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Robust High-Dimensional Statistics
Ilias Diakonikolas and Daniel M. Kane

Abstract

Learning in the presence of outliers is a fundamental problem in statistics. Until

recently, all known efficient unsupervised learning algorithms were very sensitive to

outliers in high dimensions. In particular, even for the task of robust mean estima-

tion under natural distributional assumptions, no efficient algorithm was known. A

recent line of work gave the first efficient robust estimators for a number of fun-

damental statistical tasks, including mean and covariance estimation. This chapter

introduces the core ideas and techniques in the emerging area of algorithmic high-

dimensional robust statistics with a focus on robust mean estimation.

1.1 Introduction

Consider the following basic statistical task: Given n independent samples from an

unknown mean spherical Gaussian distribution N (µ, I) on Rd, estimate its mean

vector µ within small `2-norm. It is not hard to see that the empirical mean has

`2-error at most O(
√
d/n) from µ with high probability. Moreover, this error upper

bound is best possible among all n-sample estimators.

The Achilles heel of the empirical estimator is that it crucially relies on the

assumption that the observations were generated by a spherical Gaussian. The

existence of even a single outlier can arbitrarily compromise this estimator’s per-

formance. However, the Gaussian assumption is only ever approximately valid, as

real datasets are typically exposed to some source of contamination. Hence, any

estimator that is to be used in practice must be robust in the presence of outliers.

Learning in the presence of outliers is an important goal in statistics and has

been studied in the robust statistics community since the 1960s (Huber, 1964).

Classical work in statistics pinned down the sample complexity of high-dimensional

robust estimation in several settings of interest. In contrast, until very recently,

even the most basic computational questions in this field were poorly understood.

For example, the Tukey median (Tukey, 1975) is a sample-efficient robust mean
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estimator for spherical Gaussian distributions. However, it is NP-hard to compute in

general (Johnson and Preparata, 1978) and the heuristics proposed to approximate

it degrade in the quality of their approximation as the dimension scales.

Until recently, all known computationally efficient high-dimensional estimators

could only tolerate a negligible fraction of outliers, even for the basic statistical task

of mean estimation. Recent work by Diakonikolas, Kamath, Kane, Li, Moitra, and

Stewart (Diakonikolas et al., 2016), and by Lai, Rao, and Vempala (Lai et al., 2016)

gave the first efficient robust estimators for various high-dimensional unsupervised

tasks, including mean and covariance estimation. Specifically, Diakonikolas et al.

(2016) obtained the first robust estimators with dimension-independent error, i.e.,

with error scaling only with the fraction of corrupted samples and not with the

dimensionality of the data. Since then, there has been significant research activity

on designing computationally efficient robust estimators in a variety of settings.

Contamination Model. Throughout this chapter, we focus on the following model

of robust estimation that generalizes several other existing models:

Definition 1.1 Given 0 < ε < 1/2 and a distribution family D on Rd, the

adversary operates as follows: The algorithm specifies a number of samples n, and

n samples are drawn from some unknown D ∈ D. The adversary is allowed to

inspect the samples, remove up to εn of them and replace them with arbitrary

points. This modified set of n points is then given to the algorithm. We say that a

set of samples is ε-corrupted if it is generated by the above process.

The contamination model of Definition 1.1 is qualitatively similar to the semi-

random models studied in Chapters 9 and 10 of this book: First, nature draws a

set S of i.i.d. samples from a statistical model of interest, and then an adversary

is allowed to change the set S in a bounded way to obtain an ε-corrupted set T .

The parameter ε is the proportion of contamination and quantifies the power of the

adversary. Intuitively, among our samples, a (1 − ε) fraction are generated from a

distribution of interest and are called inliers, and the rest are called outliers.

One can consider less powerful adversaries, giving rise to weaker contamination

models. An adversary may be (i) adaptive or oblivious to the inliers, (ii) only allowed

to add corrupted points, or only allowed to remove existing points, or allowed to do

both. For example, in Huber’s contamination model (Huber, 1964), the adversary

is oblivious to the inliers and is only allowed to add outliers.

In the context of robust mean estimation, given an ε-corrupted set of samples

from a well-behaved distribution (e.g., N (µ, I)), we want to output a vector µ̂ such

that the `2-error is minimized. The goal here is to achieve dimension-independent

error, i.e., error that scales only with the fraction of outliers ε.

Sample Efficient Robust Estimation. The problem of robust mean estimation seems

so innocuous that one could naturally wonder why simple approaches do not work.
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In the one-dimensional case, it is well-known that the median is a robust estimator

of the mean in the Gaussian setting. It is easy to show (see Exercise 1.1) that

several natural high-dimensional generalizations of the median (e.g., coordinate-

wise median, geometric median, etc.) lead to `2-error of Ω(ε
√
d) in d dimensions.

It should also be noted that, in contrast to the uncorrupted i.i.d. setting, in the

contaminated setting it is not possible to obtain consistent estimators — that is,

estimators with error converging to zero in probability as the sample size increases

indefinitely. Typically, there is an information-theoretic limit on the minimum error

that depends on ε and structural properties of the underlying distribution family.

In particular, for the one-dimensional Gaussian case, we have:

Fact 1.2 Any robust estimator for the mean of N (µ, 1), must have `2-error Ω(ε),

even in Huber’s contamination model.

To prove this fact, we proceed as follows: Given two distributions N (µ1, 1) and

N (µ2, 1) with |µ1 − µ2| = Ω(ε), the adversary constructs two noise distributions

N1, N2 such that (1− ε)N (µ1, 1) + εN1 = (1− ε)N (µ2, 1) + εN2 (see Exercise 1.2).

Ignoring computational considerations, it is not difficult to obtain a sample-

efficient robust estimator matching this error guarantee in any dimension:

Proposition 1.3 There exists an (inefficient) algorithm that, on input an ε-

corrupted set of samples from N (µ, I) of size Ω((d+ log(1/τ))/ε2), outputs µ̂ ∈ Rd

such that with probability at least 1− τ , it holds that ‖µ̂− µ‖2 = O(ε).

The algorithm underlying Proposition 1.3 relies on the following simple idea,

which is the underlying idea in Tukey’s median (Tukey, 1975): It is possible to

reduce the high-dimensional robust mean estimation problem to a collection of

(exponentially many) one-dimensional robust mean estimation problems. In more

detail, the algorithm proceeds by using a one-dimensional robust mean estimator

to estimate v · µ, for an appropriate net of 2O(d) unit vectors v ∈ Rd, and then

combines these estimates to obtain an accurate estimate of µ (see Exercise 1.2).

Tukey’s median gives the same guarantee for a spherical Gaussian and can be

shown to be robust for more general symmetric distributions. On the other hand,

the aforementioned estimator is applicable to non-symmetric distributions as well,

as long as there is an accurate robust mean estimator for each univariate projection.

