ∈ T with |T ′| > (α/2) |T | and Cov[T ′] having

an eigenvalue more than C[((t log log(1/α)) + 4)2 + M]:

(a) Compute a direction v of variance at least

C[((t log log(1/α)) + 4)2 + M]/2 .

(b) Run the algorithm from Proposition 5.14 on v · T ′.
(c) If it returns an element v · x, replace T ′ in T with T ′ \ {x}.
(d) If it returns subsets v · T1, v · T2, replace T ′ in T with T1 and T2.

4. Return the set
{
Ex∈uTi [x] : Ti ∈ T , |Ti| ≥ α|T |/2

}
.

Note that any univariate projection of the set S satisfies the hypotheses of
Proposition 5.14. In particular, let v be any unit vector. Since Cov[S ] is close
to the identity, it follows that Var(v · S ) ≤ 2. Moreover, the stability condition
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implies that all but a β-fraction of the points in v · S lie in an interval of length
at most 4t. Indeed, since by removing a β-fraction of the points of S cannot
move the mean by more than tβ, all but a β-fraction of the points in v · S must
be within distance 2t of the mean of v · S . Otherwise, removing a β/2-fraction
of the points from the same side will move the mean by too much.

To analyze the runtime, we note that at every step
∑

T ′∈T (|T ′|2−1) decreases
by at least 1. This implies that the overall algorithm terminates after a poly-
nomial number of iterations. Moreover, |T ′| is polynomially bounded at each
step, and thus that the total runtime is polynomial. Finally, at the end of the al-
gorithm, the collectionT contains at most 4/α2 sets each of size at least α|T |/2,
and thus that the algorithm returns at most polynomially many hypotheses.

It remains to prove that with reasonable probability at least one output hy-
pothesis is close to the true mean.

Suppose that at the end of the algorithm there exists T ′ ∈ T with |T ′ ∩ S | ≥
|S |/2. Then, by Lemma 5.13, we have that

‖µS − µT ′‖2 ≤ ‖µS − µS∩T ′‖2 + ‖µS∩T ′ − µT ′‖2 ≤ O(1) +
√
λ/α

= O((t log log(1/α) +
√

log(1/α))/
√
α) ,

where λ is the largest eigenvalue of Cov[T ′]. In the above, we used the fact
that since |S ∩ T ′| ≥ |S |/2 and since Cov[S ] = O(I), by Lemma 5.13, we have
that ‖µS − µS∩T ′‖2 = O(1).

It remains to show that with high constant probability, there exists T ′ ∈ T
with |T ′ ∩ S | ≥ |S |/2. To that end, for a subset T ′ ⊂ T , we define the potential
function

∆(T ′) := 2 log2(2/α) log2

(
|S ∩ T ′|
|S |

)
− log2

(
|T ′|
|T |

)
,

and

∆(T ) := max
T ′∈T

∆(T ′) .

We observe that ∆(T ′) ≤ log2(1/α) for any T ′ ⊂ T . This follows from the
elementary inequality log2 (|T ′|/|T |) ≥ (|S ∩ T ′|/|S |) − log2(1/α).

The main claim we need is the following:

Claim 5.17 Assuming ∆(T ) ≥ − log2(2/α), ∆(T ) is a submartingale.

Proof To show that ∆(T ) is a submartingale, we need to show that if T ′ (the
element of T currently attaining the maximum) is replaced by our algorithm,
then on average the maximum of the ∆’s of the new sets increases. If T ′ is
replaced by two sets T ′i , we have that for at least one i Condition (5.5) holds.
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For this i, we have that

∆(T ′) − ∆(Ti) = 2 log2(2/α) log
(
1 −
|S ∩ (T ′ \ T ′i )|
|S ∩ T ′|

)
− log

(
1 −
|T ′ \ T ′i |
|T ′|

)
.

Condition (5.5) gives that

|S ∩ (T ′ \ T ′i )|
|S ∩ T ′|

= O
((
|T ′ \ T ′i |
|T ′|

)
β/α

)
.

Since β/α is less than a small constant multiple of 1/ log(2/α), this suffices to
ensure that ∆ increases.

In the case that a single point x is removed from T ′, the expected difference
between ∆(T ′) and ∆(T ′ − {x}) is

log2

(
1 +

1
|T ′| − 1

)
− 2 log2(2/α) log2

(
1 +

1
|S ∩ T ′| − 1

)
Pr(x ∈ S )

≤ log2

(
1 +

1
|T ′| − 1

)
− 2 log2(2/α) log2

(
1 +

1
|S ∩ T ′| − 1

) (
2|S ∩ T ′|

M|T ′|

)
.

For M a sufficiently large constant multiple of log(1/α), it is easy to see that
this quantity is non-negative. Thus, ∆(T ′) is a submartingale, as desired. �

By the upper bound ∆(T ) ≤ log2(1/α), it follows that with constant prob-
ability ∆(T ) never goes below − log2(2/α) during the execution of our algo-
rithm. This implies that for at least one T ′ ∈ T , we will have |S ∩ T ′| ≥ |S |/2,
which completes the proof. �

Note that the failure probability in Theorem 5.16 can be made arbitrarily
small simply by running the algorithm several times independently and return-
ing the union of the resulting hypothesis sets.

Discussion We conclude this section by discussing a few implications of The-
orem 5.16. First, if we have sufficiently many corrupted samples from an iden-
tity covariance Gaussian, the set of good samples S is (β,O(

√
log(1/β)β))-

stable with high probability. This means that the multifilter algorithm of The-
orem 5.16 efficiently obtains error guarantee of Õ(α−1/2). This error bound is
quite far from the information-theoretically optimal error of O(

√
log(1/α)),

and this is inherent in the described algorithm. In particular, the use of Lemma
5.13 essentially guarantees that our error will be Ω(α−1/2). In Section 5.3.2,
we will give a different algorithm for the Gaussian case with the same error
guarantee. Obtaining better error requires a stronger correctness certificate and
leads to somewhat more complicated algorithms. This is achieved in Chapter
6.

Another natural application is for bounded covariance distributions. If we
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have sufficiently many corrupted samples from a bounded covariance distribu-
tion, the set of inliers S is (β,O(

√
β))-stable with high probability. Applying

Theorem 5.16, gives us an approximation to the true mean with error Õ(1/α).
This is again somewhat worse than the optimal bound of Θ(1/

√
α).

5.3.2 List-Decodable Learning via Subspace Isotropic Filtering

In this section, we develop a different technique for list-decodable mean esti-
mation that is arguably simpler than the multifiltering technique of the previous
section. Additionally, this new technique naturally leads to near-optimal error
bounds for the class of bounded covariance distributions. Recall that for the
case of bounded covariance distributions, the multifilter algorithm achieved
error of Õ(α−1), which is quite far from the information-theoretic optimum of
O(α−1/2). While it is possible to close this gap (to within logarithmic factors)
with a careful modification to the basic multifilter algorithm, the technique of
the current section provides a much simpler method to achieve the optimal
error of O(α−1/2).

SIFT: Subspace Isotropic Filtering We start with an intuitive explanation of
this algorithmic technique, which we term SIFT (Subspace Isotropic Filtering).
The major difficulty with list-decoding algorithms is that it is not possible in
general to find a single collection of points guaranteed to be tightly clustered
around the true mean. The samples may consist of as many as b1/αc distinct
clusters. The multifilter algorithm deals with this issue by maintaining several
clusters of samples and trying to guarantee that at least one of them has the
desired properties. Unfortunately, the bookkeeping involved with this approach
adds a lot of complication to the final algorithm.

In contrast, SIFT tries to maintain a single set of samples, only throw-
ing away obvious outliers. Rather than trying to produce a single cluster of
good points, SIFT attempts to find a subset T ′ containing almost all of the
good points with the guarantee that T ′ is well-concentrated about an O(1/α)-
dimensional subspace V containing the true mean, as shown in Figure 5.6.
Intuitively, we can hope to accomplish this goal, as if our sample set actually
consisted of 1/α clusters, we could simply let V be the span of the cluster
means.

On the flip side, if we have such a subspace V , we know that the true mean
must lie close to V . The remaining question is how to locate the projection
of the mean into V . Fortunately, since V is low-dimensional, if the set of in-
liers has bounded covariance, then a random good sample projected onto V
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Figure 5.6 Example of the output of the SIFT algorithm. Note that all of the
remaining points are well-concentrated about the subspace V .

will have distance approximately
√

dim(V) from the true mean, giving us error
O(1/

√
α).

In more detail, our goal will be to identify a subspace V of dimension O(1/α)
and a set S ⊂ T of points such that (i) a large fraction of the inliers lie in T ′,
and (ii) the variance of T ′ in directions orthogonal to V is small.

This leaves us with the question of how to find V and T ′. To achieve this, a
more traditional filter-like idea suffices. We let k be a sufficiently large constant
multiple of 1/α, and consider the top-k eigenvalues of Cov[T ]. We note that
if Cov[T ] has fewer than k large eigenvalues, then we can simply let V be the
span of the large eigenvalues and let T ′ = T . Otherwise, we let W be the span
of the k largest eigenvectors of Cov[T ], and consider the projections of the
points in T on W.

By definition, W represents k directions of large variance. However, at most
1/α of these directions can be due to the differences in mean between plausible
clusters. Morally speaking, the outliers must contribute to this large variance in
all k directions, while the potential inliers will only contribute in 1/α many di-
rections. This allows us to assign a score to each point (essentially the squared
distance from the sample mean after projecting onto W, and renormalizing so
that the variance in each direction is the same) for which it is not hard to show
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that the outliers have higher average score than the good points. Given these
scores, we construct a weighted filter that will clean-up our dataset.

We need to handle an additional complication that does not appear in the
minority-outlier regime. The standard filter step guarantees that the fraction of
inliers removed is at most a small constant multiple of the fraction of points
removed overall. If the initial fraction of inliers is large, this suffices to guaran-
tee that the algorithm never removes more than a small fraction of the inliers.
In the majority-outlier regime, this is no longer the case.

Concretely, suppose that a filter step replaces a set T by a set T ′, and for
some set of points S we can guarantee that

|S ∩ (T − T ′)|
|S ∩ T |

≤ c
(
|T − T ′|
|T |

)
,

for some constant c < 1. That is, the fraction of inliers removed in each step
is at most c times the fraction of total points removed. It is not hard to see that
this implies that

log(|S ∩ T |) − c log(|T |)

decreases in every step. If |S ∩ T | is almost as large as |T |, it is not hard to see
that if this invariant is maintained, then |T | cannot decrease very much before
|T | < |S ∩ T |, which is impossible. However, if |T | is much larger than |S ∩ T |,
this is not necessarily the case. In particular, every time that |T | decreases by
a factor of 21/c, we could have |S ∩ T | decreasing by a factor 2. This is a
problem for two reasons. First, if the final set of points that we end up with
has small intersection with the original set of inliers, the mean of S ∩ T need
no longer necessarily be close to S . Second, in order for a filter step to satisfy
the appropriate guarantees, we often need to assume that a large fraction of the
original inliers are still remaining.

The multifilter step of the previous section deals with this issue by letting
c be a small constant multiple of 1/ log(1/α). This ensures that even after |T |
decreases by a factor of α (and thus has roughly the same size as S ), the size of
|S ∩ T | can only decrease by a small constant multiple. This suffices to ensure
that, throughout the course of the entire algorithm, |S ∩ T | never decreases by
more than a constant factor. While this is a relatively simple solution to the
problem above, unfortunately, setting c to be so small loses polylogarithmic
terms in 1/α in the final error, which we cannot afford.

The SIFT algorithm will instead make do with letting c be some constant less
than 1/2. In particular, this means that once we have reached the point where
we are left with only a β-fraction of the original samples, for some β > 0, we
will still have at least a β1/2-fraction of the inliers (or perhaps βc, for some
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c ≤ 1/2). This suffices to guarantee termination, as when β < α2 we would
have fewer points remaining overall than inliers remaining, a contradiction.

Unfortunately, the above step introduces a new complication. Our filtering
technique relied on the fact that among the set of remaining inliers the covari-
ance was O(I). However, if we have reduced to a γ-fraction of the original
inliers, the covariance of the remaining inlier set could be as large as O(γ−1 I).
This defect can be corrected by rescaling the remaining points by a factor of
γ1/2. This rescaling step will multiply our final error (after un-rescaling) by
a factor of γ−1/2. This increase to the error is compensated for by the fact
that the fraction of inliers is now larger. In particular, if we have reduced to
a set T ′ ⊂ T , where |T ′| = β|T | and the set of remaining inliers has size at
least β1/2α|T |, then we have a set where an αβ−1/2-fraction of the samples
are inliers, and the set of inliers has variance bounded above by β−1/2. Ap-
plied recursively, this means that we should be able to attain a final error of
O(

√
β−1/2/(αβ−1/2)) = O(1/

√
α), as desired.

In practice, rather than explicitly rescaling the points in our distribution ev-
ery time we remove samples (to deal with the above issue), the algorithm will
dynamically adjust what it considers to be a “large eigenvalue” when trying to
construct a filter, leaving the rest of the algorithm unchanged.

Formal Description and Analysis of SIFT After our intuitive explanation,
we are ready to provide a formal description of SIFT and its proof of correct-
ness.

We will assume that the true (inlier) distribution has bounded (unknown) co-
variance, i.e., Σ � I. Our algorithm will work under the following deterministic
condition.

Assumption 5.18 There exists a subset S ⊆ T ⊆ Rd with |S | = α|T | such
that 1

|S |
∑

x∈S (x − µ∗)(x − µ∗)> � I.

If S consists of Ω(d log(d)) i.i.d. samples from a distribution with covariance
bounded above by I/2 and mean µ∗, S will contain a set of size |S |/2 satisfying
Assumption 5.18 with high probability by Proposition 3.9.

The simplest version of the SIFT algorithm that we will describe uses weighted
outlier-removal. For this, we need to define a condition under which the current
weights still satisfy our necessary invariants. In particular, we must develop a
weighted version of the condition that |S ∩ T | decreases by a factor that is at
most the square root of the fraction by which |T | has decreased overall. Here
our set T is maintained by a vector w of weights with ‖w‖1 being our proxy for
|T | and ‖wS ‖1 being our proxy for |S ∩ T |.
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Using the notation ∆T := {w : T → R+ : ‖w‖∞ ≤ 1/|T |}, we define a condition
under which our weight function assigns enough of its mass to S .

Definition 5.19 (Saturated Weights) We call the weight vector w ∈ ∆T satu-
rated if and only if ‖wS ‖1 ≥ α

√
‖w‖1.

Essentially, a weight vector is saturated if the “weight” of S ∩ T is at least
α times the square root of the total “weight” of T .

As with other weighted outlier-removal algorithms, each round of filtering
will assign a non-negative score τx to each point x ∈ T , and we will decrease
the weight of x by an amount proportional to wxτx. We will need these scores
to satisfy a condition in order to ensure that this outlier-removal process main-
tains the condition of saturated weights. This condition will need to roughly be
that the fraction of inliers removed is at most half the fraction of total points
removed. In particular, we define:

Definition 5.20 (Safe Scores) We call scores {τx}x∈T ∈ Rn
≥0 safe with respect

to w ∈ ∆T if
∑

x∈S
wx
‖wS ‖1

τx ≤ (1/2)
∑

x∈T
wx
‖w‖1

τx. When the weights w are clear
from context, we will simply call the scores τ safe.

The intuition behind this is that if we remove weight from x by an amount
proportional to wxτx, then the fraction of its weight that S loses will be at
most half the fraction of mass lost by T . This says roughly that the amount
that log(‖wS ‖1) decreases by is at most half of the decrease in log(‖wT ‖1) or
that log(‖wS ‖1/

√
‖wT ‖1) only increases. Hence this procedure should produce

a new set of saturated weights.
In particular, we show that using safe scores in our weight removal process

maintains saturated weights:

Lemma 5.21 Consider a set of saturated weights w, and an update of the
form:

1. Let {τx}x∈T be safe with respect to w.
2. Update for all x ∈ T:

w′x ← (1 − τx/τmax) wx, where τmax := max
x∈T |wx,0

τx . (5.6)

Then, the result of the updates w′ is also saturated.

Proof It is easy to see that ‖w′S ‖1 = ‖wS ‖1 − (1/τmax)
∑

x∈S wxτx and ‖w′‖1 =

‖w‖1 − (1/τmax)
∑

x∈T wxτx. Since τ is safe, we have that
∑

x∈S wxτx
‖wS ‖1

≤
∑

x∈T wxτx
2‖w‖1

. In
particular, this means that

‖wS ‖1 − ‖w′S ‖1
‖wS ‖1

≤
‖w‖1 − ‖w′‖1

2‖w‖1
.
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The above together with the fact ‖wS ‖1 ≥ α
√
‖w‖1 implies that ‖w′S ‖1 ≥

α
√
‖w′‖1.

In particular, if ‖wS ‖
2
1 = β‖wT ‖ for some β ≥ α, we have that:

‖w′S ‖
2
1 = ‖wS ‖

2
1 − 2‖wS ‖1(‖wS ‖1 − ‖w′S ‖1) + (‖wS ‖1 − ‖w′S ‖1)2

≥ ‖wS ‖
2
1 − (‖wS ‖

2
1/‖w‖1)(‖w‖1 − ‖w′‖1)

= β‖w‖1 − β(‖w‖1 − ‖w′‖1)

= β‖w′‖1 ≥ α‖w′‖1.

This completes our proof. �

For any weight vector w and subset R ⊆ T , w defines a probability distribu-
tion on R by assigning the point x ∈ R probability proportional to wx. It will be
useful to be able to talk about the mean and covariance of such a distribution,
particularly when R = S or R = T . We define:

Definition 5.22 Let w ∈ ∆T and let R ⊂ T be such that wR is non-zero. Then
we define:

µw[R] :=
1
‖wR‖1

∑
x∈R

wxx

and

Covw[R] :=
1
‖wR‖1

∑
x∈R

wx(x − µw[R])(x − µw[R])> .

The analogue of Lemma 5.13 is the following.

Lemma 5.23 We have that (µw[S ]−µw[T ])(µw[S ]−µw[T ])> � ‖w‖1
‖wS ‖1

Covw[T ].

Proof Let XS be the probability distribution that assigns x ∈ S probabil-
ity wx/‖wS ‖1, and let XT be the distribution that assigns x ∈ T probability
wx/‖wT ‖1. Note that µw[S ], µw[T ] are the means of XS and XT respectively,
and that Covw[T ] is the covariance of XT . Furthermore, note that XT is a mix-
ture of XS with mixing weight ‖wS ‖1

‖w‖1
and some other distribution XR. It follows

that Covw[T ] is equal to

‖wS ‖1(‖w‖1 − ‖wS ‖1)
‖w‖21

(E[XS ] − E[XR])(E[XS ] − E[XR])> +
‖wS ‖1

‖w‖1
Cov[XS ]+

‖w‖1 − ‖wS ‖1

‖w‖1
Cov[XR] .

Noting that Cov[XS ],Cov[XR] � 0 and that µw[S ]−µw[T ] =
(‖w‖1−‖wS ‖1)
‖w‖1

(E[XS ]−
E[XR]) yields the result. �
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We would next like to know that if Covw[T ] is small, then µw[T ] is close to
µ∗. This follows relatively easily from Lemma 5.23.

Lemma 5.24 Let w ∈ ∆T , then,

‖µw[T ] − µ∗‖2 ≤

√
‖Covw[T ]‖2

‖w‖1
‖wS ‖1

+

√
α

‖wS ‖1
.

Proof Taking the spectral norm of both sides in Lemma 5.23, we get that

‖µw[S ] − µw[T ]‖2 ≤

√
‖Covw[T ]‖2

‖w‖1
‖wS ‖1

. (5.7)

We next need to bound ‖µw[S ] − µ∗‖2. We have by Assumption 5.18 that

Ex∼uS (x − µ∗)(x − µ∗)> � I .

Letting XS be the distribution over S weighted by w, we note that XS is X
conditioned on an event with probability ‖wS ‖1/α. Therefore, we have that

Ex∼XS (x − µ∗)(x − µ∗)> � (α/‖wS ‖1)I .

On the other hand, since the left hand side is Cov[XS ] + (µw[S ] − µ∗)(µw[S ] −
µ∗)>, we have that ‖µw[S ] − µ∗‖2 ≤

√
α/‖wS ‖1.

Combining this with Condition (5.7) yields the result. �

We will also need one final lemma.

Lemma 5.25 Let w ∈ ∆T , then

Covw[S ] �
1
‖wS ‖1

∑
x∈S

wx(x − µ∗)(x − µ∗)> � α
‖wS ‖1

I.

Proof This follows by noting that Covw[S ] is at most

1
‖wS ‖1

∑
x∈S

wx(x−µ∗)(x−µ∗)> ≤
(

α
‖wS ‖1

) |T |
|S |

∑
x∈S

(1/n)(x−µ∗)(x−µ∗)> ≤
(

α
‖wS ‖1

)
I .

�

With this setup, we are ready to develop our main algorithmic tool. In par-
ticular, we show that given a set of saturated weights, either Covw[T ] has few
large eigenvalues (in which case, we can let V be the span of the large eigen-
values, producing an appropriate subspace), or we can find a collection of safe
scores.
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Proposition 5.26 Let T be a set of points in Rd with a subset S satisfying As-
sumption 5.18. Let w be a saturated weight vector with ‖w‖1 = β. Let C ≥ 8 be
a constant, and suppose that Covw[T ] has at least Cβ1/2/α eigenvectors with
eigenvalue more than C/β1/2. Then there exists a polynomial-time algorithm
that given T,w, α, β computes a set of safe scores.

Proof Let W be the span of the eigenvectors of Covw[T ] with eigenvalues
more than C/β1/2 and let k > Cβ1/2/α be the dimension of W. The basic idea
of our algorithm comes from the following simple observation. Let P be the
projection matrix onto W. Then we can write

tr(PCovw[T ]P) =
1
‖w‖1

∑
x∈T

wxtr(P(x − µw[T ])(x − µw[T ])>P)

=
1
‖w‖1

∑
x∈T

wx‖P(x − µw[T ])‖22 ,

and similarly

tr(PCovw[S ]P) =
1
‖wS ‖1

∑
x∈S

wx‖P(x − µw[S ])‖22 .

That is, the average value (weighted by wx) of ‖P(x − µw[T ])‖22 is equal to
tr(PCovw[T ]P), which is at least kCβ−1/2 by assumption. Similarly, the av-
erage value over x ∈ S (weighted by wx) of ‖P(x − µw[S ])‖22 is equal to
tr(PCovw[S ]P). By an application of Lemma 5.25, we have that Covw[S ] ≤
α
‖wS ‖1

I ≤ α
α
√
β

I = β−1/2I. Thus, we have that tr(PCovw[S ]P) ≤ kβ−1/2.

To summarize the above, the average value over T of ‖P(x − µw[T ])‖22 is
substantially larger than the average value over S of ‖P(x − µw[S ])‖22. Were
it not for the fact that one of these expressions uses µw[T ] and the other uses
µw[S ], this would imply that τx := ‖P(x − µw[T ])‖22 would be a safe score.

To complete the proof, it is important to understand how the use of the dif-
ferent means affects things. By Condition (5.7), it follows that

‖µw[T ] − µw[S ]‖2 ≤
√
‖Covw[T ]‖2(β1/2/α) ≤

√
‖Covw[T ]‖2k/C .

This means that the average value over x ∈ S of ‖P(x − µw[T ])‖22 is at most
twice the average value of ‖P(x − µw[S ])‖22 plus twice ‖µw[S ] − µw[T ]‖22 or

2kβ−1/2 + 2‖Covw[T ]‖2k/C . (5.8)

If it were the case that Covw[T ] had just k eigenvalues of size approximately
C/β1/2, and none much larger, then (5.8) would be O(kβ−1/2), while the corre-
sponding average over T is at least kCβ−1/2. Unfortunately, if Covw[T ] has a
single much larger eigenvalue, this analysis might fail.
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To handle this issue, we need a way to regularize the points so that the eigen-
values of Covw[T ] along W are approximately the same. An easy way to do
this is via a simple pre-processing step. In particular, let Covw[T ] have eigen-
value decomposition Covw[T ] =

∑
i λiviv>i , where the vi’s form an orthonormal

basis of Rd. Then let M :=
∑

i eiviv>i , where

ei =


√

(Cβ−1/2)/λi if λi ≥ Cβ−1/2

1 otherwise
.

We then note that letting T ′ be obtained by multiplying each point of T by
M, and letting w′ be the weight function corresponding to w, T ′ has exactly k
eigenvectors with eigenvalue Cβ−1/2 and none larger. Meanwhile, letting S ′ ⊆
T ′ be the set of points Mx for x ∈ S , it is easy to see that since M � I that
S ′ satisfies Assumption 5.18 (with Mµ∗ replacing µ∗). Therefore, the above
analysis shows that letting τ′x := ‖P(x − µw′ (T ′))‖22, the average value of τ′x
over x ∈ S ′ is at most 4kβ−1/2; while the average value over x ∈ T ′ is at least
kCβ−1/2. Thus, if C ≥ 8, this gives a set of safe scores over T ′.

Translating the definitions back to S and T , it is not hard to see that this
implies that

τx := ‖PM(x − µw[T ])‖22

is a safe set of scores. As a final note, it is also not hard to see that τx is
proportional to ‖PCovw[T ]−1/2(x−µw[T ])‖22, and so the latter can be used more
conveniently as scores. �

The following theorem encapsulates the guarantees of our algorithm.

Theorem 5.27 If Algorithm SIFT is run on a set T satisfying Assumption
5.18, then it runs in polynomial-time and with probability Ω(α) it returns a
point x so that ‖x − µ∗‖2 = O(α−1/2).

The success probability in Theorem 5.27 is small, but that is because it re-
turns only a single hypothesis. If instead we run the algorithm a large constant
multiple of log(1/δ)/α times (and note that the separate runs only differ in
their random choice of x in the next-to-last step), then we will obtain a list of
O(log(1/δ)/α) many hypotheses such that with probability at least 1−δ at least
one of the chosen hypotheses will be within distance O(α−1/2) of µ∗.

Note that for sets S on which we only assume bounded covariance, this error
is information-theoretically optimal. Furthermore, if we take δ to be a constant,
the list size is optimal as well.

The pseudocode of our list-decoding algorithm SIFT is as follows:
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Algorithm SIFT
Input: T ⊂ Rd with |T | = n satisfying Assumption 5.18 for some α > 0

1. w(0) := 1
n 1T , t := 0, β := 1

2. While Covw(t) [T ] has at least 8β1/2/α eigenvalues of size at least
8β−1/2:

(a) Let W be the subspace spanned by the eigenvectors of Covw(t) [T ]
with eigenvalue at least 8β−1/2.

(b) Let P be the projection matrix onto W and τ(t)
x :=

‖PCovw(t) [T ]−1/2(x − µw(t) [T ])‖22 for x ∈ T . Let τ(t)
max be the maxi-

mum value of τ(t)
x over all x ∈ T with w(t)

x , 0.
(c) For each x ∈ T , let w(t+1)

x := w(t)
x (1 − τ(t)

x /τ
(t)
max).

(d) β := ‖w(t+1)‖1, t := t + 1.

3. Let V be the span of the eigenvectors of Covw(t) [T ] with eigenvalue at
least 8β−1/2.

4. Let V ′ be the affine subspace given by the translation of V passing
through µw(t) [T ].

5. Pick a uniform random point x ∈ T .
6. Return the projection of x onto V ′.

Proof of Theorem 5.27 First, we claim that each w(t) is saturated. The proof is
by induction on t. In particular, as a base case we can see that w(0) is saturated.
For the inductive step, if w(t) is saturated, then by Proposition 5.26, τ(t) are safe
scores, so by Lemma 5.21, w(t+1) is saturated.

Next we note that each iteration of the while loop sets at least one of the
wx’s to 0, and that once a wx is set to 0, it will stay that way. Therefore, the
algorithm will exit after at most |T | iterations through the loop. At the end of
the loop, we have a saturated set of weights w = w(t) such that with β = ‖w‖1
we have that Covw[T ] has at most 8β1/2/α eigenvalues of size at least 8β−1/2.
In particular, this means that dim(V) ≤ 8β1/2/α. Moreover, letting TV⊥ be the
set of the projections of the points of T onto V⊥, we have that the eigenvalues
of Covw[TV⊥ ] are all at most 8β−1/2. In particular, applying Lemma 5.24 to
TV⊥ , we find that:

‖ProjV⊥ (µw[T ]) − ProjV⊥ (µ∗)‖2 ≤

√
(8β−1/2)

‖w‖1
‖wS ‖1

+

√
α

‖wS ‖1

≤

√
(8β−1/2)(β)/(αβ−1/2) +

√
α/(αβ1/2)

=
√

8/α +

√
β−1/2 .
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Noting that for saturated weights we must have ‖w‖1 ≥ ‖wS ‖1, we have β ≥
αβ1/2 and thus, β ≥ α2. Therefore, the above is O(α−1/2).

This means in particular that the distance between µ∗ and its projection onto
V ′ is at most O(α−1/2).

Finally, we note that with probability at least αwe have that x ∈ S . Recalling
that the expectation over x ∈ S of (x − µ∗)(x − µ∗)> is at most I, we can write

Ex∼uS [‖ProjV ′ (x) − ProjV ′ (µ
∗)‖22] = Ex∼uS [‖ProjV (x) − ProjV (µ∗)‖22]

= Ex∼uS [tr(ProjV (x − µ∗)(x − µ∗)>ProjV )]

≤ tr(ProjV IProjV ) ≤ dim(V) = O(α−1) .

Thus, my Markov’s inequality, conditioned on x being in S , with probability at
least 1/2 we have that ‖ProjV ′ (x)−ProjV ′ (µ

∗)‖2 = O(α−1/2). Thus, this happens
with probability at least α/2.

If this holds we have that

‖ProjV ′ (x) − µ∗‖2 ≤ ‖ProjV ′ (x) − ProjV ′ (µ
∗)‖2 + ‖µ∗ − ProjV ′ (µ

∗)‖2 = O(α−1/2) .

This completes the proof. �

Remark 5.28 A final note about the SIFT algorithm is the use of the weighted
filter. While it should be possible to convert this algorithm to work with an ap-
propriate randomized filter, the analysis becomes somewhat subtle as we need
to ensure that at all points during the execution of the algorithm, the fraction
of remaining inliers is related appropriately to the fraction of remaining points
overall. As these fractions are varying over a much wider range than before,
this analysis becomes somewhat more complicated.

5.3.3 Reducing the set of Hypotheses

Note that the multifilter algorithm of Section 5.3.1 can return as many as
Ω(α−2) hypotheses, while the SIFT algorithm of Section 5.3.2 may need to
return a large multiple of 1/α if we want small failure probability. This is
in contrast to the fact that information-theoretically O(1/α) many hypotheses
suffice to achieve the information-theoretically optimal error, even with high
probability. In this section, we provide a simple general method to post-process
a list of hypotheses in order to produce a smaller list of size O(1/α) without
significantly increasing the error.

We start with the assumption that each hypothesis comes with an associated
subset satisfying the hypotheses of Lemma 5.7. We note that the output of the
multifilter algorithm satisfies this property automatically.
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Proposition 5.29 There exists an algorithm that, given a set T along with s
candidate means µi and subsets S i satisfying the assumptions of Lemma 5.7
and such that at least one of the candidates is within error E of the true mean
µ, the algorithm runs in time poly(d, s, 1/α) and returns a list of O(1/α) hy-
potheses such that at least one of the hypotheses are within O(E + t) of µ.

Proof The algorithm establishing Proposition 5.29 is quite simple. We begin
by finding a maximal subset of our hypotheses that are pairwise separated by
at least 2t. This can be done by starting with an empty set H of hypotheses and
for each hypothesis in our set comparing it to each of the hypotheses currently
in H and adding it to H if it is not too close to any of them. It is clear that the
runtime of this algorithm is O(d|H|s). Moreover, if the original list of hypothe-
ses contained a point µ0, then H will contain a point µ̃ with ‖µ̃ − µ0‖2 < 2t.
Therefore, if our original set contained a µ0 with ‖µ0 − µ‖2 ≤ E, then by the
triangle inequality, H will contain a µ̃ with ‖µ̃ − µ‖2 = O(E + t).

It remains to show that |H| = O(1/α); but this follows from Lemma 5.7. �

The above works for reducing the set of hypotheses from the multifilter al-
gorithm, as each such hypothesis comes with an appropriate subset S i. Unfor-
tunately, for SIFT, this will not necessarily be the case. However, there is an
algorithmic way to get around this, essentially by finding such sets S i if they
exist, and removing hypotheses for which they do not exist.

Theorem 5.30 Let T ⊂ Rd be a multiset of points such that there is an
unknown µ ∈ Rd and S ⊂ T with |S | ≥ α|T | satisfying Condition (5.1). Fur-
thermore, let H ⊂ Rd be a finite list of hypotheses such that there exists h ∈ H
with ‖h − µ‖2 ≤ E. Then there exists an algorithm that given T,H, E, t, α, runs
in time poly(d, |T |, |H|), and returns a set of O(1/α) hypotheses at least one of
which is within distance O(E + t) of µ.

Proof LetD be the set of unit vectors in the direction of h − h′ for h, h′ ∈ H.
We note that if h ∈ H satisfies ‖h − µ‖2 ≤ E, then for all v ∈ D we have
that Prx∼uS [v · (x − h) > t + E] ≤ α/10. Let H′ be the set of h ∈ H such
that there exists a set S ′ ⊂ T with |S ′| ≥ α|T | such that for all v ∈ D we
have Prx∼uS ′ [v · (x − h) > t + E] ≤ α/10. We note that there is an h ∈ H′

with ‖h − µ‖2 ≤ E and furthermore, given H′ we could run the algorithm from
Proposition 5.29 to produce a list of O(1/α) hypotheses such that at least one
of them is guaranteed to be within O(t + E) of µ.

Thus, it is sufficient to have an algorithm for determining whether or not
an h ∈ H is in H′. Unfortunately, determining whether or not an S ′ exists is
non-trivial. Fortunately, there is a linear programming relaxation that we can
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solve. In particular, we want to find weights wx for each x ∈ T satisfying the
following relations:

1. 0 ≤ wx ≤ 1/(α|T |) for all x ∈ T
2.

∑
v·(x−h)>t+E wx ≤ α/10 for all v ∈ D .

The above system of linear inequalities can be efficiently solved using an LP
solver. Furthermore, it is not hard to see that the existence of such a w is equiv-
alent to the existence of a set S ′ with the desired properties contained in a
multiset consisting of a large number of copies of T .

Thus, our final algorithm is fairly simple. We let h′ be the set of elements
h ∈ H for which the above system has a solution, and then run the algorithm
from Proposition 5.29 on H′. This completes the proof. �

5.4 Application: Learning Mixture Models

In this section, we show that the problem of learning mixture models can often
be efficiently reduced to list-decoding. Specifically, we focus on the follow-
ing setting: We are given i.i.d. samples from a uniform k-mixture of identity
covariance Gaussians X =

∑k
i=1(1/k)N(µi, I) and we additionally assume that

the component means µi are pairwise separated in distance by an appropriately
large quantity ∆. Our goal is to accurately cluster the samples and/or approxi-
mate the unknown component means.

Since a Gaussian mixture model (GMM) can simultaneously be thought of
as a mixture of any one of its components with some error distribution, ap-
plying a list-decodable mean estimation algorithm to samples from a GMM
will return a list of hypotheses so that every mean in the mixture is close to
some hypothesis in the list. We can then use this list to cluster our samples by
component. The main result of this section is the following proposition.

Proposition 5.31 Let X =
∑k

i=1(1/k)N(µi, I) be a uniform k-mixture of iden-
tity covariance Gaussians in Rd with the component means separated by 7∆,
where ∆ �

√
log(k/δ), for some 0 < δ < 1/2. Suppose that we are given a set

of points H ⊂ Rd such that for each i ∈ [k] there exists h ∈ H with ‖h − µi‖2

at most a sufficiently small constant multiple of ∆. There exists an algorithm
that draws n = O(dk/δ2) samples from X, runs in poly(d, |H|, n) time and with
probability at least 9/10 learns a distribution X̃ so that dTV(X, X̃) ≤ δ.

Proof We start with an overview of the algorithm and its analysis. First, we
can apply Theorem 5.30 to reduce to the case where |H| = O(k), and where for
each i ∈ [k], there exists h j ∈ H with ‖hi − µ j‖2 ≤ ∆/10. We start by drawing a
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set T of n = O(dk/δ2) samples from X. We denote by S i the subset of T drawn
from the componentN(µi, I). Given T and H, we associate each sample x ∈ T
with its closest point in H. We then cluster points based on which means they
are associated to and use this to learn the correct components.

Given samples from a Gaussian G = N(µ, I) and a list of m hypothesis
means h1, . . . , hm, we consider the process of associating a sample x from G
with the nearest hi. Note that x is closer to h j than hi if and only if the pro-
jection of x onto the line defined by hi and h j is closer to h j than to hi. If hi

is substantially closer to µ than h j is, then this projection will be far from its
mean, which happens with very small probability. Thus, by a union bound, as
long as our list contains some hi that is close to µ, the closest hypothesis to x
with high probability is not much further. If the separation between the means
in our mixture is much larger than the separation between the means and the
closest hypotheses, this implies that almost all samples from the mixture are
associated with one of the hypotheses near their component mean, and this will
allow us to cluster samples by component.

