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Can we develop supervised learning algorithms that are 
robust to a constant fraction of corruptions ?
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MOTIVATION

• Model Misspecification/Robust Statistics 
[Fisher 1920s, Tukey 1960s, Huber 1960s]

• Adversarial/Secure ML



DATA POISONING

Fake Reviews [Mayzlin et al. ‘14]

Recommender Systems Crowdsourcing Malware/spam

[Li et al. ‘16] [Wang et al. ‘14] [Nelson et al. ‘08]
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(DISTRIBUTION-INDEPENDENT) PAC LEARNING

: known class of functions 

• Input: multiset of IID labeled examples                            from distribution     such that:
, where        is fixed but arbitrary, and

for some fixed unknown target concept 

• Goal: find hypothesis                           minimizing                             

samples

Unknown 
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f : Rd ! {±1}



(DISTRIBUTION-INDEPENDENT) PAC LEARNING WITH MASSART NOISE

: known class of functions 

• Input: multiset of IID labeled examples                            from distribution     such that:
, where        is fixed but arbitrary, and

where        

for some fixed unknown target concept 

• Goal: find hypothesis                           minimizing                             

Unknown 
samples
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f : Rd ! {±1}



PAC LEARNING WITH OTHER NOISE
Massart Noise “in between” Random Classification Noise and Agnostic Model:
• Random Classification Noise (RCN) [Angluin-Laird’88]:

– Special case of Massart noise: For all    , we have that
• Agnostic Model [Haussler’92, Kearns-Shapire-Sellie’94]: 

– Adversary can flip arbitrary fraction of the labels:
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RCN
Noise Rate exactly η

Massart
Noise Rate at most η

Agnostic
Arbitrary    fraction



OUTLINE

• Part I:

– Distribution-Independent PAC Learning with Massart Noise

• Part II:

– Distribution-Specific PAC Learning with Massart (and Other) Noise



Are there realistic noise models that allow for efficient 
algorithms without distributional assumptions ?
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MAIN RESULT OF PART I

Main Result [D-Gouleakis-Tzamos’19]: 
First computationally efficient algorithm for learning halfspaces in 
the distribution-independent PAC model with Massart noise.

Diakonikolas, HALG'20 Learning in High Dimensions with Asymmetric Label Noise 9



HALFSPACES

Class of functions                             such 
that 

where 

• Also known as: Linear Threshold Functions, 
Perceptrons, Linear Separators, Threshold 
Gates, Weighted Voting Games, …

• Extensively studied in ML since [Rosenblatt’58]

+

+

+
+

+ +

-
- -

-
-

-
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LEARNING HALFSPACES WITH NOISE: PRIOR WORK

Sample Complexity Well-Understood for Learning Halfspaces in all these models.

Fact:                       samples suffice to achieve misclassification error 

Computational Complexity
• Halfspaces efficiently learnable in realizable PAC model 

– [e.g., Maass-Turan’94].

• Polynomial-time algorithm for learning halfspaces with RCN
– [Blum-Frieze-Kannan-Vempala’96]

• Learning Halfspaces with Massart Noise

• Weak agnostic learning of LTFs is computationally intractable 
– [Guruswami-Raghevendra’06, Feldman et al.’06, Daniely’16]
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LEARNING HALFSPACES WITH MASSART NOISE: OPEN

Malicious misclassification noise [Sloan’88, Rivest-Sloan’94] (equivalent to Massart).

Open Problem [Sloan’88, Cohen’97, Blum’03]
Is there a polynomial-time algorithm with non-trivial error for halfspaces? 

(Or even for more restricted concept classes?)

[A. Blum, FOCS’03 Tutorial]: 
“Given labeled examples from an unknown Boolean disjunction, corrupted with 1% Massart

noise, can we efficiently find a hypothesis that achieves misclassification error 49%?”

No progress in distribution-free setting.

Diakonikolas, HALG'20 Learning in High Dimensions with Asymmetric Label Noise 12



Theorem [D-Gouleakis-Tzamos’19]
There is an efficient algorithm that learns halfspaces on       in the distribution-independent 
PAC model with Massart noise. Specifically, the algorithm outputs a hypothesis h such that

where     is the upper bound on the Massart noise rate, and runs in time 

MAIN ALGORITHMIC RESULT

Remarks:
• Hypothesis is a decision-list of halfspaces.
• Optimal misclassification error is                 , where 
• First non-trivial guarantee in sub-exponential time.  
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First efficient algorithm for learning halfspaces with Massart noise.