Structure of this Chapter. In Section 1.2, we present efficient algorithms for robust

mean estimation. Section 1.2 is the main technical section of this chapter and

showcases a number of core ideas and techniques that can be applied to several

high-dimensional robust estimation tasks. Section 1.3 provides a high-level overview

of recent algorithmic progress for more general robust estimation tasks. Finally, in

Section 1.4 we conclude with a few remarks on the relevant literature.
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1.2 Robust Mean Estimation

In this section, we illustrate the main insights underlying recent algorithms for

high-dimensional robust estimation by focusing on the problem of robust mean

estimation. The objective of this section is to provide the intuition and background

required to develop robust learning algorithms in an accessible way. As such, we will

not attempt to optimize the sample or computational complexities of the algorithms

presented, other than to show that they are polynomial in the relevant parameters.

In the problem of robust mean estimation, we are given an ε-corrupted set of

samples from a distribution X on Rd and our goal is to approximate the mean of

X, within small error in `2-norm (Euclidean distance). In order for such a goal to

be information-theoretically possible, it is required that X belongs to a suitably

well-behaved family of distributions. A typical assumption is that X belongs to a

family whose moments are guaranteed to satisfy certain conditions, or equivalently,

a family with appropriate concentration properties. In our initial discussion, we will

use the running example of a spherical Gaussian, although the results presented here

hold in greater generality. That is, the reader is encouraged to imagine that X is

of the form N (µ, I), for some unknown µ ∈ Rd.

Structure of this Section. In Section 1.2.1, we discuss the basic intuition underlying

the presented approach. In Section 1.2.2, we will describe a stability condition

that is necessary for the algorithms in this chapter to succeed. In the subsequent

subsections, we present two related algorithmic techniques taking advantage of the

stability condition in different ways. Specifically, in Section 1.2.3, we describe an

algorithm that relies on convex programming. In Section 1.2.4, we describe an

iterative outlier removal technique, which has been the method of choice in practice.

1.2.1 Key Difficulties and High-Level Intuition

Arguably the most natural idea to robustly estimate the mean of a distribution

would be to identify the outliers and output the empirical mean of the remain-

ing points. The key conceptual difficulty is the fact that, in high dimensions, the

outliers cannot be identified at an individual level even when they move the mean

significantly. In many cases, we can easily identify the “extreme outliers” — via a

pruning procedure exploiting the concentration properties of the inliers. Alas, such

naive approaches typically do not suffice to obtain non-trivial error guarantees.

The simplest example illustrating this difficulty is that of a high-dimensional

spherical Gaussian. Typical samples will be at `2-distance approximately Θ(
√
d)

from the true mean. That is, we can certainly identify as outliers all points of

our dataset at distance more than Ω(
√
d) from the coordinate-wise median of the

dataset. All other points cannot be removed via such a procedure, as this could

result in removing many inliers as well. However, by placing an ε-fraction of outliers



8 I. Diakonikolas and D. M. Kane

at distance
√
d in the same direction from the unknown mean, an adversary can

corrupt the sample mean by as much as Ω(ε
√
d).

This leaves the algorithm designer with a dilemma of sorts. On the one hand,

potential outliers at distance Θ(
√
d) from the unknown mean could lead to large

`2-error, scaling polynomially with d. On the other hand, if the adversary places

outliers at distance approximately Θ(
√
d) from the true mean in random directions,

it may be information-theoretically impossible to distinguish them from the inliers.

The way out is the realization that it is in fact not necessary to detect and remove

all outliers. It is only required that the algorithm can detect the “consequential

outliers”, i.e., the ones that can significantly impact our estimates of the mean.

Let us assume without loss of generality that there no extreme outliers (as these

can be removed via pre-processing). Then the only way that the empirical mean can

be far from the true mean is if there is a “conspiracy” of many outliers, all producing

errors in approximately the same direction. Intuitively, if our corrupted points are

at distance O(
√
d) from the true mean in random directions, their contributions will

on average cancel out, leading to a small error in the sample mean. In conclusion,

it suffices to be able to detect these kinds of conspiracies of outliers.

The next key insight is simple and powerful. Let T be an ε-corrupted set of

points drawn from N (µ, I). If such a conspiracy of outliers substantially moves

the empirical mean µ̂ of T , it must move µ̂ in some direction. That is, there is

a unit vector v such that these outliers cause v · (µ̂ − µ) to be large. For this to

happen, it must be the case that these outliers are on average far from µ in the

v-direction. In particular, if an ε-fraction of corrupted points in T move the sample

average of v · (X − µ), where X is the uniform distribution on T , by more than δ

(δ should be thought of as small, but substantially larger than ε), then on average

these corrupted points x must have v · (x − µ) at least δ/ε. This in turn means

that these corrupted points will have a contribution of at least ε · (δ/ε)2 = δ2/ε to

the variance of v · X. Fortunately, this condition can actually be algorithmically

detected! In particular, by computing the top eigenvector of the sample covariance

matrix, we can efficiently determine whether or not there is any direction v for

which the sample variance of v ·X is abnormally large.

The aforementioned discussion leads us to the overall structure of the algorithms

we will describe in this chapter. Starting with an ε-corrupted set of points T (per-

haps weighted in some way), we compute the sample covariance matrix and find

the eigenvector v∗ with largest eigenvalue λ∗. If λ∗ is not much larger than what it

should be (in the absence of outliers), by the above discussion, the empirical mean

is close to the true mean, and we can return that as an answer. Otherwise, we

have obtained a particular direction v∗ for which we know that the outliers play an

unusual role, i.e., behave significantly differently than the inliers. The distribution

of the points projected in the v∗-direction can then be used to perform some sort

of outlier removal. The outlier removal procedure can be quite subtle and crucially

depends on our distributional assumptions about the clean data.
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1.2.2 Good Sets and Stability

In this section, we give a deterministic condition on the uncorrupted data that is

necessary for the algorithms in this chapter to succeed (Definition 1.4). We also pro-

vide an efficiently checkable condition under which the empirical mean is certifiably

close to the true mean (Lemma 1.6).

Let S be a set of n i.i.d. samples drawn from X. We will typically call these

sample points good. The adversary can select up to an ε-fraction of points in S and

replace them with arbitrary points to obtain an ε-corrupted set T , which is given as

input to the algorithm. To establish correctness of an algorithm, we need to show

that with high probability over the choice of the set S, for any choices the adversary

makes, the algorithm will output an accurate estimate of the target mean.

To carry out such an analysis, it is convenient to explicitly state a collection of

sufficient deterministic conditions on the set S. Specifically, we will define a notion

of a “good” or “stable” set, quantified by the proportion of contamination ε and

the distribution X. The precise stability conditions vary considerably based on

the underlying estimation task and the assumptions on the distribution family of

the uncorrupted data. Roughly speaking, we require that the uniform distribution

over a stable set S behaves similarly to the distribution X with respect to higher

moments and, potentially, tail bounds. Importantly, we require that these conditions

hold even after removing an arbitrary ε-fraction of points in S.

