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1.1 Introduction

Discovering hidden structure in data is one of the cornerstones of modern
data analysis. Due to the diversity and complexity of modern data sets, this
is a very challenging task and the role of efficient algorithms is of paramount
importance in this context. The majority of available data sets are in raw
and unstructured form, consisting of example points without corresponding
labels. A large class of unlabeled datasets can be modeled as samples from a
probability distribution over a very large domain. An important goal in the
exploration of these datasets is understanding the underlying distributions.

Estimating distributions from samples is a paradigmatic and fundamental
unsupervised learning problem that has been studied in statistics since the late
nineteenth century, starting with the pioneering work of Karl Pearson [55].
During the past couple of decades, there has been a large body of work in
computer science on this topic with a focus on computational efficiency.

The area of distribution estimation is well-motivated in its own right, and
has seen a recent surge of research activity, in part due to the ubiquity of
structured distributions in the natural and social sciences. Such structural
properties of distributions are sometimes direct consequences of the underlying
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application problem, or they are a plausible explanation of the model under
investigation.

In this chapter, we give a survey of both classical and modern techniques
for distribution estimation, with a focus on recent algorithmic ideas developed
in theoretical computer science. These ideas have led to computationally and
statistically efficient algorithms for learning broad families of models. For the
sake of concreteness, we illustrate these ideas with specific examples. Finally,
we highlight outstanding challenges and research directions for future work.

1.2 Historical Background

The construction of an estimate of an unknown probability density function
based on observed data is a classical problem in statistics with a rich history
and extensive literature (see e.g., [4, 26, 60, 59, 27]). A number of generic
methods have been proposed in the mathematical statistics literature, includ-
ing histograms, kernels, nearest neighbor estimators, orthogonal series esti-
mators, maximum likelihood, and more. The reader is referred to [44] for a
survey of these techniques.

The oldest and most natural estimator is the histogram, first introduced
by Karl Pearson [55]. Given a number of samples (observations) from a prob-
ability density function, the method partitions the domain into a number of
bins, and outputs the empirical density which is constant within each bin. It
should be emphasized that the number of bins to be used and the width and
location of each bin are unspecified by the method. The problem of finding the
optimal number and location of the bins to minimize the error is an inherently
algorithmic question, since the ultimate goal is to obtain learning algorithms
that are computationally efficient.

Suppose that we are given a number of samples from a density that we
believe is from (or very close to) a given family C, e.g., it is a mixture of a
small number of Gaussian distributions. Our goal is to estimate the target
distribution in a precise, well-defined way. There are three different goals in
this context:

1. In non-proper learning (density estimation) the goal is to output an
approximation to the target density without any constraints on its
representation. That is, the output distribution is not necessarily a
member of the family C.

2. In proper learning the goal is to output a density in C that is a good
approximation to the target density.

3. In parameter learning the goal is to identify the parameters of the
target distribution, e.g., the mixing weights and the parameters of
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the components up to a desired accuracy. (The notion of parameter
learning is well-defined for parametric classes C.)

Note that non-proper learning and proper learning are equivalent in terms
of sample size: given any (non-proper) hypothesis we can do a brute-force
search to find its closest density in C. However, it is not clear whether this
computation can be performed efficiently.

We remark that the task of parameter learning is possible only under
certain separation assumptions on the components. Even under such assump-
tions, it can be a more demanding task than proper learning. In particular,
it is possible that two distinct distributions in C whose parameters are far
from each other give rise to densities that are close to each other. Moreover,
parameter learning strongly relies on the assumption that there is no noise in
the data, and hence it may not be meaningful in many realistic settings. These
facts motivate the study of proper learning algorithms in the noisy setting.

The focus of this chapter is on general techniques and efficient algorithms
for density estimation and proper learning. Due to space constraints, we do not
elaborate on algorithmic methods used for the problem of parameter learning.

The structure of this chapter is as follows: After some basic definitions
(Section 1.3), in Section 1.4 we give a classification of the types of distribution
families studied in the literature. In Section 1.5 we describe a classical method
from statistics to efficiently select from a given a set of candidate hypothesis
distributions. Section 1.6 describes recent algorithmic ideas from theoretical
computer science to learn structured univariate densities. Section 1.7 discusses
the challenging case of high-dimensional distributions. We conclude with some
future directions in Section 1.8.

1.3 Definitions and Preliminaries

We consider a standard notion of learning an unknown probability distribu-
tion from samples [46], which is a natural analogue of Valiant’s well-known
PAC model for learning Boolean functions [67] to the unsupervised setting
of learning an unknown probability distribution. We remark that our defini-
tion is essentially equivalent to the notion of minimax rate of convergence in
statistics [27].