INTUITION: LARGE MARGIN CASE

• Realizable Case:
(Perceptron =) SGD on

• Random Classification Noise:
SGD on 
for

In both cases: 

+
+

++
+

-
--

-
-

-
-Target vector       with

Marginal        satisfies  
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LARGE MARGIN CASE: MASSART NOISE

Lemma 1: No convex surrogate works.

But…

Lemma 2: Let      be the minimizer of 

for              
There exists such that 
has: 
• and

•

+
+

--
+

-
-+

+
-

-
-+
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z

SUMMARY OF APPROACH: LARGE MARGIN CASE

Large-Margin Case:

• There exists convex surrogate with non-trivial error on unknown subset S.
• Can algorithmically identify S using samples.
• Use convex surrogate hypothesis on S. 
• Iterate on complement.
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Lemma 2: Let      minimizer of 
for              There exists such that                                            has: 
• and
• +

-



GENERAL CASE: REDUCTION TO LARGE MARGIN CASE
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Lemma [Dunagan-Vempala’04]
Using                     samples from      , we can efficiently find an ellipsoid E such that

and every point      in           satisfies

for all

Leads to sample complexity 

[D-Kane-Tzamos’20] 
Different reduction leads to sample complexity 



SUBSEQUENT WORK

Theorem [Chen-Koehler-Moitra-Yau’20]
There exists a polynomial time proper learner with same error guarantee.
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Theorem [Chen-Koehler-Moitra-Yau’20]
Achieving error                requires time                    in the Statistical Query model. 



SUMMARY AND MAIN OPEN QUESTION

• First efficient algorithm for distribution-independent PAC learning 
of halfspaces with Massart noise.

• Misclassification error           , where     is an upper bound on the noise rate.
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Main Open Question:
Is there a polynomial time learner with misclassification error                      ?
If not, can we achieve error                       ?



Question: How about more general/other concept classes?
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BOOSTING IN THE PRESENCE OF MASSART NOISE

Boosting: Technique to improve the accuracy of any given “weak” learner.

• Weak learner: Algorithm that achieves small advantage 

• Extensively studied in TCS and ML
[Schapire’90, Freund’95, Freund-Schapire’97, Mansour-McAllester’02,...]

• Challenge: Boosting in the presence of noise 
- RCN [Kalai-Servedio’03]
- Agnostic setting [Kalai-Mansour-Verbin’08, Feldman’10]

Question: Can we design efficient boosting algorithms in the presence of Massart noise?
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BOOSTING IN THE PRESENCE OF MASSART NOISE

Question: Can we design boosting algorithms in the presence of Massart noise?

• Weak learner: Algorithm that achieves 

• Remark: Upper bound above is optimal for black-box boosting.

Diakonikolas, HALG'20 Learning in High Dimensions with Asymmetric Label Noise 22

Theorem [D-Impagliazzo-Kane-Lei-Sorrell-Tzamos’20]
Let    be any concept class on     . Suppose there exists a              time weak learner for

with advantage    in the distribution-independent Massart PAC model. There exists a 
boosting algorithm that learns    in the distribution-independent Massart PAC model. 
The algorithm runs in                            time and outputs a hypothesis h such that

where     is the upper bound on the Massart noise rate. 



OUTLINE

• Part I:

– Distribution-Independent PAC Learning with Massart Noise

• Part II:

– Distribution-Specific PAC Learning with Massart (and Other) Noise



Can we obtain near-optimal error guarantees for broad 
classes of structured distributions?
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PRIOR WORK ON DISTRIBUTION-SPECIFIC MASSART LEARNING

Goal: Achieve near-optimal error, i.e., 

Equivalently: Approximate the true classifier to any accuracy, i.e., 

Uniform Distribution on Unit Sphere:
[Awasthi-Balcan-Haghtalab-Urner’15, Yan-Zhang’17,
Zhang-Liang-Charikar’17, Mangoubi, Vishnoi’19] 

Log-Concave Distributions:
[Awasthi-Balcan-Haghtalab-Zhang’16]
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Open: Is there a polynomial time algorithm for more general distributions?