We will show that, with high probability, almost every sample x ∈ S i will
be associated with a point in H that is close to the corresponding component
mean µi. The key lemma is as follows:

Lemma 5.32 Fix i ∈ [k] and a point h ∈ H with ‖h − µi‖2 > ∆/2. Assuming
that |H| = O(k), the probability that a random sample x ∼ N(µi, I) is associ-
ated with h is at most exp(−Ω(∆2)).

Proof Let h′ ∈ H be such that ‖h′ − µi‖2 ≤ ∆/10. To prove the lemma, we
will show that a sample x ∼ N(µi, I) is closer to h than to h′ with probability
at most exp(−Ω(∆2)). See Figure 5.7 for a summary of the proof idea.

Figure 5.7 Illustration of the proof of Lemma 5.32. Note that because there is a
hypothesis h′ much closer to µi than h, the projection of samples onto the line
between h and h′ will almost all lie closer to h′. This implies that almost all of the
samples from this cluster will be closer to h′ than h, and thus are not associated
with h.
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Let v be the unit vector in the direction of h− h′. Recall that x can be associ-
ated to h only if ‖x−h‖2 ≤ ‖x−h′‖2. We will bound from above the probability
of this event.

By basic linear algebra, ‖x − h‖2 ≤ ‖x − h′‖2 if and only if we have that
v ·x ≥ v ·(h+h′)/2. Observe that for any unit vector u, we have that u ·(µi−h′) ≤
‖h′ − µi‖2 ≤ ∆/10. This implies that

v · µi ≤ v · h′ + ∆/10 . (5.9)

By the definition of v and the triangle inequality, we have that

v · h = v · h′ + ‖h− h′‖2 ≥ v · h′ + ‖h− µi‖2 − ‖h′ − µi‖2 ≥ v · h′ + 2∆/5 . (5.10)

From (5.9) and (5.10), we get that v · (h + h′)/2 ≥ v · µi + ∆/10. Therefore,

Prx∼N(µi,I)
[
v · x ≥ v · (h + h′)/2

]
≤ Prx∼N(µi,I)

[
v · x ≥ v · µi + ∆/10

]
= exp(−Ω(∆2)) ,

where the last inequality follows from the Gaussian concentration. This com-
pletes the proof. �

Algorithm Learn-Identity-Covariance-GMM
Input: Parameters k ∈ Z+, δ > 0 and sample access to X on Rd.

1. Apply the algorithm from Theorem 5.30 on H and a set of Ckd i.i.d.
samples from X (for some large constant C), and let H be the smaller
list of hypotheses it returns.

2. Let H ⊂ Rd be the list of hypotheses satisfying the assumption of
Proposition 5.31.

3. Draw a multiset T of n = Ω(dk/δ2) i.i.d. samples from X. For each x ∈
T associate x to its closest hypothesis of H (in `2-distance) breaking
ties arbitrarily.

4. Let H′ be the set of h ∈ H such that at least a 2/(3k)-fraction of the
points in T are associated to a point in H at distance at most ∆ from
h.

5. Define the binary relation “∼” on H′ defined as follows: h ∼ h′ if and
only if ‖h − h′‖2 ≤ 3∆. If this does not define an equivalence relation
on H′, return “FAIL”.

6. For each equivalence class Ci of H′, let TCi be the set of points in T
that are associated to points in Ci. Assign TCi to the i-th component.

7. For each equivalence class Ci, run Robust-Mean on TCi , and let µCi

be the approximation of the mean obtained. Return the list of these
means.
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See Figure 5.8 for an illustration of the algorithm.

Figure 5.8 Illustration of algorithm Learn-Identity-Covariance-GMM. Each
sample (small dot) is associated with its nearest hypothesis (cross). The hypothe-
ses with few samples associated to nearby hypotheses are removed from H′ (and
grayed out). The remaining hypotheses can then be easily clustered based on their
distances to each other; this allows us to reliably cluster our original samples based
on which component they came from.

As an immediate corollary, we obtain.

Corollary 5.33 With probability 1 − exp(−Ω(∆2)) over the samples from S i,
a (1 − exp(−Ω(∆2)))-fraction of the points in S i are associated with points in
H within distance ∆/2 of µi.

Proof Fix h ∈ H with ‖h − µi‖2 > ∆/2. By Lemma 5.32, any x( j) ∈ S i is
associated with h with probability p ≤ exp(−Ω(∆2)). Let Zi, j be the indicator
random variable of this event and Z̄i = (1/ni)

∑ni
j=1 Zi, j, where ni = |S i|. It is

clear that E[Z̄i] = p. By Markov’s inequality, we have that PrS i

[
Z̄i ≥ p1/2

]
=

PrS i

[
Z̄i ≥ p−1/2 E[Z̄i]

]
≤ p1/2. That is, the probability that more than a p1/2-

fraction of the points in S i are associated to h is at most p1/2. Taking a union
bound over all h j ∈ H such that ‖h j−µi‖2 > ∆/2, it follows that the probability
that more than a p1/2-fraction of the points in S i are associated to some such
h j is at most |H| p1/2 ≤ poly(k) p1/2. By our assumption that ∆ �

√
log(k/δ),

it follows that poly(k) p1/2 ≤ exp(−Ω(∆2)) with suitably small constant in the
Ω(·). This completes the proof. �
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By a union bound over the k components and Corollary 5.33, the event that
there exists i ∈ [k] such that more than a p1/2-fraction of the points in S i

are associated to some point in H at distance more than ∆/2 from µi is at
most k |H| p1/2 ≤ poly(k) p1/2 = exp(−Ω(∆2)). Equivalently, with probability
at least 1 − exp(−Ω(∆2)), for all components i ∈ [k] simultaneously, at least a
1 − p1/2 = (1 − exp(−Ω(∆2))) fraction of the points in S i are associated with
elements in H within distance ∆/2 of µi. By a Chernoff bound, with probability
at least 1−k exp(−Ω(|T |/k)) over the samples from the mixture X, we have that
(3/(4k)) |T | ≤ |S i| ≤ (4/(3k)) |T |, for all i ∈ [k]. We henceforth condition on
these two events, whose intersection has probability at least 9/10.

The next claim shows that any point in H that is sufficiently close to some
µi is in H′.

Claim 5.34 Let h ∈ H be such that ‖h − µi‖ ≤ ∆/2, for some i ∈ [k]. Then
h ∈ H′.

Proof By our above conditioning, for all i ∈ [k], |S i| ≥ (3/(4k))|T | and at
least a 9/10-fraction of points in S i are associated with points h j ∈ H such that
‖h j−µi‖ ≤ ∆/2. By the triangle inequality, each such h j satisfies ‖h j−h‖2 ≤ ∆.
Therefore, at least (9/10) (3/(4k))|T | ≥ (2/(3k)) |T | points in T are associated
with hypotheses h j ∈ H within distance ∆ of h. Hence, h ∈ H′. �

By assumption, for each i ∈ [k], there exists h ∈ H such that ‖h − µi‖2 ≤

∆/10. Claim 5.34 therefore implies that H′ , ∅. Since the µi’s are separated by
7∆, it follows that |H′| ≥ k.

Conversely, we show that any point in H′ will be relatively close to some µi.

Claim 5.35 For any h ∈ H′ there exists some i ∈ [k] such that ‖h−µi‖ ≤ 3∆/2.

Proof Let h ∈ H′ and {h j} ⊂ H be the subset of points in H that satisfy
‖h j − h‖2 ≤ ∆. We will show that there exists i ∈ [k] such that at least one of
the h j’s satisfies ‖h j − µi‖2 ≤ ∆/2. The claim will then follow from the triangle
inequality.

By definition of H′, each such point h j ∈ H will be associated to a subset
T j ⊂ T of points in T and moreover |∪ j T j| ≥ (2/(3k))|T |. Suppose, for the sake
of contradiction that each h j is ∆-far from all µi’s, i.e., it satisfies the condition
mini∈[k] ‖h j − µi‖2 > ∆/2. By our conditioning, at most an exp(−Ω(∆2)) � δ/k
fraction of the points in T = ∪iS i are associated with the union of h j’s. Since
δ/k < 2/(3k), we obtain a contradiction, completing the proof.

See Figure 5.9 for an illustration of the argument. �

Claim 5.35 and the assumed separation between the µi’s implies that the
relation “∼” on H′ is an equivalence relation. We show this as follows: Let
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Figure 5.9 Illustration of the proof of Claim 5.35. The hypothesis h is 3∆/2-far
from any µi, which makes it ∆-far from any hypothesis within distance ∆/2 of
any µi. However, since almost all samples have a closest hypothesis within dis-
tance ∆/2 of their cluster mean, very few will be associated to hypotheses within
distance ∆ of h. Therefore, h < H′.

h, h′ ∈ H′ be close to component means µi, µ j with i , j, i.e., ‖h − µi‖ ≤ 3∆/2
and ‖h′ − µ j‖ ≤ 3∆/2. Then, by the triangle inequality, we get that

‖h − h′‖2 ≥ ‖µi − µ j‖ − ‖h − µi‖ − ‖h′ − µ j‖ ≥ 7∆ − 3∆ = 4∆ .

That is, if ‖h−h′‖2 < 4∆, h and h′ are 3∆/2-close to the same µi. Let h1, h2, h2 ∈

H′ be such that h1 ∼ h2 and h2 ∼ h3. Since ‖h1 − h2‖ ≤ 3∆, there exists i ∈ [k]
such that ‖h1 − µi‖ ≤ 3∆/2 and ‖h2 − µi‖ ≤ 3∆/2. Similarly, there exists j ∈ [k]
such that ‖h2 − µ j‖ ≤ 3∆/2 and ‖h3 − µ j‖ ≤ 3∆/2. Therefore, µi = µ j, as
otherwise

‖µi − µ j‖2 ≤ ‖µi − h2‖2 + ‖h2 − h3‖2 + ‖h3 − µ j‖2 ≤ 3∆/2 + 3∆ + 3∆/2 = 6∆ ,

a contradiction. This implies that ‖h1 − h3‖ ≤ 3∆, i.e., h1 ∼ h3, which shows
that “∼” is an equivalence relation on H′. See Figure 5.10 for an illustration of
this argument.

Also note that each equivalence class consists of all the points in H′ within
distance 3∆/2 of some particular component mean µi. In particular, there is
exactly one equivalence class Ci for each µi, i.e., we have k equivalence classes.
This allows us to accurately cluster the samples in T .
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Figure 5.10 Illustration of the proof that ∼ is an equivalence relation. Hypothe-
ses in H′ within distance 3∆/2 of the same cluster mean will be related, while
hypotheses within distance 3∆/2 of different means will not.

By our conditioning, for each i ∈ [k], (1 − exp(−Ω(∆2)))-fraction of the
points in S i are associated with elements of H′ in the equivalence class Ci

corresponding to µi. Therefore, at most an exp(−Ω(∆2)) � δ/k-fraction of the
points in T are misclassified.

Since the points associated with Ci are a δ-corrupted sample from N(µi, I)
(in the worst case they get a δ/k-fraction of the points from each other cluster),
Robust-Mean returns a mean νi with ‖νi − µi‖2 = Õ(δ/k). This completes the
proof of Proposition 5.31. �

Combining Proposition 5.31 with the algorithms of Section 5.3, we obtain
efficient clustering algorithms for learning mixtures of spherical Gaussians,
under the assumption that their pairwise mean separation is ∆ = Ω(k1/2). This
reduction-based approach can be extended to bounded covariance distributions
under similar separation assumptions. While these guarantees are not difficult
to obtain using other methods, in Chapter 6 we will see how to design list-
decoding algorithms with near-optimal error guarantees, which can in turn be
used to obtain learning algorithms for mixtures under near-optimal separation.

Remark 5.36 Given the warm-start achieved by the above algorithm, a num-
ber of known local search methods (see, e.g., [RV17, KC20]) can be used to
efficiently obtain an ε-approximate solution, for any desired accuracy ε > 0.
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Exercises

5.1 (More General List-Decoding) Our list-decoding algorithms in this chap-
ter have focused on learning the mean of a distribution, but more general
statistical tasks can be considered. In particular, let X be a set and D be
a family of distributions on X. Let C be the collection of sets of the form
{x : p(x) > q(x)}, where there are distributions inD with densities p and
q. Suppose that C has VC-dimension d.

Let T be a set of n (1−α)-corrupted samples from G for some unknown
G ∈ D. Show that there is an (inefficient) algorithm that given these
samples for some appropriately large n = poly(d/α), returns a list of
O(1/α) many Gi ∈ D such that with high probability there is at least one
i with dTV(G,Gi) < 1 − α/10.

5.2 (Tradeoffs Between Number of Hypotheses and Error) Let 1/α be an in-
teger k. Suppose that one wants to list-decode the mean of a distribution
G in Rd with a (1 − α)-fraction of corruptions using at most k + m hy-
potheses for some positive integer m. Note that Proposition 5.6 shows
that this is possible when m ≥ k. Here we will consider what happens
when m < k.

(a) Suppose that it is known that for some t for any unit vector v, it holds
Pr[v · (G − µG) > t] < m/(10k2). Show that there is an (inefficient)
algorithm that given poly(d, k) (1−α)-corrupted samples from G with
high probability returns a list of m+k hypotheses at least one of which
is within 2t of µG.

(b) Show that the bound in part (a) is tight in the following sense: Show
that if d ≥ m + k no algorithm given any number of (1 − α)-corrupted
samples from a distribution G with covariance bounded by I can return
a list of m + k hypotheses such that with probability better than 1 −
1/(m + k + 1) at least one of the hypotheses is within k/(10

√
m) of µG.

5.3 (Bounds for List-Decoding of Logconcave Distributions)

(a) Show that it is information-theoretically possible, given an appropri-
ately large number of (1 − α)-corrupted samples from an unknown
mean and identity covariance logconcave distribution to find a list of
O(1/α) many hypotheses such that with high probability at least one
of them is within distance O(log(1/α)) of the true mean.

(b) Show that it is information-theoretically impossible to find a list of
poly(1/α) hypotheses such that at least one is within o(log(1/α)) of
the mean.
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5.4 (Fast Multifilter Step) Show how to implement the Basic-Multifilter
subroutine on a set T ⊂ R in time Õ(|T |).

5.5 (List-Decoding Gaussian Covariances) Let G ∼ N(0,Σ) be a zero-mean
Gaussian in Rd with unknown covariance Σ and α > 0. Design an algo-
rithm that given a set of poly(d/α) (1 − α)-corrupted samples from G,
runs in poly(d/α) time and returns a list of poly(1/α) hypotheses Σ̂i such
that with constant probability at least one hypothesis Σ̂ satisfies

‖Σ̂−1/2ΣΣ̂−1/2 − I‖F = poly(1/α) .

(Hint: Some version of a multifilter should suffice. If T contains an α-
fraction of inliers, use some multiple of Cov[T ] as an upper bound on Σ.
Show that Σ must be fairly close to Cov[T ], unless there is a degree-2
polynomial p with Var[p(T )] much larger than Var[p(N(0,Cov(T )))].
If such a p exists, use it to construct a multifilter.)

Remark Ideally, one would want a list-decoding algorithm where ad-
ditionally one has that Σ and Σ̂ are comparable in the Loewner order-
ing (i.e., that for some C(α) we have that Σ/C(α) � Σ̂ � C(α)Σ). This
would imply that the Gaussians N(0,Σ) and N(0, Σ̂) have some reason-
able (i.e., a function of α) overlap between them. Unfortunately, there
are Statistical Query (SQ) lower bounds suggesting that this kind of list-
decoding, although information-theoretically possible (for example, by
Exercise 5.1), is computationally intractable. The reader is referred to
Exercise 8.9 in Chapter 8.

5.6 (SIFT Isotropy) Give an example of a set of points where if a round of
SIFT is run without isotropization (in particular, if ‖P(x − µ)‖22 is used
as the weight function) the fraction of inliers removed is higher than the
fraction of outliers removed.

5.7 (Necessity of Separation Assumptions) Here we show that the Ω(
√

log(k))
pairwise separation we have been assuming for clustering mixtures of
spherical Gaussians is actually necessary. In particular, we show that
with only a slightly weaker separation assumption, clustering may be
information-theoretically impossible.

(a) Let G = N(µ, Id) be a Gaussian in Rd with mean µ such that ‖µ‖2 =
√

d. Let C > 0 be a sufficiently large constant and t be an integer
with t > Cd. Show that if the probability density function of G is
approximated by its degree-t Taylor expansion around 0 truncated to a
ball of radius

√
t, then the resulting function will be exp(−Ω(t))-close

to the true pdf in L1-distance.
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(b) Let K >
(

t+d
d

)
. Let x1, x2, . . . , xK be distinct points in Rd with ‖xi‖2 =

√
d. Show that there exist two mixtures M1,M2, where Mi is a mixture

of Gaussians of the formN(x j, Id) whose components are distinct and
such that dTV(M1,M2) = exp(−Ω(t)).

(Hint: Find mixtures such that the degree-t Taylor approximations to
their densities at 0 agree.)

(c) Show that for any integers A, k > 0, there exists a constant CA > 0
and two mixtures of spherical Gaussians in Rd′ for any d′ > log(k)
such that the mixtures are k−A-close in total variation distance, but the
means of the mixtures are pairwise separated by at least

√
log(k)/CA.

5.8 (Elementary Algorithms for Learning Mixtures of Gaussians) Here we
present an elementary algorithm for learning mixtures of k uniformly
weighted spherical Gaussians with pairwise separation roughly k1/4. In
particular, let X = (1/k)

∑k
i=1N(µi, I) be an equally weighted mixture of

k spherical Gaussians and let ε > 0 be a parameter.

(a) Give an algorithm that given poly(dk/ε) i.i.d. samples from X runs in
polynomial time and with high probability computes a k-dimensional
subspace H such that each of the µi’s is within ε of H.

(Hint: Consider the k largest eigenvalues of Cov[X].)
(b) Suppose additionally that mini, j ‖µi − µ j‖2 > Ck1/4

√
log(k/ε), for

some sufficiently large constant C > 0. Suppose that poly(k/ε) sam-
ples are drawn from X and that for each pair x, y of samples one com-
putes ‖ProjH(x) − ProjH(y)‖2. Show that with high probability the dis-
tance computed from every pair of samples coming from the same
component is smaller than the distance computed from every pair of
samples taken from different components.

(c) Devise an algorithm that under the assumptions in Part (b) learns X to
total variation distance ε using poly(dk/ε) time and samples.

5.5 Discussion and Related Work

The list-decodable learning model was introduced by [BBV08] in the con-
text of clustering (without generative model assumptions on the inliers) and
was first studied by [CSV17] in the context of high-dimensional mean estima-
tion. The latter work gave the first polynomial-time algorithm for list-decoding
the mean of bounded covariance distributions achieving near-optimal error of
Õ(α−1/2). Their algorithm is based on black-box convex optimization. More-
over, [CSV17] first pointed out the connection between list-decodable mean
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estimation and clustering well-separated mixture models. Additional applica-
tions of list-decodable learning to stochastic block models and crowdsourcing
were explored in [CSV17] and [MV18] respectively.

The information-theoretic bounds on list-decodable mean estimation pre-
sented in Section 5.2 were established in [DKS18b]. The multifilter technique
of Section 5.3.1 was developed in [DKS18b] for identity covariance subgaus-
sian distributions. The work of [DKK20] gave a refinement of the multifilter
technique that achieves near-optimal error guarantees for bounded covariance
distributions. The SIFT algorithm presented in Section 5.3.2 was developed
in [DKK+21]. The technique of efficiently reducing the list size presented in
Section 5.3.3 is implicit in [DKS18b]. The efficient reduction of clustering
to list-decoding for spherical Gaussians presented in Section 5.4 was given
in [DKS18b]. As shown in [DKS18b], a slight adaptation of this reduction
suffices to obtain a robust clustering algorithm, namely one that tolerates a
fraction of outliers proportional to the relative size of the smallest true cluster.
[DKK+22c] extends this reduction to bounded covariance distributions under
a separation of Ω̃(

√
k), which is information-theoretically near-optimal.

A standard implementation of the multifilter method in Section 5.3.1 leads
to an algorithm with runtime Õ(n2d/α2). Similarly, the SIFT algorithm of Sec-
tion 5.3.2 has runtime Õ(n2d/α). A related line of work focused on develop-
ing faster list-decodable mean estimators for subgaussian and, more generally,
bounded covariance distributions. Specifically, [CMY20] gave an SDP-based
algorithm with runtime Õ(nd/α6) achieving the optimal error of O(α−1/2). Sub-
sequent work by [DKK+21] combined the SIFT algorithm with techniques
from continuous optimization to obtain an algorithm with near-optimal error
and runtime Õ(nd/α). More recently, [DKK+22c] obtained an algorithm with
similar error guarantees that runs in almost linear time, namely Oc(n1+cd), for
any fixed c > 0. Similarly, the latter algorithm combines the multifilter tech-
nology with techniques from continuous optimization. At a high-level, both
of these algorithms achieve their faster runtimes by reducing the number of
iterations from linear in n to polylogarithmic, using ideas similar in spirit to
those in Chapter 3. As an application, [DKK+22c] gave the first almost-linear
time algorithm for learning well-separated mixtures with near-optimal statis-
tical guarantees. This improves a long line of work that had developed spec-
tral algorithms for learning well-separated mixture models, see, e.g., [Das99,
AK01, VW02, AM05, KSV05, BV08].

Finally, it should be noted that the list-decoding algorithms we have pre-
sented in this chapter can at best achieve error guarantee of Ω(α−1/2), even for
the class of spherical Gaussians. We remind the reader that this bound is very
far from the information-theoretic limit of Θ(

√
log(1/α)). Consequently, the
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implications for learning uniform mixture models require mean separation of
∆ = Ω(

√
k). Clustering mixtures of spherical Gaussians with this kind of sepa-

ration can be achieved by elementary methods. In fact, the work [VW02] gives
an algorithm for clustering such mixtures with separation Õ(k1/4) (see Exercise
5.8). For mixtures of bounded covariance distributions, [DKK+22c] obtains a
learning algorithm under near-optimal separation of Ω̃(

√
k).

In Chapter 6, we will present list-decoding algorithms for structured distri-
butions including Gaussians (and their applications to learning mixtures) that
achieve significantly better error guarantees. At a high-level, this is achieved by
leveraging higher moment information about the clean data [DKS18b, KSS18].



6
Robust Estimation via Higher Moments

6.1 Introduction

The robust estimation algorithms that have been developed in the previous
chapters work by considering only the low-degree moments of the underlying
distributions. Specifically, the robust mean estimation algorithms of Chapter 2
and list-decodable mean estimation algorithms of Chapter 5 make use of only
the first and second moments. The algorithm for robust covariance estimation
of Chapter 4 leverages the fourth moments, however that these can be thought
of as second moments of the tensor X ⊗ X.

In a number of learning applications, (much) higher degree moments need
to be considered in order to obtain either meaningful or quantitatively better
results. Leveraging higher moments in robust statistics requires new techniques
that come with a number of complications. In this chapter, we will discuss
when these techniques are useful and how to apply them.

The structure of this chapter is as follows: We begin in Section 6.2 by moti-
vating the use of higher degree moments in the context of list-decodable mean
estimation of spherical Gaussians. Here there are two known techniques, one
making use of the known variances of higher degree polynomials, and a more
flexible one making use of the sum-of-squares method. We describe these tech-
niques in Sections 6.3 and 6.4, respectively. In the subsequent sections, we
discuss two related settings where higher moment techniques can be applied.
In Section 6.5, we describe how to use higher moments in robust mean esti-
mation in order to take advantage of bounded central moments of the inlier
distribution. In Section 6.6, we describe how higher moments techniques can
be leveraged in robust clustering of mixture models.

This material will be published by Cambridge University Press as Algorithmic
High-Dimensional Robust Statistics by Ilias Diakonikolas and Daniel M. Kane.
This pre-publication version is free to view and download for personal use only. Not for
re-distribution, re-sale or use in derivative works. c© Ilias Diakonikolas and Daniel M. Kane 2022.
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6.2 Leveraging Higher-Degree Moments in List-Decodable
Learning

In the previous chapter, we gave an algorithm for list decoding the mean of
an identity covariance Gaussian achieving `2-error of Õ(1/

√
α). On the other

hand, as we showed in that chapter, the information-theoretically optimal error
is exponentially smaller, namely Θ(

√
log(1/α)). It is worth understanding why

we have such a large gap and to ask whether it is possible to overcome it.
One way to see where the suboptimal error guarantee comes from is to recall

the basic multifilter algorithm. At the end of the algorithm, we are left with a
list of subsets S i with the guarantee that: (i) Each S i has bounded covariance,
and (ii) At least one of the S i’s has at least an α-fraction of the points in S i

coming from the inlier distribution. Given these properties, it is shown that the
sample mean of the particular subset S i satisfying (ii) gives a good approxi-
mation to the true mean. This holds because the covariance bounds from (i)
imply concentration bounds on S i. In particular, since S i has bounded covari-
ance, this follows that any α-fraction of the points of S i (including the subset
of clean points in S i) cannot have mean more than Ω(1/

√
α)-far from the mean

of S i.
Unfortunately, the above quantitative bound is the best concentration that

bounded covariance implies. In particular, it is not hard to construct a set T
with covariance bounded by O(I), such that an α-fraction of the points of T are
i.i.d. samples from a Gaussian distributionN(µ, I) and the sample mean of T is
Ω(1/

√
α)-far from µ (see Exercise 6.1). If such a set S is the set of (corrupted)

samples given as input the multifilter algorithm, as the covariance is already
bounded, the algorithm will simply return the mean of S .

6.2.1 The Usefulness of Higher Moments

As follows from the preceding discussion, ensuring that a set of samples has
bounded covariance does not imply sufficiently strong concentration bounds.
To circumvent this obstacle, we would need a filtering algorithm to enforce
some stronger condition on the sets S i, which will in turn would imply stronger
concentration. The pressing issue here — and one that we will need to return
to a few times — is how do we find a condition that allows us to computation-
ally efficiently verify concentration bounds. For example, if we were able to
ensure that our final sets S i satisfied Gaussian-like tail bounds, it is not hard
to see that this would imply that the mean of the good subset S i will be within
distance O(

√
log(1/α)) of the true mean. However, enforcing this condition on

our subsets is challenging for the following reason: Given a set S , it is believed
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to be computationally hard to even verify whether or not it satisfies Gaussian
tail bounds (see Theorem 8.30 for an example of a result in this direction).

A natural tool for obtaining concentration bounds is the use of higher mo-
ments of a distribution. In particular, we consider the higher central moments
of the distribution, namely E[(v ·(X−µX))2k], for v a unit vector and k a positive
integer. We introduce the following definition.

Definition 6.1 We say that a set S ⊂ Rd with mean µ ∈ Rd has 2kth central
moments bounded by M ∈ R+, if for any unit vector v ∈ Rd we have that
Ex∼uS [(v · (x − µ))2k] ≤ M.

The following simple lemma shows that bounded central moments imply
the strong desired concentration.

Lemma 6.2 Let S be a set of points in Rd with 2kth central moments bounded
by M and 0 < α < 1. Let T ⊂ S be any subset such that |T | ≥ α|S |. Letting
µS and µT be the means of S and T respectively, we have that ‖µS − µT ‖2 ≤

(M/α)−1/(2k) .

Proof Let v be the unit vector in the direction of µT − µS . In particular, we
have that ‖µS −µT ‖2 = v · (µT −µS ). On the other hand, by the bounded central
moments assumption, we have that:

M ≥ Ex∼uS [(v · (x − µS ))2k]

≥ αEx∼uT [(v · (x − µS ))2k]

≥ α(v · (µT − µS ))2k

= α‖µS − µT ‖
2k
2 ,

where the second line holds because |T | ≥ α|S | and the third line follows
by Jensen’s inequality (see Theorem A.6). From the above, we conclude that
‖µS − µT ‖2 ≤ (M/α)−1/(2k), as desired. �

6.2.2 Computationally Inefficient Higher Moments Filter

Lemma 6.2 motivates an idea for a multifilter type algorithm. Specifically, we
would like a multifilter algorithm which ensures that our final sets of points
have bounded central moments as opposed to just bounded covariance. At a
high-level, to achieve this, one can try to repeatedly filter in the direction of
the large moment until this is the case. Roughly speaking, this scheme gives
rise to the following procedure:
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Algorithm Basic-Higher-Moments-Filter
Input: Dataset S ⊂ Rd that contains an unknown T ⊆ S with |T | ≥ α|S |
and T has bounded central moments.

1. Compute the first 2k empirical moments of the sample set S .
2. Determine whether or not S has bounded 2kth central moments.
3. If S has bounded central moments, return the mean of S .
4. If S does not have bounded central moments:

(a) Find a unit vector v such that Ex∼uS [(v · (x − µS ))2k] is large.
(b) Compute the projections v · x for x ∈ S .
(c) Run a multifilter on these projections, producing a small list of new

sets S i.
(d) Repeat the above recursively on the S i’s, returning the set of all

returned hypotheses.

By applying the above procedure, we will eventually obtain a collection of
sets of samples each of which has bounded 2kth central moments at least one
of which contains a large fraction of the original set of clean points. Applying
Lemma 6.2, we can show that the mean of this subset is close to the mean of
T . In particular, given roughly dk/α samples, this algorithm should return a
polynomial-size list of hypotheses at least one of which is O(α1/2k)-close to
the true mean. This is a substantial improvement over the previous algorithms
which obtained roughly 1/

√
α error.

The above procedure is somewhat sketchy and in particular there are a few
points to be clarified. An obvious deficiency is the design of the necessary
multifilter under only the assumption that the 2kth moment in the v-direction
is large. It turns out that this step can be performed without much difficulty
(see Exercise 6.2). A deeper problem with this approach is that of computing
the desired vector v, or even determining whether or not a set S has bounded
central moments for any k > 1. As we will explain in Chapter 8, there is strong
evidence that this problem is computationally intractable. In fact, for general
sets S , it is believed to be computationally difficult distinguish between the
cases where S has k bounded central moments, for any constant k, and the case
where the 4th central moment is large.

Given the above computational bottleneck, to obtain an efficient algorithm
we will instead need to find a new surrogate condition for concentration bounds
which can be efficiently verified. To achieve this, we will need to assume that
the inlier samples satisfy certain conditions stronger than just having bounded
central moments.
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There are two known methods in the literature for doing this. The first
method, which we will call the variance of polynomials method, succeeds,
for example, in the basic case that the inliers are drawn from the Gaussian dis-
tribution — when the higher moments of the clean data distribution are known
ahead of time. For example, if it is assumed that the inlier distribution is of the
form N(µ, I), we can try to check that

Ex∼uS [p2(x − µS )] ≤ 2E[p2(N(0, I))] (6.1)

for every degree at most k polynomial p. We note that this condition is effi-
ciently verifiable, as it is merely comparing two different quadratic forms in p
and can be checked with an eigenvalue computation. Furthermore, by applying
Equation (6.1) with p(x) = (v · x)k, one can verify that the central moments of
S are not too large.

One disadvantage of the aforementioned technique is that it requires a priori
knowledge of the higher order central moments of the inlier distribution. Ide-
ally, we would like to obtain efficient list-decodable learners in more general
settings, where the higher central moments are bounded but unknown, e.g.,
when the inlier distribution is a Gaussian with unknown but bounded covari-
ance. This brings us back to our original issue of how to efficiently verify that
the central moments of the empirical distribution are in fact bounded. A gen-
eral way to do this is to employ Sum-of-Squares proofs. This gives rise to a
technique making use of the Sum-of-Squares method.

6.3 List-Decodable Learning via Variance of Polynomials

The high-level idea for the variance of polynomials technique is fairly natural:
Check whether or not Equation (6.1) (or an equivalent, depending on the un-
derlying inlier distribution) is satisfied for all low-degree polynomials p. If so,
then we have obtained a certificate of bounded central moments, and we can
return the sample mean of S . Otherwise, we find a violating polynomial p and
use it to create a multifilter, where we appropriately remove points x such that
|p(x − µS )| is too large.

Unfortunately, this simple idea quickly runs into technical issues. These
stem from the problem that creating a multifilter requires having a bound on
the variance of p(x−µS ) over the inlier points x. Unfortunately, for a Gaussian
G = N(µ, I), the variance of p(G) depends on the value of µ (note that this
does not happen for degree-one polynomials p, which explains why this issue
did not arise in the “linear” multifilter of Chapter 5). As a result, the filtering
step required becomes difficult to implement. Initial work on the variance of
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polynomials technique dealt with this issue by considering multilinear polyno-
mials evaluated at collections of samples from our set. Since these polynomials
were linear in each sample, this circumvented the issue above. Unfortunately,
the solution thus obtained is somewhat technically involved. In this section,
we will present a different, arguably simpler, method of dealing with it. This
so-called difference-of-pairs method leads to slightly less efficient algorithms,
but is technically simpler and easily generalizes to other settings.

6.3.1 Differences-of-Pairs Filter

As follows from the preceding discussion, the technical issue at hand is the
following: for the inlier distribution X, we know what the variances of p(X−µX)
ought to be, but not the variances of p(X). One way to deal with this issue is to
renormalize the samples to have mean zero. A simple and convenient way to do
this is to consider differences of pairs of samples instead of individual samples.
This suffices because if, for example, X ∼ N(µ, I), for some unknown µ, we
know that X − X′ ∼ N(0, 2I).

To formalize this idea, let S be the multiset of corrupted samples given as
input to our algorithm and let S good be the inlier samples drawn from X. We
define:

P := {x − y : x, y ∈ S } and Pgood := {x − y : x, y ∈ S good} .

It is not hard to see (see Exercise 6.3) that if the size of S is sufficiently large,
then, with high probability, for all polynomials p of degree at most k, we have
that

Ez∼uPgood [p2(z)] ≤ 2EX,X′∼N(0,I)[p2(X − X′)] . (6.2)

We note that if Equation (6.2) held for the average over all z ∈ P, we would
be done. This is because taking p(x) = (v · x)k for some unit vector v, we can
write

Ez∼uP[p2(z)] = Ex,x′∼uS [(v · (x − x′))2k]

≥ (|S good|/|S |) Ex∼uS ,x′∼uS good [(v · (x − x′))2k]

≥ α(v · (Ex∼uS [x] − Ex′∼uS good [x′]))2k

= α(v · (µS − µS good ))2k ,

where the next-to-last line above follows by Jensen’s Inequality. This means
that if the expectation of p2(z) is bounded, for p(x) = (v · x)k with v the unit
vector in the direction of µS − µS good , we can bound ‖µS − µS good‖2.

Of course, in the presence of corruptions, the expectation of p2(z) over all
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of P might not be particularly small. However, it is not difficult to construct a
filter to find a subset of P for which this will be the case. This is established in
the following lemma.

Lemma 6.3 (Basic Difference-of-Pairs Filter) Let P be a multiset of points
in Rd for which there exists a subset Pgood ⊂ P with |Pgood| ≥ α

2|P|, for some
α > 0. Furthermore, assume that there is an explicit quadratic form Q on the
space of degree-at-most-k polynomials p on Rd (for example, given a basis of
the set of such polynomials, Q could be presented by a symmetric matrix) such
that Ez∼uPgood [p2(z)] ≤ Q(p). Then there exists a randomized algorithm that,
given Q and P, runs in poly(dk, |P|) time, and returns a subset T ⊆ P such
that:

1. For all degree at most k polynomials p, it holds
∑

z∈T p2(z) = O(|P|)Q(p).
2. With probability at least 2/3, we have that |T ∩ Pgood| ≥ |Pgood|/2.

Before we give the proof, we note that we will apply this lemma with Q(p) :=
2E[p2(X − X′)].

Proof The algorithm is quite simple. For C > 0 a sufficiently large universal
constant, we have the following procedure:

Algorithm Difference-Of-Pairs-Filter
Input: Dataset P ⊂ Rd and a quadratic form Q on the space of degree-k
polynomials, C > 0 a sufficiently large constant.

1. Let T = P.
2. While there exists a degree-at-most k polynomial p such that∑

z∈T p2(z) > (C|P|)Q(p):

(a) Find a degree-at-most k polynomial p such that
∑

z∈T p2(z) >

(C|P|/2)Q(p).
(b) Filter elements of T as follows: z ∈ T is removed with probability

proportional to p2(z).

3. Return T .

Note that the above procedure can deterministically remove the point z ∈ T
with the largest value of p2(z). Doing so means that we remove at least one
point in each iteration. Thus, the overall algorithm will terminate in poly(|P|, dk)
time.

It is clear that this algorithm runs until it finds a set T such that
∑

z∈T p2(z) ≤
(C|P|)Q(p) for all p, proving our first condition. For the second condition, we
first observe that, by increasing α, we may assume that |Pgood| = α2|P|. We
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next note that in each iteration the expected number of elements of Pgood that
are removed by the above filter is proportional to∑

z∈Pgood∩T

p2(z) ≤
∑

z∈Pgood

p2(z) ≤ α2|P|Ez∼uPgood [p2(z)] ≤ α2|P|Q(p) ,

while the expected number of total elements removed is proportional to∑
z∈T

p2(z) ≥ C(|P|/2)Q(p) .