Given access to independent draws from an unknown probability density
function (pdf) p, the goal is to approximate p in a certain well-defined sense.
More specifically, the goal of a learning algorithm is to output a hypothesis
distribution h that is “close” to the target distribution p. One can choose
various metrics to measure the distance between distributions. Throughout
this chapter, we measure the closeness between distributions using the statis-
tical distance or total variation distance. The statistical distance between two
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densities p, q : Ω→ R+ is defined as:

dTV(p, q) =
1

2
‖p− q‖1 =

1

2

∫
Ω

|p(x)− q(x)|dx.

(When Ω is discrete the above integral is replaced by a sum.)
A distribution learning problem is defined by a class C of probabil-

ity distributions over a domain Ω. The domain Ω may be discrete, e.g.,
Ω = [n] := {1, . . . , n}, or continuous, e.g., Ω = R, one-dimensional or high-
dimensional. In the “noiseless” setting, we are promised that p ∈ C and the
goal is to construct a hypothesis h such that with probability at least 9/101

the total variation distance dTV(h, p) between h and p is at most ε, where
ε > 0 is the accuracy parameter.

The “noisy” or agnostic model captures the situation of having adversarial
noise in the data. In this setting, we do not make any assumptions about the
target density p and the goal is to find a hypothesis h that is almost as
accurate as the “best” approximation of p by any distribution in C. Formally,
given ε > 0 and sample access to a target distribution p, the goal of an agnostic
learning algorithm for C is to compute a hypothesis distribution h such that,
with probability at least 9/10, it holds

dTV(h, p) ≤ α · optC(p) + ε,

where optC(p) := infq∈C dTV(q, p), i.e., optC(p) is the statistical distance be-
tween p and the closest distribution to it in C, and α ≥ 1 is a universal
constant.

We will use the following two standard metrics to measure the performance
of a learning algorithm: (i) the sample complexity, i.e., the number of sam-
ples drawn by the algorithm, and (ii) the computational complexity, i.e., the
worst-case running time of the algorithm. An algorithm is statistically effi-
cient if its sample complexity is information–theoretically optimal, and it is
computationally efficient if its computational complexity is polynomial in its
sample complexity. The “gold standard” is a statistically efficient algorithm
whose computational complexity is linear in its sample size.

As mentioned in the introduction, proper and non-proper learning of any
class C are equivalent in terms of sample complexity, but not necessarily equiv-
alent in terms of computational complexity. We also remark that, for broad
classes of distributions C, agnostic learning and noiseless learning are equiva-
lent in terms of sample complexity. However, designing computationally effi-
cient agnostic learning algorithms is in general a much more challenging task.

1We note that, using standard techniques, the confidence probability can be boosted to
1− δ, for any δ > 0, with a multiplicative overhead of O(log(1/δ)) in the sample size.
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1.4 Types of Structured Distributions

In this section we provide a broad categorization of the most common types of
structured distributions that have been considered in the statistics and com-
puter science literatures. We also briefly summarize a few standard methods
to learn such distributions in statistics.

In the following sections, we will describe a set of algorithmic techniques
that lead to provably efficient learning algorithms for most of these distribution
families.

Shape Constrained Distributions. For distributions over Rd (or a discrete
d-dimensional subset, e.g., [n]d), a very natural type of structure to consider
is some sort of “shape constraint” on the probability density function (pdf)
defining the distribution.

Statistical research in this area started in the 1950’s, and the reader is
referred to the book [4] for a summary of the early work. Most of the literature
has focused on one-dimensional distributions, with a few exceptions during
the past decade. Various structural restrictions have been studied over the
years, starting from monotonicity, unimodality, convexity, and concavity [38,
9, 56, 71, 41, 39, 6, 7, 35, 12, 45], and more recently focusing on structural
restrictions such as log-concavity and k-monotonicity [2, 32, 1, 37, 3, 49, 69].
The reader is referred to [40] for a recent book on the subject.

The most common method used in statistics to address shape constrained
inference problems is the Maximum Likelihood Estimator (MLE) and its vari-
ants. The challenge is to analyze the performance of the MLE in this context.
It turns out that for several univariate learning problems of this sort the
MLE performs quite well in terms of statistical efficiency. While the MLE is
very popular and quite natural, there exist natural inference problems (see,
e.g., [10]) where it performs poorly in terms of statistical and computational
efficiency, as well as noise tolerance.