The notion of a stable set must have two critical properties: (1) A set of N i.i.d.

samples from X is stable with high probability, when N is at least a sufficiently

large polynomial in the relevant parameters; and (2) If S is a stable set and T is

obtained from S by changing at most an ε-fraction of the points in S, then the

algorithm when run on the set T will succeed.

The robust mean estimation algorithms that will be presented in this chapter

crucially rely on considering sample means and covariances. The following stability

condition is an important ingredient in the success criteria of these algorithms:

Definition 1.4 (Stability Condition) Fix 0 < ε < 1/2 and δ ≥ ε. A finite set

S ⊂ Rd is (ε, δ)-stable (with respect to a distribution X) if for every unit vector

v ∈ Rd and every S′ ⊆ S with |S′| ≥ (1− ε)|S|, the following conditions hold:

1.
∣∣∣ 1
|S′|
∑
x∈S′ v · (x− µX)

∣∣∣ ≤ δ , and

2.
∣∣∣ 1
|S′|
∑
x∈S′(v · (x− µX))2 − 1

∣∣∣ ≤ δ2/ε.
The aforementioned stability condition or a variant thereof is used in almost

every known robust mean estimation algorithm. Definition 1.4 requires that after

restricting to a (1− ε)-density subset S′, the sample mean of S′ is within δ of µX
and the sample variance of S′ is 1 ± δ2/ε in every direction. The fact that these

conditions must hold for every large subset S′ of S might make it unclear if they

can hold with high probability. However, it is not difficult to show the following:
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Proposition 1.5 A set of i.i.d. samples from a spherical Gaussian of size Ω(d/ε2)

is (ε, O(ε
√

log(1/ε))-stable with high probability.

We sketch a proof of Proposition 1.5. The only property required for the proof

is that the distribution of the uncorrupted data has identity covariance and sub-

gaussian tails in each direction, i.e., the tail probability of each univariate projection

is bounded from above by the Gaussian tail.

Fix a direction v. To show the first condition, we note that we can maximize
1
|S′|
∑
x∈S′ v · (x − µX) by removing from S the ε-fraction of points x for which

v ·x is smallest. Since the empirical mean of S is close to µX with high probability,

we need to understand how much this quantity is altered by removing the ε-tail

in the v-direction. Given our assumptions on the distribution of the uncorrupted

data, removing the ε-tail only changes the mean by O(ε
√

log(1/ε)). Therefore, if

the empirical distribution of v · x, x ∈ S, behaves like a spherical Gaussian in this

way, the first condition is satisfied.

The second condition follows via a similar analysis. We can minimize the relevant

quantity by removing the ε-fraction of points x ∈ S with |v · (x − µX)| as large

as possible. If v · x is distributed like a unit-variance Gaussian, the total mass

of its square over the ε-tails is O(ε log(1/ε)). We have thus established that both

conditions hold with high probability for any fixed direction. Showing that the

conditions hold with high probability for all directions simultaneously can be shown

by an appropriate covering argument.

More generally, one can show quantitatively different stability conditions under

various distributional assumptions. In particular, if the distribution of the uncor-

rupted data is only assumed to have covariance matrix bounded by the identity (in

the Loewner order), then it can be shown that an Ω̃(d/ε) sized sample is (ε, O(
√
ε))

stable with high probability. (See Exercise 1.3 for additional examples.)

The aforementioned notion of stability is powerful and suffices for robust mean

estimation. For some of the algorithms that will be presented in this chapter, a

good set will be identified with a stable set; while others require the good set to

satisfy additional conditions beyond stability.

The main reason why stability suffices is quantified in the following lemma:

Lemma 1.6 (Certificate for Empirical Mean) Let S be an (ε, δ)-stable set with

respect to a distribution X, for some δ ≥ ε > 0. Let T be an ε-corrupted version

of S. Let µT and ΣT be the empirical mean and covariance of T . If the largest

eigenvalue of ΣT is at most 1 + λ, then ‖µT − µX‖2 ≤ O(δ +
√
ελ).

Roughly speaking, Lemma 1.6 states that if we consider an ε-corrupted version T

of any stable set S such that the empirical covariance of T has no large eigenvalues,

then the empirical mean of T closely approximates the true mean. This lemma, or

a variant thereof, is a key result in all known robust mean estimation algorithms.

Proof of Lemma 1.6. Let S′ = S ∩ T and T ′ = T \ S′. We can assume w.l.o.g.
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that |S′| = (1− ε)|S| and |T ′| = ε|S|. Let µS′ , µT ′ ,ΣS′ ,ΣT ′ represent the empirical

means and covariance matrices of S′ and T ′. A simple calculation gives that

ΣT = (1− ε)ΣS′ + εΣT ′ + ε(1− ε)(µS′ − µT ′)(µS′ − µT ′)T .

Let v be the unit vector in the direction of µS′ − µT ′ . We have that

1 + λ ≥ vTΣT v = (1− ε)vTΣS′v + εvTΣT ′v + ε(1− ε)vT (µS′ − µT ′)(µS′ − µT ′)T v
≥ (1− ε)(1− δ2/ε) + ε(1− ε)‖µS′ − µT ′‖22
≥ 1−O(δ2/ε) + (ε/2)‖µS′ − µT ′‖22 ,

where we used the variational characterization of eigenvalues, the fact that ΣT ′ is

positive semidefinite, and the second stability condition for S′. By rearranging, we

obtain that ‖µS′ − µT ′‖2 = O(δ/ε+
√
λ/ε). Therefore, we can write

‖µT − µX‖2 = ‖(1− ε)µS′ + εµT ′ − µX‖2 = ‖µS′ − µX + ε(µT ′ − µS′)‖2
≤ ‖µS′ − µX‖2 + ε‖µS′ − µT ′‖2 = O(δ) + ε ·O(δ/ε+

√
λ/ε)

= O(δ +
√
λε) ,

where we used the first stability condition for S′ and our bound on ‖µS′−µT ′‖2.

Lemma 1.6 says that if our input set of points T is an ε-corrupted version of a

stable set S and has bounded covariance, the sample mean of T must be close to

the true mean. Unfortunately, we are not always guaranteed that the set T we are

given has this property. In order to deal with this, we will want to find a subset of

T with bounded covariance and large intersection with S. However, for some of the

algorithms presented, it will be convenient to find a probability distribution over T

rather than a subset. For this, we will need a slight generalization of Lemma 1.6.

Lemma 1.7 Let S be an (ε, δ)-stable set with respect to a distribution X, for some

δ ≥ ε > 0 with |S| > 1/ε. Let W be a probability distribution on S that differs from

US, the uniform distribution over S, by at most ε in total variation distance. Let

µW and ΣW be the mean and covariance of W . If the largest eigenvalue of ΣW is

at most 1 + λ, then ‖µW − µX‖2 ≤ O(δ +
√
ελ).

Note that this subsumes Lemma 1.6 by letting W be the uniform distribution

over T . The proof is essentially identical to that of Lemma 1.6, except that we

need to show that the mean and variance of the conditional distribution W | S are

approximately correct, whereas in Lemma 1.6 the bounds on the mean and variance

of S ∩ T followed directly from stability.