The ratio of these expectations is at most 2α2/C < α2/6, since C was selected
to be sufficiently large. This means that if we consider the potential function

∆ := |T | + (6/α2)(|Pgood| − |Pgood ∩ T |) ,

it will be a supermartingale. Since ∆ is nonnegative, with probability 2/3 it
will never increase to more than three times its initial value of |P|. If this holds,
then it will be the case that |Pgood ∩ T | ≥ α2|P|/2 = |Pgood|/2. This completes
the proof. �

6.3.2 Efficient Rounding

Applying Lemma 6.3 to our set of differences of samples, yields a set of points
that satisfy strong concentration bounds. If we had a set of our original sample
points that contained a decent fraction of the good points and satisfied similar
concentration bounds, we could return the mean of that set. Lemma 6.2 would
then imply that we are done. Unfortunately, with sets of differences this does
not work, as the average of our set of differences will likely be close to zero
regardless of the true mean. Instead, we will try to use this information about
pairs to find subsets of our original samples that have appropriate concentration
bounds.

We will require the following definition.

Definition 6.4 (Bounded Moments Graph) Let S ⊂ Rd. A graph G = (V, E)
with V = S is said to have its 2kth moments bounded by M, if for every unit
vector v we have that

∑
(x,y)∈E(v · (x − y))2k ≤ M|S |2.

It is not hard to see that if we take the set T returned by the algorithm from
Lemma 6.3, then the graph G with edges (x, y) for which x−y or y− x in T will
have 2kth bounded moments. In particular, we have the following Corollary of
Lemma 6.3.

Corollary 6.5 Let S be a set of points in Rd containing a subset S good.
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Furthermore, suppose that there is an explicit quadratic form Q on degree-
k polynomials such that Es,s′∼uS good [p2(s − s′)] ≤ Q(p) for all p, and that
Q((v · x)k) ≤ M‖v‖2k

2 for all vectors v. Then there exists an algorithm that given
Q and S , runs in polynomial time and with probability at least 2/3 returns a
graph G in S such that:

1. G has 2kth moments bounded by O(M).
2. At least half of the pairs of elements in S good are connected in G.

We already know that if G is the complete graph, then the sample mean of
S will be a good estimator. It is not hard to show that it also suffices if we have
a clique in G containing a large fraction of the points in S good.

Lemma 6.6 Let S be a set of points in Rd and G be a graph on S with 2kth

moments bounded by M. Let C ⊆ S be a clique in G and let Cgood ⊆ C be a
subset with |Cgood| ≥ α|S |. Then, letting µC and µg be the means of C and Cgood

respectively, we have that ‖µC − µg‖2 ≤ (2M/α2)1/(2k).

In applications, we will use Lemma 6.6 with Cgood = S good ∩ C. As long as
S good∩C is reasonably large, and as long as the points in S good are concentrated,
the means of S good and Cgood will be close.

Proof Let v be a unit vector in the direction of µC − µg. Then we have that
‖µC−µg‖2 = v·(µC−µg). On the other hand, by the bounded moments property,
we have that

M|S |2 ≥
∑

(x,y)∈E

(v · (x − y))2k

≥
1
2

∑
x,y∈C

(v · (x − y))2k

≥
1
2

∑
x∈C,y∈Cgood

(v · (x − y))2k

≥
1
2
|Cgood||C|(v · (µC − µg))2k

≥ |S |2(α2/2)‖µC − µg‖
2k
2 ,

from which the result follows. Note that the second line above follows from
the fact that C is a clique and the fourth line follows from Jensen’s Inequality.
This completes the proof. �

Unfortunately, it is unlikely that G will contain an actual clique. Further-
more, even if G does, finding this clique may not be computationally feasible.
Therefore, we will need a more flexible method of finding our final set of
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points. A useful fact here is the triangle inequality. We note that |v · (x − y)| ≤
|v · (x−a)|+ |v · (y−a)| for any a. Thus, if two vertices x and y have many neigh-
bors a in common, it is likely that they are not too separated. To formalize this
observation, we define the notion of the overlap graph.

Definition 6.7 (Overlap Graph) Let G = (V, E) be a graph and γ > 0 be a
parameter. The overlap graph Rγ(G) is defined to be the graph with vertex set
V , where (x, y) is an edge in the graph if and only if |NG(x) ∩ NG(y)| ≥ γ|V |,
where NG(x) and NG(y) are the neighborhoods of x and y in G. In other words,
there is an edge between x and y in Rγ(G) if and only if x and y share at least
γ|V | neighbors in G.

The following key lemma shows that if G has bounded moments, then so does
Rγ(G).

Lemma 6.8 Let S be a set of points in Rd and G be a graph on S that has
2kth moments bounded by M. Then, for any γ > 0, the overlap graph Rγ(G)
has 2kth moments bounded by (2 · 4k M/γ).

Proof Let v be a unit vector. We wish to bound
∑

x,y neighbors in Rγ(G)(v·(x−y))2k.
We note that for any such x, y, we have that

(v · (x − y))2k =
1

|NG(x) ∩ NG(y)|

∑
a∈NG(x)∩NG(y)

(v · (x − a) − v · (y − a))2k

≤
1
γ|S |

∑
a∈NG(x)∩NG(y)

4k[(v · (x − a))2k + (v · (y − a))2k] .

Summing this over all edges in Rγ(G), we have that∑
x,y neighbors in Rγ(G)

(v · (x − y))2k

≤
4k

γ|S |

∑
x,y neighbors in Rγ(G)

∑
a∈NG(x)∩NG(y)

[(v · (x − a))2k + (v · (y − a))2k]

=
2 · 4k

γ|S |

∑
(a,x)∈E

∑
y neighbor of x in Rγ(G)
and neighbor of a in G

(v · (x − a))2k

≤
2 · 4k |S |
γ|S |

∑
(a,x)∈E

(v · (x − a))2k

≤(2 · 4k M/γ)|S |2 .

This completes the proof. �
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Unfortunately, the overlap graph Rγ(G) might still not have any large cliques.
However, it is guaranteed at least to have some fairly dense subgraphs, as
shown in the following lemma.

Lemma 6.9 Let G = (V, E) be a graph and γ > 0. If x is a randomly selected
vertex of G, then the expected number of pairs y, z ∈ N(x) such that y and z are
not neighbors in Rγ(G) is at most γ|V |2.

Proof The expectation in question is equal to 1/|V | times the number of
triples x, y, z ∈ V such that y and z are not neighbors in Rγ(G), but are both
neighbors of x in G. By the definition of Rγ(G), if y and z are not neighbors in
Rγ(G), they have at most γ|V | common neighbors in G. Thus, the number of
such triples is at most γ|V |3, which implies that the expectation in question is
at most γ|V |2. �

Similarly, this dense subgraph may not be a clique, but if we are willing to
prune a few points and take another overlap graph, we can find one.

Lemma 6.10 (Densification Lemma) Let G = (V, E) be a graph and let W ⊂
V be a set of vertices with |W | = β|V | and all but γ|V |2 pairs of vertices in W
connected in G, for some β, γ > 0 with γ ≤ β2/36. There exists an algorithm
that given G,W, β, γ, runs in polynomial time, and returns a subset W ′ ⊆ W
such that |W ′| ≥ |W | − (6γ/β)|V | and such that W ′ is a clique in Rβ/3(G).

Proof The algorithm is quite simple. We begin with W ′ = W and then, while
there is some x ∈ W ′ where x is not neighbor with at least 2|W |/3 other ele-
ments of W ′, we remove x from W ′.

We note that, so long as |W ′| ≥ 5|W |/6, each such x removed decreases the
number of pairs of unconnected elements in W ′ by at least |W |/6 = (β/6)|V |.
This can happen at most (6γ/β)|V | times before we run out of unconnected
pairs of elements in W ′. However, since (6γ/β)|V | ≤ (β/6)|V | = |W |/6, this
must happen before |W ′| drops below 5|W |/6. Therefore, when this procedure
terminates, we will have |W ′| ≥ |W | − (6γ/β)|V |.

On the other hand, each element of W ′ is connected to at least 2|W |/3 other
elements of W ′ in G. From here it is easy to see that any pair of elements of W ′

have at least |W |/3 common neighbors, and thus are adjacent in Rβ/3(G). This
completes the proof. �

We are now ready to prove our main result on rounding.

Proposition 6.11 (Efficient Rounding) Let S be a set of points in Rd and let
G be a graph on S with 2kth moments bounded by M. Suppose that there is a
subset S good ⊆ S with |S good| ≥ α|S | and at least half of the pairs of points in
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S good are connected by an edge of G. Suppose furthermore that the points of
S good have covariance matrix bounded by a constant multiple of the identity
and mean µgood. There exists a randomized algorithm that given G, S , and α,
runs in polynomial time and returns a µ̂ ∈ Rd such that with probability Ω(α)
it will be the case that ‖̂µ − µgood‖2 = O(M1/(2k)α−3/k + 1).

We note that the small probability of success here is necessary. Indeed, it could
be the case that G is a disjoint union of Ω(1/α) cliques, one of which corre-
sponds to S good. In such a case, the algorithm will have no better recourse than
to guess one of the cliques and return the sample mean.

On the other hand, this small probability of success is sufficient to obtain a
list-decoding algorithm. Simply running our rounding algorithm O(1/α) times
on the same S ,G, α will produce a list of O(1/α) many hypotheses that with
constant probability contains an element close to µgood.

Proof The rounding algorithm establishing the proposition is quite simple:

Algorithm Difference-Of-Pairs-Rounding

1. Let δ = α3/4608.
2. Pick a random x ∈ S .
3. Let W be the neighborhood of x in G, and let G′ = Rδ(G).
4. If the number of pairs of points in W that are not connected in G′ is

more than (8δ/α)|V |2 or if |W | ≤ (α/4)|V |, return FAIL.
5. Otherwise, run the algorithm from Lemma 6.10 on G′ and W with

γ = (8δ/α) and β = |W |/|V | to obtain W ′.
6. Return µ̂ as the sample mean of W ′.

It is clear that this algorithm runs in polynomial time. In order to prove
correctness, we claim that the algorithm succeeds as long as x satisfies the
following conditions:

• x ∈ S good.
• x has at least |S good|/4 neighbors in S good.
• The number of pairs of neighbors of x that are not neighbors in G′ is at most

(8δ/α)|V |2.

First, we show that these conditions hold with probability at least Ω(α). In-
deed, the first condition holds with probability at least α over the choice of x.
Conditioned on x ∈ S good, the expected number of non-neighbors that x has in
S good is at most |S good|/2. Thus, by Markov’s inequality, the probability that it
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has more than 3|S good|/4 non-neighbors is at most 2/3. Therefore, the first two
conditions both hold with probability at least α/3. Finally, the expected num-
ber of pairs of neighbors of x that are non-neighbors in G′ is at most δ|V |2 by
Lemma 6.9. Thus, by Markov’s inequality, there will be more than (8δ/α)|V |2

such non-connected neighbors with probability at most α/8. Combining the
above, all three conditions hold with probability at least α/24.

Given these assumptions, it follows that |W | ≥ |S good|/4 ≥ (α/4)|V |, and at
most (8δ/α)|V |2 of pairs in W are not connected in G′. This implies that we
pass the conditions in Line 4. Given these definitions, we have that γ ≤ β2/36,
satisfying the assumptions of Lemma 6.10. We can write

|W | − |W ′| ≤ (6γ/β)|V | ≤ (48δ/α)/(α/4)|V | ≤ (α/24)|V | ,

which gives that |W ′ ∩ S good| ≥ |S good|/4 − (α/24)|V | ≥ |S good|/6.
On the other hand, we know that G has 2kth moments bounded by M by

assumption. Lemma 6.8 implies that G′ has moments bounded by O(4k M/α3).
Applying Lemma 6.8 again implies that Rβ/3(G′) has moments bounded by
O(16k M/(α3β)) = O(16k M/α4). Since W ′ is a clique in Rβ/3(G′), we have by
Lemma 6.6 that if µ∩ is the sample mean of S good ∩W ′, then

‖̂µ − µ∩‖2 = O(M1/(2k)α−3/k) .

Since |W ′∩S good| ≥ |S good|/6 and since S good has bounded covariance, we have
that ‖µ∩ − µgood‖2 = O(1). Combining with the above completes the proof. �

Combining the rounding algorithm with the difference-of-pairs filter gives
us a list-decoding algorithm for spherical Gaussians with near-optimal error.

Theorem 6.12 Let d, k ∈ Z+, 0 < α < 1, and C > 0 a sufficiently large
constant. Let N be an integer larger than (d + 1)Ck/α. Let S be a collection of
N points in Rd, an α-fraction of which are i.i.d. samples from N(µ, I) and the
rest are chosen adversarially. There exists a randomized algorithm that given
S , α, k runs in poly(N) time, and returns a list of O(1/α) hypotheses µi such
that with constant probability mini ‖µ − µi‖2 = O(

√
kα−3/k).

Proof Let S good ⊂ S be the collection of samples drawn from N(µ, I). It is
not hard to see that with high probability S good has covariance bounded by 2I
and mean µ̃ with ‖µ̃ − µ‖2 = O(1).

We define the quadratic form on degree-k polynomials

Q(p) := 2E[p2(N(0, 2I))] .

It is not hard to see that with high probability over the samples we have that
Ex,y∼uS good [p2(x−y)] ≤ Q(p) for all p. Applying the algorithm from Lemma 6.3
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to S × S and Q, with constant probability we obtain a graph G on S such that
at least half of the pairs in S good are connected by edges and for any degree-k
polynomial p we have that

∑
(x,y)∈G p2(x − y) = O(|S |2)Q(p). Applying this to

the polynomial p(x) = (v · x)k for unit vector v, we find that∑
(x,y)∈G

(v · (x − y))2k = O(k)k/2|S |2 .

In other words, G has 2kth moments bounded by M = O(k)k/2.
Running the algorithm from Proposition 6.11 gives with probability Ω(α) a

hypothesis µ̂ such that ‖̂µ− µ̃‖2 = O(M1/(2k)α−3/k) = O(
√

kα−3/k). This implies
that ‖̂µ−µ‖2 = O(

√
kα−2/k). Running the algorithm of Proposition 6.11 O(1/α)

times, we have a constant probability that this holds for at least one of our
hypotheses. This completes the proof. �

Remark 6.13 Some remarks are in order about the algorithm of Theorem
6.12:

• Taking k = Θ(log(1/α)), we obtain an algorithm with quasi-polynomial
sample complexity and runtime, achieving the information-theoretically op-
timal error of O(

√
log(1/α)).

• The algorithm exhibits a tradeoff between its sample complexity and its
achieved error. In particular, to get error α−1/t, the algorithm requires dO(t)

samples. There is reason to believe that this kind of tradeoff is intrinsic. See
Chapter 8 for more details.

• Unfortunately, the difference-of-pairs filter is a slightly inefficient way of
achieving the above tradeoff. Ideally, with roughly dk samples, one can en-
sure that the set of inliers has bounded 2kth central moments. By enforcing
this with some kind of multifilter, one could potentially obtain a final er-
ror of Ok(α−1/(2k)) — rather than the Ok(α−3/k) achieved here. In fact, there
exist more complicated algorithms for this problem in the literature that do
achieve this better tradeoff.

• One can straightforwardly generalize this algorithm to any distribution with
bounded central moments for which the algorithm knows ahead of time all
of the first 2k moments of X − X′. This latter restriction is unfortunately
necessary for this approach, in order to know what quadratic form Q to use.

6.4 List-Decodable Learning via Sum-of-Squares

Unfortunately, the variance of polynomials method in its current form only
works when one knows ahead of time exactly what the low-degree central mo-



192 Robust Estimation via Higher Moments

ments of the inliers distribution are supposed to be. That is, the method is not
applicable if we do not know exactly what these moments are, even if they are
guaranteed to be bounded above. For example, if the clean samples are known
to come from a normal distribution N(µ,Σ), where the covariance matrix Σ is
bounded but unknown, the variance of polynomials method will not work.

If we do not know the higher moments, this again leaves us with the com-
putationally intractable question of determining whether or not the central mo-
ments of the distribution in question are actually bounded. In particular, if we
have a multiset T of differences-of-pairs, we would like an efficient way to ver-
ify that for all unit vectors v it holds that

∑
z∈T (v · z)2k ≤ M|T |. Homogenizing

the latter inequality, we can equivalently ask to verify that for all vectors v we
have that ∑

z∈T

(v · z)2k ≤ M |T | ‖v‖2k
2 . (6.3)

As already mentioned, there is evidence that given an arbitrary set T , determin-
ing whether or not Equation (6.3) holds for all v is computationally intractable.
In our setting, we do not need an exact characterization of the complexity of
this task. It suffices to be able to efficiently verify that Equation (6.3) holds in
some practically-relevant cases.

To this end, we observe that Equation (6.3) is equivalent to the polynomial
inequality

P(v) := M |T | ‖v‖2k
2 −

∑
z∈T

(v · z)2k ≥ 0 .

A standard way to show that a polynomial is always non-negative is by what is
known as a Sum-of-Squares (SoS) proof. In particular, if we can find polyno-
mials f1, f2, . . . , fn such that the identity

P(v) =

n∑
i=1

f 2
i (v) (6.4)

holds, it is clear that this implies that P(v) ≥ 0 for all v.
In particular, we give the following definition.

Definition 6.14 (SoS-Certifiable Bounded Central Moments) We say that a
set T has 2kth moments SoS-certifiably bounded by M if the polynomial

M |T | ‖v‖2k
2 −

∑
z∈T

(v · z)2k

can be written as a sum of squares of polynomials.

This of course leaves open the question of whether or not a set does have
certifiably bounded moments; remarkably, this can be efficiently determined.
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6.4.1 Simple Sum-of-Squares Proofs

Given a polynomial P of degree 2k, we want to determine whether or not it
is possible to write P as a sum of squares of lower-degree polynomials fi. If
this is possible, it must be the case that the fi’s are themselves polynomials of
degree at most k. Indeed, if the maximum degree were d, the degree-2d part of∑

i f 2
i would be the sum of the squares of the degree-d parts of the fi’s, which

would necessarily be non-zero (as a sum of squares of non-zero polynomials
cannot be identically zero).

Thus, our computational problem reduces to determining whether or not P
can be written as a convex combination of squares of polynomials of degree at
most k. We note that the latter condition is equivalent to asking whether or not
there is a linear function F : {Polynomials of degree at most 2k} → R such that
F( f 2) ≥ 0, for f being any polynomial of degree at most k, and F(P) < 0. This
function F is often called a pseudo-expectation and is denoted Ẽ. To justify
this terminology, we note that if X is any distribution over Rn, then the function
F( f ) := E[ f (X)] will satisfy all the conditions except perhaps F(P) < 0 (it will
also necessarily satisfy F(1) = 1, which is a commonly used normalization
condition). Morally speaking, this pseudo-expectation behaves (at least as far
as degree-k sum-of-squares proofs are concerned) like the expectation of f
over some distribution on points where P is negative.

Fortunately, there is an efficient algorithm to determine whether or not such
a pseudo-expectation exists. By definition, the desired pseudo-expectation is
a linear function satisfying certain linear inequalities (namely, Ẽ( f 2) ≥ 0 and
Ẽ[P] < 0). If this were a finite set of conditions, we would have an LP that is
of course solvable in polynomial time. As it stands, this is nearly the case. We
can still hope to solve this system using the ellipsoid algorithm, so long as we
have a separation oracle — that is, an algorithm that given a putative pseudo-
expectation Ẽ determines whether or not it violates one of our constraints, and
if so finds such a constraint. To this end, it is easy to check whether or not
Ẽ[P] < 0. The more difficult problem is to determine whether or not there is
any degree at most k polynomial f such that Ẽ[ f 2] < 0. However, note that
Ẽ[ f 2] is just a quadratic form in f , and so a singular value decomposition
allows us to efficiently determine whether or not there are any f ’s for which it
takes negative values, and to demonstrate such an f if it exists. This gives us
the desired efficient algorithm.

Remark 6.15 The above description glosses over some important technical
details. In particular, in order for the ellipsoid algorithm to run in polynomial
time, one needs to know that the solution (if it exists) will be appropriately
bounded. Moreover, one needs to slightly relax the constraints so that the set
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of solutions has at least some minimal volume. These issues are usually not
too difficult to work out in most cases, but they are fairly technical and will
interfere with a clean presentation. We will therefore ignore these issues for
the rest of this chapter, and instead assume that pseudo-expectations (when
they exist) can always be efficiently computed in time poly(dk).

6.4.2 Sum-of-Squares Proofs of Bounded Moments

To make use of a Sum-of-Squares (SoS) proof to verify that our final sets of
points have bounded central moments, it will need to be the case that the set of
inliers not only have bounded central moments, but bounded central moments
provable by a Sum-of-Squares proof. While this condition is not trivially satis-
fied, it can be shown to hold in a fairly wide variety of cases. For example, the
fact that the central moments of N(0,Σ) for Σ � I are bounded can be proved
by a low-degree SoS proof. In particular, we have that

EX∼N(0,Σ)[(v · x)2k] = (2k − 1)!! (v>Σv)k .

By diagonalizing Σ, we can write v>Σv as
∑d

i=1 λi(v·wi)2, for some orthonormal
basis wi and some 0 ≤ λi ≤ 1. This allows us to write v>Σv as a sum of squares.
Similarly, the quantity v·v−v>Σv =

∑d
i=1(1−λi)(v·wi)2 is also a sum of squares.

This lets us write

(2k − 1)!!(v · v)k = (2k − 1)!!(v>Σv + (v · v − v>Σv))k

= (2k − 1)!!
k∑

t=0

(
k
t

)
(v>Σv)t(v · v − v>Σv)k−t .

We note that the t = k term above gives EX∼N(0,Σ)[(v · x)2k], and the other terms
can be written as sums of squares. Therefore, we have that

(2k − 1)!!(v · v)k − EX∼N(0,Σ)[(v · x)2k]

can be written as a sum of squares of polynomials.
The above can be easily adapted to handle the case of the empirical mo-

ments of a sufficiently large set of samples fromN(0,Σ) or another distribution
with SoS-certifiably bounded moments. In this case, the higher moments of the
sample set will probably not exactly match the higher moments of the original
distribution. However, given sufficiently many samples, with high probability
the moments of the sample set will be sufficiently close that any SoS proofs of
bounded moments will transfer over. In particular, let us assume that we have
a distribution X on Rd with mean µ for which there exists an SoS proof that for
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any vector v it holds

E[(v · (X − µ))2k] ≤ M(v · v)k .

Suppose furthermore that the 4kth central moments of X are bounded. Let S be
a set of N i.i.d. samples from X. We would like to be able to find an SoS proof
of bounded moments for the distribution of x − µ, for x chosen uniformly at
random from S . To do this, we note that

Ex∼uS [(v · (x − µ))2k] =
∑

m monomial of degree 2k

m(v)Ex∼uS [m(x − µ)] .

Due to the bound on the 4kth central moments of X, we have that m(X − µ) is a
distribution with bounded covariance. Thus, the empirical average of this (i.e.,
the average value over S ) will be E[m(X − µ)] plus an error with expectation
O(1/

√
N). Thus, if N is at least a sufficiently large multiple of d2k (with the

constant depending on the bounds on the 4kth moments of X), then with high
probability we have that Ex∼uS [(v · (x − µ))2k] is∑

m monomial of degree 2k

m(v)(E[m(X − µ)] + errm) = E[(v · (X − µ))2k] + p(v) ,

where p(v) is some homogeneous degree-2k polynomial such that the sum of
the squares of its coefficients is at most 1.

By assumption, M(v·v)k−E[(v·(X−µ))2k] can be written as a sum of squares.
We claim that (v · v)k − p(v) can also be written as a sum of squares. Adding
these together would imply that we can write (M+1)(v·v)k−Ex∼uS [(v·(x−µ))2k]
as a sum of squares. The proof of this fact comes from noting that we can write
p(v) as (v⊗k)>Av⊗k, for some dk × dk matrix A with Frobenius norm at most 1.
Since I � A, by diagonalizing we can write (v⊗k)>Iv⊗k − (v⊗k)>Av⊗k as a sum
of squares; but this is just (v · v)k − p(v).

Finally, to adapt the difference-of-pairs technique to this setting, we require
an SoS proof not for the uniform distribution over S , but instead for the uni-
form distribution over differences of pairs of points in S . In particular, given
an SoS proof that

Ex∼uS [(v · (x − µ))2k] ≤ M(v · v)k ,

we want to have an SoS proof that

Ex,y∼uS [(v · (x − y))2k] ≤ M′(v · v)k ,

for some appropriately chosen value of M′. For this, we note that

(v · (x− y))2k = ((v · (x−µ)) + (v · (y−µ)))2k ≤ 4k[(v · (x−µ))2k + (v · (y−µ))2k] .
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Additionally, the above inequality can be expressed as a sum of squares. In
fact, any true inequality between homogeneous polynomials in two variables
(in this case, v · (x − µ) and v · (y − µ)) can be proved by SoS (see Exercise
6.4(c)). This allows us to write the difference

2 · 4k Ex∼uS [(v · (x − µ))2k] − Ex,y∼uS [(v · (x − y))2k]

as a sum of squares. Recalling that by assumption we have that the quantity
M(v · v)k −Ex∼uS [(v · (x− µ))2k] is a sum of squares, we have an SoS proof that

Ex,y∼uS [(v · (x − y))2k] ≤ 2 · 4k M(v · v)k .

6.4.3 Sum-of-Squares Based Filter for List-Decodable Mean
Estimation

In this subsection, we build on the machinery of the two previous subsections
to develop an efficient list-decodable mean estimation algorithm for distribu-
tions with SoS certifiable low-degree moments. Suppose that we have a set
of samples S for which there is some subset S good with |S good| ≥ α|S | and
for which there is an SoS proof of bounded 2kth central moments. We would
like to develop a filter along the lines of Lemma 6.3 that removes outliers and
produces a set of differences-of-pairs that does have bounded central moments.

Let P be the multiset of differences of elements of S and Pgood the multiset
of differences of elements from S good. We have the following lemma.

Lemma 6.16 (SoS Difference-of-Pairs Filter) Let P be a multiset of points
in Rd for which there exists a subset Pgood ⊂ P. Furthermore, assume that for
some M > 0 the polynomial M(v · v)k − Ez∼uPgood [(v · z)2k] can be written as
a sum of squares. Then there exists a randomized poly(dk, |P|)-time algorithm
that given P,M, kreturns a subset T ⊆ P such that:

1. We have that

6M |P|(v · v)k −
∑
z∈T

(v · z)2k (6.5)

can be written as a sum of squares.
2. With probability at least 2/3, we have that |T ∩ Pgood| ≥ |Pgood|/2.

We note that the first condition above implies that T has bounded moments.
In particular, if P is the set of pairwise differences from a set S , then interpret-
ing T as a graph on S , it will have 2kth moments bounded by O(M), and we
can apply Proposition 6.11 to it in order to get a list-decoding algorithm for the
sample mean of S good.
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Proof The algorithm is a fairly straightforward filter. We maintain a subset
T ⊆ P, initially setting T = P. In each round, we check if (6.5) can be written
as a sum of squares. If it can, we return T and are done. Otherwise, we can find
a pseudo-expectation Ẽ such that Ẽ[ f 2] ≥ 0 for all f , but Ẽ[(6.5)] < 0.

By the linearity of the Ẽ operator, this means that∑
z∈T

Ẽ[(v · z)2k] > 6M|P|Ẽ[(v · v)k] . (6.6)

On the other hand, we know that

M(v · v)2k − Ez∼uPgood [(v · z)2k]

can be written as a sum of squares. Applying Ẽ and noting that Ẽ is non-
negative on sums of squares, we have that

M Ẽ[(v · v)2k] ≥
1

|Pgood|

∑
z∈Pgood

Ẽ[(v · z)2k] ≥
α−2

|P|

∑
z∈Pgood∩T

Ẽ[(v · z)2k] ,

where the second inequality comes from the fact that (v·z)2k is a sum of squares,
and thus Ẽ[(v · z)2k] ≥ 0. Comparing this to Equation (6.6), we have that∑

z∈Pgood∩T Ẽ[(v · z)2k]∑
z∈T Ẽ[(v · z)2k]

≤ α2/6 .

This means that if we remove each element z from T with probability propor-
tional to Ẽ[(v · z)2k], on average only an α2/6-fraction of the points removed
are from Pgood.

The pseudocode of the algorithm is as follows:

Algorithm Difference-Of-Pairs-SoS-Filter
Input: Dataset P ⊂ Rd containing an unknown subset Pgood whose 2kth

moment is SoS-cerifiably bounded by M for given values k and M.

1. Let T = P.
2. While (6.5) cannot be written as a sum of squares:

(a) Find a pseudo-expectation Ẽ for which Ẽ[(6.5)] < 0.
(b) Remove each z ∈ T with probability proportional to Ẽ[(v · z)2k].

3. Return T .

For the analysis, we note that since (v·z)2k is a sum of squares, Ẽ[(v·z)2k] ≥ 0,
so the probabilities of removing elements are well-defined. If the probabilities
are properly normalized, we can ensure that the single z with largest value of
Ẽ[(v · z)2k] is always removed, guaranteeing that the algorithm will terminate
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in polynomial time. It is clear that once the algorithm terminates, (6.5) can be
written as a sum of squares.

Finally, we need to analyze the size of T ∩Pgood. By the above analysis, the
expected number of samples in Pgood that are removed is at most α2/3 times
the expected number of total samples removed. Thus, the potential function

∆ = |T | + (6/α2)(|Pgood| − |Pgood ∩ T |)

is a supermartingale. Since ∆ is initially equal to |P| and is always non-negative,
with probability at least 2/3, at the end of the algorithm we have ∆ ≤ 3|P|, im-
plying that |Pgood ∩ T | ≥ |Pgood|/2. �

Combining this with Proposition 6.11 yields the following theorem.

Theorem 6.17 Let S be a set of points in Rd containing a subset S good with
|S good| ≥ α|S | and such that S good has covariance bounded by the identity and
has 2kth central moments SoS-certifiably bounded by M, for some positive in-
teger k and M > 0 (i.e., the polynomial M‖v‖2k

2 −Ex∼uS good [(v ·(x−µS good ))2k] can
be written as a sum of squares of polynomials in v). Then there exists an algo-
rithm that given S , k,m and α, runs in time poly(dk, |S |) and with probability
Ω(α) returns a µ̂ with ‖̂µ − µS good‖2 = O(M1/(2k)α−3/k + 1).

Proof Letting P be the set of pairwise differences of elements of S and Pgood

the set of pairwise differences of points in S good, we note that |Pgood| ≥ α
2|P|

and for vectors v

Ex∼uPgood [(v · x)2k] = Ey,y′∼uS good [(v · (y − y′))2k]

≤ 4kEy,y′∼uS good [(v · (y − µS good ))2k + (v · (y′ − µS good ))2k]

≤ 2 · 4kEy∼uS good [(v · (y − µS good ))2k]

≤ 2 · 4k M‖v‖2k
2 .

Furthermore, it is not hard to see that the above can be formalized as a Sum-
of-Squares proof. Therefore, Pgood has 2kth moments SoS-certifiably bounded
by 2 · 4k M. Applying the algorithm from Lemma 6.16 gives (with probability
2/3) a graph G on S with 2kth moments bounded by 12 · 4k M such that at least
half of the pairs of elements of S good are connected in G. Applying Proposition
6.11 completes the proof. �

6.5 Leveraging Higher Moments in Robust Mean Estimation

In this section, we show how to leverage higher moment information in “vanilla”
robust mean estimation with a minority of outliers.



6.5 Leveraging Higher Moments in Robust Mean Estimation 199

The fact that bounds on the higher moments imply concentration bounds can
already be taken advantage of in our algorithms.

Lemma 6.18 Let S be a set of points in Rd with identity covariance and with
2kth central moments bounded by M > 0. Then, for any 0 < ε < 1/3, S is
(ε,O(M1/(2k)ε1−1/(2k)))-stable.

Proof Consider a set T ⊂ S with |T | ≤ ε |S |. We need to show that the mean of
S \T is within δ of the mean of S , and that the variance of S \T in any direction
is within δ2/ε of 1, for some δ = O(M1/(2k)ε1−1/(2k)). For the first of these, by
Lemma 6.2, it follows that if |T | = ε|S | then ‖µT − µS ‖2 = O(M1/(2k)/ε1/(2k)).
Therefore, removing T from S changes the mean by O(M1/(2k)ε1−1/(2k)).

The argument for the variance is as follows. It suffices to show that for any
unit vector v we have that

∑
x∈T |(v · (x − µS ))2 − 1| ≤ (δ2/ε)|S |. Since |(v · (x −

µS ))2−1| ≤ (v · (x−µS ))2 +1 and the sum over T of 1 is not too large, it suffices
to bound the sum of (v · (x − µS ))2. However, by the bounded central moments
property, we have that∑

x∈T

(v · (x − µS ))2k ≤
∑
x∈S

(v · (x − µS ))2k ≤ M |S | .

Applying Holder’s Inequality, we have that∑
x∈T

(v · (x − µS ))2 ≤ (M|S |)1/k |T |(k−1)/k = M1/kε1−1/k |S | ≤ (δ2/ε)|S | .

This completes the proof. �

As a corollary of Lemma 6.18, if the covariance matrix of the inlier points
is known, then bounded 2kth central moments suffice for the existing universal
filter to efficiently and robustly estimate the mean of the distribution to error
O(ε1−1/(2k)). An immediate natural question is what happens if the covariance
of the set of inliers is unknown.

It is not hard to see that, under the bounded moment assumption we consid-
ered, it is information-theoretically possible to learn the mean robustly within
error O(ε1−1/(2k)) (see Chapter 1). In particular, suppose we have two sets of
points S and S good with |S |, |S good| ≤ (1 + ε)|S ∩ S good|, i.e., one can obtain
S from S good by modifying an O(ε)-fraction of the elements. Assume further-
more that S good has bounded central moments. Then if T is any large subset of
S with bounded central moments (for example, T = S ∩ S good), then the mean
of T is close to the mean of S . Specifically, we have the following lemma.

Lemma 6.19 Let T and S be sets of points in Rd each with 2kth central mo-
ments bounded by M. Suppose furthermore that |S |, |T | ≤ (1 + O(ε))|S ∩T |, for
some ε > 0 sufficiently small. Then we have that ‖µS−µT ‖2 = O(M1/(2k)ε1−1/(2k)).
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Proof Let R = S ∩ T . Note that |R| = (1 − O(ε))|S | and |R| = (1 − O(ε))|T |.
By Lemma 6.2, we have that the mean of T \ R differs from the mean of
R by O((M/ε)1/(2k)). Therefore, ‖µR − µT ‖2 = O(M1/(2k)ε1−1/(2k)). Similarly,
‖µR − µS ‖2 = O(M1/(2k)ε1−1/(2k)). The lemma now follows from the triangle
inequality. �

Lemma 6.19 implies that if we can find any subset T ⊆ S with size |T | =

(1 − O(ε))|S | for which T has bounded central moments, then the mean of T
will be close to the mean of S good. Thus, information-theoretically, the mean
of S good can be robustly estimated to error O(M1/(2k)ε1−1/(2k)).

Similarly to the list-decodable learning setting, there is a natural way to try
to build a filtering algorithm to find such a set T . We start with T = S . As
long as T does not have appropriately bounded central moments, we find a
direction v such that the central moments in the v-direction are too large, and
using the knowledge of v we create a filter. The difficulty with making this
idea work of course is that it may be computationally challenging to find the
vector v (or even to determine whether or not one exists). Thus, once again,
instead of merely requiring that our set of inliers have bounded moments, we
will need to make a stronger assumption that allows us to efficiently certify
that it has bounded central moments. Specifically, we will need to assume that
the set of inliers has bounded central moments that can be proved via SoS. The
following lemma shows that under this assumption there is a computationally
efficient filter.

The pseudocode for this filtering algorithm is given below followed by its
proof of correctness.



6.5 Leveraging Higher Moments in Robust Mean Estimation 201

Algorithm SoS-Filter
Input: Dataset S ⊂ Rd, and k,M, ε > 0 such that S is an ε-corruption of
an unknown set S good with 2kth central moments SoS-certifiably bounded
by M.

1. Let T = S .
2. While (6.8) (found below) is not a sum of squares:

(a) Find the (approximately) largest value M′ such that

M′(v · v)k |S | −
∑
x∈T

(v · (x − µT ))2k (6.7)

cannot be written as a sum of squares (this can be found via binary
search).

(b) Find a pseudo-expectation Ẽ such that Ẽ[(6.7)] < 0.
(c) Remove each x from T with probability proportional to

Ẽ[(v · (x − µT ))2k] .

3. Return T .

Proposition 6.20 Let S and S good be sets of points in Rd, where S good has 2kth

central moments SoS-certifiably bounded by M, and |S |, |S good| ≤ (1 + ε)|S ∩
S good|, for some ε > 0 with ε � 1/k. There exists a randomized algorithm
running in time poly(dk, |S |) that given S and M returns a subset T ⊆ S such
that:

1. The polynomial

2M(v · v)k |S | −
∑
x∈T

(v · (x − µT ))2k (6.8)

can be written as a sum of squares (i.e., T has bounded central moments
provable via SoS).

