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Can we develop learning algorithms that are robust to 
a constant fraction of corruptions in the data?



PART I: INTRODUCTION



MOTIVATION

• Model Misspecification/Robust Statistics 
[Fisher 1920s, Tukey 1960s, Huber 1960s]

• Outlier Detection/Removal 

• Adversarial/Secure ML



DETECTING OUTLIERS IN REAL DATASETS

• High-dimensional datasets tend to be inherently noisy.

• Outliers: either interesting or can contaminate statistical analysis

Biological Datasets: POPRES project, 
HGDP datasets

[November et al., Nature’08]; 
[Rosenberg et al., Science’02]; 
[Li et al., Science’08];  
[Paschou et al., Medical Genetics’10]



DATA POISONING

Fake Reviews [Mayzlin et al. ‘14]

Recommender Systems Crowdsourcing Malware/spam

[Li et al. ‘16] [Wang et al. ‘14] [Nelson et al. ‘08]



THE STATISTICAL LEARNING PROBLEM

• Input: sample generated by a statistical model with unknown
• Goal: estimate parameters    so that  

Question 1: Is there an efficient learning algorithm?

Unknown 
θ* samples ✓

✓⇤

✓ ✓ ⇡ ✓⇤

Main performance criteria:
• Sample size
• Running time

Question 2: Are there tradeoffs between these criteria?

• Robustness



(OUTLIER-) ROBUSTNESS IN A GENERATIVE MODEL

Strong Contamination Model:
Let     be a family of statistical models.
We say that a set of N samples is -corrupted from     if 
it is generated as follows: 
• N samples are drawn from an unknown
• An omniscient adversary inspects these samples and 

changes arbitrarily an   -fraction of them.
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✏

cf. Huber’s contamination model [1964]



SEVERAL MODELS OF ROBUSTNESS

• Oblivious/Adaptive Adversary
• Additive/Subtractive/ Additive + Subtractive Adversary

Power of Adversary Oblivious Adaptive

Additive Errors Huber’s Contamination Model Additive Contamination
(“Data Poisoning”)

Subtractive Errors Subtractive Contamination

Additive and Subtractive 
Hampel’s Contamination

Strong Contamination



EXAMPLE: PARAMETER ESTIMATION

Given i.i.d. samples from an unknown distribution

e.g., a 1-D Gaussian

how do we accurately estimate its parameters?

empirical mean: empirical variance: 



Maximum Likelihood 
(1920s)

R. A. Fisher J. W. Tukey

Model Misspecification ? 
(1960s)



“Robust Estimation of a Location Parameter”
Annals of Mathematical Statistics, 1964.

Peter J. Huber



ROBUST STATISTICS

What estimators behave well in the presence of outliers?



ROBUST ESTIMATION: ONE DIMENSION

• A single corrupted sample can arbitrarily corrupt the empirical mean and 
variance

• But the median and interquartile range work

Given corrupted samples from a one-dimensional Gaussian, can we 
accurately estimate its parameters?



Fact [Folklore]: Given a set S of N -corrupted samples from a one-dimensional 
Gaussian

with high constant probability we have that:                           

where

What about robust estimation in high-dimensions?



HIGH-DIMENSIONAL ROBUST MEAN ESTIMATION

Remark: Above convergence rate is optimal [Tukey’75, Donoho’82]

Robust Mean Estimation: Given an     - corrupted set of samples 
from an unknown mean, identity covariance Gaussian                in 
d dimensions, recover      with   

✏



PREVIOUS APPROACHES: ROBUST MEAN ESTIMATION

Error Rate Running Time

Tukey Median NP-Hard

Geometric Median

Tournament

Distance-Based Pruning

Estimator

Coordinate-wise Median



DISTANCE-BASED PRUNING



DISTANCE-BASED PRUNING = NAÏVE OUTLIER REMOVAL



All known estimators are either require exponential time to compute 
or can tolerate a negligible fraction of outliers.

Is robust estimation algorithmically possible in high-dimensions?

HIGH-DIMENSIONAL ROBUST STATISTICS: 1960-2016



“[…] Only simple algorithms (i.e., with a low degree of computational complexity) will
survive the onslaught of huge data sets. This runs counter to recent developments in
computational robust statistics. It appears to me that none of the above problems will be
amenable to a treatment through theorems and proofs. They will have to be attacked by
heuristics and judgment, and by alternative “what if” analyses.[…]”

Robust Statistical Procedures, 1996, Second Edition.

Peter J. Huber, 1975



Robust estimation in high-dimensions is algorithmically possible!

• Computationally efficient robust estimators that can tolerate a 
constant fraction of corruptions.

• Methodology to detect outliers in high dimensions.

Meta-Theorem (Informal): Can obtain dimension-independent error 
guarantees, if distribution on inliers has nice concentration.