Lemma 1.7 clarifies the goal of our outlier removal procedure. In particular, given

our initial ε-corrupted set T , we will attempt to find a distribution W supported

on T so that ΣW has no large eigenvalues. The weight W (x), x ∈ T , quantifies our

belief whether point x is an inlier or an outlier. We will also need to ensure that

any such W we choose is close to the uniform distribution over S.
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More concretely, we now describe a framework that captures our robust mean

estimation algorithms. We start with the following definition:

Definition 1.8 Let S be a (3ε, δ)-stable set with respect to X and let T be an ε-

corrupted version of S. Let C be the set of all probability distributions W supported

on T , where W (x) ≤ 1
|T |(1−ε) , for all x ∈ T .

We note that any distribution in C differs from US , the uniform distribution on

S, by at most 3ε. Indeed, for ε ≤ 1/3, we have that:

dTV(US ,W ) =
∑
x∈T

max{W (x)− US(x), 0}

=
∑

x∈S∩T
max{W (x)− 1/|T |, 0}+

∑
x∈T\S

W (x)

≤
∑

x∈S∩T

ε

|T |(1− ε)
+
∑

x∈T\S

1

|T |(1− ε)

≤ |T |
(

ε

|T |(1− ε)

)
+ ε|T |

(
1

|T |(1− ε)

)
=

2ε

1− ε
≤ 3ε .

Therefore, if we find W ∈ C with ΣW having no large eigenvalues, Lemma 1.7

implies that µW is a good approximation to µX . Fortunately, we know that such

a W exists! In particular, if we take W to be W ∗, the uniform distribution over

S ∩T , the largest eigenvalue is at most 1 + δ2/ε, and thus we achieve `2-error O(δ).

At this point, we have an inefficient algorithm for approximating µX : Find any

W ∈ C with bounded covariance. The remaining question is how we can efficiently

find one. There are two basic algorithmic techniques to achieve this, that we present

in the subsequent subsections.

The first algorithmic technique we will describe is based on convex programming.

We will call this the unknown convex programming method. Note that C is a convex

set and that finding a point in C that has bounded covariance is almost a convex

program. It is not quite a convex program, because the variance of v ·W , for fixed v,

is not a convex function of W . However, one can show that given a W with variance

in some direction significantly larger than 1 + δ2/ε, we can efficiently construct a

hyperplane separating W from W ∗ (recall that W ∗ is the uniform distribution

over S ∩ T ) (Section 1.2.3). This method has the advantage of naturally working

under only the stability assumption. On the other hand, as it relies on the ellipsoid

algorithm, it is quite slow (although polynomial time).

Our second technique, which we will call filtering, is an iterative outlier removal

method that is typically faster, as it relies on spectral techniques. The main idea

of the method is the following: If ΣW does not have large eigenvalues, then the

empirical mean is close to the true mean. Otherwise, there is some unit vector v
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such that Var(v ·W ) is substantially larger than it should be. This can only be the

case if W assigns substantial mass to elements of T \ S that have values of v · x
very far from the true mean of v · µ. This observation allows us to perform some

kind of outlier removal, in particular by removing (or down-weighting) the points

x that have v · x inappropriately large. An important conceptual property is that

one cannot afford to remove only outliers, but it is possible to ensure that more

outliers are removed than inliers. Given a W where ΣW has a large eigenvalue, one

filtering step gives a new distribution W ′ ∈ C with dTV(W ′,W ∗) < dTV(W,W ∗).

Repeating the process eventually gives a W with no large eigenvalues. The filtering

method and its variations are discussed in Section 1.2.4.

1.2.3 The Unknown Convex Programming Method

By Lemma 1.7, it suffices to find a distribution W ∈ C with ΣW having no large

eigenvalues. We note that this condition almost defines a convex program. This is

because C is a convex set of probability distributions and the bounded covariance

condition says that Var(v ·W ) ≤ 1 + λ for all unit vectors v. Unfortunately, the

variance Var(v ·W ) = E[|v ·(W−µW )|2] is not quite linear in W . (If we instead had

E[|v · (W −ν)|2], where ν is some fixed vector, this would be linear in W .) However,

we will show that finding a unit vector v for which Var(v ·W ) is too large, can be

used to obtain a separation oracle, i.e., a linear function on W that is violated.

Suppose that we identify a unit vector v such that Var(v ·W ) = 1 + λ, where

λ > c(δ2/ε) for a sufficiently large universal constant c > 0. Applying Lemma 1.7 to

the one-dimensional projection v ·W , gives |v ·(µW −µX)| ≤ O(δ+
√
ελ) = O(

√
ελ).

Let L(Y ) := EX [|v · (Y − µW )|2] and note that L is a linear function of the

probability distribution Y with L(W ) = 1 + λ. We can write

L(W ∗) = EW∗ [|v · (W ∗ − µW )|2] = Var(v ·W ∗) + |v · (µW − µW∗)|2

≤ 1 + δ2/ε+ 2|v · (µW − µX)|2 + 2|v · (µW∗ − µX)|2

≤ 1 +O(δ2/ε+ ελ) < 1 + λ = L(W ) .

In summary, we have an explicit convex set C of probability distributions from

which we want to find one with eigenvalues bounded by 1 + O(δ2/ε). Given any

W ∈ C which does not satisfy this condition, we can produce a linear function L

that separates W from W ∗. Using the ellipsoid algorithm, we obtain the following

general theorem:

Theorem 1.9 Let S be a (3ε, δ)-stable set with respect to a distribution X and let

T be an ε-corrupted version of S. There exists a polynomial time algorithm which

given T returns µ̂ such that ‖µ̂− µX‖2 = O(δ).
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1.2.4 The Filtering Method

As in the convex programming method, the goal of the filtering method is to find

a distribution W ∈ C so that ΣW has bounded eigenvalues. Given a W ∈ C, ΣW
either has bounded eigenvalues (in which case the weighted empirical mean works)

or there is a direction v in which Var(v ·W ) is too large. In the latter case, the

projections v ·W must behave very differently from the projections v · S or v ·X.

In particular, since an ε-fraction of outliers are causing a much larger increase in

the standard deviation, this means that the distribution of v ·W will have many

“extreme points” — more than one would expect to find in v · S. This fact allows

us to identity a non-empty subset of extreme points the majority of which are

outliers. These points can then be removed (or down-weighted) in order to “clean

up” our sample. Formally, given a W ∈ C without bounded eigenvalues, we can

efficiently find a W ′ ∈ C so that dTV(W ′,W ∗) ≤ dTV(W,W ∗) − γ, where γ > 0

is bounded from below. Iterating this procedure eventually terminates giving a W

with bounded eigenvalues.