2. With probability at least 2/3, we have that |T | ≥ |S |(1 − O(ε)).

Proof The algorithm is a conceptually simple filter similar to that of Lemma 6.16.
This algorithm runs in polynomial time and returns a set T such that (6.8) is a
sum of squares. It remains to show that the expected value of |T | is sufficiently
large. In order to do this, consider the set R = T ∩ S good. We know that

M |S good|(v · v)k −
∑
x∈S

(v · (x − µS good ))2k
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can be written as a sum of squares, and therefore

2M|S |(v · v)k −
∑
x∈R

(v · (x − µS good ))2k

can as well.
We would like to bound the sum over x ∈ R of (v · (x− µT ))2k. We know that

(v · (x − µT ))2k ≥ (1/4)(v · (x − µS good ))2k − k2k(v · v)k‖µS good − µT ‖
2k
2 ,

and it is not hard to see that the difference can be written as a sum of squares.
By Lemma 6.19, since both S good and T have 2kth moments bounded by M, we
have that ‖µS good−µT ‖2 = O((M′)1/(2k)η1−1/(2k)), where η = 1−|T∩S good|/|S good|.
Thus, as long as η is sufficiently small, we have that

8M|S |(v · v)k −
∑
x∈R

(v · (x − µT ))2k + |S |O(k)2k(M′)η2k−1(v · v)k

can be written as a sum of squares. In particular, so long as η is less than a
sufficiently small constant multiple of 1/k, we have that∑

x∈R

Ẽ[(v · (x − µT ))2k] ≤ O(M′)|S |Ẽ[(v · v)k] ,

with an arbitrarily small constant in the big-O term. On the other hand, since
Ẽ[(6.7)] < 0, it must be the case that∑

x∈T

Ẽ[(v · (x − µT ))2k] = Ω(M′) |S | Ẽ[(v · v)k] .

Together these imply that the expected number of elements of R that are re-
moved from T in the filter step is at most a small constant multiple of the
number of elements of T that are removed. Since initially T contains only an
O(ε)-fraction of points not in S good, a standard martingale argument shows that
with probability at least 2/3 the total number of removed points never exceeds
O(ε)|S |. This completes the proof. �

Combining Proposition 6.20 with Lemma 6.19, we have that the sample
mean of the set returned by the algorithm in Proposition 6.20 is, with prob-
ability at least 2/3, within distance O(M1/(2k)ε1−1/(2k)) of the mean of S good.
Therefore, we can robustly learn the mean of a set S good to error O(ε1−1/(2k))
without knowing the covariance, assuming that S good has bounded 2kth mo-
ments that can be certified by a low-degree sum-of-squares proof.

In particular, we have the following theorem.

Theorem 6.21 Let S and S good be sets of points in Rd, where S good has 2kth

central moments SoS-certifiably bounded by M, and we have that |S |, |S good| ≤

(1 + ε)|S ∩ S good|, for some ε > 0 with ε � 1/k. There exists a randomized
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algorithm running in time poly(dk, |S |) that given S and M returns a µ̂ such
that with probability at least 2/3

‖̂µ − µS good‖2 = O(M1/(2k)ε1−1/(2k)) .

6.6 Clustering Mixture Models via Higher Degree Moments

In this section, we show how to leverage higher-degree moments for (robust)
clustering of mixture models. The focus of our technical description will be
on the problem of (robust) clustering uniform mixtures of identity covariance
Gaussians, i.e., distributions of the form X = (1/m)

∑m
i=1N(µi, I). Specifically,

given a multiset of N points in Rd, where a (1 − ε)-fraction of the points are
i.i.d. samples from an unknown mixture X and the remaining can be arbitrary,
the goal is to split the samples into k clusters such that most of the pairs of
clean samples come from the same cluster if and only if these samples came
from the same component Gaussian.

For this clustering task to be information-theoretically possible, we need
some sort of separation assumption. Specifically, we will assume that there
exists a parameter ∆ > 0 such that ‖µi − µ j‖2 ≥ ∆ for all i , j.

As discussed in Chapter 5, several such clustering problems can be solved
using a list-decodable mean estimation algorithm. Specifically, one can attempt
to cluster points based on which of the hypotheses the sample is closest to,
and indeed this suffices under our separation assumptions. In this section, we
develop direct algorithms for clustering using the filtering method and the SoS
method.

6.6.1 Clustering With High-Degree Filtering

Here we show how to construct a filter for the clustering task using the difference-
of-pairs technique. Let S be the set of points given to our clustering algorithm
with S i being the set of samples from the ith Gaussian component. Letting P
be the set of pairwise differences, we can run the algorithm of either Lemma
6.3 or Lemma 6.16. We note that we can take Pgood as the set of pairwise dif-
ferences of samples from S i for any i. Thus, on average, the resulting set T
will contain a constant fraction of the differences of pairs of samples from the
same S i. On the other hand, it is not hard to show that T will contain relatively
few pairs of samples from different clusters.

In particular, we know that for any unit vector v we have that
∑

z∈T (v · z)2k =

Ok(|S |2). If we let v be the unit vector in the direction of µi − µ j, we note that
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for all but a δ-fraction of pairs x ∈ S i, y ∈ S j we have that |v · (x − y)| >
∆ − O(

√
log(1/δ)). If we take δ to be such that this quantity is at least ∆/2,

each such pair of x, y with (x − y) still in T will contribute at least (∆/2)2k to∑
z∈T (v · z)2k. Therefore, the number of pairs x ∈ S i, y ∈ S j with (x − y) ∈ T ,

for some given i , j, will be at most

Ok(|S |2)[∆−2k + exp(−Ω(∆2))] .

In other words, while a constant fraction of differences of points from the same
component are kept, only a small fraction of points from different components
are. If, for example, ∆ �k m1/(2k), then most of the remaining pairs will be
points from the same cluster. Given these properties, clustering will require
some kind of rounding algorithm to obtain the clusters. Depending on what
exactly the goal is, this could be as simple as picking a few random samples x
and creating a cluster of the set of y such that x − y is in T .

In the above analysis, the set T only keeps a constant fraction of the dif-
ferences from any given cluster. For some clustering algorithms, it may be
required that we keep a larger fraction of the good samples. There are two
ways one can accomplishing this.

Perhaps the simplest method involves simply modifying the filtering algo-
rithm by changing the threshold at which one is willing to terminate the al-
gorithm. If, for example, one increases the value of C in the algorithm from
Lemma 6.3, it is not hard to see that this decreases the expected number of
pairs of samples from the same cluster removed, at the expense of a corre-
sponding increase in the bounds on the moments of the final set.

Another approach is to try to find a set T satisfying the desired moment
conditions, while removing as few samples as possible. This can be done by
using linear programming. Instead of letting T be a set that points are either in
or out of, we instead assign a weight wz ∈ [0, 1] to each z ∈ P. The condition
on bounded central moments then becomes that for any degree k polynomial p
the following holds: ∑

z∈P

wz p2(z) ≤ O(|P|)Q(p) . (6.9)

We can then solve for the set of wz’s with
∑

z∈P wz as large as possible using
linear programming. In particular, we need to find a set of wz’s optimizing the
linear objective

∑
z∈P wz, while satisfying the linear inequalities 0 ≤ wz ≤ 1

and (6.9) for all p. This gives us an infinite linear program, but it is not hard
to find a separation oracle for it: if (6.9) is violated for some p, we can find it
by linear algebra and there are only finitely many other constraints to check.
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Thus, we can solve for the optimal wz’s. We can then choose to let T be, for
example, the set of all z’s such that wz ≥ 1/2.

This new T will have many of the properties we desire. Since Equation (6.9)
holds, it will be the case that∑

z∈T

p2(z) ≤ O(|P|)Q(p) ,

implying that T has bounded central moments. This in turn implies that we
will have very few points corresponding to differences of pairs from different
clusters.

Moreover, we know that the sum of the wz’s will be fairly large. In particular,
letting wz be 1 if z = x − y with x − y from the same cluster, and 0 otherwise
satisfies Equation (6.9). Thus, the sum of the wz’s in our solution must be at
least this large. Since very little weight comes from differences of pairs from
different clusters and not much comes from pairs with corruptions (assuming
that ε is substantially smaller than 1/k), this implies that most of the pairs from
the same cluster are kept.

Using these techniques, one can prove, for example, the following theorem.

Theorem 6.22 Let X be a mixture of m equally weighted spherical Gaussians
whose means are pairwise separated by at least ∆, and let k be a positive
integer. There exists an algorithm that given m, k,∆, and S , a sufficiently large
number of i.i.d. samples from X, runs in time poly(|S |, dk) and computes a
graph G on S such that with high probability for ε = Ok(∆−2k + exp(−Ω(∆2)))
we have that at most an ε-fraction of the pairs of elements of S coming from
different components of X are adjacent in G and at most an mε-fraction of the
pairs of elements of S from the same cluster are non-adjacent in G.

6.6.2 Clustering With Sum-of-Squares

In this section, we give an SoS-based algorithm for clustering mixtures of
spherical Gaussians. In Section 6.6.2.1, we start by formulating our cluster-
ing problem as a non-convex optimization problem. In Section 6.6.2.2, we
show how to use Sum-of-Squares based techniques to efficiently find an ap-
proximate clustering. Finally, in Section 6.6.2.3, we briefly summarize known
generalizations.

6.6.2.1 Non-Convex Formulation
Given a set x1, x2, . . . , xN of samples, one would like to assign most of the
xi’s to one of m different groups, such that each group is roughly the same
size and has low-order moments approximately matching those of a Gaussian
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(which will imply concentration). To state this more formally, we define weight
variables wi, j for 1 ≤ i ≤ N and 1 ≤ j ≤ m, where wi, j is 1 if xi is in the jth

group and 0 otherwise.
These weights would need to satisfy a number of constraints. Specifically,

the fact that the wi, j’s are binary and that each xi is placed in at most one cluster
is equivalent to the following conditions:

wi, j(1 − wi, j) = 0 for all 1 ≤ i ≤ N and 1 ≤ j ≤ m , (6.10)

and
m∑

j=1

wi, j ≤ 1 for all 1 ≤ i ≤ N . (6.11)

To ensure that the groups are of the same size, we can add the constraint

N∑
i=1

wi, j = (1 − ε)N/m for all 1 ≤ j ≤ k . (6.12)

Finally, to enforce that the central moments in each cluster agree with the cen-
tral moments of a Gaussian, we can add the constraint:

−δ ≤ E[p(N(0, 2I))] − [(1 − ε)N/m]−2
N∑

i,i′=1

wi, jwi′, j p(xi − xi′ ) ≤ δ (6.13)

For all monomials p of degree at most 2k and all 1 ≤ j ≤ m.
Now suppose that a (1− ε)-fraction of these samples xi came from a mixture

of separated Gaussians. We will show that the clusters produced by a solution
to the above system must correspond reasonably well to the original clustering.
In fact, it can be shown that for each j, almost all of the non-zero wi, j’s come
from a single cluster.

Lemma 6.23 Let x1, . . . , xN ∈ Rd. Let S ,T ⊆ [N] be such that the set {xi :
i ∈ S } matches its first 2k moments with N(µS , I) for some µS ∈ Rd, and
{xi : i ∈ T } matches its first 2k moments with N(µT , I) for some µS ∈ Rd with
‖µS −µT ‖2 > ∆. Suppose in addition that we have wi, j’s satisfying the relations
above. Then for any j we have that∑

i∈S

wi, j

 ∑
i∈T

wi, j

 ≤ N2O(
√

k/∆)2k + N2dkδ .

In particular, this shows that the jth cluster cannot both have many points
from S and many points from T . If additionally the xi’s can be partitioned into
k such sets, each cluster will contain almost entirely points from a single one
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of these sets, and therefore the learned clusters will correspond fairly well to
the original sets.

Proof Let v be the unit vector in the direction of µS − µT . Let S ′ = {i ∈
S : |v · (xi − µS )| < ∆/3} and T ′ = {i ∈ T : |v · (xi − µT )| < ∆/3}. Since S
matches 2k moments with N(µS , I), we have that the average value over i ∈ S
of |v · (xi − µS )|2k is equal to (2k − 1)!!. Therefore, the number of i in S not in
S ′ is at most O(

√
k/∆)2kN. Similarly, we have that |T \ T ′| = O(

√
k/∆)2kN.

The above implies that∑
i∈S

wi, j

 ∑
i∈T

wi, j

 ≤ O(
√

k/∆)2kN2 +

∑
i∈S ′

wi, j

 ∑
i∈T ′

wi, j

 .
Let p(x) = (v · x)2k. Writing p as a linear combination of monomials (with sum
of coefficients at most dk), we find that

[(1 − ε)N/m]−2
N∑

i,i′=1

wi, jwi′, j p(xi − xi′ ) ≤ E[p(N(0, 2I))] + dkδ .

On the other hand, we have that

N∑
i,i′=1

wi, jwi′, j p(xi−xi′ ) ≥
∑

i∈S ′,i′∈T ′
wi, jwi′, j(∆/3)2k = (∆/3)2k

∑
i∈S

wi, j

 ∑
i∈T

wi, j

 .
Combining with the above completes the proof of the lemma. �

Lemma 6.23 shows that if our data includes k clusters of points whose low-
order moments mimic those of separated Gaussians, it suffices for our algo-
rithm to find weights wi, j that satisfy the above properties. Unfortunately, this
is a computationally challenging task to accomplish directly. It is particularly
challenging in that it is a discrete and non-convex optimization problem. In
order to efficiently find appropriate weights, we are going to need to develop
an appropriate relaxation of the problem. This can be accomplished in a con-
venient way with sum-of-squares.

6.6.2.2 Clustering Mixtures of Spherical Gaussians via SoS
We will require some additional background on SoS proof systems. If one
wants to show that a single polynomial f is everywhere non-negative, one can
try (as discussed in Section 6.4) to write it as a sum of squares. This suffices for
unconstrained optimization problems. The constrained case is somewhat more
subtle. Suppose we have a collection of polynomials g1, g2, . . . , gn and want
to know if f (x) is non-negative whenever all of the gi(x) are non-negative. A
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natural generalization of writing f as a sum of squares would be to instead
write f in the form:

f (x) =
∑

i

h2
i (x) +

∑
i, j

h2
i, j(x)g j(x) , (6.14)

for some polynomials hi, hi, j. It is clear that if f can be written in the form of
(6.14), it must be the case that f (x) is non-negative whenever all of the g j(x)
are non-negative. The more important question is whether we can determine
whether or not it is possible to express f in the form given by (6.14). As in
Section 6.4, one can attempt to do this by using linear programming, to find
what is known as a “dual pseudo-expectation”. Unfortunately, this comes with
a restriction. In particular, for the analysis in Section 6.4, we showed that none
of the hi’s needed to be degree more than deg( f )/2. This allowed us to define a
pseudo-expectation only on low-degree polynomials. This trick will not work
here.

To deal with this issue, we will need to artificially restrict the degree. We say
that we have a Sum-of-Squares proof of degree-t of the statement (g j(x) ≥ 0
for all j implies f (x) ≥ 0) if f can be written as in Equation (6.14) for some
polynomials hi and hi, j with deg(h2

i ), deg(h2
i, jg j) ≤ t for all i, j. This problem

does have a tractable dual. In particular, such a Sum-of-Squares proof exists
unless there exists a pseudo-expectation Ẽ, that is a linear function from the
set of polynomials of degree at most t to R, such that:

Ẽ[h2(x)] ≥ 0 for all polynomials h of degree at most t/2 , (6.15)

Ẽ[h2(x)g j(x)] ≥ 0 for all polynomials h and all j so that deg(h2g j) ≤ t ,
(6.16)

Ẽ[ f (x)] < 0. (6.17)

Fortunately, the ellipsoid algorithm can be used to determine whether or not
such a pseudo-expectation exists, and exhibit one if it does.

In most concrete settings, we will often not even use this full system. We
will often just search for a pseudo-expectation satisfying Equations (6.15) and
(6.16) along with Ẽ[1] = 1. This will morally behave somewhat like an ex-
pectation over points x such that g j(x) ≥ 0 for all j. More precisely, for any
polynomial f for which there is a degree at most t Sum-of-Squares proof that
g j(x) ≥ 0 implies f (x) ≥ 0, we will have that Ẽ[ f ] ≥ 0.

Sum of Squares proofs of this form are a powerful tools in computer science,
allowing one to solve (at least in terms of a pseudoexpectation) or disprove
complicated polynomial systems. Generally increasing the degree of the sum
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of squares proof will increase its power, but at the cost of runtime, as solving
a degree-t Sum of Squares proof system will require time polynomial in dt.

We now explain how the above can be used in our clustering setting. Sup-
pose that we are in the setting of Lemma 6.23. We can solve for a pseudo-
expectation using the wi, j as variables and with constraints given by Equations
(6.10) through (6.13). If our data consists of k clusters of points whose first
2k-moments mimic those of Gaussians with means separated by at least ∆, we
know that a solution to these equations exists, and therefore so does a pseudo-
expectation for our algorithm to find. Furthermore, it is not hard to see that
Lemma 6.23 can be proven by a Sum-of-Squares proof of degree at most 2k
(at least if k is a power of 2, see Exercise 6.4(f)). Specifically, if we have two
real clusters given by S and T , then for some sufficiently large constant C > 0
the polynomial

N2(C
√

k/∆)2k + N2dkδ −

∑
i∈S

wi, j

 ∑
i∈T

wi, j


can be written as a sum of terms of the form h2 with deg(h) ≤ k or h2g
with deg(h2g) ≤ 2k and g ≥ 0 one of our constraints. In particular, since
Ẽ[h2], Ẽ[h2g] ≥ 0, our pseudo-expectation will satisfy:

Ẽ
∑

i∈S

wi, j

 ∑
i∈T

wi, j

 ≤ N2O(
√

k/∆)2k + N2dkδ .

Making use of Equation (6.12), it is not hard to see that we will have

Ẽ
wi0, j

∑
i∈T

wi, j

 = (1 − ε)N/kẼ[wi0, j] .

This means that if we find i0 for which Ẽ[wi0, j] is reasonably large, then the
average value of Ẽ[wi0, jwi, j] over various i’s will be fairly large, but the to-
tal value over i’s in different clusters likely will not be. This means that this
pseudo-expectation can be used to cluster.

More precisely, we have the following result.

Theorem 6.24 Let X be a mixture of m equally weighted spherical Gaussians
whose means are pairwise separated by at least ∆, and let k be a power of 2.
Let {xi} be a set of N i.i.d. samples from X for some N sufficiently large. Let
Ẽ be a degree-2k pseudo-expectation with variables wi, j for 1 ≤ i ≤ N and
1 ≤ j ≤ m satisfying equations (6.10)-(6.13) and Ẽ[1] = 1. Construct the
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graph G on [N], where there is an edge between vertices i and i′ if and only if

Ẽ

 m∑
j=1

wi, jwi′, j

 > 1/2 .

Then with high probability over our samples, the fraction of pairs of elements
(xi, x j) from different components of X that are adjacent in G is at most

O(
√

k/∆)2k + dkδ ,

and the fraction of such pairs from the same component of X that are not
adjacent in G is at most

mO(
√

k/∆)2k + mdkδ + ε .

6.6.2.3 Clustering General Mixture Models via Sum-of-Squares
The application given above for Sum-of-Squares for clustering is fairly simple.
Essentially, considering the matrix with entries Ẽ

[∑
j wi, jwi′, j

]
gives us some-

thing with similar properties to what can be obtained using filtering techniques
for this problem. As we have already mentioned, the advantage of sum-of-
squares is in its flexibility.

More generally, given any clustering problem one can determine some poly-
nomial inequalities that ought to be satisfied by the correct clustering, and then
search for a pseudo-expectation that satisfies these inequalities. Then, if there
are any properties of the clustering that can be established from the constraints
via a low-degree sum-of-squares proof, the pseudo-expectation will also sat-
isfy these properties. We are particularly interested in properties like the one
in Lemma 6.23 that says that the clustering found by the pseudo-expectation
corresponds in some sense to the true clustering.

This method has several applications, many of them too technical to develop
in detail here. One particularly nice example is the following: Let m be an
integer and let ε > 0 be less than some sufficiently small constant cm. Let X =

(1/m)
∑m

i=1 Gi be an equally weighted mixture of m (not-necessarily spherical)
Gaussians in Rd such that these Gaussian components are pairwise separated
(in particular, dTV(Gi,G j) ≥ 1 − ε for all i , j). One is then given N samples,
a (1 − ε)-fraction of which are drawn i.i.d. from X. One can then attempt to
find some clustering of these points such that the low-degree moments of the
points from each cluster approximately agree with the corresponding moments
of some Gaussian. It can be shown that these constraints imply via a sum-of-
squares proof of degree Om(1) that the clustering found mostly agrees with the
true clustering on points (i.e., assigning the points drawn from each component
of X to their own cluster). With additional work, one can show that for some
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sufficiently large constant Cm, as long as N > (d/ε)Cm , there exists an algorithm
that runs in time poly(N) and with high probability returns a distribution X̃ such
that dTV(X̃, X) < ε1/Cm .

In particular, we get the following result.

Theorem 6.25 Let X be an equally weighted mixture of m Gaussians in Rd

and Cm a sufficiently large constant. Suppose that any two components of X
have total variation distance at least 1 − 1/Cm. Let k > Cm be an integer and
let ε, δ be sufficiently small. Let x1, x2, . . . , xN be i.i.d. samples from X and
consider the system of inequalities in the variables wi, j, for 1 ≤ i ≤ N and
1 ≤ j ≤ m, and µ j,Σ j, for 1 ≤ j ≤ m, satisfying Equations (6.10)-(6.12) andE[p(N(µ j,Σ j))] − [(1 − ε)N/m]−2

N∑
i,i′=1

wi, jwi′, j p(xi − xi′ )


2

≤ δVar[p(N(µ j,Σ j))]

for all polynomials p of degree at most 2k.
Letting Ẽ be a pseudoexpectation (of degree 4k) for the above system with

Ẽ[1] = 1, then with high probability over the samples such a Ẽ exists and if G
is the graph on [N] connecting i and i′ if and only if

Ẽ

 m∑
j=1

wi, jwi′, j

 > 1/2 ,

then for 99% of the pairs i, i′ with xi and xi′ taken from the same cluster of X,
the edge (i, i′) is in G, and these comprise at least 99% of the edges of G.

Exercises

6.1 (Second Moment List-Decoding Counterexample) Show that if S is a set
of points in Rd with E[S ] = µ, Cov[S ] � I, and α > 0, there exists a
superset of points T ⊃ S in Rd with |S | ≥ α|T |, Cov[T ] � I and ‖µ −
E[T ]‖2 = Ω(1/

√
α). Note that a list-decoding algorithm that only checks

for second moments will, when given T , produce an error of Ω(1/
√
α).

6.2 (Higher Moments Multifilter) Here we lay out in detail the rough algo-
rithm from Section 6.2.2.

(a) Suppose S is a set containing a subset S good with |S good| ≥ α|S |, for
some 1/2 > α > 0 and S good having 2kth central moments bounded by
M. Suppose furthermore that one is given a unit vector v such that

Ex∼uS [|v · (x − µS )|2k] > Mα−1 logCk (1/α) ,



212 Robust Estimation via Higher Moments

for Ck some sufficiently large constant. Devise an algorithm that given
S , v, k,M, α computes at most two subsets S i ⊂ S such that:

–
∑

i |S i|
2 < |S |2.

– For at least one value of i, we have that (in expectation) |S good\S i| <

(α/2)|S \ S i|.

(b) Show that using the above algorithm and an oracle that given a set
S determines the unit vector v maximizing

∑
x∈S (v · (x − µS ))2k, one

can solve the list-decodable mean estimation problem when the set
of inliers has 2kth central moments bounded by M achieving error
Õk(M1/(2k)α−1/k).

6.3 (Sample Complexity for the Variance of Polynomials Filter) Show that,
for some N = poly((dk)k), given a set S of N i.i.d. samples fromN(0, Id)
with high probability for all degree at most d polynomials p we have that
Ex,y∼uS [p2(x−y)] < 2Ez∼N(0,2Id)[p2(z)]. Furthermore, show that this is not
true if N < dk/4.

6.4 (Basic Techniques for Sum-of-Squares Proofs) Here we discuss some
basic techniques for proving inequalities by sum of squares.

(a) Transitivity Let A ≥S oS B denote that A − B can be written as a sum
of squares of polynomials. Show that if A ≥S oS B and B ≥S oS C, then
A ≥S oS C.

(b) Composability Show that if A ≥S oS A′ and B ≥S oS B′ in the notation
above, then A + B ≥S oS A′ + B′. Show also that if A′, B′ ≥S oS 0, then
AB ≥S oS A′B′.

(c) One-variable Inequalities Show that if f is a polynomial in one
variable or a homogeneous polynomial in two variables that is non-
negative for all real inputs, then f ≥S oS 0.
(Hint: Try factoring f .)

(d) Triangle Inequality Show that for any positive even integer k we have
that 2k−1(xk + yk) ≥S oS (x + y)k.

(e) Cauchy-Schwartz Show that
(∑n

i=1 x2
i

) (∑n
i=1 y2

i

)
≥S oS

(∑n
i=1 xiyi

)2
.

(f) Holder’s Inequality Show that if t is a power of 2, the Sum of Squares
proof system using the constraints wi = w2

i and degree 2t can prove n∑
i=1

wixi

t

≤

 n∑
i=1

wi

t−1  n∑
i=1

xt
i

 .
(Hint: Prove this by induction on t.)
Note: This inequality is particularly useful since it says that if the tth

moment of the xi’s is bounded, then the sum of any small number of
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them will not be too big. In other words, this is a Sum of Squares proof
of the fact that a distribution with bounded tth moments satisfies good
concentration bounds.

6.5 (SoS Proofs of Bounded Central Moments) Here we will prove that some
common distributions have SoS-certifiable bounded central moments.

(a) Let X be the uniform distribution over {0, 1}d. Give a sum-of-squares
proof that the 2kth central moments of X are bounded by O(k)k.

(b) Let X be a mixture of Gaussians with means ‖µi‖2 ≤ 1 and covariances
Σi � I. Give a sum-of-squares proof that the 2kth central moments of
X are bounded by O(k)k.

6.6 (Clustering Mixtures of Separated Gaussians) Here we will consider
Gaussian mixture models of the form X = (G1 + G2)/2, where Gi =

N(µi,Σi) is a d-dimensional Gaussian. Our goal will be given samples
from X to cluster them based on which Gi the sample came from. We
note that this is information-theoretically impossible unless we assume
some separation, namely that dTV(G1,G2) > 1 − δ for some small δ > 0.

(a) First, we need to understand what the separation assumption means.
Show that dTV(G1,G2) > 1−δ implies that one of the following holds:

– There exists a unit vector v such that

Var(v ·G1) + Var(v ·G2) = oδ(|v · (µ1 − µ2)|2) ,

i.e., the means are separated in some direction.
– There exists a unit vector v such that either it holds that Var(v·G1) =

oδ(Var(v · G2)) or we have that Var(v · G2) = oδ(Var(v · G1)), i.e.,
the covariance matrices are spectrally separated.

–
∥∥∥(Σ1 + Σ2)−1/2(Σ1 − Σ2)(Σ1 + Σ2)−1/2

∥∥∥
F = ωδ(1), i.e., the covariances

are far apart in relative Frobenius norm.

In the above, oδ(x) denotes that the implied constant goes to 0 with δ
and ωδ(x) means that the implied constant goes to∞ as δ goes to 0.
Note that it is also not hard to show that if any of the above hold with
sufficiently large/small constants, this implies that dTV(Gi,G j) > 1−δ.

(b) Let t be a sufficiently large constant and let S = {x1, x2, . . . , xN} be a
sufficiently large set of samples drawn i.i.d. from X. Suppose that S
is split into two subsets each with approximately N/2 elements, and
each having t moments nearly agreeing with those of some Gaussian.
Show using a sum-of-squares proof that each subset must have at least
99% of its points coming from a single Gaussian component.
(Hint: Use a different proof for each case of part (a).)
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(c) Develop a sum-of-squares relaxation for the problem of splitting S
into subsets. Show how to round any pseudoexpectation into an actual
clustering of the points.

(d) Show how to make the clustering algorithm above work, even if a
small constant fraction of the points of S are adversarially corrupted.

(Hint: If you ensure that each cluster approximately matches 2t mo-
ments with a Gaussian, this will imply, by something along the lines
of Lemma 2.6, that the non-erroneous samples in the cluster approxi-
mately match t moments, and the argument from part (c) should apply
when considering just the good points in each cluster.)

6.7 Discussion and Related Work

One of the earliest applications of high-degree methods in robust statistics in-
volved applications to the list-decodable mean estimation problem as discussed
in this chapter. In particular, the variance of polynomials technique was intro-
duced in [DKS18b] and was first applied to the problem of list-decoding the
mean of a spherical Gaussian. The original paper [DKS18b] develops a mul-
tifilter for this regime. A major technical hurdle in that work comes from the
fact that the variance of degree at least two polynomials is a function of the
unknown mean. To deal with this issue, [DKS18b] develops fairly compli-
cated machinery. The difference-of-pairs technique presented in this chapter
greatly simplifies this result. We note that the difference-of-pairs technique is
new, as are its applications to list-decoding and robust mean estimation. The
difference-of-pairs technique was leveraged to obtain efficient algorithms for
list-decodable sparse mean estimation in [DKK+22a].

Two independent and concurrent works [HL18, KSS18] initiated the use
of the sum-of-squares method to leverage higher-order moments in robust
statistics. Specifically, [HL18] gave robust algorithms for mean estimation
under higher-moment assumptions as well as robust clustering of spherical
Gaussians and other structured distributions. In addition to these tasks, the
work [KSS18] gave SoS-based algorithms for list-decodable mean estimation.
More recently, [DKK+22b] leveraged the SoS method to develop efficient al-
gorithms for robust sparse mean estimation with near-optimal error in the un-
known covariance regime. It should be noted that these works used the SoS
method to construct a single SDP and a rounding scheme that directly yields
the desired solution. In contrast, in this chapter, we use SoS only for the certi-
fication step and combine it with a filtering technique to find a solution. This
SoS-based filtering method is new to this chapter.
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Since the dissemination of [DKS18b, HL18, KSS18], the variance of poly-
nomials and sum-of-squares methods have been used to develop robust learners
for a range of learning tasks. These include supervised PAC learning of geo-
metric concepts [DKS18a], list-decodable linear regression [KKK19, RY20]
learning more general mixture models [BK20, DHKK20, BDH+20, Kan21,
LM21a, BDJ+22], and list-decodable covariance estimation [IK22]. Focusing
on mixture models, the works [BK20, DHKK20, BDH+20] gave SoS-based
algorithms for learning uniform mixtures of separated (not necessarily spheri-
cal) Gaussians. Subsequently, [Kan21, LM21a, BDJ+22] developed algorithms
for arbitrary Gaussian mixtures. In more detail, [Kan21] gave the first efficient
robust learner for the case of two components with equal weights; [LM21a]
gave an efficient algorithm for any constant number of components with cer-
tain assumptions on the weights and covariances; and [BDJ+22] gave a robust
learning algorithm for the general case, i.e., robustly learning a mixture of any
constant number of Gaussians in total variation distance.

It is also worth mentioning two recent works [DK20, LL22] leveraging high-
degree moments for learning mixture models. Specifically, [DK20] developed
a framework motivated by algebraic geometry that leads to quasi-polynomial
time density estimation algorithms for a range of mixture models, including
mixtures of identity covariance Gaussians. More recently, [LL22] gave the first
polynomial-time algorithm for mixtures of identity covariance Gaussians un-
der near-optimal separation assumptions. Even though these works do not rely
on a robust statistics framework, they share many ideas with these high-degree
methods from robust statistics.

We conclude by noting that our description of the sum-of-squares method
in this chapter is somewhat informal and focusing explicitly on robust statis-
tics applications. For a systematic development of this topic, the reader is
referred to [FKP19] and the lecture notes [BS16]. For an overview of the
sum-of-squares method in high-dimensional estimation, the reader is referred
to [RSS19, Hop18].
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Robust Supervised Learning

7.1 Introduction

Throughout this book, we have so far focused on robust algorithms for unsu-
pervised learning problems, i.e., problems about learning some parameters like
the mean or covariance of a distribution. In this chapter, we illustrate how the
algorithmic ideas developed in this book can be applied to supervised problems
as well. At a high-level, supervised learning is the task of inferring a function
from a set of labeled observations. The usual setting for supervised learning is
that one observes pairs (x, y) drawn i.i.d. from some joint distribution satisfying
certain properties, generally with the conceit that y ≈ f (x) for some function f
that the algorithm wishes to learn. There has been an extensive amount of work
on “robust” algorithms on supervised learning, for various noise models. The
separation of the inputs into x and y “coordinates” allows for more complicated
families of noise models. For example, one standard family of contamination
models assumes that the adversary cannot corrupt the points x, but is allowed
to corrupt the labels y in various ways (randomly, adversarially or a combina-
tion thereof). In this chapter, we will focus on the strong contamination model
that allows an ε-fraction of the (x, y)-pairs to be corrupted arbitrarily.

In this chapter, we will study three main problems. First, we will discuss
the problem of linear regression in a fairly simple setting (Section 7.2). Next
we will consider the binary classification problem of learning halfspaces (Sec-
tion 7.3). Finally, we will consider a substantial generalization of these prob-
lems and look into algorithms for robust stochastic optimization (Section 7.4).

One theme that runs through this chapter is that the algorithms for these su-
pervised learning problems usually work by reducing them to the unsupervised
problem of robustly learning some relevant parameter of the joint distribution
over (x, y). Interestingly, while the initial approximation to this parameter is
often not strong enough for what we need, it can often by improved by some
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kind of iterative method, using the first rough approximation to get better and
better approximations to the desired parameter.

7.2 Outlier-Robust Algorithms for Linear Regression

Linear regression is arguably the prototypical supervised learning task. In the
non-robust setting, we are given i.i.d. samples of the form (X, y) ∈ Rd+1 with
the guarantee that y = β · X + ξ for some unknown vector β ∈ Rd (sometimes
referred to as the “regressor” vector) and a zero-mean random variable ξ ∈ R
modeling observation noise. It is typical to assume that ξ is independent of
X. That is, y is a linear function of X up to some random noise. In the most
fundamental setting, the covariate (i.e. the random vector X ∈ Rd) is drawn
from a standard Gaussian distribution N(0, I). For simplicity, in this section,
we will focus on the Gaussian covariate case as well. The goal is to learn a
good approximation to β in an appropriate metric (usually L2).

In the above vanilla setting (without outliers), the classical least-squares es-
timator is sample-optimal and computationally efficient. In the outlier-robust
setting, we want to be able to approximate β in the presence of an ε-fraction
of arbitrary outliers, for some constant ε < 1/2. That is, we are given an ε-
corrupted set of labeled samples where the inliers are drawn from the above
joint distribution (X, y) and the outliers are arbitrary.

Here we will focus on the simplest possible setting where X ∼ N(0, I) is a
standard Gaussian and ξ ∼ N(0, σ2) is a centered Gaussian independent of X.
The following basic fact motivates our approach:

Fact 7.1 Under the above assumptions, the joint distribution on (X, y) is a

Gaussian on Rd+1 with covariance matrix
[
I β>

β σ2 + ‖β‖22

]
.

Given Fact 7.1, it is easy to see that we can apply our robust covariance
estimation algorithm from Chapter 4 to approximate β within `2-error of at
most O(ε log(1/ε)σ). We note that this reduction to covariance estimation will
at best lead to an algorithm with sample complexity Ω(d2/ε2), since this is an
information-theoretic lower bound for robust covariance estimation. Moreover,
the approach is essentially restricted to Gaussian covariates.

In this section, we will present an algorithm that achieves similar error guar-
antees, and has two additional advantages: First, it can be implemented to work
with Õ(d/ε2) samples. Second, it can be easily extended to linear regression
problems in somewhat greater generality.
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7.2.1 Reduction to Robust Mean Estimation

At a high-level, our robust learning algorithm is inspired by ordinary least-
squares regression. The key observation is that

E[yX] = E[X(X>β + ξ)] = E[XX>]β = β ,

where we used the facts Cov[X] = I and ξ is independent of X.
Thus, our problem of robust linear regression can be reduced to the problem

of robust mean estimation for the random variable yX.
Recalling our robust mean estimation algorithms from Chapter 2, it suffices

to show that (sufficiently many) i.i.d. samples drawn from yX will satisfy an
appropriate stability condition (with high probability). To achieve this, we be-
gin by computing the covariance matrix of yX. Here one gets a multiple of the
covariance of X in directions orthogonal to βwith something more complicated
going on in the β-direction. In particular, we have that

E[(yX)(yX)>] = E[y2XX>] = E[((β · X)2 + 2(β · X)ξ + ξ2)XX>]

= E[(β · X)2XX>] + σ2E[XX>] = E[(β · X)2XX>] + σ2I .

To compute the expectation of (β·X)2XX>, we proceed as follows: If the vector
w is orthogonal to β, then E[(w ·X)2(β ·X)2] = ‖w‖22‖β‖

2
2. On the other hand, if v

is parallel to β and w orthogonal, then we have that E[(β ·X)2(v ·X)(w ·X)] = 0,
since w·X is independent of the other terms. Finally, if v is a unit vector parallel
to β, then E[(β · X)2(v · X)2] = ‖β‖22E[(v · X)4] = 3‖β‖22. Therefore, we have that
E[(yX)(yX)>] = (σ2 + ‖β‖22)I + 2ββ>, which gives that

Cov[yX] = (σ2 + ‖β‖22)I + ββ> .