FIRST ALGORITHMIC PROGRESS IN UNSUPERVISED SETTING

[D-Kamath-Kane-Li-Moitra-Stewart, FOCS’16/SICOMP19/CACM’20]

Can tolerate constant fraction of corruptions.

• Mean and Covariance Estimation
• Mixtures of Spherical Gaussians, Mixtures of Balanced Product Distributions

[Lai-Rao-Vempala, FOCS’16]

Can tolerate inverse logarithmic fraction of corruptions.

• Mean and Covariance Estimation
• Independent Component Analysis, SVD



SUBSEQUENT RELATED WORKS

• Sparse Models [Balakrishan-Du-Li-Singh’17, D-Karmalkar-Kane-Price-Stewart’19, Liu-Shen-Li-Caramanis’19,…]

• Graphical Models [Cheng-D-Kane-Stewart’18, D-Kane-Stewart-Sun’20] 

• Robust Regression/Classification [D-Kane-Stewart’18, Klivans-Kothari-Meka’18, D-Kong-Stewart’19, …]

• Robust Stochastic Optimization [Prasad-Suggala-Balakrishnan-Ravikumar’18, D-Kamath-Kane-Li-
Steinhard-Stewart’18, …]

• Robust Estimation via SoS [Hopkins-Li’18, Kothari-Steinhardt-Steurer’18, Karmalkar-Klivans-Kothari’19, 
Raghavendra-Yau’19, Bakshi-Kothari’20, D-Hopkins-Kane-Karmalkar’20, …]

• Near-Linear Time Algorithms [Chen-D-Ge’18, Cheng-D-Ge-Woodruff’19, Depersin-Lecue’19, Dong-Hopkins-
Li’19, Li-Ye’20, Cherapanamjeri-Mohanty-Yau’20, …]

• Computational-Statistical Tradeoffs [D-Kane-Stewart’17, D-Kong-Stewart’19, Hopkins-Li’19, …]

• Connections to Non-Convex Optimization [Chen-D-Ge-Soltanolkotabi’20, Zhu-Jiao-Steinhardt’20]
• List-Decodable Learning [Charikar-Steinhardt-Valiant ’17, D-Kane-Stewart’18, Meister-Valiant’18, Karmalkar-

Klivans-Kothari’19, Raghavendra-Yau’19, D-Kane-Koongsgard’20, …]
• Applications in Data Analysis [D-Kamath-Kane-Li-Moitra-Stewart’17, D-Kamath-Kane-Li-Steinhard-

Stewart’18, … ]



HIGH-DIMENSIONAL ROBUST MEAN ESTIMATION



ROBUST MEAN ESTIMATION: GAUSSIAN CASE

First-term of RHS Independent of d  ! 

Theorem 1: Let                   If D is a spherical Gaussian, there is an 
efficient algorithm that outputs an estimate      that with high probability 
satisfies

in the additive contamination model.                                           

Problem: Given an   -corrupted set of points                                 from an 
unknown distribution D in a known family    , estimate the mean     of D.

[D-Kamath-Kane-Li-Moitra-Stewart, SODA’18]



ROBUST MEAN ESTIMATION: SUB-GAUSSIAN CASE

Theorem 2: Let                   If D is a spherical sub-Gaussian, there is an 
efficient algorithm that outputs an estimate      that with high probability 
satisfies

in the strong contamination model.                                           

Problem: Given an   -corrupted set of points                                 from an 
unknown distribution D in a known family    , estimate the mean     of D.

[D-Kamath-Kane-Li-Moitra-Stewart, FOCS’16, ICML’17]

Information-theoretically optimal error. 



ROBUST MEAN ESTIMATION: BOUNDED COVARIANCE CASE

Theorem 3: Let                   If D has covariance                    , there is an 
efficient algorithm that outputs an estimate      that with high probability 
satisfies

in the strong contamination model.                                           

Problem: Given an   -corrupted set of points                                 from an 
unknown distribution D in a known family    , estimate the mean     of D.

Information-theoretically optimal error. 

[D-Kamath-Kane-Li-Moitra-Stewart, ICML’17; Steinhardt, Charikar, Valiant, ITCS’18]



ROBUST MEAN ESTIMATION: SUMMARY

Assumptions 
on Inliers

Information-
Theoretic Bound

Computationally 
Efficient Estimators

Reference

Gaussian with Additive Contamination*
[DKKLMS, SODA’18]

Subgaussian with
[DKKLMS, FOCS’16]

Bounded t-th Moments Folklore 
(see, e.g., survey [DK19])

Unknown Covariance [DKKLMS, ICML’17; 
SCV, ITCS’18]

Bounded t-th Moments “Niceness” Assumption*
[HL, STOC’18; KS, STOC’18]


