Learning in High Dimensions with Asymmetric Label Noise

Ilias Diakonikolas (UW Madison)

HALG 2020

Can we develop *supervised* learning algorithms that are *robust* to a *constant* fraction of *corruptions* ?

Diakonikolas, HALG'20

MOTIVATION

- Model Misspecification/Robust Statistics [Fisher 1920s, Tukey 1960s, Huber 1960s]
- Adversarial/Secure ML

DATA POISONING

Fake Reviews [Mayzlin et al. '14]

Recommender Systems

[Li et al. '16]

Diakonikolas, HALG'20

Crowdsourcing

[Wang et al. '14] Learning in High Dimensions with Asymmetric Label Noise

So Many Misleading, "Fake" Reviews

Malware/spam

[Nelson et al. '08]

(DISTRIBUTION-INDEPENDENT) PAC LEARNING

- $\mathcal{C}:$ known class of functions $f:\mathbb{R}^d\to\{\pm1\}$
- Input: multiset of IID labeled examples $\{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^n$ from distribution \mathcal{D} such that: $\mathbf{x}^{(i)} \sim \mathcal{D}_{\mathbf{x}}$, where $\mathcal{D}_{\mathbf{x}}$ is fixed but arbitrary, and

$$y^{(i)} = f(\mathbf{x}^{(i)})$$

for some fixed unknown target concept $f \in \mathcal{C}$.

• Goal: find hypothesis $h : \mathbb{R}^d \to \{\pm 1\}$ minimizing $\mathbf{Pr}_{(\mathbf{x},y)\sim \mathcal{D}}[h(\mathbf{x}) \neq y]$

Diakonikolas, HALG'20

(DISTRIBUTION-INDEPENDENT) PAC LEARNING WITH MASSART NOISE

- $\mathcal{C}:$ known class of functions $f:\mathbb{R}^d\to\{\pm1\}$
- Input: multiset of IID labeled examples $\{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^{n}$ from distribution \mathcal{D} such that: $\mathbf{x}^{(i)} \sim \mathcal{D}_{\mathbf{x}}$, where $\mathcal{D}_{\mathbf{x}}$ is **fixed but arbitrary**, and $y^{(i)} = \begin{cases} f(\mathbf{x}^{(i)}), & \text{with probability } 1 - \eta(\mathbf{x}^{(i)}) \\ -f(\mathbf{x}^{(i)}), & \text{with probability } \eta(\mathbf{x}^{(i)}) \end{cases}$ where $\eta(\mathbf{x}) : \mathbb{R}^{d} \to [0, \eta], \eta < 1/2$

for some fixed unknown target concept $f \in \mathcal{C}$.

• Goal: find hypothesis $h : \mathbb{R}^d \to \{\pm 1\}$ minimizing $\mathbf{Pr}_{(\mathbf{x},y)\sim \mathcal{D}}[h(\mathbf{x}) \neq y]$

Diakonikolas, HALG'20

PAC LEARNING WITH OTHER NOISE

Massart Noise "in between" Random Classification Noise and Agnostic Model:

- Random Classification Noise (RCN) [Angluin-Laird'88]:
 - Special case of Massart noise: For all ${f x}$, we have that $\eta({f x})=\eta<1/2$
- Agnostic Model [Haussler'92, Kearns-Shapire-Sellie'94]:
 - Adversary can flip arbitrary OPT fraction of the labels: $\inf_{f \in \mathcal{C}} \mathbf{Pr}_{(\mathbf{x},y) \sim \mathcal{D}}[f(\mathbf{x}) \neq y] = OPT$

6

OUTLINE

- Part I:
 - Distribution-Independent PAC Learning with Massart Noise
- Part II:
 - Distribution-Specific PAC Learning with Massart (and Other) Noise

Are there **realistic noise models** that allow for efficient algorithms *without distributional assumptions* ?

Diakonikolas, HALG'20

MAIN RESULT OF PART I

Main Result [D-Gouleakis-Tzamos'19]:

First computationally efficient algorithm for learning halfspaces in the distribution-independent PAC model with Massart noise.