We note that while it may be conceptually useful to consider the above scheme

for general distributions W over points, in most cases it suffices to consider only W

given as the uniform distribution over some set T of points. The filtering step in

this case consists of replacing the set T by some subset T ′ = T \R, where R ⊂ T . To

guarantee progress towards W ∗ (the uniform distribution over S ∩ T ), it suffices to

ensure that at most a third of the elements of R are also in S, or equivalently that

at least two thirds of the removed points are outliers (perhaps in expectation). The

algorithm will terminate when the current set of points T ′ has bounded empirical

covariance, and the output will be the empirical mean of T ′.

Before we proceed with a more detailed technical discussion, we note that there

are several possible ways to implement the filtering step, and that the method used

has a significant impact on the analysis. In general, a filtering step removes all

points that are “far” from the sample mean in a large variance direction. However,

the precise way that this is quantified can vary in important ways.

Basic Filtering

In this subsection, we present a filtering method that applies to identity covariance

(or, more generally, known covariance) distributions whose univariate projections

satisfy appropriate concentration bounds. For the purpose of this section, we will

restrict ourselves to the Gaussian setting. We note that this method immediately

extends to distributions with weaker concentration properties, e.g., sub-exponential

or even inverse polynomial concentration, with appropriate modifications.

We note that the filtering method presented here requires an additional condition

on our good set of samples, on top of the stability condition. This is quantified in

the following definition:

Definition 1.10 A set S ⊂ Rd is tail-bound-good (with respect to X = N (µX , I))
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if for any unit vector v, and any t > 0, we have

Pr
x∼uS

(|v · (x− µX)| > 2t+ 2) ≤ e−t
2/2 . (1.1)

Since any projection of X is distributed like a standard Gaussian, Equation (1.1)

should hold if the uniform distribution over S were replaced by X. It can be shown

that this condition holds with high probability if S consists of i.i.d. random samples

from X of a sufficiently large polynomial size.

Intuitively, the additional tail condition of Definition 1.10 is needed to guarantee

that the filter will remove more outliers than inliers. Formally, we have the following:

Lemma 1.11 Let ε > 0 be a sufficiently small constant. Let S ⊂ Rd be both (2ε, δ)-

stable and tail-bound-good with respect to X = N (µX , I), with δ = cε
√

log(1/ε),

for c > 0 a sufficiently large constant. Let T ⊂ Rd be such that |T ∩ S| ≥ (1 −
ε) min(|T |, |S|) and assume we are given a unit vector v ∈ Rd for which Var(v ·T ) >

1 + 2δ2/ε. There exists a polynomial time algorithm that returns a subset R ⊂ T

satisfying |R ∩ S| < |R|/3.

Proof Let Var(v · T ) = 1 + λ. By applying Lemma 1.6 to the set T , we get

that |v · µX − v · µT | ≤ c
√
λε. By (1.1), it follows that Prx∼uS(|v · (x − µT )| >

2t+ 2 + c
√
λε) ≤ e−t2/2. We claim that there exists a threshold t0 such that

Pr
x∼uT

(|v · (x− µT )| > 2t0 + 2 + c
√
λε) > 4e−t

2
0/2 , (1.2)

where the constants have not been optimized. Given this claim, the set R = {x ∈
T : |v · (x− µT )| > 2t0 + 2 + c

√
λε} will satisfy the conditions of the lemma.

To prove our claim, we analyze the variance of v · T and note that much of the

excess must be due to points in T \ S. In particular, by our assumption on the

variance in the v-direction,
∑
x∈T |v · (x−µT )|2 = |T |Var(v ·T ) = |T |(1+λ), where

λ > 2δ2/ε. The contribution from the points x ∈ S ∩ T is at most∑
x∈S
|v · (x− µT )|2 = |S|(Var(v · S) + |v · (µT − µS)|2) ≤ |S|(1 + δ2/ε+ 2c2λε)

≤ |T |(1 + 2c2λε+ 3λ/5) ,

where the first inequality uses the stability of S, and the last uses that |T | ≥
(1−ε)|S|. If ε is sufficiently small relative to c, it follows that

∑
x∈T\S |v·(x−µT )|2 ≥

|T |λ/3. On the other hand, by definition we have:∑
x∈T\S

|v · (x− µT )|2 = |T |
∫ ∞
0

2t Pr
x∼uT

(|v · (x− µT )| > t, x 6∈ S)dt. (1.3)

Assume for the sake of contradiction that there is no t0 for which Equation (1.2) is
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satisfied. Then the RHS of (1.3) is at most

|T |

(∫ 2+c
√
λε+10

√
log(1/ε)

0

2t Pr
x∼uT

(x 6∈ S) +

∫ ∞
2+c
√
λε+10

√
log(1/ε)

2t Pr
x∼uT

(|v · (x− µT )| > t)dt

)

≤|T |

(
ε(2 + c

√
λε+ 10

√
log(1/ε))2 +

∫ ∞
5
√

log(1/ε)

16(2t+ 2 + c
√
λε)e−t

2/2dt

)
≤|T |

(
O(c2λε2 + ε log(1/ε)) +O(ε2(

√
log(1/ε) + c

√
λε))

)
≤|T |O(c2λε2 + (δ2/ε)/c) < |T |λ/3 ,

which is a contradiction. Therefore, the tail bounds and the concentration violation

together imply the existence of such a t0 (which can be efficiently computed).

Randomized Filtering

The basic filtering method of the previous subsection is deterministic, relying on

the violation of a concentration inequality satisfied by the inliers. In some settings,

deterministic filtering seems to fail and we require the filtering procedure to be

randomized. A concrete such setting is when the uncorrupted distribution is only

assumed to have bounded covariance.

The main idea of randomized filtering is simple: Suppose we can identify a non-

negative function f(x), defined on the samples x, for which (under some high prob-

ability condition on the inliers) it holds that
∑
T f(x) ≥ 2

∑
S f(x), where T is an

ε-corrupted set of samples and S is the corresponding set of inliers. Then we can

create a randomized filter by removing each sample point x ∈ T with probability

proportional to f(x). This ensures that the expected number of outliers removed is

at least the expected number of inliers removed. The analysis of such a randomized

filter is slightly more subtle, so we will discuss it in the following paragraphs.

The key property the above randomized filter ensures is that the sequence of

random variables (# Inliers removed)− (# Outliers removed) (where “inliers” are

points in S and “outliers” points in T\S) across iterations is a super-martingale.

Since the total number of outliers removed across all iterations accounts for at most

an ε-fraction of the total samples, this means that with probability at least 2/3, at

no point does the algorithm remove more than a 2ε-fraction of the inliers. A formal

statement follows:

Theorem 1.12 Let S ⊂ Rd be a (3ε, δ)-stable set (with respect to X). Suppose

that T is an ε-corrupted version of S. Suppose furthermore that given any T ′ ⊂
T with |T ′ ∩ S| ≥ (1 − 3ε)|S| for which Cov(T ′) has an eigenvalue bigger than

1 + λ, there is an efficient algorithm that computes a non-zero function f : T ′ →
R+ such that

∑
x∈T ′ f(x) ≥ 2

∑
x∈T ′∩S f(x). Then there exists a polynomial time

randomized algorithm that computes a vector µ̂ that with probability at least 2/3

satisfies ‖µ̂− µ‖2 = O(δ +
√
ελ).
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The algorithm is described in pseudocode below:

Algorithm Randomized Filtering

1. Compute Cov(T ) and its largest eigenvalue ν.

2. If ν ≤ 1 + λ, return µT .

3. Else

• Compute f as guaranteed in the theorem statement.