A related line of work in mathematical statistics [47, 29, 48, 30, 28] uses
non-linear estimators based on wavelet techniques to learn continuous distri-
butions whose densities satisfy various smoothness constraints, such as Triebel
and Besov-type smoothness. We remark that the focus of these works is on
the statistical efficiency of the proposed estimators and not on computational
complexity.

Aggregation of Structured Distributions. Aggregations of structured
random variables are very popular as they can model many rich phenomena.
Two prominent examples of this sort are mixture models and sums of simple
random variables. Mixtures of structured distributions have received much
attention in statistics [51, 57, 64] and, more recently, in theoretical computer
science [19, 54].

We remark that early statistical work on mixture models focuses on param-
eter learning. In practice, this problem is typically handled with non-convex
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heuristics such as the Expectation–Maximization (EM) algorithm. Recent al-
gorithmic techniques rely on the moment problem and tensor decomposition.
However, such algorithms lead to sample complexities that are inherently ex-
ponential in the number of components.

Learning sums of simple random variables has received recent attention in
the computer science literature [23, 20]. Such distributions have various ap-
plications in areas such as survey sampling, case-control studies, and survival
analysis (see e.g., [16] for the case of sums of indicators).

1.5 The Cover Method and Sample Bounds

The first fundamental question that arises in the context of learning an un-
known probability distribution is information-theoretic:

What is the minimum sample size that is necessary and sufficient to learn
an unknown p ∈ C up to total variation distance ε?

While this question has been extensively investigated in statistics, in-
formation theory, and, more recently, computer science, the information–
theoretically optimal sample size is not yet understood, even for some rel-
atively simple families of distributions. It turns out that the optimal sample
complexity depends on the structure of the underlying density class in a subtle
way.

In this section we describe a general powerful method that yields nearly
tight upper bounds on the sample complexity of learning. The method, which
we term the cover method, is classical in statistics and information theory,
and has its roots in early work of A. N. Kolmogorov. The high-level idea is
to analyze the structure of the metric space C under total variation distance.
The method postulates that the structure of this metric space characterizes the
sample complexity of learning. To describe the method in detail we introduce
some basic terminology.

Let (X , d) be a metric space. Given δ > 0, a subset Y ⊆ X is said to be
a δ-cover of X with respect to the metric d : X 2 → R+ if for every x ∈ X
there exists some y ∈ Y such that d(x,y) ≤ δ. There may exist many δ-covers
of X , but one is typically interested in those with minimum cardinality. The
δ-covering number of (X , d) is the minimum cardinality of any δ-cover of X .
Intuitively, the covering number captures the “size” of the metric space.

Covering numbers – and their logarithms, known as metric entropy num-
bers – were first defined by Kolmogorov in the 1950’s and have since played a
central role in a number of areas, including approximation theory, geometric
functional analysis (see, e.g., [31, 53, 8] and the books [50, 52, 11, 33]), infor-
mation theory, statistics, and machine learning (see, e.g., [74, 5, 42, 43, 73]
and the books [68, 27, 65]).
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In the context of distribution learning, the cover method is summarized in
the following theorem:

Theorem 1.5.1. Let C be an arbitrary family of distributions and ε > 0. Let
Cε ⊆ C be an ε-cover of C of cardinality N . Then there is an algorithm that uses
O(ε−2 logN) samples from an unknown distribution p ∈ C and, with probabil-
ity at least 9/10, outputs a distribution h ∈ Cε that satisfies dTV(h, p) ≤ 6ε.

An equivalent version of Theorem 1.5.1 (with a slightly different termi-
nology) was given by Yatracos [74] (see also Chapter 7 of [27] for a detailed
discussion). The above statement appears as Lemma C.1 in [21].

As we explain in detail below, the algorithm implicit in the above theorem
is not computationally efficient in general. Indeed, even assuming that we have
an explicit construction of a minimal size ε-cover, the algorithm takes time at
least Ω(N/ε2) – that is, exponential in its sample size.

We point out that the cover method can serve as a very useful tool in
the design of computationally efficient learning algorithms. Indeed, many al-
gorithms in the literature work by constructing a small set S of candidate
hypotheses with the guarantee that at least one of them is close to the tar-
get distribution. The cover method can be used as a post-processing step to
efficiently select an appropriate candidate in the set S. This simple idea has
been used in the design of fast proper learning algorithms for various nat-
ural classes of distributions, including sums of independent integer random
variables [23, 20], Gaussian mixtures [24, 63], and other high-dimensional dis-
tributions [25].