DISTRIBUTION-SPECIFIC MASSART LEARNING OF HALFSPACES

Theorem [D-Kontonis-Tzamos-Zarifis’20]
There is an efficient algorithm that learns halfspaces in the presence of Massart noise, 
assuming the distribution on examples is “well-behaved”. The algorithm has sample 
complexity                      , runs in               time, and outputs a hypothesis     such that

where f is the Bayes optimal classifier.
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Distribution is well-behaved if its 2-d projections have good concentration and (anti-)anti-
concentration.

Corollary: First polynomial-time algorithm for log-concave distributions.

See also concurrent work [Zhang-Shen-Awasthi’20]. 



INTUITION: CONVEX VERSUS NON-CONVEX RELAXATION

• Population Risk: Minimize 

• Convex Relaxation:

Minimize                                                        for some convex G.

Lemma: No convex surrogate works, even for Gaussian data.

• Idea: How about non-convex relaxations?

Minimize

where
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STRUCTURAL RESULT: STATIONARY POINTS SUFFICE

Diakonikolas, HALG'20 Learning in High Dimensions with Asymmetric Label Noise 28

Lemma:
For                         the following holds: Let w be any halfspace such that                          
Then we have that 

Non-convex landscape is well-behaved.

Corollary: 
Stochastic Gradient Descent (SGD) efficiently converges to a near-optimal solution.



STRUCTURAL RESULT: INTUITION
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Lemma:
For                         the following holds: Let w be any halfspace such that                          
Then we have that 



STRUCTURAL RESULT: INTUITION
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Lemma:
For                         the following holds: Let w be any halfspace such that                          
Then we have that 



STRUCTURAL RESULT: INTUITION
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Lemma:
For                         the following holds: Let w be any halfspace such that                          
Then we have that 



STRUCTURAL RESULT: INTUITION
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Lemma:
For                         the following holds: Let w be any halfspace such that                          
Then we have that 



STRUCTURAL RESULT: INTUITION
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Lemma:
For                         the following holds: Let w be any halfspace such that                          
Then we have that 



STRUCTURAL RESULT: INTUITION
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Lemma:
For                         the following holds: Let w be any halfspace such that                          
Then we have that 



Definition (Tsybakov noise with parameters- )
The label of each    is independently flipped with probability        , where         unknown and 
satisfies

for all

STRONGER THAN MASSART? TSYBAKOV NOISE MODEL

• Extensively studied 
[Mammen-Tsybakov’99, Boucheron-Bouquet-Lugosi’06, Bartlett-Jordan-Mcauliffe’07,
Balcan-Broder-Zhang’07, …]

• Sample complexity well-understood. 
• No efficient algorithm, for any non-trivial setting.
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LEARNING HALFSPACES WITH TSYBAKOV NOISE

First algorithmic progress on this problem.
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No previous bound upper beyond agnostic learning.

Theorem [D-Kontonis-Tzamos-Zarifis’20]
There exists an algorithm that learns halfspaces to optimal accuracy in the presence of 
Tsybakov noise, assuming the distribution on examples is “well-behaved”.
The algorithm has sample complexity and running time 
and outputs a halfspace hypothesis     such that with high probability

where f is the Bayes optimal halfspace.



Fact: Let     be such that                                                Then there exists                        
such that

Easier Problem: Given candidate     , certify if it is (sub)-optimal.

INTUITION: LEARNING VIA CERTIFYING (NON)-OPTIMALITY
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Given an efficient certificate, can find a near-optimal     via online convex optimization.    



STRUCTURAL RESULT: EFFICIENT CERTIFICATE

• Explicit construction via Chebyshev polynomials.

• Efficient computation via SDP.
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Lemma
Suppose the distribution on examples is well-behaved. Let w by any halfspace such that                          

There exists a degree-k polynomial                    , for                             , 
satisfying                       such that

Moreover, such a polynomial can be computed with sample complexity and runtime 



POLYNOMIAL TIME ALGORITHM?

[D-Kane-Kontonis-Tzamos-Zarifis’20] 

More sophisticated algorithm for certificate computation.
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CONCLUSIONS AND FUTURE DIRECTIONS

Summary:
• First algorithmic results for distribution-independent learning with Massart noise.

Noise-tolerant learning under arbitrary distributions is algorithmically possible!
• Optimal learning with  Massart/Tsybakov noise under structured distributions.

Future Directions:
• More general concept classes? 
• Other natural semi-random models?
• Applications in data poisoning?
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