Diakonikolas, HALG'20

HALFSPACES

Class of functions $f: \mathbb{R}^d \to \{\pm 1\}$ such
that $f(\mathbf{x}) = \mathrm{sgn}(\langle \mathbf{w}, \mathbf{x} angle - heta)$
where $\mathbf{w} \in \mathbb{R}^d, heta \in \mathbb{R}$

- Also known as: Linear Threshold Functions, Perceptrons, Linear Separators, Threshold Gates, Weighted Voting Games, ...
- Extensively studied in ML since [Rosenblatt'58]

LEARNING HALFSPACES WITH NOISE: PRIOR WORK

Sample Complexity Well-Understood for Learning Halfspaces in all these models.

Fact: $poly(d, 1/\epsilon)$ samples suffice to achieve misclassification error $OPT + \epsilon$.

Computational Complexity

- Halfspaces efficiently learnable in realizable PAC model
 [e.g., Maass-Turan'94].
- Polynomial-time algorithm for learning halfspaces with RCN
 - [Blum-Frieze-Kannan-Vempala'96]
- Learning Halfspaces with Massart Noise
- Weak agnostic learning of LTFs is computationally intractable
 - [Guruswami-Raghevendra'06, Feldman et al.'06, Daniely'16]

Diakonikolas, HALG'20

LEARNING HALFSPACES WITH MASSART NOISE: OPEN

Malicious misclassification noise [Sloan'88, Rivest-Sloan'94] (equivalent to Massart).

Open Problem [Sloan'88, Cohen'97, Blum'03]

Is there a polynomial-time algorithm with non-trivial error for halfspaces? (Or even for more restricted concept classes?)

[A. Blum, FOCS'03 Tutorial]:

"Given labeled examples from an unknown Boolean disjunction, corrupted with 1% Massart noise, can we efficiently find a hypothesis that achieves misclassification error 49%?"

No progress in distribution-free setting.

Diakonikolas, HALG'20

MAIN ALGORITHMIC RESULT

First efficient algorithm for learning halfspaces with Massart noise.

Theorem [D-Gouleakis-Tzamos'19]

There is an efficient algorithm that learns halfspaces on \mathbb{R}^d in the distribution-independent PAC model with Massart noise. Specifically, the algorithm outputs a hypothesis *h* such that

$$\mathbf{Pr}_{(\mathbf{x},y)\sim\mathcal{D}}[h(\mathbf{x})\neq y] \leq \eta + \epsilon$$

where η is the upper bound on the Massart noise rate, and runs in time $\mathrm{poly}(d,b,1/\epsilon)$.

Remarks:

- Hypothesis is a decision-list of halfspaces.
- Optimal misclassification error is $OPT + \epsilon$, where $OPT = \mathbf{E}_{\mathbf{x} \sim \mathcal{D}_{\mathbf{x}}}[\eta(\mathbf{x})]$.
- First non-trivial guarantee in sub-exponential time.

Diakonikolas, HALG'20

Diakonikolas, HALG'20

LARGE MARGIN CASE: MASSART NOISE

Lemma 1: No convex surrogate works.

But...

Lemma 2: Let $\widehat{\mathbf{w}}$ be the minimizer of

 $L_{\lambda}(\mathbf{w}) = \mathbf{E}_{(\mathbf{x},y)\sim\mathcal{D}}[\text{LeakyRelu}_{\lambda}(-y\langle \mathbf{w}, \mathbf{x} \rangle)]$ for $\lambda \approx \eta$.

There exists T > 0 such that $R_T = {\mathbf{x} : |\langle \widehat{\mathbf{w}}, \mathbf{x} \rangle| \ge T}$ has:

•
$$\mathbf{Pr}_{(\mathbf{x},y)\sim\mathcal{D}}[R_T] \ge \epsilon \gamma$$
, and

• $\mathbf{Pr}_{(\mathbf{x},y)\sim\mathcal{D}}[h_{\widehat{\mathbf{w}}}(\mathbf{x})\neq y \mid R_T] \leq \eta + \epsilon$.