Unfortunately, the β-dependence in this covariance matrix implies that we do
not have any a priori bound on the stability. To obtain such a bound, we need
to assume some upper bound on the `2-norm of β. In particular, if we assume
that ‖β‖2 ≤ B, for some parameter B, then we get that the covariance ma-
trix of the random variable yX/σ is bounded above (in Loewner ordering) by
O(1 + B/σ)2 I. Recalling the stability bound for bounded covariance distribu-
tions (Proposition 3.9), we have that Õ(d/ε) i.i.d. samples from yX/σ contain a
large subset that is (ε,O(

√
ε(1 + B/σ)))-stable with respect to β/σ = E[yX/σ]

with high probability. Thus, our standard robust mean estimation algorithm,
applied to yX/σ, is sufficient to learn the mean of yX (i.e., the target vector β)
to `2-error of O(

√
ε(σ + B)).

The latter guarantee is quite far from the information-theoretic optimal er-
ror. Indeed, it is not difficult to show (see Exercise 7.2) that in our setting there
exists an (inefficient) algorithm with error O(εσ), and that this is best possible
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to within a constant factor. That is, the error bound of O(
√
ε(σ + B)) is both

quantitatively suboptimal (as a function of ε) and — more importantly — qual-
itatively suboptimal, as it scales with the parameter B. If we are only given a
weak a priori bound B on the size of β, the final error to which we can robustly
learn β will be quite high.

7.2.2 Removing the B-Dependence

A natural way to remove the B-dependence is via an iterative approach. The
idea is to use the approximation β̂ that we learned in the first step and compute
the residuals y′ = y − β̂ · X. Note that y′ = β′ · X + ξ, where β′ = β − β̂.
This allows us to reduce the problem of learning β to another robust linear
regression problem (X, y′).

One might ask if we have truly gained anything here having found a reduc-
tion from one robust linear regression problem to another. It turns out we have
a subtle advantage this time. In particular, the bound B′ that we have on ‖β′‖2
will likely be smaller than the bound on ‖β‖2. More precisely, we have that

‖β′‖2 = ‖β − β̂‖2 = O(
√
ε(σ + B)) .

This gives rise to an iterative algorithm. In particular, if we have some method
of approximating β to `2 error at most B, we can use this robust mean estima-
tion technique to obtain a new estimate with error only O(

√
ε(σ + B)). It is

easy to see that if ε is less than a sufficiently small constant, we can iterate this
technique O(log(B/σ)) times in order to learn β to error O(

√
εσ) (see Exercise

7.1 for details).

7.2.3 Improving the ε-Dependence

One might ask if we can do better than this. Doing so would depend on prov-
ing better bounds on the stability condition satisfied by yX/σ. For large values
of B, we note that the covariance of yX/σ is far from the identity, and so we
cannot hope to get better bounds than what can be achieved by the covari-
ance bounds. However, for smaller values of B, we note that Cov[yX/σ] has
eigenvalues 1 + O(B/σ)2. In such cases, we can hope to obtain better stability
if we also have concentration bounds on yX/σ. To establish such bounds, we
note that every coordinate of yX/σ is a degree-2 polynomial in the multivari-
ate Gaussian (X, y). Using Gaussian hypercontractivity (see Theorem A.9), this
implies that yX/σ has exponential tails in each direction. Using this fact, it is
easy to see that a sufficiently large number of i.i.d. samples from yX/σ will be
(ε,O(

√
εB/σ) + O(ε log(1/ε)))-stable with high probability (see Exercise 3.1
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for a tighter sample complexity analysis). Therefore, by Theorem 2.11, we can
efficiently robustly learn β to `2-error O(

√
εB + εσ log(1/ε)).

By iteratively applying this technique, we can efficiently learn β to a final
`2-error of O(σε log(1/ε)). We present the final theorem here:

Theorem 7.2 (Efficient Robust Linear Regression) Let (X, y) be a distribu-
tion on Rd+1 given by X ∼ N(0, I) and y = β · X + ξ, where ξ ∼ N(0, σ2)
is independent of X. Assume that ‖β‖2 ≤ B. Suppose we have access to i.i.d.
samples from a distribution (X′, y′) that is ε-close to (X, y) in total variation
distance. There exists an algorithm that given B, σ, and Õ(d/ε2)O(log(B/σ))
samples from (X′, y′), runs in sample polynomial time and with high probabil-
ity approximates β to `2-error O(σε log(1/ε)).

Theorem 7.2 is unsatisfactory in two ways. First, note that the statement only
applies in the case of total variation distance contamination and not against an
adaptive adversary. This is essentially because given the iterative nature of the
algorithm, it is important that the samples being fed into the algorithm in each
iteration are independent of the current approximation β̂ being used to compute
residuals. The second issue that one might want to improve is the O(log(B/σ))-
dependence in the sample complexity, that we know (at least for large B) is not
information-theoretically necessary.

Both of these issues arise because of the need to draw independent samples
at each round of our iterative procedure, and could be avoided if we could take
a single set of samples that worked for every round of the algorithm. Unfor-
tunately, this requires that our samples satisfy a somewhat stronger condition.
Namely, we need a set S of samples (Xi, yi) such that for any β̂ used by our
algorithm, the set of residuals (yi − β̂ · Xi)Xi/σ is stable (with appropriate pa-
rameters) with respect to the distribution (y − β̂ · X)X/σ.

Establishing such a statement is somewhat technically complicated, but not
especially difficult. It can be shown for example, that for N = Õ(d/ε2) large
enough that N i.i.d. samples from (X, y) have the property that for every β̂,
there is a subset of (1 − ε)N of our original samples that satisfy an appropriate
stability condition. Note that restricting to a subset here is necessary, as other-
wise letting β̂ = β−σXi/

√
d, for some Xi in the sample set, leads to one of the

(y j− β̂ ·X j)X j/σ having norm on the order of d, which in turn means that Ω(d2)
samples will be needed to ensure that the sample covariance in this direction
is not too big.
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7.3 Robust Learning of Linear Separators

In this section, we develop robust algorithms for learning linear threshold func-
tions (LTFs), also known as linear separators or halfspaces. An LTF is any
Boolean-valued function f : Rd → {±1} of the form f (x) = sign(w · x − t),
where w ∈ Rd is known as the weight vector and t is known as the threshold.
The problem of learning LTFs is arguably the prototypical binary classification
task and has been studied in machine learning since the beginning of the field.

In the noiseless (non-robust) setting, the learning problem is the following:
Given i.i.d. samples of the form (X, y) ∈ Rd × {±1}, where X ∼ D (known as
the marginal distribution) and y = f (X) for an unknown LTF f , the goal is to
output a hypothesis function h : Rd → {±1} such that with high probability
the 0-1 loss, i.e., PrX∼D[h(X) , f (X)], is small. This definition amounts to the
well-known Probably Approximately Correct (PAC) learning model.

In the above setting, LTFs are efficiently learnable with any marginal dis-
tribution D using linear programming. Specifically, for any desired accuracy
parameter ε > 0, there is an algorithm that draws Õ(d/ε) labeled samples, runs
in poly(d/ε) time, and returns an LTF hypothesis such that with high probabil-
ity the 0-1 loss is at most ε.

Here we will study the efficient learnability of LTFs in the strong contami-
nation model, i.e., in the presence of an ε-fraction of adversarial outliers. In-
terestingly, the strong contamination model is known as nasty noise model in
the binary classification setting. In contrast to robust mean estimation, which is
information-theoretically impossible for some distributions, the robust learn-
ing problem of LTFs is information-theoretically solvable for any marginal
distribution D. Specifically, there exists an (inefficient) algorithm that draws
Õ(d/ε) ε-corrupted labeled samples and outputs a hypothesis with 0-1 error
O(ε). Unfortunately, in this level of generality, known results show that the
problem is computationally intractable. In particular, even if ε > 0 is an ar-
bitrarily small constant, it is computationally hard (given some standard com-
plexity assumptions) to find any hypothesis with 0-1 error 1/2 − γ, for any
constant γ > 0.

To circumvent this intractability, it is reasonable to make some assumptions
about the structure of the marginal distribution D. A number of such struc-
tural assumptions have been made in the literature, typically involving upper
bounds on its moments/concentration and anti-concentration of D. The most
basic such assumption is that D is the standard Gaussian distribution N(0, I).
In this chapter, we will focus on the case of Gaussian marginals.

Throughout this section, for simplicity we will focus on homogeneous LTFs,
i.e., ones with zero threshold. While similar bounds are achievable for non-
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homogeneous LTFs, the algorithms and analysis are somewhat more compli-
cated.

7.3.1 Robustly Learning LTFs via Robust Mean Estimation

In this section, we give an efficient algorithm for robustly learning homoge-
neous LTFs under Gaussian marginals that achieves error O(ε

√
log(1/ε)). The

main theorem established in this section is as follows.

Theorem 7.3 There exists an algorithm with the following behavior: Given
0 < ε < ε0, for some sufficiently small constant ε0, and a set of n = poly(d/ε) ε-
corrupted labeled samples from the distribution (X, f (X)) ∈ Rd × {±1}, where
X ∼ N(0, I) and f is an unknown homogeneous LTF, the algorithm runs in
poly(n) time and with high probability outputs a hypothesis LTF h : Rd → {±1}
such that PrX∼N(0,I)[h(X) , f (X)] = O(ε

√
log(1/ε)).

Our algorithm is somewhat analogous to our basic algorithm for robust lin-
ear regression in the previous section. At a high-level, the goal is to formulate
the robust LTF learning problem as a robust mean estimation problem. The cru-
cial quantities to achieve this goal are known as Chow parameters of a Boolean
function.

Definition 7.4 (Chow Parameters) Let f : Rd → {±1} be a Boolean function
and let D be a distribution over Rd. The Chow parameters of f with respect
to D are the d numbers EX∼D[ f (X)Xi], i ∈ [d]. We will denote by ~χ f the d-
dimensional vector EX∼D[ f (X)X] of its Chow parameters.

The first question to understand is why the Chow parameters of an LTF are
useful in our context. Indeed, for a general Boolean function f , the values of its
Chow parameters may reveal little information about the function itself. Inter-
estingly, if the function f is an LTF, its Chow parameters uniquely characterize
the function. This is established in the following simple fact.

Fact 7.5 Fix a distribution D on Rd such that PrX∼D[v · X = 0] = 0 for any
unit vector v. Let f : Rd → {±1} be a homogeneous LTF and g : Rd → {±1}
be any Boolean-valued function. If ~χ f = ~χg, then PrX∼D[ f (X) , g(X)] = 0.

Proof Let f (X) = sign(w · x), for some weight vector w ∈ Rd of unit norm.
We can write

0 =

d∑
i=1

wi (EX∼D[ f (X)Xi] − EX∼D[g(X)Xi]) = EX∼D
[
( f (X) − g(X))(w · X)

]
,
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where the first equality follows from our assumption that ~χ f = ~χg and the
second is linearity of expectation. Note that the RHS above is equal to

EX∼D
[
( f (X) − g(X))(w · X) | f (X) , g(X)

]
Pr

X∼D
[ f (X) , g(X)] .

Under the above conditioning, we have that f (X) − g(X) = 2 f (X). If f (x) =

sign(w·X),we have that f (X)(w·X) = |w·X|. Therefore, for this choice of w, the
argument in the above expectation will be 2|w · X|. By our anti-concentration
assumption on D, the latter quantity is strictly positive with probability 1.
Therefore, the above conditional expectation will be positive, which in turns
implies that PrX∼D[ f (X) , g(X)] = 0, as otherwise we obtain a contradiction.
This completes the proof. �

Fact 7.5 shows that the exact values of the Chow parameters characterize an
LTF for any distribution D that puts zero mass on any hyperplane. In the con-
text of learning, since we only have sample access to the target function, we
can only hope to approximately estimate the Chow parameters (even without
outliers). As a result, even in the non-robust setting, we would need a stronger
(“robust”) version of the above fact stating that sufficiently accurate approxi-
mations of the Chow parameter approximately characterize the function. Such
a result can indeed be established under appropriate anti-concentration as-
sumptions for the distribution D, and in particular under the Gaussian distribu-
tion (the focus of this section).

Given the above, the idea of our robust learning algorithm for linear thresh-
old functions will be as follows: First, we will give an efficient routine to ro-
bustly estimate the Chow parameters of the target LTF. It turns out that this
problem can be viewed as a robust mean estimation problem. As usual in ro-
bust mean estimation, in the presence of clean data one can use the empirical
estimate. In fact, it can be shown that the empirical estimator provides good
guarantees even in the presence of adversarial label noise. However, in the
presence of arbitrary outliers (in both the labels and the points), this naive es-
timate incurs error scaling polynomially with the dimension. By leveraging
techniques developed in Chapter 2, we give an efficient algorithm for robustly
estimating the Chow parameters of any Boolean function within near-optimal
error.

As we already showed, the exact values of the Chow parameters uniquely
determine the threshold function. When the underlying distribution on the ex-
amples is sufficiently well-behaved (e.g., Gaussian), a robust version of this
statement holds: Sufficiently accurate approximations of the Chow parameters
approximately determines the function. The second step of our algorithm is
an efficient routine that makes this statement algorithmic: Given approxima-
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tions to the Chow parameters, it efficiently recovers an approximation to the
function. Specifically, this algorithm is proper, i.e., it outputs a linear threshold
function as its hypothesis.

Our first main algorithmic ingredient is captured in the following theorem:

Theorem 7.6 (Robust Estimation of Chow Parameters) Let f : Rd → {±1}.
There is an algorithm which, given ε > 0 sufficiently small and a set S of n
ε-corrupted labeled samples (for n a sufficiently large polynomial in d/ε) from
a distribution (X, f (X)) where X ∼ N(0, Id), runs in poly(d, 1/ε) time and with
high probability outputs a vector ~α ∈ Rd such that ‖~α−~χ f ‖2 = O(ε ·

√
log(1/ε)).

Proof The main idea of the proof is to view the underlying estimation task
as a high-dimensional robust mean estimation problem. Specifically, we are
given a set of n ε-corrupted samples from the distribution (X, f (X)), where
X ∼ D = N(0, I) and our goal is to estimate the vector ~χ f = EX∼D[ f (X)X] in
`2-norm. That is, the problem is tantamount to robust mean estimation for the
distribution of f (X)X, where f : Rd → {±1} is our unknown target function
and X ∼ N(0, I) is a Gaussian vector. This is a distribution on Rd, that we will
call D f , and our goal is to robustly estimate its mean vector ~χ f , given access
to ε-corrupted samples from D f .

To see how accurately we can efficiently approximate the mean ~χ f of D f in
the outlier-robust setting, we will as usual try to understand the concentration
and moments of D f . Let Z = f (X)X, where X ∼ N(0, I). We note that

Cov[Z] = E[ZZ>] − E[Z]E[Z>] = E[ f 2(X)XX>] − ~χ f · ~χ
>
f = I − ~χ f · ~χ

>
f ,

where we used the fact that f is boolean-valued and that Cov[X] = I.
Note that the covariance matrix of the clean distribution D f is a function of

the target mean, and therefore a priori unknown. Moreover, it is easy to see
that Z has sub-gaussian concentration in every direction.

A first observation is that the covariance matrix of Z is bounded above by I
in Loewner ordering. Therefore, we can use as a black-box a robust mean esti-
mator for bounded covariance distributions to approximate ~χ f within `2-error
O(ε1/2). This approximation gives us a better approximation to the covariance
matrix, which can then be used to approximate the mean within error O(ε3/4).
Applying this idea iteratively, given a δ-approximation to the mean, we obtain a
δ- approximation to the covariance, which then leads to a O(

√
εδ+ε

√
log(1/ε))

approximation to the mean. After O(log log(1/ε)) iterations, this leads to the
desired error guarantee. �

Note that Theorem 7.6 does not use the assumption that the underlying func-
tion f is an LTF, and in fact it holds for any Boolean function.
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The next step is to leverage the fact that f is of the form f (x) = sign(w · x) to
approximate the function itself in L1-norm. Given an accurate `2-approximation
~α to the target Chow vector ~χ f , we will compute a hypothesis LTF h(x) =

sign(v · x) such that ‖h − f ‖1 is small.
For the case of the Gaussian distribution, this can be done with a straightfor-

ward algorithm: We set v to be equal to our approximation ~α of ~χ f . The reason
that this algorithm works is that the Chow vector ~χ f corresponding to the tar-
get LTF f (x) = sign(w · x) can be shown to be parallel to the defining normal
vector w. Moreover, the L1-distance between two homogeneous LTFs is pro-
portional to the `2-norm between the corresponding normal vectors (assuming
they are normalized).

Specifically, we have the following lemmas, which complete the analysis.

Lemma 7.7 The Chow vector of the LTF f (x) = sign(v · x) with ‖v‖2 = 1 is
~χ f = 2φ(0) v, where φ(0) = 1/

√
2π is the Gaussian probability density at 0.

Proof It is clear that EX∼N(0,I)[ f (X)(w · X)] = 0 for all w ⊥ v. Thus, we only
need to evaluate EX∼N(0,I)[ f (X)(v · X)]. It is easy to see that this is∫ ∞

−∞

sign(t)tφ(t)dt =

∫ ∞

0
2tφ(t)dt = 2φ(0) .

This completes our proof. �

Lemma 7.7 says that given good approximations to the Chow parameters of
f (x) = sign(v · x), we can find a good approximation w to v. The final step is
to show that the LTF derived from w yields a good approximation to f .

Lemma 7.8 Given two homogeneous LTFs, f (x) = sign(v · x) and g(x) =

sign(w · x), for unit vectors v and w, we have that

‖ f − g‖1 = O(‖v − w‖2) .

See Figure 7.1 for an illustration of this situation.

Proof Let θ be the angle between v and w. We note that in the plane spanned
by v and w the lines v · x = 0 and w · x = 0 have an angle of θ between them,
and the region where f (x) , g(x) consists of the points whose projection lies
in one of the two arcs of angle θ.

Since the projection of x onto this plane is Gaussian, which is rotationally
invariant, the probability that f (x) , g(x) is θ/π. Combining this with the fact
that θ = Θ(‖v − w‖2) completes our proof. �

Thus, for learning homogenous LTFs over the Gaussian distribution, one can
first use the algorithm of Theorem 7.6 to learn an O(ε

√
log(1/ε))-approximation
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Figure 7.1 Illustration of Lemma 7.8 projected onto the plane spanned by v and
w. Notice that the threshold functions f and g disagree only on the gray region
which consists of two origin-centered arcs of angle θ.

χ̂ to the Chow parameters ~χ f . One then produces the hypothesis f̂ (x) = sign(v · x),
where v is the normalization of χ̂. By Lemma 7.7, if f (x) = sign(w · x),
since χ̂ is an O(ε

√
log(1/ε))-approximation to 2φ(0)w, v is an O(ε

√
log(1/ε))-

approximation to w. By Lemma 7.8, this implies that ‖ f̂− f ‖1 = O(ε
√

log(1/ε)).
This completes the proof of Theorem 7.3.

7.3.2 Achieving Optimal Error via Localization

The algorithm of the previous section achieves 0-1 error O(ε
√

log(1/ε)). It
is natural to ask if an efficient algorithm with the information-theoretically
optimal bound of O(ε) is possible. In this section, we will show that this is
indeed possible. Specifically, we prove the following theorem:

Theorem 7.9 (Robustly Learning LTFs via Localization) There exists an al-
gorithm with the following behavior: Let 0 < ε < ε0, for some sufficiently small
constant ε0, and n is a sufficiently large polynomial in d/ε. Then given a set of n
ε-corrupted labeled samples from the distribution (X, f (X)) ∈ Rd×{±1}, where
X ∼ N(0, I) and f is an unknown homogeneous LTF, the algorithm runs in
poly(n) time and with high probability output a hypothesis LTF h : Rd → {±1}
such that PrX∼D[h(X) , f (X)] = O(ε).

It is worth noting that the above guarantee cannot be obtained in a black-box
manner via a reduction to robust mean estimation for the following reason:
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There is evidence that obtaining error o(ε
√

log(1/ε)) for robustly estimating
the mean of a spherical Gaussian in the strong contamination model requires
super-polynomial time (see Chapter 8). As a result, a different algorithmic ap-
proach is required.

The high-level intuition is as follows: Suppose that the true target LTF is of
the form f (x) = sign(w · x), for some unknown unit vector w ∈ Rd, and that we
start with an approximation v ≈ w. The approximation means that with high
probability over x ∼ N(0, I) we will have that w · x ≈ v · x. In particular, this
implies that if |v · x| is large, it is likely the case that sign(v · x) = sign(w · x).
This suggests that the points far from the critical hyperplane are not very useful
for our approximation. Motivated by this observation, our algorithm should
instead focus on points x with |v · x| smaller. For example, if we could somehow
sample points for which v · x = 0, we would find for such points that f (x) =

sign((w − v) · x), which gives us information directly about the error w − v
to our current approximation. While we may not be able to find samples for
which this holds exactly, focusing our attention on samples where |v · x| is
small will have much the same effect. This is the idea of localization and it
will give us another iterative algorithm that ends up with a substantially better
approximation to f .

The main technical obstacle to this strategy is to find a way to “focus our at-
tention” to points where |v · x| is small in such a way that reduces to a problem
that we already understand. A convenient way to achieve this is via rejection
sampling. When we are given a sample (x, y), we ignore it except with some
probability p(x), where p(x) is large when |v · x| is small. The resulting con-
ditional distribution on non-rejected samples will then give some distribution
over (x, y), where the x’s concentrate near the hyperplane v · x = 0.

A particularly convenient choice for p is the following:

Definition 7.10 (Rejection Sampling) For a unit vector v ∈ Rd and a real
number σ ∈ (0, 1), we define the (v, σ)-rejection sampling procedure to be the
one that given a point x ∈ Rd, accepts it with probability

p(x) = exp(−(1/σ2 − 1)(v · x)2/2)

and rejects it otherwise.

A simple corollary of this definition is the following property:

Lemma 7.11 If a point x drawn from N(0, I) is given as input to the (v, σ)-
rejection sampling procedure, it is accepted with probability σ. Moreover, the
distribution on x conditional on acceptance is N(0, Av), where

Av,σ = I + (σ2 − 1)vv> .
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Proof Note that the distribution of x in directions orthogonal to v is Gaussian
and independent of both the v-component and the rejection probability. So it
suffices to consider the univariate problem of a Gaussian in the v-direction. The
probability that the point x = t v is accepted by the (v, σ)-rejection sampling
procedure is

(1/
√

2π) exp(−t2/2) exp(−(1/σ2 − 1)t2/2) = (1/
√

2π) exp(−t2/(2σ2)) .

Since this is the probability density function of N(0, σ2) (up to a multiple of
σ), this means that the conditional distribution on the uncorrupted samples that
pass the test is (x, f (x)), where x ∼ N(0, I + (σ2 − 1)vv>). In other words the
x-marginal for the uncorrupted samples is another Gaussian whose standard
deviation in the v-direction is σ instead of 1. By integrating over t, we obtain
the first statement of the lemma. This completes the proof. �

Note that the matrix Av,σ has eigenvalue σ2 in the v-direction and eigenvalue
one in all orthogonal directions.

The next step is to understand what happens if this rejection filter is applied
instead to the corrupted samples that our algorithm has access to.

By Lemma 7.11, the fraction of inliers that pass our test is proportional to
σ. This means that as long as σ � ε, even after adding corruptions, a Θ(σ)-
fraction of our original samples will pass. Unfortunately, an adversary may
introduce errors for which |v · x| is small, and these errors will have a high
probability of passing our test. In particular, of the Θ(σ)-fraction of our original
samples that pass the rejection filter, this may contain up to an O(ε)-fraction
of our original samples that were errors. Fortunately, it can be no worse than
this. This means that the collection of samples that pass our rejection sampling
have at most an O(ε/σ)-fraction of errors.

To summarize, the samples that survive our rejection sampling consist of
samples of the form (x, f (x)) for x ∼ N(0, Av,σ) along with an O(ε/σ)-fraction
of adversarial errors. In other words, we have access to corrupted samples of
an LTF with Gaussian marginals (with covariance Av,σ). We can now use our
existing algorithms to learn the LTF over this new distribution. The goal will
then be to relate this back to the LTF over our original Gaussian.

In order to relate this new problem to something we understand, we make
a change of variables in order to make the marginal into a standard Gaussian.
Let M = I + (σ − 1)vv>. Notice that MM> = I + (σ2 − 1)vv> = Av,σ is
the covariance of our new Gaussian. In particular, this means that x ∼ Mz,
where z ∼ N(0, I). Therefore, the inliers (x, f (x)) that we are observing are
distributed as (Mz, f (Mz)). Applying M−1 to the first coordinate, we obtain
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samples distributed as (z, f (Mz)). Notice that

f (Mz) = sign(w · Mz) = sign((Mw) · z) = sign((Mw)/‖Mw‖2 · z) .

This is now a linear threshold function whose marginals are a standard Gaus-
sian.

Therefore, we have obtained a set of O(ε/σ)-corrupted samples from an
LTF with defining vector Mw/‖Mw‖2 and standard Gaussian marginals. Using
Theorem 7.6 and Lemma 7.7, we can learn a vector ŵ with∥∥∥ŵ − Mw/‖Mw‖2

∥∥∥
2 = O(ε/σ

√
log(σ/ε)) .

Our goal is to use this to obtain a better approximation of w.
Suppose that we already know a v such that ‖v − w‖2 ≤ δ, for some δ � ε.

Using this v, and letting σ = δ in the above construction, we learn a ŵ such
that

∥∥∥ŵ − Mw/‖Mw
∥∥∥

2 ‖2 = O(ε/δ
√

log(δ/ε)). A natural candidate for w would
now be M−1ŵ/‖M−1ŵ‖2. To analyze this, let w be proportional to v + v′, where
v′ is some vector perpendicular to v, of norm at most δ. We have that Mw
is proportional to δv + v′, which has norm κ = Θ(δ). This means that ŵ is
an O(ε/δ

√
log(δ/ε))-approximation to Mw/κ. Thus, it is proportional to an

O(ε
√

log(δ/ε))-approximation to Mw. This means that M−1ŵ is proportional
to a vector of the form:

(1 + O(ε/δ
√

log(δ/ε)))v + (v′ + O(ε
√

log(δ/ε))) .

Rescaling so that the v-coefficient is 1, we find that M−1ŵ is proportional to a
vector of the form

v + (v′ + O(ε
√

log(δ/ε))) = w + O(ε
√

log(δ/ε)) .

Thus, ∥∥∥M−1ŵ/‖M−1ŵ
∥∥∥

2 − w‖2 = O(ε
√

log(δ/ε)) .

In other words, if we start with a δ-approximation to w and are given poly-
nomially many ε-corrupted samples from (x, f (x)), we can efficiently com-
pute an O(ε

√
log(δ/ε))-approximation of w. Using the algorithm from the last

section to obtain an initial approximation within error δ = O(ε
√

log(1/ε)),
iterating this technique a small number of times, eventually yields an O(ε)-
approximation. This completes the proof of Theorem 7.9.

7.4 Robust Stochastic Optimization

The above applications can be viewed as very special cases of the general task
of robust stochastic optimization. In a stochastic optimization problem, one has
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sample access to a distribution G over functions f : Rd → R, and the goal is
to find a point x (approximately) minimizing the function F(x) = E f∼G[ f (x)].

This framework encapsulates a number of well-studied machine learning
problems. First, we note that the problem of mean estimation can be expressed
in this form, by observing that the mean of a distribution D is the value µ =

arg minw∈Rd Ex∼D[‖w − x‖22]. That is, given a sample x ∼ D, the distribution
F over functions fx(w) = ‖w − x‖22 turns the task of mean estimation into a
stochastic optimization problem. A more interesting example is the problem
of least-squares linear regression: Given a distribution D over (x, y) ∈ Rd+1,
where x ∈ Rd and y ∈ R, we want to find a vector w ∈ Rd minimizing
E(x,y)∼D[(w·x−y)2]. This fits in the stochastic optimization framework by defin-
ing the distribution G over functions f(x,y)(w) = (w · x − y2), where (x, y) ∼ D.
Note that finding a minimizing vector for this problem also solves the lin-
ear regression problem from Section 7.2. One can also phrase the problem of
learning an LTF in this way, for example by finding a vector v minimizing the
expected hinge loss `x,y(v) := max(0,−y(v · x)). Similar formulations exist for
numerous other machine learning problems, including L1-regression, logistic
regression, support vector machines, and generalized linear models.

Stochastic optimization problems are somewhat more general than this. For
example, in machine learning it is common to have some class of hypothesis
functions fθ(x) specified by some parameter vector θ. Given sample data (x, y)
and a loss function `, one will often want to find a value of θ minimizing the
expectation of `( fθ(x), y). Thinking of `( fθ(x), y) as some function Fx,y(θ), this
can again be thought of in terms of a stochastic optimization problem.

Finally, we note that the stochastic optimization framework encompasses
non-convex problems as well. For example, the general and challenging prob-
lem of training a neural net can be expressed in this framework, where w rep-
resents some high-dimensional vector of parameters classifying the net and
each function f (x) quantifies how well that particular net classifies a given
data point.

Before we discuss robust stochastic optimization, we make a few basic re-
marks regarding the non-robust setting. We start by noting that, without any
assumptions, the problem of optimizing the function F(x) = E f∼G[ f (x)], even
approximately, is NP-hard. On the other hand, in many situations, it suffices
to find an approximate critical point of F, i.e., a point w such that ‖∇F(x)‖2 is
small. For example, if F is convex (which holds if each f ∼ G is convex), an
approximate critical point is also an approximate global minimum. For several
structured non-convex problems, an approximate critical point is also consid-
ered a satisfactory solution. Given an i.i.d. set of functions f1, . . . , fn ∼ G, we
can efficiently find an approximate critical point of F using (projected) gradi-



7.4 Robust Stochastic Optimization 231

ent descent. For more structured problems, e.g., linear regression, faster and
more direct methods may be available.

While there is a lot of work on the best way to perform gradient descent in
various situations, the following simple result will suffice for our purposes:

Proposition 7.12 Let f : Rd → R be a function such that:

• For some R > 0, we have that f (0) < f (x) for all x ∈ Rd with ‖x‖2 ≥ R.
• For some B > 0, any x ∈ Rd with ‖x‖2 ≤ R + 1 and any vector v ∈ Rd we

have that
∣∣∣∣ ∂2 f (x+tv)

∂t2 |t=0

∣∣∣∣ < B‖v‖22.

• For all x ∈ Rd with ‖x‖2 ≤ R, ‖∇ f (x)‖2 ≤ σ.

Let O be an oracle that given an x ∈ Rd with ‖x‖2 ≤ R returns a vector that is
within ε of ∇ f (x). Then there exists an algorithm that given access to O runs
in time O(RBσ/ε2) and returns an x with ‖x‖2 ≤ R such that ‖∇ f (x)‖2 < 3ε.

Proposition 7.12 says that if we have a well-behaved function f that is large
outside of a ball of radius R (meaning that we do not have to search outside
this ball for a minimum), we can effectively find an approximate critical point
of f . The proof is quite simple: we use gradient descent on f . If ‖∇ f (x)‖2 is
large, then by moving x a small amount in the direction of −∇ f (x), we can
reduce the value of f by some bounded amount. Repeating this process, we
must eventually find this approximate critical point.

Proof Our algorithm is as follows:

Algorithm Gradient-Descent
Input: An oracle O that can approximate ∇ f (x) for f satisfying the hy-
potheses of Proposition 7.12.

1. Let x = 0.
2. While ‖v‖ > 2ε for v := O(x)

• Let x← x − v/(2B).

3. Return x.

The key point in the analysis is the following: Letting x′ = x − v/(2B),
f (x′) is substantially smaller than f (x). To show this, consider the one variable
function g(t) = f (x − tv). In particular, by Taylor’s theorem we have that

f (x′) = g(1/(2B)) = g(0) + (1/(2B))g′(0) + (1/(2B))2g′′(z)/2 ,

for some real number z between 0 and 1/(2B). It is clear that g(0) = f (x). By
the chain rule, we have that g′(0) = −v · (∇ f (x)). Note that by the defining
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property of our oracle, we have that ‖∇ f (x) − v‖2 ≤ ε, and therefore g′(0) ≤
−‖v‖22 + ε‖v‖2. Finally, the last term is at most (1/(2B))2B‖v‖22/2.

Hence, we have that:

f (x) − f (x′) ≥
(

1
2B

)
‖v‖22 − ε

(
1

2B

)
‖v‖2 −

(
1

2B

)2

B‖v‖22/2

≥ ‖v‖22

( 1
2B

)
−

(
1

2B

)2

B

 /2
≥ (2ε)2

(
1

2B

)
/4 = ε2/(2B) .

Thus, in each iteration of our algorithm, the value of f decreases by at least
ε2/(2B). Moreover, we note that | f (x) − f (0)| < Rσ for all ‖x‖2 ≤ R by the
derivative bound, and f (x) ≥ f (0) for all other x. Thus, f (x) ≥ f (0) − Rσ
for all x. This implies that our algorithm will never need more than 2RBσ/ε2

iterations.
After the last iteration, we have a point x such that ‖O(x)‖2 ≤ 2ε, which

implies that ‖∇ f (x)‖2 ≤ 3ε. This completes the proof. �

Proposition 7.12 is particularly useful when the function f is convex. In
such a case, the only critical point will be the global minimum of f . If we
furthermore assume some lower bound on the size of the second derivatives,
we can show that any approximate critical point is actually close to a global
minimum.

Lemma 7.13 Let f : Rd → R be a function such that for some b > 0, and
every v, x ∈ Rd,

∣∣∣∣ ∂2 f (x+tv)
∂t2 |t=0

∣∣∣∣ ≥ b‖v‖22. Then, if x is a point with ‖∇ f (x)‖2 ≤ ε,

we have that f (x) ≤ infy f (y) + ε2/(2b).

Proof For y ∈ Rd, we let v = y − x and define the function g(t) = f (x + tv).
By Taylor’s theorem we have that

f (y) = g(1) = f (x) + g′(0) + g′′(z)/2

for some z. By the chain rule, we have that g′(0) = v · (∇ f (x)) ≥ −ε‖v‖2. On
the other hand, we have that g′′(z) ≥ b‖v‖22. Therefore, we obtain

f (y)− f (x) ≥ −ε‖v‖2 + b‖v‖22/2 = (
√

b‖v‖2 − ε/
√

b)2/2− ε2/(2b) ≥ −ε2/(2b) .

This completes the proof. �

Proposition 7.12 handles the case where we want to find an approximate
critical point of a single function f . If we instead want to look at the noiseless
version of stochastic optimization (i.e., trying to minimize E[ f (x)] for some
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distribution over functions f ), this essentially boils down to the same problem
applied to the function F(x) := E[ f (x)]. So long as we know that the distri-
bution over f is reasonably well-behaved, and so long as we can approximate
∇F(x) pointwise (which can usually be done by taking many sample functions
f and taking the empirical average of their gradients), we can apply the algo-
rithm from Proposition 7.12 to find an approximate critical point of F.

In the robust version of this problem, we have sample access to a distribution
G over functions f , however, these functions may come with ε-contamination.
As is usually the case, we will need to make some niceness assumptions on the
uncorrupted functions in order for a solution to be possible, even information-
theoretically. Proposition 7.12 suggests a basic algorithmic strategy. In par-
ticular, it is sufficient for us to be able to approximate ∇F(x) = E[∇ f (x)]
pointwise. We can do this if, for example, the distribution of ∇ f (x) satisfies an
appropriate stability condition pointwise. A convenient set of assumptions is
the following:

Condition 7.14 Let f be a distribution over twice differentiable functions
from Rd → R so that for some parameters R, B, σ > 0 we have that:

• For ‖x‖2 ≥ R, we have that E[ f (x)] ≥ E[ f (0)] almost surely.
• For any x ∈ Rd with ‖x‖2 ≤ R + 1 and any vector v ∈ Rd, we have that∣∣∣∣ ∂2 f (x+tv)

∂t2 |t=0

∣∣∣∣ < B‖v‖22 almost surely.

• For all x ∈ Rd with ‖x‖2 ≤ R, E[(∇ f (x))(∇ f (x))>] � σ2I.

Notice that these conditions imply that F(x) := E[ f (x)] satisfies the appro-
priate conditions of Proposition 7.12. Furthermore, the last condition implies
that we are able to robustly estimate ∇F(x) to error O(σ

√
ε) for ‖x‖2 ≤ R us-

ing robust mean estimation. Combining this with Proposition 7.12 and Lemma
7.13, we get the following.

Theorem 7.15 Let f be a distribution over functions from Rd → R satis-
fying Condition 7.14. There exists an algorithm that given sample access to
ε-corrupted samples from f (in the total variation corruptions model), takes
Õ(dRB/ε2) samples, runs in polynomial time, and with high probability re-
turns an x with ‖x‖2 ≤ R and ‖∇E[ f (x)]‖2 = O(σ

√
ε). Furthermore, if for

some b > 0 and all v, x ∈ Rd we have
∣∣∣∣ ∂2 f (x+tv)

∂t2 |t=0

∣∣∣∣ ≥ b‖v‖22 almost surely, then

E[ f (x)] is within O(σ2ε/b) of its minimum possible value.