• Remove each x ∈ T with probability f(x)/maxx∈T f(x) and return to

Step 1 with the new set T .

Proof of Theorem 1.12 First, it is easy to see that this algorithm runs in poly-

nomial time. Indeed, as the point x ∈ T attaining the maximum value of f(x) is

definitely removed in each filtering iteration, each iteration reduces |T | by at least

one. To establish correctness, we will show that, with probability at least 2/3, at

each iteration of the algorithm it holds |S ∩ T | ≥ (1− 3ε)|S|. Assuming this claim,

Lemma 1.6 implies that our final error will be as desired.

To prove the desired claim, we consider the sequence of random variables d(T ) =

|S\T |−|T \S| across the iterations of the algorithm. We note that, initially, d(T ) = 0

and that d(T ) cannot drop below −ε|S|. Finally, we note that at each stage of the

algorithm d(T ) increases by (# Inliers removed)− (# Outliers removed), and that

the expectation of this quantity is∑
x∈S\T

f(x)−
∑

x∈T\S

f(x) = 2
∑

x∈S∩T
f(x)−

∑
x∈T

f(x) ≤ 0.

This means that d(T ) is a super-martingale (at least until we reach a point where

|S∩T | ≤ (1−3ε)|S|). However, if we set a stopping time at the first occasion where

this condition fails, we note that the expectation of d(T ) is at most 0. Since it is

at least −ε|S|, this means that with probability at least 2/3 it is never more than

2ε|S|, which would imply that |S ∩T | ≥ (1− 3ε)|S| throughout the algorithm. This

completes the proof.

Methods of Point Removal. The randomized filtering method described above only

requires that each point x is removed with probability f(x)/maxx∈T f(x), without

any assumption of independence. Therefore, given an f , there are several ways to

implement this scheme. A few natural ones are given here:

• Randomized Thresholding: Perhaps the easiest method for implementing our ran-

domized filter is generating a uniform random number y ∈ [0,maxx∈T f(x)] and

removing all points x ∈ T for which f(x) ≥ y. This method is practically useful

in many applications. Finding the set of such points is often fairly easy, as this

condition may well correspond to a simple threshold.
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• Independent Removal: Each x ∈ T is removed independently with probability

f(x)/maxx∈T f(x). This scheme has the advantage of leading to less variance in

d(T ). A careful analysis of the random walk involved allows one to reduce the

failure probability to exp(−Ω(ε|S|)).
• Deterministic Reweighting: Instead of removing points, this scheme allows for

weighted sets of points. In particular, each point will be assigned a weight in

[0, 1] and we will consider weighted means and covariances. Instead of removing

a point with probability proportional to f(x), we can remove a fraction of x’s

weight proportional to f(x). This ensures that the appropriate weighted version

of d(T ) is definitely non-increasing, implying correctness of the algorithm.

Universal Filtering

In this subsection, we show how to use randomized filtering to construct a universal

filter that works under only the stability condition (Lemma 1.4) — not requiring

the tail-bound condition of the basic filter (Lemma 1.11). Formally, we show:

Proposition 1.13 Let S ⊂ Rd be an (ε, δ)-stable set for ε, δ > 0 sufficiently small

constants and δ at least a sufficiently large multiple of ε. Let T be an ε-corrupted

version of S. Suppose that Cov(T ) has largest eigenvalue 1 + λ > 1 + 8δ2/ε. Then

there exists an algorithm that, on input ε, δ, T , computes a function f : T → R+

satisfying
∑
x∈T f(x) ≥ 2

∑
x∈T∩S f(x).

Proof The algorithm to construct f is the following: We start by computing the

sample mean µT and the top (unit) eigenvector v of Cov(T ). For x ∈ T , we let

g(x) = (v · (x − µT ))2. Let L be the set of ε · |T | elements of T on which g(x) is

largest. We define f to be f(x) = 0 for x 6∈ L, and f(x) = g(x) for x ∈ L.

The basic plan of attack is as follows: First, we note that the sum of g(x) over

x ∈ T (which is the variance of v · Z, Z ∼u T ) is substantially larger than the sum

of g(x) over S (which is approximately the variance of v · Z, Z ∼u S). Therefore,

the sum of g(x) over the ε|S| elements of T \ S must be quite large. In fact, using

the stability condition, we can show that the latter quantity must be larger than

the sum of the largest ε|S| values of g(x) over x ∈ S. However, since |T \ S| ≤ |L|,
we have that

∑
x∈T f(x) =

∑
x∈L g(x) ≥

∑
x∈T\S g(x) ≥ 2

∑
x∈S f(x) .

We now proceed with the detailed analysis. First, note that∑
x∈T

g(x) = |T |Var(v · T ) = |T |(1 + λ) .

Moreover, for any S′ ⊆ S with |S′| ≥ (1− 2ε)|S|, we have that∑
x∈S′

g(x) = |S′|(Var(v · S′) + (v · (µT − µ′S))2). (1.4)

By the stability condition, we have that |Var(v · S′)− 1| ≤ δ2/ε. Furthermore, the
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stability condition and Lemma 1.6 give

‖µT − µ′S‖2 ≤ ‖µT − µ‖2 + ‖µ− µ′S‖2 = O(δ +
√
ελ) .

Since λ ≥ 8δ2/ε, this implies that
∑
x∈T\S g(x) ≥ (2/3)|S|λ. Moreover, since |L| ≥

|T \ S| and since g takes its largest values on points x ∈ L, we have that∑
x∈T

f(x) =
∑
x∈L

g(x) ≥
∑

x∈T\S

g(x) ≥ (16/3)|S|δ2/ε .

Comparing the results of Equation (1.4) with S′ = S and S′ = S \ L, we find that∑
x∈S∩T

f(x) =
∑

x∈S∩L
g(x) =

∑
x∈S

g(x)−
∑
x∈S\L

g(x)

= |S|(1± δ2/ε+O(δ2 + ελ))− |S\L|(1± δ2/ε+O(δ2 + ελ))

≤ 2|S|δ2/ε+ |S|O(δ2 + ελ).

The latter quantity is at most (1/2)
∑
x∈T f(x) when δ and ε/δ are sufficiently small

constants. This completes the proof of Proposition 1.13.

Practical Considerations. While the aforementioned point removal methods

have similar theoretical guarantees, recent implementations (Diakonikolas et al.,

2018c) suggest that they have different practical performance on real datasets. The

deterministic reweighting method is somewhat slower in practice as its worst-case

runtime and its typical runtime are comparable. In more detail, one can guarantee

termination by setting the constant of proportionality so that at each step at least

one of the non-zero weights is set to zero. However, in practical circumstances, we

will not be able to do better. That is, the algorithm may well be forced to undergo

ε|S| iterations. On the other hand, the randomized versions of the algorithm are

likely to remove several points of T at each filtering step.