SUMMARY OF APPROACH: LARGE MARGIN CASE

Lemma 2: Let $\widehat{\mathbf{w}}$ minimizer of $L_{\lambda}(\mathbf{w}) = \mathbf{E}_{(\mathbf{x},y)\sim\mathcal{D}}[\text{LeakyRelu}_{\lambda}(-y\langle \mathbf{w}, \mathbf{x} \rangle)]$ for $\lambda \approx \eta$. There exists T > 0 such that $R_T = {\mathbf{x} : |\langle \widehat{\mathbf{w}}, \mathbf{x} \rangle| \ge T}$ has:

• $\mathbf{Pr}_{(\mathbf{x},y)\sim\mathcal{D}}[R_T] \ge \epsilon \gamma$, and • $\mathbf{Pr}_{(\mathbf{x},y)\sim\mathcal{D}}[h_{\widehat{\mathbf{w}}}(\mathbf{x}) \ne y \mid R_T] \le \eta + \epsilon$.

Large-Margin Case:

- There exists convex surrogate with non-trivial error on *unknown* subset *S*.
- Can algorithmically identify *S* using samples.
- Use convex surrogate hypothesis on *S*.
- Iterate on complement.

GENERAL CASE: REDUCTION TO LARGE MARGIN CASE

Lemma [Dunagan-Vempala'04] Using $m = \tilde{O}(d^2b)$ samples from $\mathcal{D}_{\mathbf{x}}$, we can efficiently find an ellipsoid E such that $\mathbf{Pr}_{\mathbf{x}\sim\mathcal{D}_{\mathbf{x}}}[\mathbf{x}\in E] \ge 1/2$ and every point \mathbf{x} in $\mathcal{D}_{\mathbf{x}}|_E$ satisfies $\langle \mathbf{w}, \mathbf{x} \rangle^2 \le \tilde{O}(db) \mathbf{E}_{\mathbf{x}\sim\mathcal{D}_{\mathbf{x}}}[\langle \mathbf{w}, \mathbf{x} \rangle^2]$ for all $\mathbf{w} \in \mathbb{R}^d$.

Leads to sample complexity $\operatorname{poly}(d,b,1/\epsilon)$

[D-Kane-Tzamos'20]

Different reduction leads to sample complexity $poly(d, 1/\epsilon)$

Diakonikolas, HALG'20

SUBSEQUENT WORK

Theorem [Chen-Koehler-Moitra-Yau'20]

There exists a polynomial time *proper* learner with same error guarantee.

Theorem [Chen-Koehler-Moitra-Yau'20]

Achieving error $OPT + \epsilon$ requires time $d^{\Omega(\log(1/\epsilon))}$ in the Statistical Query model.

Diakonikolas, HALG'20

SUMMARY AND MAIN OPEN QUESTION

- First efficient algorithm for distribution-independent PAC learning of halfspaces with Massart noise.
- Misclassification error $\eta + \epsilon$, where η is an *upper bound* on the noise rate.

If not, can we achieve error $g(\text{OPT}) + \epsilon$?

Diakonikolas, HALG'20

Question: How about more general/other concept classes?

Diakonikolas, HALG'20

BOOSTING IN THE PRESENCE OF MASSART NOISE

Boosting: Technique to improve the accuracy of any given "weak" learner.

- Weak learner: Algorithm that achieves small advantage $\mathbf{Pr}_{(\mathbf{x},y)\sim \mathcal{D}}[h(\mathbf{x}) \neq y] \leq 1/2 \gamma$.
- Extensively studied in TCS and ML [Schapire'90, Freund'95, Freund-Schapire'97, Mansour-McAllester'02,...]
- Challenge: Boosting in the presence of noise
 - RCN [Kalai-Servedio'03]
 - Agnostic setting [Kalai-Mansour-Verbin'08, Feldman'10]

Question: Can we design efficient boosting algorithms in the presence of Massart noise?