We now provide a brief intuitive explanation of the argument in [21] estab-
lishing Theorem 1.5.1. (The corresponding proof of [74, 27] is quite similar.)
Given a description of the cover Cε, the algorithm performs a tournament
between the distributions in Cε, by running a hypothesis testing routine for
every pair of distributions in Cε. The obvious implementation of this tour-
nament takes time Ω(N2/ε2). Recent algorithmic work [24, 63] has improved
this to nearly-linear in N , namely O(N logN/ε2). However, this running time
bound is still exponential in the sample complexity of the algorithm.

The hypothesis testing routine can be viewed as a simple “competition”
between two candidate hypothesis distributions. If at least one of the two
candidate hypotheses is close to the target distribution p, then with high
probability over the samples drawn from p the hypothesis testing routine
selects as winner a candidate that is close to p. The algorithm outputs a
distribution in the cover Cε that was never a loser (i.e., won or tied against all
other distributions in the cover). We remark that the analysis of the algorithm
is elementary, relying only on the Chernoff bound and the union bound.

Another important property of the cover method is its noise tolerance. It
generalizes naturally yielding an agnostic learning algorithm with the same
sample complexity. More specifically, for an arbitrary target distribution
p with optC(p) = infq∈C dTV(q, p), the tournament–based algorithm makes
O(ε−2 logN) i.i.d. draws from p and outputs a hypothesis h in Cε satisfying
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dTV(h, p) ≤ O(optC(p) + ε). The reader is referred to Chapter 7.3 of [27] for
an explicit proof of this fact.

The sample upper bound of O(ε−2 logN) cannot be improved in general,
in the sense that there exist distribution families where it is information–
theoretically optimal up to constant factors. In fact, Yang and Barron [73]
showed that for many smooth nonparametric classes the metric entropy num-
ber characterizes the sample complexity of learning. We note, however, that
metric entropy does not provide a characterization in general: there exist dis-
tribution families where the O(ε−2 logN) sample upper bound is sub-optimal.

As a simple example consider the set of all “singleton” distributions over
[n], i.e., the class contains n distinct distributions each supported on a single
point of the domain. It is easy to see that Theorem 1.5.1 gives a sample upper
bound of O(ε−2 log n) for this case, while one sample suffices to uniquely
specify the target distribution. For a more natural example, consider the class
of Poisson Binomial Distributions (PBDs), i.e., sums

∑n
i=1Xi of n mutually

independent Bernoulli random variables X1, . . . , Xn. It is not difficult to show
that the covering number of the set of PBDs is Ω(n/ε). Hence, Theorem 1.5.1

cannot give an upper bound better than Ω̃(ε−2) · log n. On the other hand, a

sample upper bound of Õ(ε−2) was recently obtained in [23]. These examples
raise the following natural question:

Open Problem 1.5.1. Is there a “complexity measure” of a distribution
class C that characterizes the sample complexity of learning C?

We recall that the Vapnik–Chervonenkis dimension of a class of Boolean
functions plays such a role in Valiant’s PAC model [66], i.e., it tightly charac-
terizes the number of examples that are required to PAC learn an arbitrary
function from the class.

1.6 Learning Univariate Structured Distributions

In this section we consider the problem of non-proper learning of an unknown
univariate probability distribution, i.e., a distribution with a density function
p : Ω→ R+, where the sample space Ω is a subset of the real line. We focus on
two basic cases: (i) Ω = [n] where the set [n] is viewed as an ordered set, and
(ii) Ω = [a, b] with a ≤ b ∈ R. Given a family C of univariate distributions, can
we design a sample optimal and computationally efficient learning algorithm
for C? Can we achieve this goal in the more challenging agnostic setting? It
turns out that the answer to both questions turns out to be “yes” for broad
classes of structured families C.

If the target distribution is arbitrary, the learning problem is well-
understood. More specifically, suppose that the class C of target distributions
is the set of all distributions over [n]. It is a folklore fact that Θ(n/ε2) samples
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are necessary and sufficient for learning within total variation distance ε in this
case. The underlying algorithm is also straightforward: output the empirical
distribution. For distributions over very large domains, a linear dependence
on n is of course impractical, both from running time and sample complexity
perspective.

For continuous distributions the learning problem is not solvable without
any assumptions. Indeed, learning an arbitrary distribution over [0, 1] to any
constant accuracy ε < 1 requires infinitely many samples. This follows, for
example, from the aforementioned discrete lower bound for n→∞. Hence, it
is important to focus our attention on structured distribution families.

