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BASICS OF HIGH-DIMENSIONAL MEAN ESTIMATION

Ve

Fact: Let X;,..., X5 be IID samples from N (u, I). The empirical estimator z
satisfies ||t — p||2 = O(4/d/N) with probability at least 9/10.
Moreover, this rate is optimal for any estimator.

G

Proof:
By definition, i = (1/N) Y.~ | X;, where X; ~ N (u,I).
Then, N
i~ N (p, (1/N)I).
We have R d
E[|z — pl3] ZE i —py)?] =) Var[i;] =d/N
71=1
Therefore,

4 ~ d
B[l — pull2] <E[l|f - pl3)'? =1/ &

For lower bound, apply Assouad’s lemma for M = {u; = £/N/d, j € [d]}



INFORMATION-THEORETIC LIMITS ON ROBUST ESTIMATION

Proposition: Any robust mean estimator for N’ (i, 1) has error ©2(¢), even in Huber’s model.

Claim: Let P, P, be such that drv (P, P2) = €¢/(1 — €) . There exist noise distributions B, B,
such that(l — €)P1 +eB; = (1 — €)P2 + €Bsy .

* Use drv (NM(p1,1), N (p2,1)) < |p1 — pal/2

« Same argument gives:
- For sub-gaussian distributions: Q(e/log(1/¢))
- For bounded variance distributions: Q(4/€)



SAMPLE EFFICIENT ROBUST MEAN ESTIMATION (I)

Proposition: There is an algorithm that uses N = O(d/¢?) e- corrupted samples from N (u, I)
and outputs i € R? that with probability at least 9/10 satisfies ||z — u||2 = O(e).

Main Idea: To robustly learn the mean of N (u, I), it suffices to learn the mean of all its 1-
dimensional projections (cf. Tukey median).

Basic Fact: ||z||; = max |v- x|
vi[lv]lp=1

Claim 1: Suppose we can find {fi,}, s.t. for all v € R? with||v||, = 1 we have|g, —p-v| < 6.
Then, we can estimate p within error 26 .

Proof:
Consider infinite size LP: Find z € R? such that for all unit v € R®: |, — v - z| < 4.
Let 2* be any feasible solution. Then

|lz* —pllo= max |v-2*—v-p| < max |v-z¥ —l,|+ max |v-p—1,] <20. H
vif|vl2=1 vif|vll2=1 v:||v]|2=1



SAMPLE EFFICIENT ROBUST MEAN ESTIMATION (lII)

Main Idea: To robustly learn the mean of N'(u, I), it suffices to learn the mean of “all” its 1-
dimensional projections.

Claim 2: Suffices to consider a v -net C over all directions, where is a small positive constant.
Proof:

This gives finite LP:

Find 2 € R? such that for all v € C, we have |, — v - z| <.

Let z* be any feasible solution. Let «, € C such that ||u — W%'h <~.
Then
* K z* * *
[ —plle = |\ | 77— — ) +u) (@ —p)| <vllz” — pllz+ 26
= |2
or 20



SAMPLE EFFICIENT ROBUST MEAN ESTIMATION (I1I)

Main Idea: To robustly learn the mean of N'(y, I), it suffices to learn the mean of “all” its 1-
dimensional projections.

So, for v = 1/2, any feasible solution to the LP has ||z* — pu||2 <46 .

Sample Complexity: Note that the median satisfies § = O(¢) with probability at least 1 — 7
using O((1/€?)log(1/7)) samples.

We need union bound over all v € C. Since |C| = (1/7)°9@ = 20  for 7 =1/(10|C)
algorithm works with probability at least 9/10.
Thus, sample complexity will be N = O(d/e?) .

Runtime: poly(N, 2%) .
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CERTIFICATE OF ROBUSTNESS FOR EMPIRICAL ESTIMATOR

Idea #1 [DKKLMS’16, LRV’16]: If the empirical covariance is “close
to what it should be”, then the empirical mean works.

- J




CERTIFICATE FOR EMPIRICAL MEAN

Detect when the empirical estimator may be compromised

o ‘. ®
'Y ® 1y
N ® n=— Z X
N 4
° .. @® = uncorrupted
® @® = corrupted
P o
o ©°o0°

There is no direction of large empirical variance




Key Lemma: Let X}, X,, ..., Xjybe an €-corrupted set of samples from N (u, I)
and N = Q(d/e?), then for

= I
(1) ﬁéN;Xz‘ ) Eéﬁz;(X@'—ﬁﬂXi—ﬁ)T
i= i=
with high probability we have:
|1Z]2 <1+ O(elog(1/€)) = ||fi — pll2 < O(e/log(1/e))

in strong contamination model.




Key Lemma: Let X}, X,, ..., Xjybe an €-corrupted set of samples from N (u, I)
and N = Q(d/e?), then for

N N
~a 1 = T
) = § ) T £ N E — 1)
with high probability we have: -

€2 <1446 —> [|7Z — plls < O(Vée+ ey/log(1/e))

in strong contamination model.