Diakonikolas, HALG'20

BOOSTING IN THE PRESENCE OF MASSART NOISE

Question: Can we design boosting algorithms in the presence of Massart noise?

• Weak learner: Algorithm that achieves $\mathbf{Pr}_{(\mathbf{x},y)\sim \mathcal{D}}[h(\mathbf{x}) \neq y] \leq 1/2 - \gamma$.

Theorem [D-Impagliazzo-Kane-Lei-Sorrell-Tzamos'20] Let C be any concept class on \mathbb{R}^d . Suppose there exists a poly(d) time weak learner for C with advantage γ in the distribution-independent Massart PAC model. There exists a boosting algorithm that learns C in the distribution-independent Massart PAC model. The algorithm runs in $poly(d, 1/\gamma, 1/\epsilon)$ time and outputs a hypothesis h such that

$$\mathbf{Pr}_{(\mathbf{x},y)\sim\mathcal{D}}[h(\mathbf{x})\neq y]\leq \eta+\epsilon$$

where η is the upper bound on the Massart noise rate.

• **Remark**: Upper bound above is optimal for black-box boosting.

Diakonikolas, HALG'20

OUTLINE

- Part I:
 - Distribution-Independent PAC Learning with Massart Noise
- Part II:
 - Distribution-Specific PAC Learning with Massart (and Other) Noise

Can we obtain *near-optimal* error guarantees for broad classes of *structured distributions*?

Diakonikolas, HALG'20

PRIOR WORK ON DISTRIBUTION-SPECIFIC MASSART LEARNING

Goal: Achieve near-optimal error, i.e., $\mathbf{Pr}_{(\mathbf{x},y)\sim\mathcal{D}}[h((x))\neq y] \leq \mathrm{OPT} + \epsilon$

Equivalently: Approximate the true classifier to any accuracy, i.e., $\mathbf{Pr}_{\mathbf{x}\sim\mathcal{D}_{\mathbf{x}}}[h((x))\neq f(\mathbf{x})] \leq \epsilon$.

Uniform Distribution on Unit Sphere: [Awasthi-Balcan-Haghtalab-Urner'15, Yan-Zhang'17, Zhang-Liang-Charikar'17, Mangoubi, Vishnoi'19]

Log-Concave Distributions: [Awasthi-Balcan-Haghtalab-Zhang'16] $d^{2^{\operatorname{poly}\left(rac{1}{1-2\eta}
ight)}}/\operatorname{poly}(\epsilon)$

 $poly(d, 1/\epsilon, 1/(1-2\eta))$

Open: Is there a polynomial time algorithm for more general distributions?

Diakonikolas, HALG'20

DISTRIBUTION-SPECIFIC MASSART LEARNING OF HALFSPACES

Theorem [D-Kontonis-Tzamos-Zarifis'20]

There is an efficient algorithm that learns halfspaces in the presence of Massart noise, assuming the distribution on examples is "well-behaved". The algorithm has sample complexity $N = O(d/\epsilon^4)$, runs in poly(N) time, and outputs a hypothesis h such that $\mathbf{Pr}_{\mathbf{x}\sim\mathcal{D}_{\mathbf{x}}}[h(\mathbf{x})\neq f(\mathbf{x})]\leq\epsilon$

where f is the Bayes optimal classifier.

Distribution is **well-behaved** if its 2-d projections have good concentration and (anti-)anticoncentration.

Corollary: First polynomial-time algorithm for log-concave distributions.

See also concurrent work [Zhang-Shen-Awasthi'20].

Diakonikolas, HALG'20

INTUITION: CONVEX VERSUS NON-CONVEX RELAXATION

- Population Risk: Minimize $\mathcal{L}_{0/1}(\mathbf{w}) = \mathbf{E}_{(\mathbf{x},y)\sim \mathcal{D}}[\mathbf{1}\{-y\langle \mathbf{w}, \mathbf{x} \rangle > 0\}]$
- Convex Relaxation:

Minimize $\mathcal{L}_G(\mathbf{w}) = \mathbf{E}_{(\mathbf{x},y)\sim\mathcal{D}}[G(-y\langle \mathbf{w}, \mathbf{x} \rangle)]$ for some convex G.

