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BASICS OF HIGH-DIMENSIONAL MEAN ESTIMATION

Fact: Let                     be IID samples from               The empirical estimator     
satisfies                                        with probability at least 9/10.
Moreover, this rate is optimal for any estimator.

Proof: 
By definition,                                , where                        
Then, 

We have 

Therefore, 

For lower bound, apply Assouad’s lemma for 



INFORMATION-THEORETIC LIMITS ON ROBUST ESTIMATION

Proposition: Any robust mean estimator for             has error        , even in Huber’s model.

Claim: Let P1, P2 be such that                                          There exist noise distributions B1, B2
such that 

• Use

• Same argument gives: 
- For sub-gaussian distributions:
- For bounded variance distributions: 



SAMPLE EFFICIENT ROBUST MEAN ESTIMATION (I)

Proposition: There is an algorithm that uses                        - corrupted samples from                
and outputs             that with probability at least 9/10 satisfies

Main Idea: To robustly learn the mean of             , it suffices to learn the mean of all its 1-
dimensional projections (cf. Tukey median).

Basic Fact: 

Claim 1: Suppose we can find           s.t. for all             with               we have                            
Then, we can estimate     within error 
Proof:
Consider infinite size LP: Find             such that for all unit            :  
Let      be any feasible solution. Then 



SAMPLE EFFICIENT ROBUST MEAN ESTIMATION (II)

Main Idea: To robustly learn the mean of             , it suffices to learn the mean of “all” its 1-
dimensional projections.

Claim 2: Suffices to consider a    -net C over all directions, where    is a small positive constant.    
Proof:
This gives finite LP:
Find             such that for all          , we have 

Let     be any feasible solution. Let            such that 
Then

or 



SAMPLE EFFICIENT ROBUST MEAN ESTIMATION (III)

Main Idea: To robustly learn the mean of             , it suffices to learn the mean of “all” its 1-
dimensional projections.

So, for              , any feasible solution to the LP has  

Sample Complexity: Note that the median satisfies                with probability at least                
using                               samples.

We need union bound over all           . Since                                       , for 
algorithm works with probability at least 9/10.
Thus, sample complexity will be

Runtime: 
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CERTIFICATE OF ROBUSTNESS FOR EMPIRICAL ESTIMATOR

Idea #1 [DKKLMS’16, LRV’16]: If the empirical covariance is “close  
to what it should be”, then the empirical mean works.



CERTIFICATE FOR EMPIRICAL MEAN

Detect when the empirical estimator may be compromised

= uncorrupted
= corrupted

There is no direction of large empirical variance



Key Lemma: Let X1, X2, …, XN be an    -corrupted set of samples from
and                      , then for 

(1) (2)

with high probability we have: 

in strong contamination model.



Key Lemma: Let X1, X2, …, XN be an    -corrupted set of samples from
and                      , then for 

(1) (2)

with high probability we have: 

in strong contamination model.



Idea #2 [DKKLMS’16]: Removing any    - fraction of good points does 
not move the empirical mean and covariance by much. 



REMARKS ON KEY LEMMA

• Statement applies for spherical distributions with sub-Gaussian tails.
• Essentially same argument goes through if covariance is approximately known. 

• Argument extends for distributions with known covariance and weaker concentration. 

If D is isotropic with sub-exponential tails:

If D satisfies            :
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Idea #3 [LRV’16]: Additive corruptions can move the covariance in 
some directions, but not in all directions simultaneously.



RECURSIVE DIMENSION-HALVING [LRV’16]

LRV Procedure:

Step #1: Find large subspace where “standard” estimator works.
Step #2: Recurse on complement. 

Combine Results.

Can reduce dimension by factor of 2 in each recursive step.



FINDING A GOOD SUBSPACE (I)

“Good subspace G”  = one where the empirical mean works

By Key Lemma, sufficient condition is:

Projection of empirical covariance on G has no large eigenvalues.

• Also want G to be “high-dimensional”.

Question: How do we find such a subspace?



FINDING A GOOD SUBSPACE (II)

Good Subspace Lemma: Let X1, X2, …, XN be an additively    -corrupted set 
of                              samples from             . After naïve pruning, we have 
that

Corollary: Let W be the span of the bottom d/2 eigenvalues of     
Then W is a good subspace.



RECURSIVE DIMENSION-HALVING ALGORITHM [LRV’16]

Algorithm works as follows:

• Remove gross outliers (e.g., naïve pruning).

• Let W, V be the span of bottom d/2 and upper d/2 eigenvalues of     respectively .

• Use empirical mean on W.

• Recurse on V (If the dimension is one, use median).

Error Analysis:

levels of the recursion             final error of 
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Idea #4 [DKKLMS’16]: Iteratively “remove outliers” in order to
“fix” the empirical covariance.



ITERATIVE FILTERING [DKKLMS’16]

Iterative Two-Step Procedure:

Step #1: Test certificate of robustness of “standard” estimator

Step #2: If certificate is violated, detect and remove outliers

Iterate on “cleaner” dataset.

General recipe that works in general settings.

Let’s see how this works for robust mean estimation.



FILTERING SUBROUTINE

Either output empirical mean, or remove many outliers.

Filtering Approach: Suppose that:

Let    be the direction of maximum variance.
T



FILTERING SUBROUTINE

Either output empirical mean, or remove many outliers.

Filtering Approach: Suppose that:

Let     be the direction of maximum variance.

• Project all the points on the direction of .
• Find a threshold T such that

• Throw away all points x such that 

• Iterate on new dataset.



FILTERING SUBROUTINE: ANALYSIS SKETCH

Either output empirical mean, or remove many outliers.

Filtering Approach: Suppose that:

Claim: In each iteration, we remove more outliers than inliers.

After a bounded number of iterations, we stop removing points.

Eventually the empirical mean works

Runtime: 



FILTERING PSEUDO-CODE

Input:    -corrupted set S from 
Output: Set               that is    -corrupted, for some

OR robust estimate of the unknown mean 

1. Let             be the empirical mean and covariance of the set S. 
2. If , for an appropriate constant C > 0:

Output
3. Otherwise, let             be the top eigenvalue-eigenvector pair of     . 
4. Find           such that 

5. Return



REMARKS ON FILTERING METHOD(S)

• For known covariance sub-Gaussian case, filter relied on violation of concentration.

• This extends to weaker concentration, as long as covariance is (approximately) known. 
• For example, for sub-exponential concentration, filter would be:

Find               such that

• For the bounded covariance setting,  randomized filtering / down-weighting. 

Remove point x with probability proportional to

• Analogue of Claim 1: Remove more outliers than inliers in expectation. 



SUMMARY: ROBUST MEAN ESTIMATION VIA FILTERING

Certificate for Robustness: 

“Spectral norm of empirical covariance is close to what it should be.”

Exploiting the Certificate: 

• Check if certificate is satisfied. 

• If violated, find “subspace” where behavior of outliers 
different than behavior of inliers.

• Use it to detect and remove outliers.

• Iterate on “cleaner” dataset.