In the main part of this section we describe recent work from theoretical
computer science that yields sample–optimal and computationally efficient al-
gorithms for learning broad classes of structured distributions. The main idea
of the approach is that the existence of good piecewise polynomial approx-
imations for a family C can be leveraged for the design of efficient learning
algorithms for C. The approach is inspired and motivated by classical results in
statistics, and combines a variety of techniques from algorithms, probability,
and approximation theory.

Piecewise polynomials (splines) have been extensively used in statistics as
tools for inference tasks, including density estimation, see, e.g., [70, 72, 61, 62].
We remark that splines in statistics have been used in the context of the
MLE, which is very different than the aforementioned approach. Moreover,
the degree of the splines used in statistical literature is typically bounded by
a small constant.

In Section 1.6.1 we describe classical work in statistics on learning mono-
tone densities that served as an inspiration for the piecewise polynomial ap-
proach. In Section 1.6.2 we describe how to use piecewise constant approxi-
mations for learning and argue why it is insufficient for some cases. Finally,
in Section 1.6.3 we describe the general approach in detail.

1.6.1 Learning Monotone Distributions

Monotonicity is arguably one of the simplest shape constraints. Learning a
monotone density was one of the first problems studied in this context by
Grenander [38]. We present a result by Birgé [6, 7] who gave a sample–optimal
and computationally efficient algorithm for this problem. More specifically,
Birgé showed the following:

Theorem 1.6.1 ([6, 7]). Fix L,H > 0, let M be the set of non-increasing
densities p : [0, L]→ [0, H]. There is a computationally efficient algorithm that
given m = O((1/ε3) log(1+H ·L)) samples from an arbitrary p ∈M outputs a
hypothesis h satisfying dTV(h, p) ≤ ε with probability at least 9/10. Moreover,
Ω((1/ε3) log(1 + H · L)) samples are information-theoretically necessary for
this problem.

An adaptation of the above theorem holds for monotone distributions
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over [n], yielding an efficient algorithm with optimal sample complexity of
O((1/ε3) log n) for the discrete setting as well.

To sketch the proof of this theorem, we will need a few definitions. Given
m independent samples s1, . . . , sm, drawn from a density p : Ω → R+ the
empirical distribution p̂m is the discrete distribution supported on {s1, . . . , sm}
defined as follows: for all z ∈ Ω, p̂m(z) = |{j ∈ [m] | sj = z}|/m.

For a measurable function f : I → R+ and A ⊆ I we will denote f(A) =∫
A
f(x)dx.

Definition 1.6.2. A function f : I → R is called a t-histogram if it is piecewise
constant with at most t interval pieces. For a function f : I → R and an
interval partition {I1, . . . , It} of the domain, the flattened version f̄ of f is the
t-histogram defined by f̄(x) = f(Ij)/|Ij | for all x ∈ Ij .

Birgé’s algorithm works as follows [7]: it partitions the domain into a set of
intervals and outputs the flattened empirical distribution on those intervals.
Its correctness relies on an approximation lemma that he proves:

Lemma 1.6.3. ([7]) Fix L,H > 0. There exists a partition of [0, H] into t =
O((1/ε) log(1+H ·L)) intervals such that for any p ∈M it holds dTV(p̄, p) ≤ ε.

An analogue of the lemma holds for discrete monotone distributions over
[n] establishing a bound of t = O((1/ε) log n) on the number of intervals.

Note that the interval decomposition of the lemma is oblivious, in the
sense that it does not depend on the underlying monotone density. This is
a very strong guarantee that facilitates the learning algorithm. Indeed, given
the guarantee of the lemma, the algorithm is straightforward. The monotone
learning problem is reduced to the problem of learning a distribution over a
known finite support of cardinality t = O((1/ε) log(1 +H · L)).

In summary, one can break Birgé’s approach in two conceptual steps:

• Prove that any monotone distribution is ε-close in total variation distance
to a t-histogram distribution, where the parameter t is small.

• Agnostically learn the target distribution using the class of t-histogram dis-
tributions as a hypothesis class.

This scheme is quite general and can be applied to any structured distribution
class as long as there exists a good piecewise constant approximation. In gen-
eral, such a histogram approximation may not be fixed for all distributions in
the family. Indeed, this is the case for most natural families of distributions.
To handle this case, we need an agnostic learning algorithm for t-histogram
distributions with an unknown partition.

1.6.2 Agnostically Learning Histograms

In this section, we study the problem of agnostically learning t-histogram
distributions with an unknown partition. Formally, given a bound t on the
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number of intervals, we want to design a computationally efficient algorithm
that uses an optimal sample size and approximates the target distribution
nearly as accurately as the best t-histogram. As sketched in the previous
section, such an algorithm would have several applications in learning classes
of shape restricted densities.