Lemma: No convex surrogate works, even for Gaussian data.

• Idea: How about *non*-convex relaxations?

 $\text{Minimize } \mathcal{L}_{\text{logistic}_{\sigma}}(\mathbf{w}) = \mathbf{E}_{(\mathbf{x}, y) \sim \mathcal{D}}[\text{logistic}_{\sigma}(-y \langle \mathbf{w}, \mathbf{x} \rangle)]$

where $\mathrm{logistic}_{\sigma}(t) = \frac{1}{1+e^{-t/\sigma}}$

Diakonikolas, HALG'20

STRUCTURAL RESULT: STATIONARY POINTS SUFFICE

Non-convex landscape is well-behaved.

Lemma: For $\sigma \lesssim \epsilon \sqrt{1-2\eta}$ the following holds: Let *w* be any halfspace such that $\theta(\mathbf{w}, \mathbf{w}^*) \ge \epsilon$. Then we have that $\|\nabla \mathcal{L}_{\text{logistic}_{\sigma}}(\mathbf{w})\|_2 \gtrsim 1-2\eta$.

Corollary:

Stochastic Gradient Descent (SGD) efficiently converges to a near-optimal solution.

Diakonikolas, HALG'20

Lemma: For $\sigma \leq \epsilon \sqrt{1-2\eta}$ the following holds: Let *w* be any halfspace such that $\theta(\mathbf{w}, \mathbf{w}^*) \geq \epsilon$. Then we have that $\|\nabla \mathcal{L}_{\text{logistic}_{\sigma}}(\mathbf{w})\|_2 \gtrsim 1-2\eta$.

Diakonikolas, HALG'20

Lemma: For $\sigma \lesssim \epsilon \sqrt{1-2\eta}$ the following holds: Let *w* be any halfspace such that $\theta(\mathbf{w}, \mathbf{w}^*) \ge \epsilon$. Then we have that $\|\nabla \mathcal{L}_{\text{logistic}_{\sigma}}(\mathbf{w})\|_2 \gtrsim 1-2\eta$.

Diakonikolas, HALG'20

Lemma: For $\sigma \lesssim \epsilon \sqrt{1-2\eta}$ the following holds: Let *w* be any halfspace such that $\theta(\mathbf{w}, \mathbf{w}^*) \ge \epsilon$. Then we have that $\|\nabla \mathcal{L}_{\text{logistic}_{\sigma}}(\mathbf{w})\|_2 \gtrsim 1-2\eta$.

Diakonikolas, HALG'20

Lemma: For $\sigma \lesssim \epsilon \sqrt{1-2\eta}$ the following holds: Let *w* be any halfspace such that $\theta(\mathbf{w}, \mathbf{w}^*) \ge \epsilon$. Then we have that $\|\nabla \mathcal{L}_{\text{logistic}_{\sigma}}(\mathbf{w})\|_2 \gtrsim 1-2\eta$.

Diakonikolas, HALG'20

Lemma: For $\sigma \lesssim \epsilon \sqrt{1-2\eta}$ the following holds: Let w be any halfspace such that $\theta(\mathbf{w}, \mathbf{w}^*) \ge \epsilon$. Then we have that $\|\nabla \mathcal{L}_{\text{logistic}_{\sigma}}(\mathbf{w})\|_2 \gtrsim 1-2\eta$.

Diakonikolas, HALG'20

Lemma:

For $\sigma \leq \epsilon \sqrt{1-2\eta}$ the following holds: Let *w* be any halfspace such that $\theta(\mathbf{w}, \mathbf{w}^*) \geq \epsilon$. Then we have that

$\|\nabla \mathcal{L}_{\text{logistic}_{\sigma}}(\mathbf{w})\|_{2} \gtrsim 1 - 2\eta$.