Another reason why the randomized versions may be preferable has to do with the

quality of the results. The randomized algorithms only produce bad results when

there is a chance that d(T ) ends up being very large. However, since d(T ) is a super-

martingale, this will only ever be the case if there is a corresponding possibility

that d(T ) will be exceptionally small. Thus, although the randomized algorithms

may have a probability of giving worse results some of the time, this will only

happen if a corresponding fraction of the time, they also give better results than the

theory guarantees. This consideration suggests that the randomized thresholding

procedure might have advantages over the independent removal procedure precisely

because it has a higher probability of failure. This has been observed experimentally

in (Diakonikolas et al., 2018c): In real datasets (poisoned with a constant fraction

of adversarial outliers), the number of iterations of randomized filtering is typically

bounded by a small constant.
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1.3 Beyond Robust Mean Estimation

In this section, we provide a brief overview of the ideas behind recently developed

robust estimators for more general statistical tasks.

Robust Stochastic Optimization. A simple and powerful idea is that efficient algo-

rithms for robust mean estimation can be used in essentially a black-box manner

to obtain robust learners for a range of stochastic optimization problems. Consider

the following general stochastic optimization problem: There is some unknown true

distribution p∗ over (convex) functions f : W → R, and the goal is to find an ap-

proximate minimizer of F (w) = Ef∼p∗ [f(w)]. Here W ⊆ Rd is a space of possible

parameters. As an example, the problem of linear regression fits in this framework

for f(w) = (1/2)(w ·x−y2) and (x, y)∈ Rd ×R is drawn from the data distribution.

On input a set of clean samples, i.e., i.i.d. set of functions f1, . . . , fn ∼ p∗, this

problem can be efficiently solved by (stochastic) gradient descent. In the robust

setting, we have access to an ε-corrupted training set of functions f1, . . . , fn drawn

from p∗. Unfortunately, even a single corrupted sample can completely compromise

standard gradient descent. Charikar et al. (2017) first studied the robust version

of this problem in the presence of a majority of outliers. The vanilla outlier-robust

setting, where ε < 1/2, was studied in two concurrent works (Prasad et al., 2018;

Diakonikolas et al., 2018c). The main intuition present in both these works is that

robustly estimating the gradient of the objective function can be viewed as a robust

mean estimation problem. Diakonikolas et al. (2018c) take this connection a step

further: Instead of using a robust gradient estimator as a black-box, they apply a

filtering step each time the vanilla SGD reaches an approximate critical point of the

empirical risk. The correctness of this method relies on properties of the filtering

algorithm. Importantly, it turns out that this method is more efficient in practice.

Robust Covariance Estimation. The robust estimation techniques described in this

chapter can be generalized to robustly estimate the covariance of high-dimensional

distributions. For concreteness, here we consider the Gaussian case, specifically we

assume that the inliers are drawn from G = N (0,Σ). (Note that by considering the

differences of independent samples we can reduce to the centered case, and that

this reduction works in the robust setting as well.) The high-level idea is to filter

based on the empirical fourth moment tensor. In more detail, let X be the random

variable GGT and note that Cov(G) = E[X].

We can attempt to use the described robust mean estimation techniques on X.

However, these techniques require a priori bounds on its covariance, Cov(X). To

handle this issue, we leverage the fact that the covariance of X can be expressed

as a function of the covariance of G. Although it might appear that we run into

a chicken-and-egg problem, it is in fact possible to bootstrap better and better

approximations to the covariance Cov(X).
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In particular, any upper bound on the covariance of G will imply an upper bound

on the covariance of X, which can in turn be used to robustly estimate the mean

of X, providing a better estimate of Cov(G). Via a careful iterative refinement,

one can show that is possible to learn the covariance Cov(G) within relative error

O(ε log(1/ε)) with respect to the Frobenius norm, which corresponds to robustly

estimating G within error O(ε log(1/ε)) in total variation distance.

List-Decodable Learning. In this chapter, we focused on the classical robust setting

where the outliers constitute the minority of the dataset, quantified by the fraction

of corruptions ε < 1/2, and the goal is to obtain estimators with error scaling as a

function of ε (and is independent of the dimension d). A related setting of interest

focuses on the regime when the fraction α of real data is small – strictly smaller

than 1/2. That is, we observe n samples, an α-fraction of which (for some α < 1/2)

are drawn from the distribution in question, but the rest are arbitrary.

This model was first studied in the context of mean estimation in Charikar et al.

(2017). A first observation is that, in this regime, it is information-theoretically

impossible to estimate the mean with a single hypothesis. Indeed, an adversary

can produce Ω(1/α) clusters of points each drawn from a good distribution with

different mean. Even if the algorithm could learn the distribution of the samples

exactly, it still would not be able to identify which of the clusters is the correct

one. To circumvent this, the definition of learning must be somewhat relaxed. In

particular, the algorithm should be allowed to return a small list of hypotheses with

the guarantee that at least one of the hypotheses is close to the true mean. Moreover,

as opposed to the small ε regime, it is often information-theoretically necessary for

the error to increase as α goes to 0. In summary, given polynomially many samples,

we would like to output O(1/α) many hypotheses, with the guarantee that with

high probability at least one hypothesis is within f(α) of the true mean, where f(α)

depends on the concentration properties of the distribution in question.

Charikar et al. (2017) used an SDP-based approach to solve this problem. We

note that the techniques discussed in this chapter can be adapted to work in this

setting. In particular, if the sample covariance matrix has no large eigenvalues, this

certifies that the true mean and sample mean are not too far apart. However, if

a large eigenvalue exists, the construction of a filter is more elaborate. To some

extent, this is a necessary difficulty because the algorithm must return more than

one hypotheses. To handle this issue, one needs to construct a multi-filter, which

may return several subsets of the original sample set with the guarantee that at least

one of them is cleaner than the original dataset. Such a multi-filter was introduced

in Diakonikolas et al. (2018a).

Robust Sparse Estimation. The task of leveraging sparsity in high-dimensional pa-

rameter estimation is a well-studied problem in statistics. In the context of robust

estimation, this problem was first considered in Balakrishnan et al. (2017), which
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adapted the unknown convex programming method of Diakonikolas et al. (2016)

described in this chapter. Here we describe the filtering method in this setting for

the problem of robust sparse mean estimation.

Formally, given ε-corrupted samples from N (µ, I), where the mean µ is unknown

and assumed to be k-sparse, i.e., supported on an unknown set of k coordinates, we

would like to approximate µ, in `2-distance. Without corruptions, this problem is

easy: We draw O(k log(d/k)/ε2) samples and output the empirical mean truncated

in its largest magnitude k entries. The goal is to obtain similar sample complexity

and error guarantees in the robust setting.