Denote by Ht the family of t-histogram distributions over [0, 1]. 2 The first
step is to determine the optimal sample complexity of the learning problem.
It is easy to see that Ω(t/ε2) is a lower bound and simple arguments can be
used to get an upper bound of Õ(t/ε2) using the cover method described in
Section 1.5.

The problem of agnostically learning t-histogram distributions with
Õ(t/ε2) samples and poly(t/ε) time3 is algorithmically non-trivial. If one is
willing to relax the sample size to O(t/ε3), it is easy to obtain a computation-
ally efficient algorithm [22, 13]. The first efficient algorithm with near-optimal
sample complexity was obtained in [14] and is based on dynamic programming.

To sketch the algorithm in [14] we will need a more general metric between
distributions that generalizes the total variation distance. Fix a family of
subsets A over [0, 1]. We define the A–distance between p and q by ‖p−q‖A :=
maxA∈A |p(A)−q(A)|. (Note that ifA is the set of all measurable subsets of the
domain, the A–distance is identical to the total variation distance.) The VC–
dimension of A is the maximum size of a subset X ⊆ [0, 1] that is shattered
by A (a set X is shattered by A if for every Y ⊆ X some A ∈ A satisfies
A ∩X = Y ).

The VC inequality. Fix a family of subsets A over [n] of VC-dimension d.
The VC inequality is the following result from empirical process theory:

Theorem 1.6.4 ([27, p.31]). Let p̂m be an empirical distribution of m samples
from p. Let A be a family of subsets of VC–dimension d. Then

E [‖p− p̂m‖A] ≤ O(
√
d/m).

In other words, for m = Ω(d/ε2), with probability 9/10 the empirical
distribution p̂m will be ε-close to p in A-distance. We remark that this sample
bound is asymptotically optimal (up to a constant factor) for all values of d
and ε.

Let Ak be the collection of all subsets of the domain that can be expressed
as unions of at most k (disjoint) intervals. The intuition is that the collec-
tion A2t characterizes t-histograms in a precise way. Consider the following
algorithm for agnostically learning a distribution p:

(i) Draw m = Θ(t/ε2) samples from p;

2We choose the domain to be [0, 1] for simplicity. All the results that we will describe
extend straightforwardly to distributions over any interval or over a discrete set.

3We use the notation poly(x), x ∈ R+, to denote a function that is bounded from above
by a fixed degree polynomial in x.
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(ii) Output the distribution h ∈ Ht that minimizes the quantity ‖h − p̂m‖Ak

(up to an additive error γ = O(ε)).

It is not difficult to show that this is an agnostic learning algorithm for Ht.
The main observation needed for the proof is that the A2t distance between
two t-histograms is identical to their total variation distance.

The algorithm in [14] uses a dynamic programming approach to efficiently
perform step (ii) above, and its analysis relies on the VC inequality. More
recently, a near-linear time algorithm, i.e., an algorithm with running time
Õ(t/ε2), was developed in [15].

Applications to Learning Structured Distributions. The aforemen-
tioned agnostic learning algorithm has been used as the key algorithmic in-
gredient to learn various classes of structured distributions. An additional
ingredient needed is a structural approximation result stating that for the un-
derlying distribution family C there exists an ε-approximation by t-histograms
for an appropriately small value of the parameter t. For example, by using the
structural approximation results of [13], one obtains near-sample optimal and
near-linear time estimators for various well-studied classes including multi-
modal densities, monotone hazard rate (MHR) distributions, and others.

However, there exist distribution families where the approach of approx-
imating by histograms provably leads to suboptimal sample complexity. A
prominent such example is the class of log-concave distributions. This moti-
vates the more general approach of approximating by piecewise polynomials.

1.6.3 Agnostically Learning Piecewise Polynomials

We say that a distribution q over [0, 1] is a t-piecewise degree-d distribution if
there is a partition of [0, 1] into t disjoint intervals I1, . . . , It such that q(x) =
qj(x) for all x ∈ Ij , where each of q1, . . . , qt is a univariate polynomial of degree
at most d. Let Pt,d denote the class of all t-piecewise degree-d probability
density functions over [0, 1]. We have the following theorem:

Theorem 1.6.5 ([14]). Let p be any pdf over [0, 1]. There is an algorithm that,
given t, d, ε and Õ(t(d+1)/ε2) samples from p, runs in time poly(t, d+1, 1/ε)
and with high probability outputs an O(t)-piecewise degree-d hypothesis h such
that dTV(p, h) ≤ O(optt,d) + ε, where optt,d := infr∈Pt,d

dTV(p, r) is the error
of the best t-piecewise degree-d distribution for p.