For a simple application of this theorem, we consider the case of robust
linear regression as presented in Section 7.2. Here we assume that we have
samples from (X, y) where X ∼ N(0, Id) and y ∼ β · X + N(0, σ2) for some
unknown vector β with ‖β‖2 ≤ R. For a given pair (X, y) we define fX,y(v) =
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|v · X − y|2. We note that F(v) = E[ fX,y(v)] = σ2 + ‖v − β‖22 is minimized at
v = β. Furthermore F(v) is larger at any v with ‖v‖2 ≥ 2R than it is at 0.

For a given v, we note that ∇ fX,y(v) = 2(v · X − y)X. The expectation of
(∇ fX,y(v))(∇ fX,y(v))> can be seen to be σ2I + 3(v − β)(v − β)>. For ‖v‖2 ≤ R,
this is at most O(R2 + σ2)I (in Loewner ordering). Thus, applying Theorem
7.15, we can robustly learn a vector β0 such that 2‖β0 − β‖2 = ‖∇F(β0)‖2 =

O((R + σ)
√
ε). Iterating this result as we do in Section 7.2, we can get an

O(σ
√
ε)-approximation to β. This result is weaker than that in Section 7.2,

because we are only using a fairly weak level of stability in robustly estimating
our gradient vectors. However, the advantage of Theorem 7.15 is that it applies
in much greater generality.

Exercises

7.1 (Analysis of Iterative Improvements) Here we will analyze some of the
iterative algorithms covered in this chapter.

(a) Our original algorithm for robust linear regression showed that if we
had an estimate of β to error at most B, we could find a new estimate
with error at most O(

√
ε(σ + B)). Show that iterating this algorithm

t times one can obtain an estimate with error O(
√
ε)tB + O(

√
εσ).

Conclude that if ε is less than a sufficiently small constant, then after
log(B/σ) iterations, one can obtain an estimate with error O(

√
εσ).

(b) The improved bound in Section 7.2.3 shows how to go from error B
to error O(

√
εB + ε log(1/ε)σ). Show by a similar argument to the

above that if ε is at most a sufficiently small constant mutliple of σ,
then after log(B/(εσ)) iterations, one achieves an estimate with error
O(ε log(1/ε)σ).

(c) In the proof of Theorem 7.6, we show how given an estimate of the
Chow parameters with error at most δ one can obtain an estimate with
error O(

√
εδ+ε

√
log(1/ε)). Show that by applying this t times one can

obtain an estimate with error O(ε1−2−t
δ2−t

+ ε
√

log(1/ε)). Conclude
that one can obtain an error of O(ε

√
log(1/ε)) after O(log log(δ/ε))

iterations.
(d) In the proof of Theorem 7.3, we show how to go from an approxi-

mation of the LTF with error δ � ε to an approximation with error
O(ε log(δ/ε)). Show that by iterating this one can obtain an approxi-
mation with error O(ε).

(e) More generally, suppose that one has a procedure that given an esti-
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mate to some quantity of interest with error δ, one can obtain an ap-
proximation with error f (δ) for some decreasing function f . Let δ0 be
the largest (assuming there is a largest) value of x such that f (x) ≥ x
(note that it will always be a fixed point of f ). Show that by iterating
the above procedure one can always eventually obtain an approxima-
tion to the quantity of interest with error at most δ0 + η, for any η > 0.

7.2 (Information-Theoretic Bounds for Robust Linear Regression) Here we
will study the information-theoretic limits of the robust linear regression
problem of Section 7.2.

(a) Show that it is impossible to learn β to `2-error o(εσ) in the presence
of ε contamination.

(b) Show that for ε > 0 sufficient small, there is an (inefficient) algo-
rithm that given O(d/ε2) ε-corrupted samples from (X, y), it returns
with high probability an estimator β̂ with ‖̂β − β‖2 = O(εσ).

(Hint: There are many ways to go about this. For example, one can
note that β is characterized up to small error by the fact that for any
non-zero vector v, Pr[sign(v · X) = sign(y − β · X)] = 1/2 + O(ε).)

7.3 (Getting O(ε
√

log(1/ε)) Error for Robust Linear Regression) Note that
the algorithms presented in Section 7.2 only achieve error O(ε log(1/ε))σ.
However, error of O(ε

√
log(1/ε)σ) is possible. In particular, suppose

that we are in the case where ‖β‖2 = O(ε log(1/ε))σ (perhaps having
reduced to this case by considering residuals), and that we are given ε-
corrupted samples from the true distribution (X, y), with X ∼ N(0, I) and
y ∼ β · X +N(0, σ2).

(a) Show that after a carefully planned rejection sampling based on y,
the resulting distribution on the X samples is an O(ε)-corruption of
samples from N(Cβ/σ, Id), for some explicit constant C.

(b) Use the above to show how to estimate β to `2-error O(ε
√

log(1/ε))σ.

Note: It is believed to be impossible to learn β to error o(ε
√

log(1/ε))σ
in polynomial time. For details, see Exercise 8.7 of Chapter 8.

7.4 (Multidimensional Linear Regression) Consider the multidimensional
version of linear regression, where X ∈ Rd is distributed as X ∼ N(0, Id)
and Y ∈ Rk is distributed as Y ∼ MX + N(0, Ik), for some unknown
matrix M. Give an algorithm that given ε-corrupted samples from the
distribution (X,Y) learns M to Frobenius error O(ε log(1/ε)).

7.5 (General Relation Between Distance and Chow Distance) While it is
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straightforward to generalize Theorem 7.6 to robustly learn the Chow pa-
rameters associated with homogeneous halfspaces under non-Gaussian
(but still well-behaved) marginals, learning the target halfspace with re-
spect to these marginals requires also having a generalization of Lemma 7.8.
For this, we usually need some sort of anti-concentration assumption,
along the lines of

Pr[|v · X| ≤ t] = O(t) (7.1)

for any unit vector v and any t ≥ 0.
Show that if X is a distribution satisfying Condition (7.1) and if f and

g are two homogeneous halfspaces with Chow parameters ~χ f and ~χg,
respectively, we have that

‖ f (X) − g(X)‖1 = O(
√
‖~χ f − ~χg‖2) .

(Hint: Use an argument along the lines of the proof of Fact 7.5.)
7.6 (Alternative Chow Parameter Estimation Algorithm) In Section 7.3, we

estimated the Chow parameters by computing the expectation of Z =

f (X)X for a Gaussian random variable X and f some Boolean-valued
function. Doing so required some non-trivial iterative techniques, as Cov[Z]
is not known a priori. However, note that the second moment matrix
E[ZZ>] is known. It is not hard to show that given a set S of sufficiently
many i.i.d. samples from Z, with high probability they satisfy the follow-
ing modified stability condition:
Given any S ′ ⊆ S with |S ′| ≥ (1 − ε)|S |, we have that:

• ‖Ex∼uS ′ [x] − E[Z]‖2 = O(ε
√

log(1/ε)).
• ‖Ex∼uS ′ [xx>] − I‖2 = O(ε log(1/ε)).

Show that given this condition, there is an efficient algorithm for robustly
estimating the mean of Z to error O(ε

√
log(1/ε)).

7.7 (Robustly Learning Non-Homogeneous Halfspaces) Here we consider
the case of robustly learning non-homogeneous halfspaces, i.e., func-
tions of the form f (x) = sign(v · x − t), for v a unit vector and t a real
number with |t| = O(1). We will show that given ε-corrupted samples
from (X, f (X)), with X ∼ N(0, I), one can learn f to error O(ε).

(a) Show that for another halfspace h(x) = sgn(w · x − s), where w is a
unit vector, and s = O(1), we have that

Pr[ f (x) , h(x)] = Θ(‖v − w‖2 + |t − s|) .

(b) Show that by using Chow parameters one can robustly learn a w and s
with ‖v − w‖2 + |t − s| = O(ε

√
log(1/ε)).
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(c) Use the above and a suitable localization procedure to learn f to error
O(ε).

Note: Error O(ε) can actually be efficiently achieved even without the
assumption that |t| = O(1); however, the analysis is somewhat more com-
plicated for two reasons. First, when |t| is large, the error dependence on
the angle is different and needs to be taken into account. Second, one
can no longer afford to do a deterministic localization procedure, as a
clever adversary will be able to put too many errors in the region that we
are focusing on. Instead, the algorithm will need to slightly randomize
the way in which it is doing localization in order to avoid this. For more
details, the reader is referred to [DKS18a].

7.8 (Logistic Regression) In logistic regression, X is drawn from a normal
distribution N(0, Id) and then y is taken to be 1 with probability ev·X

ev·X+e−v·X

and −1 otherwise, for some unknown vector v ∈ Rd. As usual, we are
given ε-corrupted samples (in the total variation contamination model)
from the distribution (X, y) and would like to learn this distribution in
total variation distance.

(a) A good approach for this problem is to attempt to minimize the log
odds score:

F(w) := E
[
log

(
ew·X + e−w·X

eyw·X

)]
.

Show that F(w) is convex and is minimized (for the expectation taken
over the uncorrupted samples) when v = w.

(b) Assume that ‖v‖2 ≤ R, for some known real number R. Show that
robust stochastic optimization gives a poly(Rd/ε) time and sample al-
gorithm for finding an O(

√
ε)-approximate critical point of F.

(c) Assume that R = O(1). Give a polynomial-time algorithm to compute
an Õ(ε)-approximation to v.

(Hint: you will want to improve on the robust stochastic optimization
procedure by noting that once we are close to v, we can compute a
good approximation to the true covariance of ∇ f ; this allows to exploit
stronger stability criteria.)

(d) For larger values of R, use the fact that y is close to a linear threshold
function of X to find an O(ε + 1/‖v‖2)-approximation of v/‖v‖2, along
with a similarly rough approximation of ‖v‖2.

(e) Use the results from Parts (c) and (d) along with a localization proce-
dure to compute a vector w, so that the logistic regression correspond-
ing to w produces a distribution (X′, y′) which is Õ(ε)-close to (X, y)
in total variation distance.
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7.5 Discussion and Related Work

The literature on “robust” supervised learning is rather vast and a comprehen-
sive treatment is beyond the scope of this chapter. In the context of the prob-
lems studied in this chapter, a number of corruption/noise models have been
studied that allow corruption of the labels and/or the examples. Here we focus
on the work that is most closely related to the results presented in this chapter.

Robust Linear Regression Various formalizations of “robust” linear regres-
sion have been studied in the statistics and machine learning community for
decades. The reader is referred to [RL87] for an early book on the topic focus-
ing on the breakdown point of various estimators. More recent work in robust
statistics [Gao20] (see also [RH99]) generalized the notion of Tukey’s depth
for regression problems to obtain sample-efficient (but computationally ineffi-
cient) robust estimators in Huber’s contamination model. These information-
theoretic results can straightforwardly be extended to apply in the strong con-
tamination model (see Exercise 7.2).

On the algorithmic front, [BJK15] gave efficient algorithms for linear regres-
sion with adversarial label noise when the covariates are drawn from the Gaus-
sian distribution (and other well-behaved distributions). Importantly, [BJK15]
only allows adversarial corruptions to the responses but not the covariates.
The work by [BJKK17] studied linear regression in a weaker label corruption
model, where the label corruptions are oblivious, i.e., independent of the co-
variates. Interestingly, in this weaker model it is possible to tolerate a fraction
of corruptions that is close to one.

Early work [CCM13] studied sparse linear regression in the presence of ad-
versarial contamination, but did not provide efficient algorithms with dimension-
independent error guarantees. Closer to the scope of this chapter, the work by
[BDLS17] studied (sparse) linear regression in Huber’s contamination model
(their results can be easily extended in the strong contamination model). [BDLS17]
observe that robust linear regression can be reduced to robust mean estima-
tion, leading to an algorithm whose error guarantee scales with ‖β‖2 (see Sec-
tion 7.2.1). The iterative algorithm described in Sections 7.2.2 and 7.2.3 for
Gaussian covariates was essentially given in [DKS19]. The latter work estab-
lished a stronger version of Theorem 7.2 with sample complexity of Õ(d/ε2)
(i.e., independent of ‖β‖2). A number of contemporaneous works [PSBR20,
DKK+19a, KKM18] developed robust algorithms for linear regression in the
strong contamination model under weaker distributional assumptions. The al-
gorithms in [PSBR20, DKK+19a] leverage the robust stochastic optimization
lens of Section 7.4, while the algorithm in [KKM18] uses the SoS method.
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More recently, the works by [BP21, ZJS21] obtained optimal error for robust
linear regression under weaker distributional assumptions. These works use the
SoS method, building on [KKM18]. Finally, [CAT+20] develops near-linear
time algorithms by combining the robust stochastic optimization framework
of [PSBR20, DKK+19a] with near-linear time algorithms for robust mean es-
timation [CDG19, DHL19].

Robust Learning of LTFs A prototypical robustness model in the theory of
PAC learning is the agnostic learning model [Hau92, KSS94]. In the agnos-
tic model, the goal is to learn a labeling function whose agreement with some
underlying target function is close to the best possible, among all functions in
some given class. It should be noted that in the agnostic model, the goal is to
fit all the data points to the model. In contrast, in the outlier-robust setting, we
are only interested in fitting the inliers. This qualitative difference can be quite
significant. For example, the “agnostic” version of linear regression is readily
solvable via least-squares. On the other hand, the outlier-robust setting turns
out to be algorithmically more challenging. A stronger robustness model is the
malicious noise model [Val85, KL93], where an adversary is allowed to cor-
rupt both the labels and the samples. Effectively the malicious noise model is
equivalent to Huber’s contamination model in the context of supervised learn-
ing. Interestingly, the strong contamination model has been studied in PAC
learning as well under the name nasty noise model [BEK02].

Agnostic learning with respect to arbitrary distributions on the examples
is known to be computationally hard, even in simple settings. Specifically,
for the class of linear threshold functions, [Dan16] showed (under a plausible
complexity assumption) that no efficient algorithm can achieve error at most
1/2 − 1/dc, for some constant c > 0, even if the fraction of corruptions ε is
an arbitrarily small constant (though a random function can achieve error 1/2).
Consequently, research on this front has focused on well-behaved distributions.
[KLS09] studied the problem of malicious learning homogeneous LTFs, when
the distribution on the unlabeled samples is isotropic logconcave, and gave
the first polynomial-time algorithm with error guarantee poly-logarithmic in
the dimension. This bound was subsequently improved by [ABL17] who gave
an efficient algorithm with error O(ε) for isotropic log-concave distributions.
More recently, [DKS18a] extended these results to general LTFs and more
general geometric concept classes under the Gaussian and other well-behaved
distributions. Section 7.3.1 presents a simple special case of the [DKS18a] re-
sult.

At the technical level, the algorithm of [KLS09] uses a simple outlier re-
moval method to approximate the degree-1 Chow parameters, and then finds
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an LTF with approximately these Chow parameters. It is worth noting that the
outlier removal procedure of [KLS09] can be viewed as a weaker version of
the filtering technique from [DKK+16]. The algorithm of [ABL17] uses a soft
outlier removal procedure together with localization. [DKS18a] developed a
different localization technique that is presented in Section 7.3.2.

Robust Stochastic Optimization The first algorithms for robust stochastic
convex optimization were developed in two contemporaneous works [PSBR20,
DKK+19a]. Both these works observe that one can use a robust mean estima-
tor as a black-box to robustly estimate the gradient of the objective. Combined
with a first-order method, this leads to a generic algorithm for robust stochas-
tic optimization. [DKK+19a] further proposed a different algorithm that uses
standard empirical risk minimization and specific properties of the filtering
algorithm to iteratively remove outliers. Both of these approaches are fairly
general and can be applied to a range of machine learning tasks. More re-
cently, [JLST21] built on these frameworks to develop sample near-optimal
and faster algorithms under stronger assumptions.



8
Information-Computation Tradeoffs

in High-Dimensional Robust Statistics

8.1 Introduction

The goal of this chapter is to explore the inherent tradeoffs between sam-
ple complexity, computational complexity, and robustness in high-dimensional
statistical estimation. In the previous chapters of this book, we established the
existence of computationally efficient algorithms with dimension-independent
error guarantees for a range of high-dimensional robust estimation tasks. In
some instances, these algorithms have optimal sample complexity and achieve
the information-theoretically optimal error (within constant factors). Alas, in
several interesting settings, there is a super-constant gap between the information-
theoretic optimum and what known computationally efficient algorithms achieve.
This raises the following natural questions:

(1) For a given high-dimensional robust estimation task, can we achieve the
information-theoretic optimal error in polynomial time?

(2) For a given high-dimensional robust estimation task, can we design compu-
tationally efficient robust estimators with optimal sample complexity?

For a concrete example of (1), we would like to know whether the error up-
per bound of O(ε

√
log(1/ε)) for high-dimensional robust mean estimation of

an isotropic Gaussian in the strong contamination model (given in Chapter 2)
is inherent for polynomial-time algorithms, or whether an efficient algorithm
with error O(ε) could be obtained. For a concrete example of (2), we would
like to know whether an efficient algorithm for robust k-sparse mean estima-
tion with the optimal sample complexity of O(k log(d)) is possible, or whether
the Ω(k2) sample size required by known efficient algorithms (given in Chap-
ter 3) is inherent.

Unfortunately, the state of the art in computational complexity theory does
not provide tools for proving unconditional lower bounds for such problems.

This material will be published by Cambridge University Press as Algorithmic
High-Dimensional Robust Statistics by Ilias Diakonikolas and Daniel M. Kane.
This pre-publication version is free to view and download for personal use only. Not for
re-distribution, re-sale or use in derivative works. c© Ilias Diakonikolas and Daniel M. Kane 2022.
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For example, it is not hard to see that approximations to the Tukey median can
be computed within the polynomial hierarchy. Therefore, unless we can prove
that P , NP (which does not seem likely in the near future), it is impossible to
prove unconditionally that, e.g., O(ε) error is unachievable for Gaussian robust
mean estimation in polynomial time. Even proving such a statement under
more standard worst-case hardness assumptions seems somewhat out of reach
in most cases, as the inputs to our algorithms are mostly random, rather than
fully worst-case, and the theory of average-case complexity in NP is much less
well understood than its worst-case counterpart.

In view of the above, there are two general techniques in the literature that
have been successful towards obtaining such hardness results:

(1) Proving unconditional lower bounds for expressive, yet restricted, families
of algorithms. One of the most popular such family is that of Statistical
Query (SQ) algorithms. Others include lower bounds against convex pro-
gramming hierarchies.

(2) Proving reduction-based hardness, starting from an average-case hard or a
worst-case hard problem. A few such reductions have been obtained in the
literature, starting from different hardness assumptions.

The structure of this chapter is as follows: In Section 8.2, we define the
SQ model and provide a general technique to establish SQ lower bounds for
high-dimensional learning problems. Building on this methodology, we deduce
information-computation tradeoffs for a range of robust learning problems. In
Section 8.3, we survey a recent line of work on establishing reduction-based
hardness results for robust learning problems. Interestingly, some of these re-
ductions are inspired by the SQ lower bound constructions of Section 8.2.

8.2 Statistical Query Lower Bounds

8.2.1 The SQ Learning Model

To motivate the Statistical Query (SQ) learning model, it is natural to ask what
are the kinds of techniques employed by the robust statistics algorithms we
have seen thus far in this book. First, our algorithms approximately compute
moments of distributions. Another useful operation is approximating the frac-
tion of points that lie in some region. Perhaps more generally, the algorithms
do the above after ignoring the points that satisfy some filter conditions. More
broadly, all these algorithmic operations amount to approximating the expecta-
tions of f (X), for various functions f , where X is the input distribution over the
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corrupted points. In fact, a wide range of (but not all) algorithms in the learning
theory literature — and particularly those with worst case performance guar-
antees in the presence of noisy data — are or can be rephrased as algorithms
of this kind.

In particular, we would like to consider a restricted class of algorithms that
access their samples only by using them to approximate the expectations of
certain carefully chosen functions. We formalize this discussion in terms of
the following definition:

Definition 8.1 (STAT Oracle) Let D be a distribution on Rd. A Statistical
Query (SQ) is a bounded function q : Rd → [−1, 1]. For τ > 0, the STAT(τ)
oracle responds to the query q with a value v such that |v − EX∼D[q(X)]| ≤ τ.
We call τ the tolerance of the statistical query.

A Statistical Query (SQ) algorithm is an algorithm whose objective is to
learn some information about an unknown distribution D by making adaptive
calls to the corresponding STAT(τ) oracle.

The SQ model was introduced in the context of supervised learning as a
natural restriction of the PAC model. Subsequently, the SQ model has been
extensively studied in a plethora of contexts, and in particular for search prob-
lems over distributions. The SQ model will be important to us because of two
important properties that it posseses.

The Model is Expressive As discussed above, most common statistical algo-
rithms can be rephrased in terms of statistical query algorithms. More gener-
ally, the class of SQ algorithms is fairly broad: a wide range of known algorith-
mic techniques in machine learning are known to be implementable in the SQ
model. These include spectral techniques, moment and tensor methods, local
search (e.g., Expectation Maximization), and many others. In the context of
algorithmic robust statistics, essentially all known algorithms with non-trivial
performance guarantees are either SQ or are implementable using SQs. On the
other hand, it is important to note that not all algorithms can be efficiently sim-
ulated in the SQ model. A notable exception is Gaussian elimination, which is
the natural method to learn parity functions.

The Model is Analyzable When analyzing Statistical Query algorithms, one
usually considers only the number of queries and their error tolerance as com-
plexity measures, and not the computational complexity of deciding on what
queries to make or how to analyze them. While on the one hand, this makes
the SQ model very powerful (perhaps even able to make use of uncomputable
functions in deciding what to do), SQ algorithms remain quite limited because
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they are allowed to access the distribution D only through statistical queries
rather than by directly accessing the samples. This means that one can often
prove information-theoretic lower bounds against SQ algorithms without hav-
ing to worry about computational complexity issues.

SQ Algorithms versus Traditional Algorithms Although the SQ model is
quite different than that of actual algorithms (both in terms of how they access
the distribution D and how computational cost is evaluated), there is a fairly
reasonable relation between the complexity of a problem in the SQ model and
what one would expect the actual computational complexity to be. In particu-
lar, a statistical query with accuracy τ can be implemented with error probabil-
ity δ by taking O(log(1/δ)/τ2) samples and evaluating the empirical mean of
the query function f . Thus, an SQ algorithm that makes n queries of accuracy τ
can easily be implemented with constant error probability using O(n log(n)/τ2)
samples. Most of the time (though not always, if the SQ algorithm is suffi-
ciently adaptive) the algorithm can actually afford to re-use the samples for
the statistical queries and use roughly O(1/τ2) samples. While the runtime of
simulating such an SQ algorithm may be unbounded (due to the fact that SQ
algorithms are allowed to do unlimited computation), in practice the runtime
is usually polynomial in the number of statistical queries used. Thus, an SQ
algorithm that uses n queries of accuracy τ morally corresponds to an actual
algorithm that takes poly(n) time and uses Õ(1/τ2) samples.

8.2.2 SQ Dimension and SQ Lower Bounds

It is important to note that not only are lower bounds for SQ algorithms the-
oretically possible due to the limited access to the samples, but that there are
practical techniques for proving them. We begin with a special case for which
lower bounds are relatively easy.

Problem: For a non-zero vector v ∈ Fn
2, let Dv denote the uniform distribution

over all points x ∈ Fn
2 such that v · x = 0. Given statistical query access to Dv,

the goal is to determine v.

We begin by noting that if instead we are given sample access to Dv, it is
easy to compute v in roughly n samples by taking the orthogonal complement
of their span. This is one of the relatively few examples of a learning algorithm
that (as we will soon see) cannot be efficiently simulated in the SQ model. In
particular, the SQ model cannot do linear algebra (or linear algebra like things)
without access to the individual samples.
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To see why an SQ algorithm will have trouble with this problem, let us con-
sider the outcome of a query. If we make a query corresponding to a bounded
function f , we learn an approximation to E[ f (Dv)]. Using discrete Fourier
analysis, we can write this as

E[ f (Dv)] = f̂ (1) + f̂ (χv) ,

where χv : Fn
2 → {±1} is the character χv(x) := (−1)v·x and

f̂ (χv) := Ex∼uFn
2
[ f (x)χv(x)] .

We next note that, by Plancherel’s identity, we have∑
v∈Fn

2

f̂ (χv)2 = Ex∼uFn
2
[ f 2(x)] ≤ 1 .

In particular, this means that for almost all v , 0 the magnitude of the corre-
sponding Fourier coefficient, | f̂ (χv)|, will be exponentially small in n. More
specifically, if the error tolerance τ of the SQ queries is not exponentially
small in n, this means that an adversarial oracle will simply be able to return
f̂ (1) = Ex∼uFn

2
[ f (x)] to nearly every query. More specifically, if the adversary

selects a random v , 0 then for any query f to the STAT(τ) oracle, with prob-
ability 1 − O(2−n/τ2) over the choice of v an adversarial oracle will be able to
reply f̂ (1) to the query. If an algorithm makes s queries to the STAT(τ) oracle,
then with probability at least 1 − O(s2−n/τ2) over the choice of v, the oracle
will be able to respond with f̂ (1) to each query f in the list. Therefore, unless
s/τ2 � 2n, there will be a constant probability that an adversarial oracle can
answer every query in this way, and the algorithm will have only learned that
v is in the (exponentially large) set of possibilities for which these answers are
allowable. This readily gives rise to the following result.

Theorem 8.2 If an SQ algorithm with access to Dv can learn v with constant
probability using s queries to the STAT(τ) oracle, then it must be the case that
s/τ2 � 2n.

Theorem 8.2 shows that any SQ algorithm that learns parities requires either
exponentially many queries or queries of inverse exponential accuracy.

We would like to obtain a generalization of Theorem 8.2 that is applicable
to any reasonable search problem over distributions. To devise such a general-
ization, let us spend a moment to think about how the proof of Theorem 8.2
works. We have a base distribution D (in this case, the uniform distribution
over Fn

2) and a large set of hypothesis distributions Dv such that for any test
function f it will hold that for almost all v’s that |E[ f (D)]−E[ f (Dv)]| is small.
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This is what allows the adversary to always return the answer E[ f (D)] and
prevents an SQ algorithm from learning any useful information.

Why are these values usually small? For the parity learning problem, this
follows from Plancherel’s identity. This in turn can be shown by noting that the
characters χv form an orthonormal basis for the class of real-valued functions
over Fn

2 combined with the fact that no vector with small `2-norm can have
large inner product with many elements of an orthonormal basis.

For our more general SQ lower bound methodology, we will need to gen-
eralize the above technique in two ways. First, we will need to define a more
general inner product on probability distributions. Second, we will need to gen-
eralize from orthonormal functions to nearly-orthogonal functions. We address
these issues separately below.

For the first of these issues, how do we define an inner product over the space
of probability distributions (or more generally measures) over some space S ?
Given two distributions, p and q, one is tempted to take the product of their
probability density functions, p(x) and q(x), at a point x and integrate. Un-
fortunately, this definition behaves poorly under change of variables. To cor-
rect this, one can fix a base distribution D, take the product of (p/D)(x) with
(q/D)(x), and integrate with respect to D. That is, we consider the quantity

χD(p, q) := Ex∼D[(p/D)(x)(q/D)(x)] ,

which is invariant under change of variables. Furthermore, this is well-defined
for any measures p and q for which the above expectation is absolutely con-
vergent.

We now address the orthogonality issue. Our previous argument (for the
case of parities) depended on the fact that a vector cannot have large inner
product with many orthonormal vectors. Unfortunately, orthonormality is too
stringent a constraint in our general context, so we will need the following
generalization.

Lemma 8.3 Let v1, v2, . . . , vn be vectors in an inner product space with ‖vi‖
2 ≤

β for each i, and |vi · v j| ≤ γ for all i , j. Let w be a vector with ‖w‖ ≤ 1. Then
it can be the case that |w · vi| ≥ 2

√
γ for at most O(β/γ) many values of i.

For this lemma, one should think of the case where β is bigger than 1, but not
too large, and γ is quite small. The lemma says that if we have many pairwise
near-orthogonal (and not too large) vectors, then no unit vector w can have
large inner product with very many of them. The proof follows by assuming
that a contradictory vector w exists and finding a linear combination u = w +

α
∑

i:|w·vi |>2
√
γ ±vi such that u · u ≤ 0.

In our context, we will want to pick a base distribution D and many other
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distributions Di such that for i , j the inner product χD(Di − D,D j − D) =

χD(Di,D j) − 1 is small. Note that for any function f and distribution Di we
have that E[ f (Di)] = χD(Di, f D). This means that E[ f (Di)] will be close to
E[ f (D)] unless χD(D − Di, f D) is large. We will use Lemma 8.3 to show that
this cannot happen for many different values of i simultaneously.

Before we get into the formal statement of our generic SQ lower bound, we
will want to formulate it as a decision problem. In particular, we require the
following definition.

Definition 8.4 (Decision/Testing Problem over Distributions) Let D be a dis-
tribution andD be a family of distributions. We denote byB(D,D) the decision
(or hypothesis testing) problem in which the input distribution D′ is promised
to satisfy either (a) D′ = D or (b) D′ ∈ D, and the goal of the algorithm is to
distinguish between these two cases.

We note that the hypothesis testing problem of Definition 8.4 may in general
be information-theoretically hard. In particular, if some distribution D′ ∈ D is
very close to the reference distribution D, it will be hard to distinguish between
D′ and D. However, in the settings we consider in this chapter, this will not be
the case. Specifically, the distributions D′ ∈ D will be far from D in total vari-
ation distance. Under this assumption, one can reduce the hypothesis testing
problem to the problem of learning an unknown D′ ∈ D to small error.

In particular, we have the following simple lemma.

Lemma 8.5 Suppose there exists an SQ algorithm to learn an unknown dis-
tribution in D to total variation distance ε using at most n statistical queries
of tolerance τ. Suppose furthermore that for each D′ ∈ D we have that

dTV(D,D′) > 2(τ + ε) .

Then there exists an SQ algorithm that solves the testing problem B(D,D)
using at most n + 1 queries of tolerance τ.

Proof We begin by running the learning algorithm under the assumption that
the distribution in question is D0 ∈ D to get a hypothesis distribution D′. We
let S be a set so that dTV(D,D′) = |D(S ) − D′(S )|, and use our final statistical
query to approximate the expectation of fS , the indicator function of S . If our
original distribution was D, the answer should be within additive error τ of
D(S ). If our original distribution was D0, it should be within additive τ of
D0(S ), which in turn must be within (τ + ε) of D′(S ). However, we have that

|D(S )−D′(S )| = dTV(D,D′) ≥ dTV(D,D0)−dTV(D0,D′) > 2(τ+ε)−ε ≥ τ+(τ+ε) .

Therefore, if our distribution is D, the expectation of fS will be within τ of
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D(S ); and if our distribution is inD, the expectation of fS will be within (τ+ε)
of D′(S ). We can determine which of these is the case, and note that by the
above, they cannot both happen. Thus, determining which of these cases holds
will solve our decision problem. �

We next need a notation for a collection of distributions that serve the role
of our nearly orthogonal vectors.

Definition 8.6 We say that a set of s distributionsD = {D1, . . . ,Ds} over Rd

is (γ, β)-correlated relative to a distribution D if |χD(Di,D j) − 1| ≤ γ for all
i , j, and |χD(Di,D j) − 1| ≤ β for all i = j.

We are now ready to define our notion of dimension, which effectively char-
acterizes the difficulty of this decision problem.

Definition 8.7 (Statistical Query Dimension) Fix β, γ > 0 and a decision
problem B(D,D), where D is a fixed distribution and D is a family of distri-
butions over Rd. Let s be the largest integer such that there exists a finite set
of distributions DD ⊆ D such that DD is (γ, β)-correlated relative to D and
|DD| ≥ s. We define the Statistical Query dimension with pairwise correlations
(γ, β) of B to be s and denote it by SD(B, γ, β).

Importantly, a class with a large statistical query dimension will be hard to
distinguish.

Lemma 8.8 Let B(D,D) be a decision problem, where D is the reference
distribution andD is a class of distributions. For γ, β > 0, let s = SD(B, γ, β).
Any SQ algorithm that solves B with constant probability using only t calls to
the STAT(2

√
γ) oracle must have t � s · γ/β.

Proof (sketch) Let D1,D2, . . . ,Ds be a collection of distributions in D ob-
taining the bound for SQ dimension. The adversary will either use the base
distribution D or a random one of the Di’s. They will also have the oracle re-
turn E[ f (D)] to each query f for which this is allowed. By Lemma 8.3, we
note that even if the distribution is a random Di, this will be allowed except
with probability at most O(β/(sγ)). Thus, unless t � s · γ/β, there will be
a constant probability in either case that the oracle always returns E[ f (D)],
making it impossible for the algorithm to distinguish. �

8.2.3 Non-Gaussian Component Analysis and its SQ Hardness

While Lemma 8.8 provides the fundamental basis for essentially all known
SQ lower bounds, this still leaves us with the problem of finding families of
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distributions with large SQ dimension. In particular, we want a method for
generating families with large SQ dimension that is expressive enough that it
can be used to prove lower bounds for many problems of interest. As many of
the problems we have considered thus far involve Gaussian or Gaussian-like
distributions, a family where the base distribution D is the standard Gaussian
will be a good starting point. We will also need a convenient way of producing
many distributions that look like D. In particular, we will do this by producing
distributions that are distributed as a standard Gaussian in all but one direction,
and will act like some other specified distribution, A, in the remaining direction
v. This means that given a single distribution A, we can define a family of
distributions by varying the hidden direction v.

This gives rise to the problem known and Non-Gaussian Component Anal-
ysis (NGCA). We define the distributions we are interested in as follows.

Definition 8.9 (High-Dimensional Hidden Direction Distribution) For a dis-
tribution A on the real line with probability density function A(x) and a unit
vector v ∈ Rd, consider the distribution over Rd with probability density func-
tion PA

v (x) = A(v · x) exp
(
−‖x − (v · x)v‖22/2

)
/(2π)(d−1)/2. That is, PA

v is the
product distribution whose orthogonal projection onto the direction of v is A,
and onto the subspace perpendicular to v is the standard (d − 1)-dimensional
normal distribution.

How hard is it to distinguish the distribution PA
v (for a randomly chosen v)

from a standard Gaussian? If A has an mth moment that differs from that of
a standard Gaussian, then PA

v will have an mth moment in the v-direction that
differs. We can easily detect this by computing the mth moment tensors and
comparing them, which can be done in roughly dm time and samples (and can
be implemented by an SQ algorithm of corresponding complexity). As we will
see, this is essentially the only thing that can be done in the SQ model.

Thus, in order for the NGCA problem to be hard, it will need to be the case
that A matches many moments with the standard Gaussian. Furthermore, to
keep the parameter β small, we will need the χ2-norm of A with respect to
N(0, 1) to be bounded. This motivates the following definition.

Condition 8.10 Let m ∈ Z+. The distribution A on R is such that (i) the first m
moments of A agree with the first m moments of N(0, 1), and (ii) χN(0,1)(A, A)
is finite.

Note that Condition 8.10-(ii) above implies that the distribution A has a
probability density function (pdf), which we will denote by A(x). We will
henceforth blur the distinction between a distribution and its pdf.
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We define the hypothesis testing version of the Non-Gaussian Component
Analysis problem.

Definition 8.11 (Hypothesis Testing Version of NGCA) Let A be a one-
dimensional distribution and d ≥ 1 be an integer. One is given access to a
distribution D so that either:

• H0: D = N(0, I) ∈ Rd,
• H1: D is given by PA

v for some unit vector v ∈ Rd, where PA
v denotes the

hidden-direction distribution corresponding to A.

The goal is to distinguish between these two cases.
Note that this is just the hypothesis testing problem B(D,D) with D =

N(0, I) andD = {PA
v }.

Our goal will be to show that the Non-Gaussian Component Analysis prob-
lem has an appropriately large statistical query dimension, allowing us to prove
strong statistical query lower bounds for it. Fundamentally, this depends on
showing that for two unit vectors, u and v, that are not too close to each other
that |χN(0,I)(PA

u ,PA
v ) − 1| is small.

Lemma 8.12 (Correlation Lemma) Let m ∈ Z+. If the distribution A agrees
with the first m moments ofN(0, 1), then for all unit vectors u, v ∈ Rd, we have
that |χN(0,I)(PA

u ,PA
v ) − 1| ≤ |u · v|m+1χN(0,1)(A, A).

Proof We bound this inner product as follows. First, by definition we have
that

χN(0,I)(PA
u ,P

A
v ) =

∫
Rd

PA
u (x)PA

v (x)
G(x)

dx ,

where G(x) is the probability density function of the d-dimensional standard
GaussianN(0, I). If g(x) is the probability density function of the one-dimensional
standard Gaussian, then we have that PA

u (x)/G(x) = A(u · x)/g(u · x). Therefore,
letting y = u · x, we have that

χN(0,I)(PA
u ,P

A
v ) =

∫
R

A(y)
g(y)

PA
u,v(y)dy , (8.1)

where PA
u,v(y) is the probability density function for the distribution u · PA

v .
It remains to compute the univariate distribution PA

u,v. Note that if u and v
are orthogonal, it is easy to see that PA

u,v is N(0, 1), and thus χN(0,I)(PA
u ,PA

v ) =

1. If u and v are nearly orthogonal, one would hope that this is nearly true.
More specifically, suppose that the angle between u and v is θ, so that we have
u · v = cos(θ). We then have for some unit vector u′ orthogonal to u that v =

cos(θ)u+sin(θ)u′. Reparameterizing x as (xu, x′u, x
⊥), where xu = u·x, x′u = u′·x,
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and x⊥ is the perpendicular components, we have that the probability density
function for PA

v is given by

PA
v (x) = A

(
cos(θ)xu + sin(θ)x′u

)
g
(
sin(θ)xu − cos(θ)x′u

)
G(x⊥) .