Idea #2 [DKKLMS’16]: Removing any € - fraction of good points does
not move the empirical mean and covariance by much.




REMARKS ON KEY LEMMA

» Statement applies for spherical distributions with sub-Gaussian tails.
» Essentially same argument goes through if covariance is approximately known.

* Argument extends for distributions with known covariance and weaker concentration.

If D is isotropic with sub-exponential tails:
IE]l2 <146 => - pllz < O(Vée+elog(1/e)) .

If D satisfies > < I:

ISll2 < 1+6 = |- pllz2 < O(Voe+e) .
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Idea #3 [LRV’16]: Additive corruptions can move the covariance in
some directions, but not in all directions simultaneously.




RECURSIVE DIMENSION-HALVING [LRV'16]

-

LRV Procedure:

Step #1: Find large subspace where “standard” estimator works.
Step #2: Recurse on complement.

Combine Results.

Can reduce dimension by factor of 2 in each recursive step.




FINDING A GOOD SUBSPACE (l)

“Good subspace G’ = one where the empirical mean works

By Key Lemma, sufficient condition is:

Projection of empirical covariance on G has no large eigenvalues.

« Also want G to be “high-dimensional”.

Question: How do we find such a subspace?



FINDING A GOOD SUBSPACE (lI)

Y

(&

Good Subspace Lemma: Let X, X,, ..., Xyybe an additively e -corrupted set
of N = Q(dlog d/e?) samples from N (u, I). After naive pruning, we have

AN

that Aa/2(8) < 14 0(e)

~

Corollary: Let W be the span of the bottom d/2 eigenvalues of 5.
Then W'is a good subspace.




RECURSIVE DIMENSION-HALVING ALGORITHM [LRV'16]

Algorithm works as follows:

e

.

~
Remove gross outliers (e.g., naive pruning).

Let W, V be the span of bottom d/2 and upper d/2 eigenvalues of 5 respectively .
Use empirical mean on .

Recurse on V (If the dimension is one, use median).

Error Analysis:

O(logd) levels of the recursion === final error of O(e+/logd)
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Idea #4 [DKKLMS’16]: Iteratively “remove outliers” in order to
“fix” the empirical covariance.




ITERATIVE FILTERING [DKKLMS’16]

~
Iterative Two-Step Procedure:

Step #1: Test certificate of robustness of “standard” estimator
Step #2: If certificate is violated, detect and remove outliers

lterate on “cleaner” dataset.

.

General recipe that works in general settings.

Let’s see how this works for robust mean estimation.



FILTERING SUBROUTINE

Either output empirical mean, or remove many outliers.

Filtering Approach: Suppose that:

IZ]2 > 1+ Q(elog(1/e))

Let v*be the direction of maximum variance.
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Let v*be the direction of maximum variance.

4 N
Project all the points on the direction of v*

Find a threshold 7" such that
Prx.,s[|v" - X — median({v* -z, 2z € S})| >T+1] > 8- e T /2
Throw away all points x such that

v* -z — median({v* - z,x € S})| > T +1

\ lterate on new dataset. )




FILTERING SUBROUTINE: ANALYSIS SKETCH

Either output empirical mean, or remove many outliers.

Filtering Approach: Suppose that:

IZ]2 > 1+ Q(elog(1/e))

Claim: In each iteration, we remove more outliers than inliers.

After a bounded number of iterations, we stop removing points.

Eventually the empirical mean works

Runtime: O(Ndz)



FILTERING PSEUDO-CODE

-

<

Input: e-corrupted set S from N (u, I)
Output: Set S’ C S thatis €'-corrupted, for some € < €
OR robust estimate of the unknown mean @

—_—

Let ig, f)s be the empirical mean and covariance of the set S.

2. If||Sg2 <1+ Celog(1/e), for an appropriate constant C > 0:
Output ig

3. Otherwise, let(\*, v*) be the top eigenvalue-eigenvector pair of 5.
4. FindT > 0 such that

Prx.,s[[v* - X — median({v* - z,z € S})| >T +1] > 8- e T°/2
5. Return

S'={zxe€S:|v" z—median({v*-z,z € S})| < T +1}.




REMARKS ON FILTERING METHOD(S)

For known covariance sub-Gaussian case, filter relied on violation of concentration.

» This extends to weaker concentration, as long as covariance is (approximately) known.
» For example, for sub-exponential concentration, filter would be:

Find 7> 0 suchthat Prx., s[[v* - (X —0)|>T]>8-¢ .

» For the bounded covariance setting, randomized filtering / down-weighting.

Remove point x with probability proportional to (v* - (z — 1)) .

* Analogue of Claim 1: Remove more outliers than inliers in expectation.



SUMMARY: RoOBUST MEAN ESTIMATION VIA FILTERING

Certificate for Robustness:

“Spectral norm of empirical covariance is close to what it should be.”

Exploiting the Certificate:
* Check if certificate is satisfied.

» |f violated, find “subspace” where behavior of outliers
different than behavior of inliers.

e Use it to detect and remove outliers.

* |terate on “cleaner”’ dataset.