It is shown in [14] that the number of samples used by the aforementioned
algorithm is information–theoretically optimal in all three parameters up to
logarithmic factors.

The high-level approach to prove this theorem is similar to the one de-
scribed in the previous paragraph for the case of histograms. Let Ak be the
collection of all subsets of the domain that can be expressed as unions of at
most k = 2t(d+1) intervals. The intuition is that the collection Ak character-
izes piecewise polynomials with t pieces and degree d. Similarly, the following
is an agnostic learning algorithm for p:
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(i) Draw m = Θ(t(d+ 1)/ε2) samples from p;

(ii) Output h ∈ Pt,d that minimizes the quantity ‖h− p̂m‖Ak
(up to an additive

error γ = O(ε)).

We remark that the optimization problem in Step (ii) is non-convex. However,
it has sufficient structure so that (an appropriately relaxed version of) it can
be solved in polynomial time by a combination of convex programming and
dynamic programming.

Applications to Learning Structured Distributions. Theorem 1.6.5
yields near-sample optimal and computationally efficient estimators for a very
broad class of structured distribution families, including arbitrary mixtures
of natural distribution families, such as multi-modal, concave, convex, log-
concave, monotone hazard rate, sums of indicators, and others. Given a class
C that we want to learn, we have the following general approach:

• Prove that any distribution in C is ε-close in total variation distance to a
t-piecewise degree-d distribution, for appropriate values of t and d.

• Agnostically learn the target distribution using the class of t-piecewise
degree-d distributions.

We emphasize that there are many combinations of (t, d) that guarantee an ε-
approximation. To minimize the sample complexity of the learning algorithm
in the second step, one would like to use the values that minimize the product
t(d+ 1). This is, of course, an approximation theory problem that depends on
the structure of the family C.

For example, if C is the class of log-concave distributions, the optimal
t-histogram ε-approximation requires Θ̃(1/ε) intervals. This leads to an algo-
rithm with sample complexity Θ̃(1/ε3). On the other hand, it can be shown
that any log-concave distribution has a piecewise linear ε-approximation with
Θ̃(1/ε1/2) intervals, which gives us a Θ̃(1/ε5/2) sample algorithm. Perhaps
surprisingly, this cannot be improved using higher degrees as one can show a
sample lower bound of Ω(1/ε5/2).

As a second example, let C be the class of k-mixtures of Gaussians in
one dimension. By approximating these functions by piecewise polynomials of
degree O(log(1/ε)), we obtain an efficient agnostic algorithm using Õ(k/ε2)
samples. This sample bound is optimal up to logarithmic factors. It should be
noted that this is the first computationally efficient and sample near-optimal
algorithm for this problem.

It should be emphasized that algorithm of [14] is theoretically efficient
(polynomial time), but it may be relatively slow for real applications with
large data sets. This prompts the following question: Is the full algorithmic
power of convex programming and dynamic programming necessary to achieve
this level of sample efficiency? Ideally one would like a simple combinatorial
algorithm for these estimation tasks that runs in near-linear time. This is an
interesting open problem of significant practical interest:
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Open Problem 1.6.1. Is there a sample optimal and linear time algorithm
for agnostically learning piecewise polynomial distributions?

Note that the aforementioned approach leads to non-proper learning al-
gorithms. In many settings, e.g., for latent variable models, obtaining proper
learning algorithms is important for the underlying application. In particular,
we pose the following concrete open problem:

Open Problem 1.6.2. Is there a poly(k, 1/ε) time algorithm for properly
learning k-mixtures of simple parametric classes?

1.7 Learning Multivariate Structured Distributions

The problem of learning an unknown structured density over Rd, d > 1,
has been studied in statistics and machine learning in many settings. We
refer the reader to a relatively recent survey on multi-dimensional density
estimation [58] with a focus on sample complexity.

Despite intense research efforts, our understanding of the high-dimensional
setting is still quite limited. There are two regimes of interest: (i) the dimension
d is small, i.e., a fixed constant independent of the problem size, and (ii) the
dimension d is large, i.e., part of the input.

For low-dimensional settings, one may be able to handle learning problems
whose sample complexity (and hence, running time) is exponential in d. For
some natural distribution families such an exponential dependence is inherent,
e.g., for high-dimensional arbitrary log-concave densities. Recent statistical
research on the topic attempts to determine tight upper and lower bounds on
the minimax rate of convergence [17, 18] in the context of the MLE. From a
computer science perspective, the goal for these settings is the same: design
an algorithm with information-theoretic optimal sample size and polynomial
running time.