Therefore, the probability that xu is equal to y can be obtained by integrating
out over the other variables. Noting that the integral over x⊥ separates out and
gives 1, we have that

PA
u,v(y) =

∫
R

A (cos(θ)y + sin(θ)z) g (sin(θ)y − cos(θ)z) dz . (8.2)

Thus, we have shown that, as a distribution on y, PA
u,v = Ucos(θ)A, where Ucos(θ)

is the Ornstein-Uhlenbeck operator, defined by

(Ucos(θ) f )(y) :=
∫

R
f (cos(θ)y + sin(θ)z)g(sin(θ)y − cos(θ)z)dz ,

for any function f : R → R. See Figure 8.1 for an illustration of the relevant
variables.

Figure 8.1 Illustration of the integrals in Lemma 8.12.

In order to analyze (8.2), it is useful to express the relevant terms with
respect to the eigenfunctions of the Ornstein-Uhlenbeck operator, which are
well-understood in terms of the Hermite polynomials (see Chapter A.2).

Let Hen(x) denote the nth probabilist’s Hermite polynomial, and let hn(x) =

Hen(x)/
√

n!. Then {hn}n∈N is an orthonormal basis of polynomials with respect
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to the Gaussian distribution. Namely, hn(x) is a degree-n polynomial and∫
R

hn(x)hm(x)g(x)dx = δn,m .

Furthermore, any function f with
∫

R f 2(x)g(x)dx < ∞ can be written as a sum
f (x) =

∑∞
n=0 anhn(x) for some coefficients an ∈ R. Finally, of particular impor-

tance to us is the fact that the Hermite polynomials relate to eigenfunctions of
the Ornstein-Uhlenbeck operator. Namely, we have the following fact.

Fact 8.13 For all n ∈ N, we have that: Ucos(θ)(hn(x)g(x)) = cosn(θ)hn(x)g(x) .

To apply this fact in our setting, we start by noting that by assumption we
have that

∞ > χN(0,1)(A, A) =

∫
R

A2(x)
g(x)

dx =

∫
R

(
A(x)
g(x)

)2

g(x)dx .

That is, the function A(x)/g(x) is square integrable with respect to the Gaussian
measure. This means that there exist coefficients an ∈ R such that

A(x)/g(x) =

∞∑
n=0

anhn(x) ,

or equivalently

A(x) =

∞∑
n=0

anhn(x)g(x) .

Applying Fact 8.13 along with the linearity of Ucos(θ), (8.2) gives that the dis-
tribution PA

u,v = Ucos(θ)A has probability density function

PA
u,v(x) =

∞∑
n=0

cosn(θ)anhn(x)g(x) .

Thus, using (8.1), we have that

χN(0,I)(PA
u ,P

A
v ) =

∫
R

 ∞∑
n=0

an cosn(θ)hn(x)g(x)

  ∞∑
m=0

amhm(x)g(x)

 /g(x)dx

=

∫
R

∑
n,m

cosn(θ)anamhn(x)hm(x)g(x)dx

=

∞∑
n=0

cosn(θ)a2
n .
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The next step is to gain an understanding of the coefficients an. By the or-
thonormality of the Hermite basis, we have that∫

R
A(x)hn(x)dx =

∞∑
m=0

am

∫
R

hm(x)hn(x)g(x)dx = an .

Noting that A(x) matches its first m moments with the standard Gaussian, we
find that for n ≤ m the following holds:

an =

∫
R

g(x)hn(x)dx =

∫
R

h0(x)hn(x)g(x)dx = δ0,n .

On the other hand, we have that

χN(0,1)(A, A) =
∑
n,m

anam

∫
R

hn(x)hm(x)g(x)dx =

∞∑
n=0

a2
n . (8.3)

Combining the above, we obtain that

χN(0,I)(PA
u ,P

A
v ) = 1 +

∑
n>m

a2
n cosn(θ) .

Thus, we conclude that

|χN(0,I)(PA
u ,P

A
v ) − 1| ≤ | cosm+1(θ)|

∞∑
n=0

a2
n = |u · v|m+1χN(0,1)(A, A) .

This completes our proof. �

We are now prepared to introduce our main technique for proving SQ lower
bounds.

Proposition 8.14 (Generic SQ Hardness of NGCA) Let 0 < c < 1/2 and
d ≥ ((m + 1) log(d))(2/c). Any SQ algorithm that solves the testing problem of
Definition 8.11 for a function A satisfying Condition 8.10 requires either 2Ω(dc)

many SQ queries or at least one query to STAT with accuracy

τ ≤ 2d−(m+1)(1/4−c/2)
√
χ2(A,N(0, 1)).

A heuristic interpretation of the above proposition is as follows. If we do not
want our SQ algorithm to use a number of queries exponential in dΩ(1), then
we would need dΩ(m) samples to simulate a single statistical query.

The proof of this result relies on three essential components:

1. The theory of SQ dimension to prove lower bounds (Lemma 8.8).
2. Inner product bounds on the PA

v ’s given by Lemma 8.12.
3. A packing result showing that there exist exponentially many nearly-orthogonal

unit vectors in Rd.
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For the last of these we recall the following result (see Theorem A.10).

Fact 8.15 For any 0 < c < 1/2, there is a set S of at least 2Ω(dc) unit vectors
in Rd such that for each pair of distinct v, v′ ∈ S , it holds |v · v′| ≤ O(dc−1/2).

Proof of Proposition 8.14 By Fact 8.15, we can find s = 2Ω(dc) unit vectors
with pairwise inner products at most O(dc−1/2). By Lemma 8.12, the corre-
sponding distributions PA

v satisfy χN(0,I)(PA
v ,PA

v ) = χN(0,1)(A, A) and

|χN(0,I)(PA
u ,P

A
v ) − 1| ≤ d(m+1)(c−1/2)χN(0,1)(A, A) ,

for u , v, from this set. This implies that the statistical query dimension
of this Non-Gaussian Component Analysis testing problem with correlations
(d(m+1)(c−1/2)χN(0,1)(A, A), χN(0,1)(A, A)) is at least s.

Therefore, by Lemma 8.8, any algorithm that solves the testing problem of
Definition 8.11 must either make queries of accuracy better than

2d(m+1)(c/2−1/4)
√
χN(0,1)(A, A) ,

or must make at least 2Ω(dc)d(m+1)(c−1/2) queries. Note that by assumption dc/2 ≥

((m+1) log(d)) and therefore d(m+1)(c−1/2) ≥ 2−dc/2
. Thus, the query lower bound

is 2Ω(dc). �

8.2.4 Applications to High-Dimensional Robust Statistics

The generic SQ lower bound for NGCA established in the previous subsec-
tion can be used in a black-box manner to obtain optimal SQ lower bounds
for a range of high-dimensional robust estimation tasks. Given the results of
the previous section, it suffices to find a univariate distribution A satisfying
Condition 8.10 such that the distribution PA

v belongs in the desired family.
Here we focus on the following estimation tasks: In Section 8.2.4.1, we

prove an SQ lower bound for the problem of robustly estimating the mean
of an identity covariance Gaussian in the total variation contamination model.
Specifically, we show that the O(ε

√
log(1/ε)) error guarantee of known effi-

cient algorithms is best possible for polynomial query/accuracy SQ algorithms.
In Section 8.2.4.2, we move to the problem of list-decodable mean estimation
and show a nearly tight tradeoff between error guarantee and SQ complexity.
Finally, in Section 8.2.4.3 we establish an essentially tight SQ lower bound for
robust sparse mean estimation.

8.2.4.1 SQ Hardness of Gaussian Robust Mean Estimation
In this section, we prove an SQ lower bound for robust mean estimation of an
identity covariance Gaussian in the total variation contamination model.
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Before we state our SQ lower bound, we recall the information-theoretic
limits of Gaussian robust mean estimation. As shown in Chapter 1, Proposi-
tion 1.20, it is information-theoretically possible to robustly estimate the mean
ofN(µ, I) within `2-error O(ε) in the strong contamination model. On the other
hand, no known efficient algorithm achieves this error guarantee. Specifically,
both the unknown convex programming method and the filtering technique of
Chapter 2 achieve error Ω(ε

√
log(1/ε)) in the strong contamination model.

The SQ lower bound shown in this section provides evidence that this error
gap may be inherent.

To prove our SQ lower bound for Gaussian robust mean estimation, we con-
sider the following hypothesis testing problem. Given access to a distribution
D on Rd, we want to distinguish between the following two cases:

• D is the standard multivariate Gaussian, i.e., D = N(0, I).
• D is an ε-corruption, in total variation distance, of a distribution N(µ, I),

where ‖µ‖2 ≥ cε
√

log(1/ε) for some sufficiently small constant c > 0, i.e.,
dTV(D,N(µ, I)) ≤ ε.

We will show that any SQ algorithm that correctly distinguishes between these
two cases either requires 2dΩ(1)

queries or needs to use queries of accuracy τ ≤
d−ωc(1), where ωc(1) denotes some quantity that goes to infinity as c goes to 0.

Given the SQ hardness for this hypothesis testing problem, we immediately
obtain the same SQ hardness for the robust mean estimation problem. In partic-
ular, it follows that any SQ algorithm that robustly estimates the mean within
error δ ≤ (c/2) ε

√
log(1/ε) has super-polynomial SQ complexity. Formally,

we prove the following theorem.

Theorem 8.16 Let m ∈ Z+, cm, ε > 0 be less than a sufficiently small
function of m, and d at least a sufficiently large function of m. Any algo-
rithm that, given SQ access to a distribution P on Rd such that either (a)
P = N(0, I) or (b) P satisfies dTV(P,N(µ, I)) ≤ ε for an unknown µ ∈ Rd with
‖µ‖2 = cmε

√
log(1/ε), requires either at least 2dΩ(1)

queries or some queries
with accuracy smaller than d−Ω(m).

Before we proceed, we remark that the above theorem rules out efficient
SQ algorithms (i.e., ones using at most poly(d/ε) many queries of tolerance at
least poly(ε/d)) with error O(ε), but it does not rule out algorithms with quasi-
polynomial complexity, namely dpolylog(1/ε). (Note that the parameter m in the
theorem statement cannot be larger than Ω

( √
log(1/ε)

)
). Interestingly, it turns

out that there exists an SQ algorithm for the Gaussian robust mean estimation
problem (in the strong contamination model) with quasi-polynomial complex-



256 Information-Computation Tradeoffs

ity (see Exercise 8.11), and therefore the tradeoff established in Theorem 8.16
is essentially tight.

To prove Theorem 8.16, we will combine Proposition 8.14 via the following
proposition, which constructs the desired univariate moment-matching distri-
bution.

Proposition 8.17 For any positive integer m and any δ > 0 less than a suf-
ficiently small function of m, there exists a distribution A on R satisfying the
following conditions:

(i) A and N(0, 1) agree on the first m moments.
(ii) dTV(A,N(δ, 1)) ≤ Om(δ/

√
log(1/δ)).

(iii) χN(0,1)(A, A) = O(1).

Proof We note that N(δ, 1) satisfies the second and third conditions above.
The basic idea of the proof will be to start with the distribution N(δ, 1) and
modify it so that it matches its low-degree moments with N(0, 1). We note
that in the process of this modification, we can only afford to modify the dis-
tribution by Om(δ/

√
log(1/δ)) in L1 distance, and we must moreover ensure

that the modified “distribution” is still non-negative. This latter condition is
most pronounced in the tails of the distribution, where the probability density
function of N(δ, 1) was initially quite small. This means that we cannot afford
to decrease the density in the tails by much without destroying the positivity
condition. In order to avoid this, we will make modifications that do not touch
the tails of the distribution.

In particular, let C be a sufficiently small constant multiple of
√

log(1/δ).
Choosing the constants appropriately, we can ensure that the probability den-
sity of N(δ, 1) on [−C,C] is pointwise at least δ1/10. We will then construct a
distribution A that agrees withN(δ, 1) outside of the interval [−C,C]. The fact
that the probability density is sufficiently large in the range [−C,C] will ensure
that we do not need to worry about non-negativity. In particular, we will let A
have density

A(x) = g(x − δ) + 1[−C,C](x)p(x) ,

for some function p : [−C,C]→ R satisfying:

(i) For each integer 0 ≤ t ≤ m:
∫ C
−C p(x)xtdx = E[Gt] − E[(G + δ)t], where

G ∼ N(0, 1).
(ii)

∫ C
−C |p(x)|dx = Om(δ/

√
log(1/δ)).

(iii) For each x ∈ [−C,C], we have |p(x)| ≤ δ1/10.
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We note that the first condition here implies that A(x) matches its first m mo-
ments withN(0, 1). Moreover, taking t = 0 ensures that A is appropriately nor-
malized. This, along with condition (iii), implies that A is actually a probability
distribution. Condition (ii) implies the necessary bound on dTV(A,N(δ, 1)). Fi-
nally, the bound on χN(0,1)(A, A) is easily verified given (iii) above.

An example of the resulting distribution can be found below in Figure 8.2.

Figure 8.2 Illustration of moment matching distribution A of Proposition 8.17 for
δ = 0.2, C = 2.6 and m = 4. The dotted curve shows the polynomial p.

It remains to construct the function p. Out of the conditions given, Condition
(i) is substantially the most restrictive, so we will focus on it. We note that each
value of t implies a single linear condition on p. This suggests that as long
as we take p from a sufficiently large family, we can simply solve a system
of linear equations to find it. It is particularly convenient to take p to be a
polynomial. To show that this choice works, we present the following lemma.

Lemma 8.18 Let C > 0 and m ∈ Z+. For any a0, a1, . . . , am ∈ R, there exists
a unique degree at most m polynomial p : R → R such that for each integer
0 ≤ t ≤ m we have that ∫ C

−C
p(x)xtdx = at . (8.4)

Furthermore, for each x ∈ [−C,C] we have that |p(x)| ≤ Om(max0≤t≤m |at |C−t−1).

Proof We first prove the desired statement for C = 1 and then reduce to this
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case. Let p(x) =
∑m

i=0 cixi for ci ∈ R. We note that Condition (8.4) is a system
of (m + 1) linear equations in the m + 1 variables ci. As long as this system is
not degenerate, there will necessarily be a unique solution. Therefore, as a first
step, we need to show that the system in question is not degenerate. In partic-
ular, we need to show that there is no non-zero degree at most m polynomial
p(x) such that

∫ 1
−1 p(x)xtdt = 0 for all integers 0 ≤ t ≤ m. To see this, note that

since p itself is a linear combination of the xt for 0 ≤ t ≤ m, if this condition
was true, it would be the case that

∫ 1
−1 p2(x)dx = 0, which can hold only if

p ≡ 0. This establishes that there is a unique solution.
We next need to show that the size of the polynomial is bounded. To prove

this, we use the fact that the coefficients of p are some linear transformation
(depending on m) times the vector of the ai’s. Therefore, each ci has absolute
value at most Om(max0≤t≤m |at |). Thus, we have a similar bound on |p(x)| for
−1 ≤ x ≤ 1.

We now handle the case of general C. For general C, we let p(x) = q(x/C)
and note that we need

at =

∫ C

−C
p(x)xtdx =

∫ C

−C
q(x/C)xtdx = Ct+1

∫ 1

−1
q(x)xtdt .

Thus, so long as ∫ 1

−1
q(x)xtdt = C−t−1at

for all integers 0 ≤ t ≤ m, Condition (8.4) will hold for p. By our result for C =

1, such a q exists and it satisfies |q(x)| ≤ Om(max0≤t≤m |at |C−t−1) for x ∈ [−1, 1].
Therefore, we have that |p(x)| ≤ Om(max0≤t≤m |at |C−t−1) for x ∈ [−C,C]. This
completes the proof. �

To complete the proof of Proposition 8.17, we just need to apply Lemma 8.18
to the sequence at = E[Gt] − E[(G + δ)t]. It is easy to see that a0 = 0 and by
expanding we can see that at = Om(δ) for all larger t. Thus, such a polynomial
p exists and |p(x)| ≤ Om(δ/C2) for all x ∈ [−C,C]. From this, Conditions (ii)
and (iii) follow immediately, and this completes our proof. �

Remark 8.19 A more careful analysis of this argument can be used to show
that the error in condition (ii) can be made to be only poly(m)δ/

√
log(1/δ).

Given Proposition 8.17, the proof of Theorem 8.16 is almost immediate. In
particular, we can apply Proposition 8.14 to the distribution A from Proposi-
tion 8.17 taking δ = cmε

√
log(1/ε). The Non-Gaussian Component Analysis

hypothesis testing problem is then exactly that of distinguishing between P =

N(0, I) and P an Om(δ/
√

log(1/δ))-corrupted (which is at most ε-corrupted for
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cm small enough) GaussianN(µ, I) for some µ with ‖µ‖2 = δ. Proposition 8.17
implies that A satisfies Condition 8.10, and therefore Proposition 8.14 implies
the stated lower bound.

8.2.4.2 SQ Hardness of List-Decodable Gaussian Mean Estimation
In this section, we study the problem of list-decodable mean estimation, when
an α < 1/2 fraction of the points are inliers drawn from an unknown mean and
identity covariance Gaussian N(µ, I). The goal is to output a list of O(1/α)
many hypothesis vectors at least one of which is close to µ in `2-distance.

In Chapter 5, we showed that the information-theoretically optimal error
for this problem is Θ(

√
log(1/α)) even with poly(d/α) samples (see Corol-

lary 5.9 and Proposition 5.11). In Chapter 6, we gave an algorithm for this
problem achieving `2-error guarantee O(α−1/k) with sample complexity and
runtime (d/α)O(k). Interestingly, these algorithms require super-polynomially
many samples in order to achieve error that is subpolynomial in 1/α, despite
the fact that this is not information-theoretically necessary. Here we show that
the latter sample-time tradeoff is qualitatively close to best possible for SQ
algorithms. Specifically, we prove the following theorem.

Theorem 8.20 For each k ∈ Z+ and c ∈ (0, 1/2), there exists ck > 0 such that
for any α > 0 sufficiently small the following holds. Any SQ algorithm that is
given access to a (1 − α)-corrupted Gaussian N(µ, I) in d > k3/c dimensions
and returns a list of hypotheses such that with probability at least 9/10 one of
the hypotheses is within `2-distance ckα

−1/k of the true mean µ, does one of the
following:

• Uses queries with error tolerance at most exp(O(α−2/k))Ω(d)−(k+1)(1/4−c/2).
• Uses at least exp(Ω(dc)) many queries.
• Returns a list of at least exp(Ω(d)) many hypotheses.

To prove Theorem 8.20, we will similarly apply the generic construction of
Section 8.2.3. The main technical ingredient is the following moment-matching
lemma.

Lemma 8.21 For k ∈ Z+, there exists a univariate distribution A = αN(µ, 1)+
(1 − α)E, for some distribution E and µ = 10ckα

−1/k, such that the first k mo-
ments of A agree with those ofN(0, 1). Furthermore, the pdf of E can be taken
to be pointwise at most twice the pdf of the standard Gaussian.

Proof As in the proof of Proposition 8.17, we start with a basic distribution
and then modify it in order to correct the appropriate moments. In particular,
we will start with a mixture of Gaussians αN(µ, 1) + (1 − α)N(0, 1), and then
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add to the probability density function a polynomial restricted to the interval
[−1, 1] in order to fix the moments. In particular, A will have probability den-
sity function

A(x) = αg(x − µ) + (1 − α)g(x) + 1[−1,1](x)p(x) ,

for some polynomial p(x).
This produces a distribution along the lines of the one in Figure 8.3 below.

Figure 8.3 Illustration of moment matching distribution A of Lemma 8.21 for
α = 1.5 × 10−5, µ = 5, and k = 4. The dotted line is the unmodified standard
Gaussian g(x). The bump on the right is a significantly exaggerated copy of the
αg(x − µ) component.

In order to satisfy our requirements, it will suffice to have |p(x)| ≤ 1/10 for
all x ∈ [−1, 1], and for each integer 0 ≤ t ≤ k it holds that

∫
R A(x)xtdx = E[Gt].

Rewriting the left hand side of the latter, we have that it is equivalent to

αE[(G + µ)t] + (1 − α)E[Gt] +

∫ 1

−1
p(x)xtdx = E[Gt] ,

or equivalently,∫ 1

−1
p(x)xtdx = α(E[Gt] − E[(G + µ)t]) = Ok(αµt) = Ok(ck) .

Invoking Lemma 8.18, we have that there is such a polynomial p of degree at
most k with |p(x)| ≤ Ok(ck) < 1/10 for all x ∈ [−1, 1]. This completes the
proof of Lemma 8.21. �
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We are now prepared to prove Theorem 8.20. Our starting point is to con-
sider the Non-Gaussian Component Analysis problem stemming from the dis-
tribution A given in Lemma 8.21. We note that this distribution clearly satisfies
Condition 8.10. We also note that one of the distributions PA

v will be a mixture
PA

v = αN(µv, I) + (1−α)E, for some error distribution E. Thus, one should ex-
pect that an algorithm for robust list-decoding of Gaussians should reveal some
information about this (we will formalize such a reduction later). Finally, in or-
der to apply Proposition 8.14, we will need to bound the quantity χN(0,1)(A, A).
Since A is a mixture of N(µ, 1) and some other distribution E, we can write

χN(0,1)(A, A) = O(χN(0,1)(N(µ, 1),N(µ, 1)) + χN(0,1)(E, E)) .

Since E ≤ 2g pointwise, it is easy to see that χN(0,1)(E, E) ≤ 4. On the other
hand, direct computation shows that

χN(0,1)(N(µ, 1),N(µ, 1)) =
1
√

2π

∫ ∞

−∞

exp(−(x − µ)2 + x2/2)dx

=
1
√

2π

∫ ∞

−∞

exp(−x2/2 + 2xµ − µ2)dx

=
1
√

2π

∫ ∞

−∞

exp(−(x2 − 2µ)2/2 + µ2)dx = exp(µ2) .

Thus, χN(0,1)(A, A) = O(exp(µ2)). Therefore, by Proposition 8.14, any SQ al-
gorithm that solves the associated Non-Gaussian Component Analysis testing
problem must either make queries of accuracy better than

O(exp(α−2/k)d−(k+1)(1/4−c/2))

or use more than 2Ω(dc) queries.
This proves the desired SQ lower bound for the NGCA testing problem.

Unfortunately, it is not clear if there exists a simple and optimal reduction
from the list-decoding problem to the testing problem. We will instead directly
prove an SQ lower bound for the search problem.

In particular, using Fact 8.15, we can let S 0 be a set of 2Ω(dc) unit vectors
with pairwise inner products less than dc−1/2. We let S = S 1 ∪ S 2 ∪ . . . ∪ S N ,
where each S i is a random rotation of S 0. We note that taking N = 2Ω(d) we
can still make it hold with high probability that for any v,w ∈ S we have that
‖v − w‖2 > 1/2.

The adversary will let X = PA
v for v a uniform random v ∈ S , and whenever

possible will answer a query f with E[ f (N(0, I))]. We note that by Lemma
8.12, the set of PA

v , for v in some S i, are (O(exp(µ2))dk(c−1/2),O(exp(µ2)))-
correlated. Therefore, by Lemma 8.3, for any query f there will be at most
dk(c−1/2) v’s in each S i for which the adversary cannot return E[ f (N(0, I))].
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Therefore, if the number of queries is smaller than 2O(dc) with a sufficiently
small constant in the big-O, for at least 9/10 of the v’s in S , the adversary will
be able to reply this way to all queries.

In such a case, the algorithm will be left with a set of exponentially many
possible equally likely answers µv. Since no hypothesis can be close to more
than one of these, the only way to have a reasonable probability of success
would be to return exponentially many hypotheses. This completes the proof
of Theorem 8.20.

8.2.4.3 SQ Hardness of Gaussian Sparse Mean Estimation
In this subsection, we establish an SQ lower bound for robust sparse mean
estimation, as discussed in Chapter 3. Our SQ lower bound gives evidence
for the existence of an information-computational gap for this problem. Con-
cretely, given ε-corrupted samples fromN(µ, I), where µ is guaranteed to be a
k-sparse vector for some k much smaller than d, we want to efficiently estimate
µ in `2-norm. In Section 3.6, we gave an efficient algorithm for this problem
that robustly learns µ to `2-error Õ(ε) using O(k2 log(d)/ε2) samples. This sam-
ple complexity bound can be much better than the Ω(d/ε2) samples required
without the sparsity constraint, but it is worse than the information-theoretic
optimum of O(k log(d)/ε2).

The SQ lower bound of this section provides evidence that the quadratic
tradeoff is necessary. In particular, we show that any SQ algorithm with queries
of accuracy worse than Ω̃(k−1) (which roughly corresponds to algorithms tak-
ing fewer than Õ(k2) samples) will require a super-polynomial number of
queries. These lower bounds can be made to hold even in the Huber model.
It should also be noted that these lower bounds will only hold when d is sub-
stantially larger than k2. This condition can be seen to be necessary, as there
are efficient algorithms that succeed with O(d) samples. Formally, we show.

Theorem 8.22 Fix any a ∈ Z+. Let k, d ∈ Z+ be sufficiently large, and let
δ, ε > 0 be any sufficiently small constants. LetA be any algorithm which given
SQ access to a distribution P on Rd of the form P = (1 − ε)N(µ, I) + εE, for
some arbitrary distribution E and µ a k-sparse vector, returns with probability
at least 2/3 a vector µ̂ with ‖̂µ − µ‖2 < δ. Then A must either make at least
Ω(d/k2)a/k2 queries or make some query with tolerance at most Oε,δ(a/k).

Concretely, suppose that d � k2+c′ , for some constant c′ > 0. Then, by
setting a to be slightly super-constant, we have that any SQ algorithm either
requires dΩ(a) queries or at least a query of tolerance O(a/k). Note that the latter
corresponds to sample complexity slightly better than Ω(k2). Alternatively, if
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we set a to be kc for some c > 0, and d � k2, we get that any SQ algorithm
requires either 2kc

queries or a query of accuracy O(k−1+c).
To prove Theorem 8.22, we will construct a suitable one-dimensional dis-

tribution A and consider an appropriate collection of distributions PA
v , but this

time only for k-sparse unit vectors v on Rd. We start by showing an analogue
of Lemma 8.15 for k-sparse vectors, and then use it to prove an analogue of
Proposition 8.14. Our analogue of Lemma 8.15 is the following.

Lemma 8.23 Let a ∈ Z+. There exists a set S of (d/k2)a k-sparse unit vectors
in Rd such that for any u, v ∈ S with u , v it holds that |u · v| ≤ a/k.

Before we proceed with the proof of Theorem 8.22, we make a useful obser-
vation. By following the proof of Proposition 8.14 using Lemma 8.23 instead
of Lemma 8.15, we obtain.

Proposition 8.24 Consider a distribution A over R that satisfies Condition 8.10
for some m ∈ Z+, and some a ∈ Z+. Then any SQ algorithm that distinguishes
between (a) N(0, I) and (b) PA

v for k-sparse unit vector v selected at random
from the set S of Lemma 8.23, must either make at least Ω(d/k2)a(a/k)m+1

queries or make some query of accuracy less than O
(
(a/k)(m+1)/2

√
χN(0,1)(A, A)

)
.

We note that the proof of the above proposition is analogous to the proof of
Proposition 8.14, except that we will use the set of PA

v for v in the set S from
Lemma 8.23, instead of the set from Fact 8.15. Theorem 8.22 follows from
Proposition 8.24 with m = 1 for a specific distribution A.

Proof of Theorem 8.22 We select the one-dimensional distribution A as fol-
lows:

A = (1 − ε)N(3δ, 1) + εN (−3(1 − ε)δ/ε, 1) .

Note that A has mean 0, i.e., matches m = 1 moments ofN(0, 1). It is also easy
to see that χN(0,1)(A, A) = Oε,δ(1).

Applying Proposition 8.24 we get that any SQ algorithm that can distinguish
betweenN(0, I) and PA

v for k-sparse v must either make Ω(d/k2)a(a/k)2 queries
or make some query of tolerance at most Oε,δ(a/k). This shows that the hypoth-
esis testing problem is hard. It is relatively simple to show that this hypothesis
testing problem reduces to the robust sparse mean estimation problem.

In particular, if our distribution is N(0, I) it is a (zero error) Gaussian with
sparse mean 0, and so our algorithm will return a µ̂ with ‖̂µ‖2 ≤ δ. On the
other hand, if our distribution is PA

v for some k-sparse v, the distribution is an
ε-noisy version ofN(3δv, I), a Gaussian with k-sparse mean. This implies that
our algorithm will return a µ̂ with ‖̂µ − 3δv‖2 ≤ δ, which implies ‖̂µ‖2 ≥ 2δ. In
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particular, an algorithm that estimates the mean of an ε-noisy k-sparse Gaus-
sian to error δ can solve the hypothesis testing problem by checking whether
or not ‖̂µ‖2 > 3δ/2. Thus, any such algorithm if implemented with statisti-
cal queries must either make Ω(d/k2)a(a/k)2 queries or make some query of
accuracy at most Oε,δ(a/k). This completes our proof. �

We complete the analysis with a proof of Lemma 8.23.

Proof Our set will consist of vectors v whose coefficients are 0, except for
k coordinates where the coefficient is 1/

√
k. We note that if v and w are such

vectors, their inner product is b/k, where b is the number of coordinates in the
intersection of their supports. In particular, for a fixed v, the probability that
a randomly selected w has |v · w| ≥ a/k is at most the sum over subsets of a
coordinates in the support of v times the probability that those coordinates are
in the support of w. This probability is(

k
a

) ((
d

k − a

)
/

(
d
k

))
≤ ka(k/d)a = (k2/d)a .

This allows us to construct S via a greedy procedure. If |S | < (d/k2)a, then the
probability that a randomly chosen w will have |v · w| ≥ a/k, for some v ∈ S ,
is less than 1, and therefore there exist w such that |v · w| < a/k for all v ∈ S .
We can repeatedly add such w to S until |S | ≥ (d/k2)a. This completes our
proof. �

8.3 Reduction-based Computational Hardness

The traditional complexity-theoretic approach of establishing computational
hardness involves exhibiting polynomial-time reductions between problems.
The golden standard in this setting is to obtain an efficient reduction from
an NP-hard problem to our target statistical problem. While the reduction-
based approach is very natural, there exist apparent obstacles to basing the
hardness of statistical tasks on worst-case assumptions, such as P , NP. At a
high-level, this is due to the fact that statistical problems defined in terms of
well-behaved probabilistic models (e.g., the Gaussian distribution) are in some
sense average-case problems. Hence, it is natural to seek reductions from com-
putational problems that are believed to be average-case hard.

A very natural starting point for average-case reductions is the planted clique
problem, where the goal is to find a hidden clique in a random graph. In Sec-
tion 8.3.1, we give a reduction from a natural variant of the planted clique prob-
lem to the problem of robust sparse mean estimation. This reduction provides
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additional evidence that there is a quadratic gap between the sample complex-
ity and the computational sample complexity of the latter problem, as indicated
by the SQ lower bounds of Section 8.2.4.3.

In Section 8.3.2, we study the robust mean estimation problem under the
assumption that the higher moments of the inlier distribution are appropriately
bounded. We describe a reduction from a worst-case hard problem showing
that a certain natural algorithmic approach for this problem is unlikely to give
improved error guarantees.

8.3.1 Reduction-Based Hardness From Variants of Planted Clique

In the classical planted clique problem, the goal is to find a k-clique planted
in an Erdos-Renyi random graph. In the hypothesis testing formulation of the
problem, we want to distinguish between the case that the input graph G sat-
isfies G ∼ G(n, 1/2) versus G ∼ G(n, k, 1/2), where G(n, 1/2) is an n-vertex
random graph where each edge is present independently with probability 1/2,
and G(n, k, 1/2) is the graph obtained by planting a k-clique at random in
G(n, 1/2). This problem is known to be information-theoretically solvable as
long as k ≥ C log(n), for any constant C > 2, and a straightforward quasi-
polynomial time algorithm exists. On the other hand, no polynomial-time al-
gorithm is known for k = o(

√
n). Moreover, it is conjectured that this is in-

herent, i.e., that no polynomial-time algorithm exists for the problem for all
k = o(

√
n).

For the purpose of establishing reduction-based hardness for robust sparse
mean estimation, it appears that the original planted clique conjecture is insuf-
ficient. To obtain such a hardness result, we begin by defining an appropriate
variant of the planted clique problem.

Definition 8.25 (k-part Bipartite Planted Clique) Let n,m, kn, km ∈ Z+ be
such that kn divides n, and let E be a partition of [n] into kn sets of equal
size. The k-part Bipartite Planted Clique problem, k-BPCE(n,m, kn, km), is the
hypothesis testing problem where one is given a bipartite graph G whose left
vertex set is [m] and whose right vertex set is [n] and is asked to distinguish
between the following two cases:

• H0: For each i ∈ [m] and j ∈ [n], the edge (i, j) ∈ G independently with
probability 1/2.

• H1: One selects a random set S m ⊆ [m] of size km, and then selects a subset
S n ⊆ [n] by picking a random element of each part of the partition E. One
then includes all edges in S m × S n to G and adds each other element of
[m] × [n] independently with probability 1/2.
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It is not hard to show that the above hypothesis testing problem is information-
theoretically solvable, as long as km and kn are at least a sufficiently large con-
stant multiples of log(mn). Furthermore, although this problem is not quite the
same as the vanilla planted clique problem, similar heuristics suggest that this
variant may be computationally hard, so long as kn = o(

√
n) and km = o(

√
m).

Our goal in this section will be to reduce the k-BPC problem to the prob-
lem of robust k-sparse mean estimation. To that end, we will reduce it to the
following decision version of the robust k-sparse mean estimation problem.

Definition 8.26 (Robust Sparse Mean Decision Problem) Given s, d ∈ Z+

and ε, δ > 0, we define the problem RSM(s, d, k, ε, δ) as the decision problem
where the algorithm is given s vectors in Rd such that either:

• H0: These vectors are drawn independently from N(0, I).
• H1: All but εs of these vectors are drawn independently from N(µ, I), for

some k-sparse vector µ with ‖µ‖2 ≥ δ.

The goal of the algorithm is to correctly distinguish between these cases.

We note that any algorithm that can estimate a k-sparse mean vector from s
ε-corrupted samples to `2-error δ/2 can solve this decision problem simply by
checking whether or not the hypothesis mean µ̂ has `2-norm more than δ/2.

Our main goal will be to exhibit a polynomial-time reduction from the k-
BPC problem to the RSM problem (with appropriate parameters). The basic
plan will be to find a randomized function F, such that (i) if F is evaluated on
the H0 distribution for k-BPC, we get the H0 distribution for RSM, and (ii) if
F is evaluated on the H1 distribution for k-BPC, one gets a version of the H1

distribution for RSM.
To begin with, we think of a bipartite graph coming from an instance of

k-BPC as an m × n array of binary numbers, where we let the (i, j) entry be
1 if there is an edge between i and j and 0 otherwise. Similarly, an instance
of RSM is a list of s vectors from Rd, which we think of as a d × s array of
real numbers. To make these instances more comparable, we will take m = d.
The left vertices of our graph will now correspond to coordinates in Rd and
the vertices on the right side will correspond roughly to samples (or, more
precisely, the collections of n′ = n/kn vertices coming from one part of the
partition will correspond to collections of about s′ = s/kn samples).

Phrased in this way, an instance of k-BPC drawn from H0 is an m × n array
of numbers each drawn independent from the Bernoulli distribution B (i.e.,
the random variable that takes values 0 or 1 each with probability 1/2). An
instance of k-BPC drawn from H1 has a random km × kn submatrix of all 1’s
and the other entries are drawn independently from B. Our first step in order
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to make this look more like the RSM inputs is to make these entries Gaussian.
This is achieved via the following lemma.

Lemma 8.27 For η > 0, there exists a randomized function f such that
f (B) ∼ N(0, 1) and f (1) is exp(−Ω(1/η2))-close to N(η, 1) in total variation
distance.

Proof We let f (0) be distributed according to a distribution D0 and f (1) dis-
tributed according to D1. If the desired distributions were meant to hold ex-
actly, we would want D1 = N(η, 1) and (D0 + D1)/2 = N(0, 1). Solving this
system gives us that D0 = 2N(0, 1) − N(η, 1). Unfortunately, this is not quite
possible. The ratio of the densities of N(0, 1) and N(η, 1) is exp(ηx − η2/2).
This quantity is bigger than 2 when x is sufficiently large (more than some
constant times 1/η), and thus, this difference is not always positive. How-
ever, the probability that x is this large (under either N(0, 1) or N(η, 1)) is
exp(−Ω(1/η2)). Let X be some probability distribution with X ≤ 2N(0, 1)
pointwise such that X is exp(−Ω(1/η2))-close to N(η, 1). We then define f
so that f (0) ∼ 2N(0, 1) − X and f (1) ∼ X. It is easy to see that this satisfies
our desired properties. �

As a first step, we will start with our k-BPC instance and apply f to every
entry. This operation takes an instance of H0 and turns it into a matrix whose
entries are distributed as independent copies of N(0, 1). Moreover, it takes an
instance of H1 and turns it into something that is knkm exp(−Ω(1/η2))-close
in total variation distance to a matrix whose entries are independent N(0, 1),
except for the km × kn planted submatrix where the entries are N(η, 1).