At a high level, we note that the truncated sample mean should be accurate as

long as there is no k-sparse direction in which the error between the true mean

and sample mean is large. This condition can be certified, as long as we know that

the sample variance of v · X is close to 1 for all unit, k-sparse vectors v. This

would in turn allow us to create a filter-based algorithm for k-sparse robust mean

estimation that uses only O(k log(d/k)/ε2) samples. Unfortunately, the problem

of determining whether or not there is a k-sparse direction with large variance is

computationally hard. By considering a convex relaxation of this problem, one can

obtain a polynomial time version of this algorithm that requires O(k2 log(d/k)/ε2)

samples. Moreover, there is evidence (Diakonikolas et al., 2017b), in the form of a

lower bound in the Statistical Query model (a restricted but powerful computational

model), that this increase in the sample complexity is necessary.

More recently, Diakonikolas et al. (2019) developed iterative spectral algorithms

for robust sparse estimation tasks (including sparse mean estimation and sparse

PCA). These algorithms achieve the same error guarantees as Balakrishnan et al.

(2017), while being significantly faster.

Robust Estimation of High-Degree Moments. Suppose we are interested in robustly

estimating the k-th order moments of a distribution X. In some sense, this problem

is equivalent to estimating the mean of the random variable Y = X⊗k. Unfortu-

nately, in order to estimate the mean of Y robustly, one needs concentration bounds

on it, which are rarely directly available. Typically, concentration bounds on Y are

implied by upper bounds on the higher moments of X. In particular, upper bounds

on the k′-th central moments of X for some k′ > k, imply concentration bounds on

Y . Unfortunately, just knowing bounds on the central moments of X is often hard

to leverage computationally. Given a set of points, even determining whether or not

they have bounded central moments is a computationally intractable problem. In-

stead, known algorithmic approaches (Hopkins and Li, 2018; Kothari et al., 2018)

generally require some kind of efficiently certifiable bounded moment conditions

(e.g., via a sum of squares proof). This allows one to search for subsets of sample

points whose central moments can be similarly certified as bounded, and these will

allow us to approximate higher moments of X.
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1.4 Notes

The convex programming and filtering methods described in this chapter appeared

in (Diakonikolas et al., 2016, 2017a). The idea of removing outliers by projecting on

the top eigenvector of the empirical covariance goes back to Klivans et al. (2009),

who used it in the context of robustly learning linear separators. Klivans et al. (2009)

use a “hard” filtering step which only removes outliers and consequently leads to

errors that scale logarithmically with the dimension, even in Huber’s model.

The work of Lai et al. (2016) developed a recursive dimension-halving technique

for robust mean estimation. Their technique leads to error O(ε
√

log(1/ε)
√

log d) for

Gaussian robust mean estimation in Huber’s contamination model. Diakonikolas

et al. (2016) and Lai et al. (2016) obtained robust estimators for various other

statistical tasks, including robust covariance estimation, robust density estimation

for mixtures of spherical Gaussians and product distributions, and independent

component analysis.

The algorithmic approaches described in this chapter robustly estimate the mean

of a spherical Gaussian within error O(ε
√

log(1/ε)) in the strong contamination

model of Definition 1.1. Diakonikolas et al. (2018b) developed a more sophisticated

filtering technique that achieves the optimal error of O(ε) in the additive contam-

ination model. For the strong contamination model, it was shown in Diakonikolas

et al. (2017b) that any improvement on the O(ε
√

log(1/ε)) error requires super-

polynomial time in the Statistical Query model. Steinhardt et al. (2018) gave an

efficient algorithm for robust mean estimation with respect to all `p-norms.

Finally, we note that ideas from Diakonikolas et al. (2016) have led to proof-of-

concept improvements in the analysis of genetic data (Diakonikolas et al., 2017a)

and in adversarial machine learning (Diakonikolas et al., 2018c).
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Exercises

1.1 Let S be an ε-corrupted set of samples from N (µ, I) of sufficiently large size.

(a) Show that the geometric median of S has `2-distance O(ε
√
d) from µ with

high probability.

(b) Show that this upper bound is tight for a worst-case adversary.

1.2 (Sample complexity of Robust Mean Estimation)

(a) Prove Fact 1.2 and Proposition 1.3.
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(b) How do Fact 1.2 and Proposition 1.3 change when the distribution of the

uncorrupted data has bounded k-th moments, for even k?

1.3 For what values of (ε, δ) do the following distribution families satisfy the

stability condition of Definition 1.4: bounded covariance (Σ � I), bounded

covariance and sub-gaussian tails in every direction, identity covariance and

log-concave (i.e., the logarithm of probability density function is concave),

identity covariance with bounded k-th central moments?

1.4 Prove Lemma 1.7.

1.5 (Diakonikolas et al. (2016)) Let S be a sufficiently large ε-corrupted set of

samples from a binary product distribution on {±1}d. Modify the basic filter

algorithm of Section 1.2.4 to obtain an estimate of the mean with `2-distance

error O(ε
√

log(1/ε)). [Hint: Use the modified empirical covariance with its

diagonal zeroed out.]

1.6 (Robust Estimation of Heavy-Tailed Distributions) Let X be a product dis-

tribution on Rd that is centrally symmetric about a center m. Suppose that,

for some constant c > 0, each marginal distribution has probability den-

sity function bounded below by c at all x within distance one of its median.

Give a polynomial-time algorithm that estimates m to within `2 error Õ(ε)

in the presence of an ε-fraction of corruptions. (The Õ(·) notation hides poly-

logarithmic factors in its argument.)

Remark: This algorithm applies to distributions that may not even have well-

defined means, e.g., products of Cauchy distributions.)

[Hint: Reduce the problem to robust mean estimation of a binary product

distribution and use the previous exercise.]

1.7 (Robust Estimation of a 2-Mixture of Spherical Gaussians) In this exercise,

we will adapt the filtering method to robustly learn a 2-mixture of spherical

Gaussians. Let F = (1/2)N (µ1, I) + (1/2)N (µ2, I) be an unknown balanced

mixture of two identity covariance Gaussians with unknown means. Let T be

an ε-corrupted set of samples from F .

(a) Show that if the eigenvalue of the empirical covariance in a given direction

is 1 + δ, then both means in this direction are accurate within Õ(
√
ε+ δ).

(b) Show that if the empirical covariance has only one large eigenvalue, then

there is a simple procedure to learn the means to small error.

(c) Show that if empirical covariance has at least two large eigenvalues, then

we can construct a filter.

(d) Combine the above to give a polynomial-time algorithm that with high

probability learns the means to error Õ(
√
ε).

(Remark: This accuracy is essentially best possible information-theoretically.

One can have have two mixtures F (i) = (1/2)N (µ
(i)
1 , I) + (1/2)N (µ

(i)
2 , I),

i = 1, 2 that have dTV(F (1), F (2)) = ε, where µ
(2)
1 , µ

(2)
2 are at distance

Ω(
√
ε) from µ

(1)
1 , µ

(1)
2 .)