For high-dimensional settings, problems that inherently require sample
complexity exponentially in d are considered intractable. Interestingly enough,
a wide variety of natural and important high-dimensional estimation problems
have sample complexity polynomial (or even linear) in the dimension. The bot-
tleneck for such problems is to design computationally efficient algorithms.
Circumventing the curse of dimensionality is one of the most challenging re-
search directions in distribution learning.

During the past couple of decades, several natural high-dimensional learn-
ing problems have been studied in the theoretical computer science literature.
In a few prominent cases, theoretically efficient algorithms have been dis-
covered. Two examples include the development of computationally efficient
algorithms for learning mixtures of a constant number of high-dimensional
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Gaussian distributions [54], and a constant number of discrete product dis-
tributions [36, 34]. We remark that both of these algorithms are based on
the method of moments and are in fact proper. These algorithms represent
important progress in our theoretical understanding of these challenging and
important problems. However, while they run in polynomial time, the expo-
nents in their running time are quite high. Both algorithms [54, 34] run in
time (d/ε)f(k), where d is the dimension and k is the number of components
in the mixture. Hence, there is still a lot of ground to be covered in our un-
derstanding of these questions.

At this point, we would like to highlight a fundamental high-dimensional
problem that has received significant attention in statistics, but no non-trivial
algorithm is known to date. A t-piece d-dimensional histogram is a proba-
bility density function p over the domain [0, 1]d of the following sort: the
domain [0, 1]d is partitioned into t axis-aligned hyper-rectangles R1, . . . , Rt,
and the distribution p is piecewise constant over each rectangle Ri. It follows
from Theorem 1.6.4 that O(td/ε2) samples information–theoretically suffice to
learn such distributions (even agnostically). However, no algorithm with sub-
exponential running time is known. A major goal is to answer the following
question:

Open Problem 1.7.1. Is there a poly(d, t, 1/ε) time algorithm for learning
t-piece d-dimensional histograms?

Another fundamental gap in our understanding concerns mixtures of high-
dimensional Gaussians. Recall that there exists a learning algorithm for k-
mixtures of d-dimensional Gaussians that runs in time (d/ε)f(k) [54]. The
learning algorithm follows from the corresponding parameter learning algo-
rithm. For the parameter learning setting, however, the exponential depen-
dence on k is inherent in the sample complexity of the problem (hence, also in
the running time) even for d = 1. However, no such information–theoretic bar-
rier exists for the problem of density estimation. This motivates the following
problem:

Open Problem 1.7.2. Is there a poly(d, k, 1/ε) time algorithm for learning
a mixture of k d-dimensional Gaussians?

Analogous questions can be asked for various mixture models and more
general latent variable models.

1.8 Conclusions and Future Directions

In this chapter, we gave a biased survey of the distribution learning literature
from a computer science perspective, i.e., with an explicit focus on the compu-
tational efficiency of our estimators. We presented recent work in theoretical



16 Learning Structured Distributions

computer science on the design of sample optimal and computationally effi-
cient estimators. Many important questions remain open, and the interplay
between algorithms and statistics is crucial to their resolution. We conclude
this chapter with two important research directions.

One of the most important challenges in statistical learning is han-
dling data that are corrupted by noise. In most cases, the difficulty is not
information–theoretic but rather computational. Many popular algorithms
(e.g., MLE) are not tolerant to even a small amount of noise in the data. A
fundamental gap in our understanding concerns high-dimensional problems.

Research Direction 1.8.1. Develop computationally efficient agnostic
learning algorithms for high-dimensional distribution learning problems.

A concrete problem is that of learning a binary product distribution with
adversarial noise. This problem is, of course, straightforward in the noiseless
setting; however, it becomes very challenging in the presence of even a small
constant fraction of noisy observations. A more challenging open problem is
agnostically learning mixture models, e.g., for two high-dimensional Gaussians
or even binary product distributions.

Overall, the body of work on statistical estimation has focused on worst-
case instances both in terms of algorithms and lower bounds. A natural goal is
to go beyond worst-case analysis and design algorithms that provably perform
near optimally on every input.

Research Direction 1.8.2. Develop “instance-by-instance optimal” algo-
rithms for distribution learning problems.

We believe that progress in this direction will lead to efficient algorithms
that perform very well in practice.
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[6] L. Birgé. Estimating a density under order restrictions: Nonasymptotic
minimax risk. Annals of Statistics, 15(3):995–1012, 1987.
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