This is a good start. The image of an H0 instance is distributed much like an
H0 instance of RSM. Moreover, the image of an H1 instance has many of the
right properties as well. In particular, for all but km = k of the coordinates, the
entries in that coordinate are standard normal. Unfortunately, for the remaining
coordinates, we get k samples which gives N(η, 1) while the rest are N(0, 1).
Instead, what we would like to have is that all but an ε-fraction of our samples
areN(δ/

√
k, 1) on these coordinates, and the remaining εs samples can behave

arbitrarily. We will need another procedure to make this happen.

Lemma 8.28 Suppose that k is at least a sufficiently large constant multiple
of (log(s′)s′ + n′)δ2/(εη2). Then there exists a randomized function g : Rn′ →

Rs′ such that g(N(0, In′ )) ∼ N(0, Is′ ) and g(N(ηei, In′ )) ∼ N(vi, Is′ ), where for
each 1 ≤ i ≤ n′, vi ∈ Rs′ is a vector with (1 − ε)s′ of its coordinates equal to
δ/
√

k.

For each coordinate and each block in our partition, we will apply g to the
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vector of values in that block. This will map our instance of H0 of k − BPM
exactly to an instance of H0 from RSM. Moreover, it will map an instance
of H1 from k − BPM to something close in total variation distance to an H1

instance of RSM.

Proof Our function g is actually quite simple. We will let g(x) = Ax + Y ,
where A is some carefully chosen s′ × n′ matrix and Y is a random variable
distributed as N(0,Σ) for some carefully chosen Σ. It is not hard to see that
g(N(x, In′ )) ∼ N(Ax, AA> + Σ). Therefore, it suffices to find A and Σ such that:

• AA> + Σ = Is′

• A(ηei) has (1 − ε)s′ coordinates equal to δ/
√

k for each 1 ≤ i ≤ n′.

For the first condition to hold, we note that it is enough to ensure that AA> �
Is′ , as we can then set Σ := Is′ − AA>. For the second condition, let wi = Aei.
We need it to be the case that (1 − ε)s′ of the coordinates of wi equal δ/(η

√
k)

for each i. We note that AA> =
∑

i wiw>i . Thus, it suffices to find wi satisfying
the above condition such that

∑
i wiw>i � I.

This leaves the question of how to construct the wi. One thing to note is that
a set of corrupted samples trying to imitate samples fromN(0, I) ought to have
mean close to 0. This translates to saying that the wi should have the sum of
their coordinates roughly 0. This suggests the following construction: For each
1 ≤ i ≤ n′ and each 1 ≤ j ≤ s′, we let the jth coordinate of wi be δ/(η

√
k) with

probability (1 − ε/2) and −
(
δ/(η
√

k)
)

((1 − ε/2)/(ε/2)) otherwise.
We note that this construction does leave open the possibility that we will

have more than an ε-fraction of coordinates not equal to δ/(η
√

k). However,
by Markov’s inequality, each wi has at most a 1/2 probability of being bad in
this way. So, we will instead take wi generated in this way, conditioned on the
number of bad coordinates being at most εs′.

Thus, we need to show that with high probability
∑n′

i=1 wiw>i � I. For this,
we will use the matrix Chernoff bound (see Theorem A.8). We note that before
conditioning, the coordinates of each wi are independent with mean 0 with
variance O(δ2/(εkη2)). Thus, before conditioning, the expectation of wiw>i is
at most O(δ2/(εkη2))I. Since conditioning on an event with probability at least
1/2 at most doubles this expectation, we have that

E

 n′∑
i=1

wiw>i

 ≤ O(n′δ2/(εkη2))I .

Additionally, it is not hard to see that ‖wi‖
2
2 ≤ (s′δ2/(εkη2)). Therefore, by the

matrix Chernoff bound, the probability that
∑n′

i=1 wiw>i � I is at most

s′ exp(−Ω((εkη2)/(n′δ2)(n′/s′))) = s′ exp(−Ω((εkη2)/(s′δ2))) .
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Given that k is at least a sufficiently large constant multiple of log(s′)s′δ2/(εη2),
this will hold with high probability.

Thus, picking random wi will suffice with high probability. One can produce
an appropriate function g by finding such wi, which allows one to define A and
Σ satisfying the necessary properties. �

This completes our reduction. Putting everything together, we obtain the
following theorem.

Theorem 8.29 Let m, n, kn, km, k, s, d ∈ Z+ and ε, δ > 0 be such that:

• d = m and k = km

• kn divides both n and s
• k is at least a sufficiently large multiple of (log(s/kn)s+n) log(knkm)/(kn)(δ2/ε).

Then, if there is an algorithm that solves the RSM(s, d, k, ε, δ) decision problem
in time T with probability of success 2/3, there is an algorithm that solves the
k-BPC(n,m, kn, km) problem in time T +poly(nmsd) with probability of success
3/5.

Proof Let η be a sufficiently large constant multiple of
√

log(knkm). We con-
sider the graph G given by the k-BPC instance in question and interpret it as
an m× n matrix. We then apply the mapping f from Lemma 8.27 to each entry
and then apply g from Lemma 8.28 to each block {i} ×S , where S is one of the
parts of the partition E.

We treat the resulting matrix as an instance of RSM(s, d, k, ε, δ) and run the
appropriate algorithm. Note that the conditions above are sufficient to imply
that the conditions of Lemma 8.28 hold. Also, by the discussion above, it is
not hard to see that this transformation maps the distribution over H0 instances
of k-BPC to the distribution of H0 instances of RSM and maps the distribution
of H1 instances of k-BPC to some distribution close in total variation distance
to a distribution over H1 instances of RSM. This completes the proof. �

In applications of the above theorem, we will usually want to take n = s.
In order for the k-BPC problem to be conjecturally hard, we will want kn =

o(
√

n) = o(
√

s) and k = km = o(
√

m) = o(
√

d) (note that the latter condition
is necessary to get a Ω(k2) sample lower bound for robust mean estimation).
Finally, if we allow ourselves to take kn to be any function that is o(

√
s), we

can make the last condition hold so long as
√

s log(s) log(ds)/(δ2/ε) = o(k) .

In summary, subject to the hardness k-BPC, we have shown evidence that ro-
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bust sparse mean estimation is computationally hard if one is only allowed to
take o(k2(ε2/δ4)/ log4(ds)) samples.

8.3.2 Towards Worst-Case Hardness of Robust Mean Estimation

In the previous sections, we gave SQ lower bounds for a range of robust sta-
tistical tasks. We also showed that for some of these tasks, specifically robust
sparse mean estimation, one can establish reduction-based hardness from a
variant of the planted clique problem.

In this section, we will describe some progress towards establishing compu-
tational hardness for robust mean estimation under higher moment assump-
tions. An interesting distinction from the reduction-based result of Section
8.3.1 is that the reduction to be presented in this section is from a worst-case
rather than average-case problem.

To set the context, we recall that if D is a distribution on Rd with bounded
covariance, we can robustly estimate the mean of D to error O(

√
ε) in poly-

nomial time. Moreover, as we showed in Chapter 1, this error is information-
theoretically optimal in this general context. In order to do better, one needs
to assume some kind of stronger concentration bounds. A natural assumption
is that of bounded central moments. In particular, if we assume that the inlier
distribution D satisfies the following property: for every unit vector v, it holds
that

Ex∼uD[|v · x − v · E[D]|k] < 1 , (8.5)

then it is information-theoretically possible to achieve error Ok(ε1−1/k) using
the inefficient higher moments filter from Chapter 6. We remind the reader
the straightforward method to achieve this. One merely needs to compute the
empirical kth moment matrix, look for directions v for which Condition (8.5)
is violated, and filter in those directions. Unfortunately, the problem of de-
termining whether or not such a direction v exists is non-trivial when k > 2
(as opposed to the case where k = 2, in which case it amounts to finding an
eigenvalue of the moment matrix). This is why existing algorithms that take
advantage of these higher moments have traditionally needed some additional
assumptions beyond bounded central moments, like, e.g., that Cov[D] = I
(which allows one to use stability, as in Chapter 2), or SoS-certifiable bounded
central moments (as we used in Chapter 6).

This leads us to the natural question: is it computationally feasible to ro-
bustly learn a distribution under just the assumption of bounded kth central mo-
ments to error o(

√
ε)? Although the answer to this question is widely believed

to be negative, one cannot hope to demonstrate this with an SQ lower bound.
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In particular, the algorithm sketched in the previous paragraph is efficiently
implementable in the statistical query model (assuming k is not large)! Indeed,
the kth order moment tensor of D can be approximated using statistical queries,
and at that point finding a direction v to filter in becomes merely a computa-
tional problem. This leads to an SQ algorithm with complexity roughly dO(k).
(See Exercise 8.8 for a matching SQ lower bound.)

What we can consider instead is the computational hardness of this prob-
lem. Recent work showed that one can reduce the small-set expansion (SSE)
problem to certain variants of this problem. The SSE problem roughly asks,
given a graph G, whether or not there is a relatively small subset S of ver-
tices so that |∂S |/|S | is small. In more detail, given a graph G on n nodes, in
the SSE problem the goal is to find a small subset of the nodes (say, a small
constant fraction) which is non-expanding, i.e., which has relatively few edges
connecting to the rest of the graph. The SSE problem is a well-studied and
conjecturally hard problem related to the Unique Games Conjecture (UGC).
In terms of reductions, one can show the following.

Theorem 8.30 Suppose that there exists an algorithm that for some k ≥ 4 and
some points ai ∈ Rd can distinguish between the cases where the kth central
moment of the ai’s is large in some direction and the case where all of the
first k central moments of the ai are small. Then there exists a polynomial-time
algorithm for the SSE problem.

The proof of Theorem 8.30 is somewhat involved and beyond the scope of
this book. The high-level idea is that one could search for a nonexpanding set
by searching for its indicator function using techniques from spectral graph
theory. Specifically, given a graph on n nodes, one can efficiently find vectors
a1, . . . , an such that for any subset of vertices T , the distance of 1/|T |

∑
i∈T ai

to the origin depends on the expansion of the set T , with this distance being
small for expanding sets and large for non-expanding ones. Roughly speaking,
the search boils down to finding a vector with large higher moments, and this
search problem can be made equivalent to the search problem of determining
if a point set has bounded central moments.

Exercises

8.1 (Statistical Query Algorithms and Random Classification Noise) One of
the initial motivations for studying the Statistical Query model is a type
of resiliency it has against what is known as random classification noise.
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In particular, when trying to learn properties of a Boolean-valued func-
tion f , one says that one has random classification noise at rate η < 1/2
if instead of seeing samples of the form (X, f (X)), the algorithm observes
(X,− f (X)) with probability η. To be slightly more precise, first X is sam-
pled from a marginal distribution, and then Y is set to be f (X) with prob-
ability 1 − η and − f (X) otherwise. The algorithm is then given samples
from the joint distribution on (X,Y).

Suppose that one wants an algorithm to compute some properties of
f given samples with random classification noise. Show that if there is a
Statistical Query algorithm that given access to the noiseless distribution
(X, f (X)), learns these properties using n queries of tolerance τ, then
there is a noise-tolerant algorithm that, given access to the distribution
with η random classification noise, uses n queries of tolerance τ/|1−2η|.

8.2 (Statistical Query Algorithms for Robust Estimation) Show that the fol-
lowing algorithms can be simulated using Statistical Query algorithms.
For all of these you may assume that all points of the distribution in ques-
tion are contained in a ball about the origin of radius R (if this is not the
case, certain technical issues arise).

(a) The filtering algorithm for robust mean estimation. In particular, if X
is an (ε, δ)-stable distribution on Rd and Y another distribution with
dTV(X,Y) ≤ ε, give an algorithm that given Statistical Query access
to Y uses poly(d/ε) queries of tolerance poly(ε/(dR)) and returns a µ̂
with ‖µ̂ − E[X]‖2 = O(δ).

(b) The multifiltering algorithm for distributions of bounded covariance.
In particular, suppose X is a distribution on Rd with Cov[X] � I and
Y = αX + (1 − α)E, for some distribution E. Give an algorithm that
given Statistical Query access to Y uses poly(d/α) queries of tolerance
poly(α/(dR)) and returns a list of poly(1/α) hypotheses at least one of
which is within distance Õ(α−1/2) of the mean of X.

8.3 (Degree Dependence for Moment Matching) Prove that the bound in
Lemma 8.18 can be taken to be poly(m) max0≤t≤m |at |Ω(C)−t−1. A useful
fact to that end is that the Legendre Polynomials (which are the orthog-
onal polynomials in the sense of Section A.2 for X under the uniform
distribution over [−1, 1]) have the explicit formula

Pn(x) =

√
2n + 1

2
2−n

bn/2c∑
k=0

(−1)k
(
n
k

)(
2n − 2k

n

)
xn−2k .

Use this fact to prove Remark 8.19.
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8.4 (Nearly-Matching Moments) Lemma 8.12 holds when the first m mo-
ments of A exactly match those of a standard Gaussian. Unfortunately,
sometimes this requirement is too much to ask for. Show that if instead
we have that |E[At] − E[Gt]| < ν, for all integers 1 ≤ t ≤ m, for some
ν > 0, then so long as |u · v| is less than a sufficiently small absolute
constant, the following holds:

|χN(0,I)(PA
v ,P

A
u ) − 1| ≤ |u · v|m+1χN(0,1)(A, A) + ν2 .

(Hint: You might need to use the fact that the sum of the absolute
values of the coefficients of hn(x) is 2O(n).)

8.5 (Optimality of SQ Lower Bounds for Non-Gaussian Component Analy-
sis) Suppose that A is a distribution on R supported on [−R,R] and sup-
pose that for some positive integer m we have that |E[Am] − E[Gm]| > ε.
Show that there is a Statistical Query algorithm that given query access
to PA

v learns a vector u with ‖u − v‖2 < 1/2 using O(dm) queries of accu-
racy Ω(ε/(dR)m).

8.6 (Sparse SQ Lower Bounds) Prove Proposition 8.24.
8.7 (SQ Lower Bound for Robust Linear Regression) Let X be the stan-

dard Gaussian in Rd and let Y = β · X + N(0, σ2) for some vector
β ∈ Rd with ‖β‖2 ≤ 1. Let Z be a random variable in Rd+1 such that
dTV(Z, (X,Y)) ≤ ε. The robust linear regression problem asks one to
approximate β given access to Z. It was shown in Exercise 7.3 how to
achieve error O(σε

√
log(1/ε)) in polynomial time. These algorithms can

in fact be implemented in the Statistical Query model. Show that this er-
ror is in fact optimal in the Statistical Query model.

In particular, show that no algorithm with Statistical Query access to Z
can learn β to error o(σε

√
log(1/ε)) with polynomially many queries of

inverse polynomial tolerance. Note that this lower bound will be some-
what different than our other SQ lower bounds, because it will be hard to
make Z imitate a standard Gaussian in the Y direction. Instead, we will
want to produce a distribution such that conditioned on the value of Y ,
one will have an appropriate moment-matching distribution.

(a) Given any unit vector v, positive integer m, and ε > 0 sufficiently
small, produce a distribution Zv such that:

– Zv is ε-close in total variation distance to the distribution (X,Y)
when β = v.

– For any value y ∈ R, the conditional distribution Z | Y = y is PAy
v ,

for some distribution Ay that matches its first m moments with the
standard Gaussian.
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(b) Prove a correlation lemma showing that

χ(N(0,I),N(0,1+σ2))(Zu,Zv) ≤ |u · v|m+1Ey∼N(0,1+σ2)[χN(0,1)(Ay, Ay)] .

(c) Use this to prove the final SQ lower bound.

8.8 (Lower Bound for Robust Mean Estimation of Subgaussians) Consider
the following robust estimation problem. Let X be a distribution in Rd

with subgaussian tails and mean µ with ‖µ‖2 ≤ 1. Show that for any
positive integer k > 2 there is a ck > 0 such that any SQ algorithm that,
given access to an ε-corrupted version of X, learns µ within `2-error at
most ckε

1−1/k, must either use 2dΩ(1)
queries or some query of accuracy

d−Ω(k).
Note: there is a nearly-matching SQ algorithm that uses dO(k) queries of
accuracy d−Ω(k) in order to learn the kth moment matrix, and then (using
an inefficient algorithm requiring no queries) determines if there is a di-
rection with large kth central moment and uses this to filter. Furthermore,
this lower bound can be extended to encompass the assumption that X
has a sum-of-squares proof of bounded kth moments, in which case this
algorithm can be made to be computationally efficient.

8.9 (Lower Bound for Learning Mixtures of Gaussians) A classical unsu-
pervised learning problem is that of learning mixtures of Gaussians. In
particular, given sample access to a distribution X ∼

∑k
i=1 wiN(µi,Σi) in

Rd, the goal is to learn a distribution close to X in total variation dis-
tance. Prove that any SQ algorithm that achieves this for k < d must
either use exponential in d many queries or use some queries of toler-
ance Ok(d−Ω(k)). Show that this is the case even if ‖µi‖2 < poly(dk), and
(1/poly(d)) I � Σi � poly(d) I for all i, and each component N(µi,Σi)
is far from each other component in total variation distance. What SQ
lower bound can you prove for the special case of uniform weights, i.e.,
when wi = 1/k, for all i?

(Hint: You might want to consider the example of “parallel pancakes”,
where the Σi’s are all the same but very thin in some hidden direction.)

8.10 (Information-Theoretic Bounds on NGCA Testing) In this exercise, you
are asked to show information-theoretic lower bounds for the hypothe-
sis testing version of NGCA (as in Definition 8.11), assuming that the
distribution A satisfies Condition 8.10 with m ≥ 1.

(a) Let d and N be positive integers and let DN denote the distribution over
Rd×N given by taking N i.i.d. samples from the standard Gaussian D =

N(0, Id) on Rd. Let DN
0 denote the distribution over Rd×N obtained

by picking a uniform random unit vector v and then taking N i.i.d.



Exercises 275

samples from PA
v . Show that

χDN (DN
0 ,D

N
0 )

≤ Eu,v∼uSd−1

[(
χD(PA

u ,P
A
v )

)N
]

≤ 1 + Om(Nd−(m+1)/2χG(A, A)) + O(χA(G,G))N(2−d + d−mN/2) .

(b) Conclude that if χG(A, A) = O(1) and if N is less than a sufficiently
small constant multiple of d, then dTV(DN ,DN

0 ) < 1/10, and thus that
the NGCA testing problem cannot be solved with 2/3 success proba-
bility given only N samples. Note that this is an unconditional lower
bound, even for non-SQ algorithms.

(c) Show that distinguishing between samples fromN(0, Id) and ε-corrupted
samples from N(µ, Id) with ‖µ‖2 > 10ε requires Ω(d) samples, even
for constant ε. Show that this testing task is information-theoretically
possible with O(d/ε2) samples.

(d) Show that distinguishing between the standard Gaussian N(0, Id) and
the single spike GaussianN(0, Id +vv>/2), for an unknown unit vector
v requires Ω(d) samples.

8.11 (Quasi-Polynomial Robust Gaussian Mean Testing) Theorem 8.16 shows
that any SQ algorithm that distinguishes the mean of an ε-corrupted
Gaussian being 0 vs 100ε-far from 0 requires super-polynomial resources.
It turns out that the required resources do not need to be substantially
super-polynomial. Show that, for some k = O(

√
log(1/ε)), if X = N(0, Id)

and X′ is a distribution satisfying dTV(X′,N(µ, Id)) ≤ ε and ‖µ‖2 ≥ 100ε,
for some t ≤ k the tth moment tensors of X and X′ differ by Ω(ε). Using
this structural result, design an SQ algorithm using poly(dk) queries of
accuracy poly(ε/dk) to distinguish between these cases.

(Hint: let f (x) be a low-degree polynomial approximation to the func-
tion sin(cµ · x) for a carefully chosen constant c. Show that if the low-
degree moments of X and X′ agree, one can reach a contradiction by
comparing the expectations of f (X) and f (X′).)

8.12 (SQ Lower Bound for Robust Covariance Estimation in Spectral Norm)
Consider the problem of robustly estimating the covariance matrix of a
Gaussian X ∼ N(0,Σ) on Rd in spectral norm. Specifically, assuming
that ‖Σ‖2 ≤ poly(d/ε), the goal is to output a hypothesis matrix Σ̃ such
that (1/2)Σ̃ � Σ � 2Σ̃, given access to an ε-corruption of X. Show that,
for any sufficiently small constant c > 0, any SQ algorithm for this task
requires either 2O(1/ε)Ω(dc/2) queries or at least one query with tolerance
2O(1/ε)Ω(d)−(1−2c).
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(Hint: Use the generic NGCA construction, where A is a carefully
selected mixture of three Gaussians.)

Remark 8.31 An intuitive interpretation of this SQ lower bound is that
any efficient SQ algorithm for this robust estimation task, for constant
ε, requires Ωc(d2−c) samples, for any constant c > 0. This is particularly
interesting in light of the fact that information-theoretically O(d) samples
are sufficient (see Exercise 4.3).

8.4 Discussion and Related Work

The study of information-computation tradeoffs in high-dimensional robust
statistics was initiated in [DKS17], which established the first such lower bounds
in the Statistical Query (SQ) model.

The SQ model was originally defined by [Kea98] in the context of PAC
learning of Boolean functions. The model was generalized for learning prob-
lems over distributions in [FGR+17]. The latter work also defined the notion
of SQ dimension used in Section 8.2.2. For a discussion on the generality of
the SQ model, the reader is referred to [Fel16, FGR+17, FGV17].

The NGCA problem was originally proposed in [BKS+06] and has since
been studied in a range of works from on algorithmic standpoint, see [TV18,
GS19] and references therein. The methodology of establishing SQ hardness
for high-dimensional statistical tasks via NGCA presented in Section 8.2.3 is
due to [DKS17]. The applications to robust mean estimation (Section 8.2.4.1)
and robust sparse mean estimation (Section 8.2.4.3) appeared in the same
work. The SQ lower bound on list-decodable mean estimation (Section 8.2.4.2)
was obtained by [DKS18b]. It is worth noting that the NGCA-based frame-
work has been leveraged to obtain SQ lower bounds in several subsequent
works [DKS19, GGJ+20, DKKZ20, DKZ20, GGK20, DK22, DKPZ21, DKP+21,
DKK+22d, DKS22]. Interestingly, for some of these problems, the SQ-hard
instances have formed the basis for computational hardness reductions from
cryptographically hard problems [BRST21, GVV22, DKMR22].

The reduction from the variant of the planted clique problem to robust sparse
mean estimation presented in Section 8.3.1 is due to [BB20], and is an instance
of a sequence of reductions obtained in that work. The reduction-based hard-
ness for robust mean estimation presented in Section 8.3.2 is due to [HL19],
building on ideas from [BBH+12].

The study of information-computation tradeoffs in high-dimensional statis-
tical estimation has been a growing field at the interface of Computer Science
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and Statistics during the past decade. A notable early result in this area is a
computational-statistical tradeoff established for the task of sparse PCA, un-
der a plausible assumption on the average-case hardness of the planted clique
problem [BR13]. More recently, a line of work has obtained lower bounds
against the Sum-of-Squares hierarchy for certain statistical tasks, including
tensor PCA and sparse PCA [HKP+17].



Appendix
Mathematical Background

Here we review some basic mathematical results that are required to under-
stand some of the arguments in this book. These tools are not entirely standard
and would disrupt the flow of the text if inserted directly into the relevant chap-
ters. It is suggested that the reader skim the results in this section before read-
ing and acquaint themselves with any topic with which they are not already
familiar.

A.1 Martingales

At a casino you know that every game in the house is stacked against you. But
despite this fact, you wonder if maybe some clever strategy of sequential bets
would allow you to make money. For example, you could start with a small bet,
and if you lose make a larger bet to recoup your losses. If you lose again, you
make an even larger bet; and so on. If you win any of these bets you will make
money and you will only come out behind if you lose enough times in a row
that you can no longer continue this sequence of increasingly larger bets. This
type of situation can be difficult to analyze directly if your strategy of what
bet to place next depends in a complicated way on previous bets. However, the
fact that each bet is individually losing suffices to show that even complicated
combinations of bets cannot earn money.

A (discrete-time) martingale is a mathematical abstraction of the above no-
tion of making a potentially complicated sequence of fair bets. There are also
the related concepts of a submartingale and supermartingale, if the bets are
always advantageous or disadvantageous, respectively. To formalize this, sup-
pose that you make a sequence of bets and that Xn is a random variable speci-
fying the amount of money you have after the nth bet. The fact that the (n + 1)st

bet is fair means that even if we know the history Hn of the first n bets, it should

This material will be published by Cambridge University Press as Algorithmic
High-Dimensional Robust Statistics by Ilias Diakonikolas and Daniel M. Kane.
This pre-publication version is free to view and download for personal use only. Not for
re-distribution, re-sale or use in derivative works. c© Ilias Diakonikolas and Daniel M. Kane 2022.
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hold that E[Xn+1 | Hn] = Xn. Relaxing this expectation somewhat, we find that
E[Xn+1 | X1, X2, . . . , Xn] = Xn. Formally, this is the property that defines a
martingale.

Definition A.1 A (discrete-time) martingale (resp. submartingale, supermartin-
gale) is a sequence of random variables X1, X2, X3, . . . such that the expectation
E[Xn+1 | X1, X2, . . . , Xn] equals Xn (resp. ≥ Xn, ≤ Xn).

The most basic result in the theory of martingales is that any sequence of
fair bets is a fair bet; or equivalently all Xn in a martingale have the same
expectation. The following lemma is easily proved by induction on n:

Lemma A.2 Let X1, X2, . . . be a martingale (resp. a sub/super-martingale).
Then for any n, E[Xn] equals E[X1] (resp. is at least/most E[X1]).

Suppose that you want to stop your sequence of betting early. To do this,
you want some rule that, given the outcome of your first n bets, lets you decide
whether to take the (n + 1)st. This leads to a notion known as a stopping time.

Definition A.3 Given a sequence of random variables X1, X2, . . ., a stopping
time τ is non-negative integer-valued random variable such that whether or not
τ = n can be determined from X1, X2, . . . , Xn.

Unfortunately, using a stopping time, cannot allow you to beat the casino
either. This is formalized in the following classical result:

Theorem A.4 (Optional Stopping Theorem) Let X1, X2, . . . be a martingale
(resp. sub/super-martingale) and let τ be a stopping time, where τ ≤ N al-
most surely for some integer N. Then, we have that E[Xτ] equals (resp. is at
least/most) E[X1].

Proof The proof follows from noting that {Xmin(n,τ)}n≥1 is itself a martingale
(or sub/super-martingale) and applying Lemma A.2. �

Note that the assumption that τ is bounded here is critical. The gambler’s
ruin theorem says that if a gambler makes a sequence of fair, $1 bets until they
run out of money, they will do so eventually with probability 1.

The main application of this theory we will need comes from combining
Theorem A.4 with Markov’s inequality.

Proposition A.5 Let X1, X2, . . . , Xn be a supermartingale with Xi ≥ 0 almost
surely for each i. Let x = E[X1]. Then for any t > 1, we have that

Pr
[
max
1≤i≤n

Xi ≥ tx
]
<

1
t
.
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Proof Let τ be either the minimum i ≤ n such that Xi ≥ tx, or n if no such
i exists. Since τ is a stopping time, by Theorem A.4 we have that E[Xτ] ≤ x.
The result then follows from Markov’s Inequality. �

A.2 Hermite Polynomials

Let X be a real valued random variable with infinite support such that E[|X|n] <
∞ for all n. It is not hard to see by induction on n that there is a unique set of
polynomials p1, p2, . . . such that:

1. pn is a polynomial of degree n with non-negative leading coefficient.
2. E[pn(X)pm(X)] = δn,m.

This is proved essentially be applying the Gram-Schmidt process to the se-
quence 1, X, X2, X3, . . .. These polynomials are known as the orthogonal poly-
nomials with respect to X.

When X ∼ N(0, 1) is the Gaussian distribution, these polynomials are (up
to normalization) the Hermite Polynomials. In particular, the nth probabilist’s
Hermite polynomial is a polynomial, typically denoted as Hen(x), that satisfies
the desired properties up to normalization. In particular, if we define hn(x) =

Hen(x)/
√

n!, these are the correct orthonormal polynomials for the Gaussian
distribution.

There are a few additional facts about Hermite polynomials that will be criti-
cally leveraged in this text. The first is that they are a basis for the Hilbert space
of L2 functions over the Gaussian distribution. In particular, this means that if
f is any measurable function with E[| f (X)|2] < ∞, there exist real numbers
a0, a1, a2, . . . such that f (x) =

∑∞
n=0 anhn(x) almost everywhere. Furthermore,

one can compute these an as an = E[ f (X)hn(X)].
Next, it is useful to note that there is an explicit formula for the Hermite

polynomials. In particular, we have that

hn(x) =
√

n!
bn/2c∑
m=0

(−1)mxn−2m

2mm!(n − 2m)!
.

Finally, the Ornstein-Uhlenbeck operators are a series of operators mapping
functions on R to functions on R, defined by:

(Ut f )(y) :=
∫

R
f (ty +

√
1 − t2z)g(

√
1 − t2y − tz)dz .

The eigenvalues of these operators can be expressed in terms of the Hermite
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polynomials. In particular, we have that

Ut(hn(x)g(x)) = tnhn(x)g(x) ,

where g(x) is the probability density of the standard Gaussian.

A.3 Probabilistic Inequalities

The following basic probabilistic inequalities are used in various places within
this book.

We start with Jensen’s inequality for convex functions.

Theorem A.6 (Jensen’s Inequality) If f : R→ R is a convex function and X
a real-valued random variable, then we have that

E[ f (X)] ≥ f (E[X]) ,

assuming that both expectations are well defined.

We will make essential use of the following version of Bernstein’s inequality
for sums of independent and bounded random variables.

Theorem A.7 (Bernstein’s Inequality) Let X1, . . . , Xn be independent, zero
mean random variables with |Xi| ≤ M almost surely. Then, we have that

Pr

∣∣∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣∣∣ ≥ t

 ≤ 2 exp
− t2/2∑n

i=1 E[X2
i ] + Mt/3

 .
We will also require the following concentration inequality for sums of in-

dependent matrix-valued random variables.

Theorem A.8 (Matrix Chernoff Bound) Let Xi be a sequence of independent
random variables valued in symmetric d × d matrices. Furthermore, assume
that for each n, 0 � Xn � R Id almost surely. Let µmin be the smallest eigenvalue
of

∑N
n=1 E[Xn] and µmax the largest eigenvalue. Then, for any 0 ≤ δ < 1, we

have that:

Pr
λmin

 N∑
n=1

Xn

 ≤ (1 − δ)µmin

 ≤ d
[

e−δ

(1 − δ)1−δ

]µmin/R

Pr
λmax

 N∑
n=1

Xn

 ≥ (1 + δ)µmax

 ≤ d
[

eδ

(1 + δ)1+δ

]µmax/R

.

The following concentration inequality for low-degree polynomials over
Gaussian inputs follows as a corollary of hypercontractivity.
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Theorem A.9 (Hypercontractive Inequality for Gaussian Polynomials) Let
X ∼ N(0, I) be a multidimensional Gaussian and let p be a degree-k polyno-
mial. Then, for any t > 0, we have that

Pr
[
|p(X)| > t

√
E[p(x)2]

]
≤ O

(
exp(−(t/3)2/k

)
.

The following result can be used to derive packing bounds of the unit sphere.

Theorem A.10 (Packing and Covering Bounds) Let x and y be random unit
vectors in Rd. Then, for t ≥ 0, we have that

Pr[|x · y| > t] < O(1) exp−Ω(t2d) .

In particular, if N = cecd/t2
, for some sufficiently small constant c > 0, then

with constant probability N random unit vectors x1, x2, . . . , xN satisfy

max
1≤i< j≤N

|xi · x j| < t .

Conversely, for 0 < c < 1, we have that

Pr[|x · y| > c] = 2−Θc(d).

This means that a maximal set of points C ⊂ Sd−1 such that for no x, y ∈ C and
z ∈ Sd−1 |x · z|, |y · z| > c will have size 2Oc(d). For such a set C and any y ∈ Sd−1,
there will exist x ∈ C and z ∈ Sd−1 with |x · z|, |y · z| > c, which implies that
|x · y| > 2c − 1.

We will require an additional powerful result from empirical process theory,
known as VC inequality. To formally state it, we recall the definition of the VC
dimension.

Definition A.11 (VC-Dimension) For a class C of Boolean functions on a
set X, the VC-dimension of C is the largest d such that there exists d points
x1, x2, . . . , xd ∈ X so that for any Boolean function g : {x1, x2, . . . , xd} → {±1},
there exists an f ∈ C satisfying f (xi) = g(xi), for all 1 ≤ i ≤ d.

Equivalently, if C is a collection of subsets ofX, we define its VC-dimension
to be the VC-dimension of the set of indicator functions of sets in C.

Given this definition, the VC inequality is the following:

Theorem A.12 (VC-Inequality) Let C be a class of Boolean functions on X
with VC-dimension d, and let X be a distribution on S . Let ε > 0 and let n
be an integer at least a sufficiently large constant multiple of d/ε2. Then, if
x1, x2, . . . , xn are i.i.d. samples from X, we have that:

Pr
sup

f∈C

∣∣∣∣∣∣
∑n

j=1 f (x j)

n
− E[ f (X)]

∣∣∣∣∣∣ > ε
 = exp(−Ω(nε2)) .



A.3 Probabilistic Inequalities 283

Theorem A.12 essentially says that with a relatively small number of sam-
ples the empirical mean of f is close to the true mean of f for all f ∈ C
simultaneously.

A particularly useful application of this result comes from the following
class of functions:

Lemma A.13 Let Cd denote the class of degree-d polynomial threshold func-
tions (PTFs) on Rn, namely the collection of functions of the form f (x) =

sign(p(x)) for some degree at most d real polynomial p. (Note that if d = 1 this
is just the set of linear threshold functions (LTFs).) Then, the VC dimension of
Cd equals

(
n+d

d

)
.
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Adaptive contamination, 19

Bernstein’s inequality, 37, 76, 282
Binary products, 67
Bipartite planted clique problem, 266
Bounded moments graph, 186
Breakdown point, 32, 36, 68

Central moments, 48, 181
Chow parameters, 223, 237
Contamination

Adaptive, 19
Additive, 15, 20, 34, 92

Majority errors, 133
General, 15, 20, 34
Subtractive, 15, 17, 20, 34, 92

Covariate, 218
Cover, 30, 76, 283

Filter, 51
Difference of pairs, 184, 185

Clustering, 204
Rounding algorithm, 189
SoS filter, 197

Higher moment, 271
Multifilter, 145, 152

Higher moments, 212
Naive, 41
Near-linear time, 83
Randomized filter, 58

Independent removal, 60
Thresholding, 60

Subspace isotropic filter (SIFT), 155
Sum of squares, 201
Tail bound based, 55, 65
Universal, 63
Weighted filter, 60

Gaussian mixtures, 123, 167, 204, 275

Geometric median, 37
Gradient descent, 232

Hermite polynomials, 128, 252, 281
High probability mean estimation, 70
Huber noise model, 15, 33, 67, 108, 239, 263
Hypercontractive inequality, 220, 283

Inter-quartile-range, 25

Jensen’s inequality, 181, 184, 187, 282

Least squares regression, 219
Legendre polynomials, 273
Linear regression, 218, 236, 274
Linear threshold function, 237
List-decodable learning, 132, 135
Localization, 228
Logistic regression, 238

Mahalanobis distance, 114
Marginal distribution, 222
Martingale, 58, 88, 153, 186, 199, 280
Matrix Chernoff, 81, 269, 282
Median, 24, 34
Mixture models, 167
Mixtures, 16

Non-Gaussian component analysis, 250

Ornstein-Uhlenbeck operator, 252, 281
Orthogonal polynomials, 273, 281
Overlap graph, 188

Plancherel’s identity, 246
Planted clique, 265
Pseudo-distribution, 17
Pseudo-expectation, 194

Quantile, 24

Random classification noise, 272
Regressor, 218
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Rejection sampling, 228
Relative operator norm, 128
Resilience, 65

Small-set expansion problem (SSE), 272
SoS-certifiable bounded moments, 193
Sparse mean estimation, 37, 102, 263
Stability, 44

Alternative criteria, 74
and bounded covariance, 80
Covariance stability, 116

STAT oracle, 244
Statistical query (SQ) algorithms, 243
Statistical query dimension, 249
Stochastic optimization, 230
Stopping time, 280
Strong contamination model, 20
Subgaussian, 46
Subgaussian distribution, 28
Sum of squares proof, 193

Total variation distance, 18, 33
Truncated mean, 26, 88
Tukey median, 31

Unknown convex programming method, 51,
105

Untrusted batches, 67

Variance of polynomials method, 182
VC dimension, 283
VC inequality, 28, 30, 46, 58, 65, 95, 96, 139,
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