Diakonikolas, HALG'20

STRONGER THAN MASSART? TSYBAKOV NOISE MODEL

Definition (Tsybakov noise with parameters- (α, A)) The label of each x is independently flipped with probability $\eta(\mathbf{x})$, where $\eta(\mathbf{x})$ unknown and satisfies

$$\mathbf{Pr}_{\mathbf{x}\sim\mathcal{D}_{\mathbf{x}}}[\eta(\mathbf{x})\geq 1/2-t]\leq At^{rac{lpha}{1-lpha}}$$

for all $t \in (0, 1/2]$.

· Extensively studied

[Mammen-Tsybakov'99, Boucheron-Bouquet-Lugosi'06, Bartlett-Jordan-Mcauliffe'07, Balcan-Broder-Zhang'07, ...]

- Sample complexity well-understood.
- No efficient algorithm, for any non-trivial setting.

Diakonikolas, HALG'20

LEARNING HALFSPACES WITH TSYBAKOV NOISE

First algorithmic progress on this problem.

Theorem [D-Kontonis-Tzamos-Zarifis'20]

There exists an algorithm that learns halfspaces to optimal accuracy in the presence of Tsybakov noise, assuming the distribution on examples is "well-behaved". The algorithm has sample complexity and running time $d^{O(\log^2(1/\epsilon))}$ and outputs a halfspace hypothesis h such that with high probability

 $\mathbf{Pr}_{\mathbf{x}\sim\mathcal{D}_{\mathbf{x}}}[h(\mathbf{x})\neq f(\mathbf{x})]\leq\epsilon$

where f is the Bayes optimal halfspace.

No previous bound upper beyond agnostic learning.

Diakonikolas, HALG'20

INTUITION: LEARNING VIA CERTIFYING (NON)-OPTIMALITY

Easier Problem: Given candidate \mathbf{w} , certify if it is (sub)-optimal.

Fact: Let w be such that $\operatorname{sign}(\langle \mathbf{w}, \mathbf{x} \rangle) \not\equiv \operatorname{sign}(\langle \mathbf{w}^*, \mathbf{x} \rangle)$. Then there exists $T : \mathbb{R}^d \to \mathbb{R}^d_+$ such that $\mathbf{E}_{(\mathbf{x}, y) \sim \mathcal{D}}[T(\mathbf{x}) \langle \mathbf{w}, \mathbf{x} \rangle y] < 0$.

Given an efficient certificate, can find a near-optimal w via online convex optimization.

Diakonikolas, HALG'20

STRUCTURAL RESULT: EFFICIENT CERTIFICATE

Lemma

Suppose the distribution on examples is well-behaved. Let *w* by any halfspace such that $\theta(\mathbf{w}, \mathbf{w}^*) \geq \epsilon$. There exists a degree-*k* polynomial $p : \mathbb{R}^d \to \mathbb{R}$, for $k = O(\log^2(1/\epsilon))$, satisfying $\|p\|_2 = d^{O(k)}$ such that

$$\mathbf{E}_{(\mathbf{x},y)\sim\mathcal{D}}\Big[\underbrace{p(\mathbf{x})^2 \,\mathbf{1}\{0 \leq \langle \mathbf{w}, \mathbf{x} \rangle \lesssim \epsilon\}}_{T(\mathbf{x})} \, y \, \langle \mathbf{w}, \mathbf{x} \rangle \Big] \lesssim -\epsilon \; .$$

Moreover, such a polynomial can be computed with sample complexity and runtime $d^{O(k)}$

- Explicit construction via Chebyshev polynomials.
- Efficient computation via SDP.

Diakonikolas, HALG'20

POLYNOMIAL TIME ALGORITHM?

[D-Kane-Kontonis-Tzamos-Zarifis'20]

More sophisticated algorithm for certificate computation.

Diakonikolas, HALG'20

CONCLUSIONS AND FUTURE DIRECTIONS

Summary:

- First algorithmic results for distribution-independent learning with Massart noise. Noise-tolerant learning under arbitrary distributions is algorithmically possible!
- Optimal learning with Massart/Tsybakov noise under structured distributions.

Future Directions:

- More general concept classes?
- Other natural semi-random models?
- Applications in data poisoning?