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NON-CONVEX OPTIMIZATION FORMULATION (I)

Optimization Formulation:
Assign weights to the samples so that weighted empirical mean works.
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Let AN’ﬁz{weRN;||w||1:1andO§wz-Sm}

N N
Py = Zwixi and ¥, = sz’(Xi — Bw)(Xi — fw)
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Generalization of Key Lemma: Forany w € Ay o,

IZulla < 1+ O(elog(1/e)) =2 |w — pll2 = O(ev/og(1/e))
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NON-CONVEX OPTIMIZATION FORMULATION (l1I)
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Non-Convex Formulation:
min,, |2, ||2 subject to w € Ay 2.

Algorithmic Approaches:

» This is what filtering does!

» Ellipsoid Method [DKKLMS'16]

» Bi-level optimization [Cheng-D-Ge’18] (near-linear time!)
» Gradient Descent [Cheng-D-Ge-Soltanolkotabi, ICML'20]



RoOBUST MEAN ESTIMATION VIA GRADIENT-DESCENT

_ 1
Notation: Ay, = {w cRN . |lw||t =1and 0 < w; < (1— E)N}
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Non-Convex Formulation:
min,, |2, ||2 subject to w € Ay 2.

Theorem [Cheng-D-Ge-Soltanolkotabi, ICML'20, Paper Id: #6611]
Any approximate stationary point w defines 1i,, thatis close to y .

See also [Zhu et al., Arxiv, May 2020]
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EXPERIMENTS

Being Robust (in High Dimensions) Can Be Practical
D., Kamath, Kane, Li, Moitra, Stewart, ICML'17



SYNTHETIC EXPERIMENTS: UNKNOWN MEAN

Error rates on synthetic data (unknown mean):

N(u,I) +10% noise
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Error rates on synthetic data (unknown mean):
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ROBUST COVARIANCE ESTIMATION

Problem: Given an e -corrupted set of points £1,...,ZN € R¢ from an
unknown distribution D in a known family F, estimate the covariance of D.

p
Theorem: Let € < 1/2 . We can efficiently recover ¥ such that

IZ=Y2(E - £)Z7Y2||F < f(e) + O(d/VN)

where f'depends on the concentration of D.

(S

If D is a Gaussian, then f(e) = O(elog(1/e¢)) .
[D-Kamath-Kane-Li-Moitra-Stewart, FOCS’16]



SYNTHETIC EXPERIMENTS: UNKNOWN COVARIANCE (I)

Error rates on synthetic data (unknown covariance, isotropic):

N(0,X) +10% noise

|

close to identity



SYNTHETIC EXPERIMENTS: UNKNOWN COVARIANCE (I)

Error rates on synthetic data (unknown covariance, isotropic):
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SYNTHETIC EXPERIMENTS: UNKNOWN COVARIANCE (I)

Error rates on synthetic data (unknown covariance):

N (0, %) + 10% noise

1

far from identity



SYNTHETIC EXPERIMENTS: UNKNOWN COVARIANCE (ll)

Error rates on synthetic data (unknown covariance, anisotropic):
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REAL DATA EXPERIMENTS

[Novembre et al. ’08]: Take top two singular vectors of people x SNP matrix (POPRES)

Original Data
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EXPERIMENTS: PRUNING PROJECTION

A comparison of error rate on semi-synthetic data:

Pruning Projection
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EXPERIMENTS: RANSAC PROJECTION

A comparison of error rate on semi-synthetic data:

RANSAC Projection
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RoBUST PCA [XCS]

EXPERIMENTS

A comparison of error rate on semi-synthetic data

XCS Projection
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EXPERIMENTS: FILTER PROJECTION

Filter Output
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ROBUST STOCHASTIC OPTIMIZATION

Sever: A Robust Meta-Algorithm for Stochastic
Optimization.
[D-Kamath-Kane-Li-Steinhardt-Stewart, ICML'19]




ROBUST STOCHASTIC CONVEX OPTIMIZATION

Problem: Given loss function ¢(X,w) and €- corrupted samples
from a distribution D over X, minimize f(w) = Ex~p[¢(X, w)]

Difficulty: Corrupted data can move the gradients.

Vs

Theorem: Suppose / is convex and Covxp[VA(X,w)] <02 1.
Under mild assumptions on D, can recover a point such that

() —min f(w) < O(0V4)

(S

Main Idea: Filter at minimizer of empirical risk.



SPECIFIC APPLICATIONS

Corollary: Outlier-robust learning algorithms with dimension-independent error guarantees
for:

« SVMs

» Linear Regression

» Logistic Regression

« GLMs

» Experimental Performance Against Data Poisoning Attacks.

Concurrent works obtained tighter guarantees in terms of either sample complexity or error, by
focusing on specific tasks and distributional assumptions [Klivans-Kothari-Meka'18,
Diakonikolas-Kong-Stewart’18, ...].



EXPERIMENTS: RIDGE REGRESSION

Test Error
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LEARNING WITH A MAJORITY OF OUTLIERS

» So far focused on setting where € < 1/2 .

« What can we learn from a dataset in which the majority of points are corrupted?

Problem: Given a set of points z1,...,zxy € R?and 0 < o < 1/2 such that:
* An unknown subset of /N points are drawn from an unknown D € F , and
 The remaining (1 — o)) N points are arbitrary,

approximate the mean p of D.

) o

Which is the “real” D?




LIST-DECODABLE LEARNING

» Return several hypotheses with the guarantee that at least one is close.

List-Decodable Mean Estimation:

Given a set of points z1,...,2zx € R? and 0 < o < 1/2 such that:

« An unknown subset of /N points are drawn from an unknown D € F, and
 The remaining (1 — ) N points are arbitrary,

output a small list of s hypotheses vectors such that one is close to the mean p of D.

* Model defined in [Balcan-Blum-Vempala'08]
» First studied for mean estimation [Charikar-Steinhardt-Valiant’17]
» Application: Learning Mixture Models




LIST-DECODABLE MEAN ESTIMATION

p
Theorem [Charikar-Steinhardt-Valiant’17]: Let 0 < o < 1/2. If D has covariance ¥ < [
there is an efficient algorithm that uses N > d/« corrupted points, and outputs a list of

s = O(1/a) vectors i1, ..., s such that with high probability
min [[3: - pll2 = O(1/Va)

Theorem [Diakonikolas-Kane-Stewart’18] Any list-decodable mean estimator for bounded
covariance distributions must have error (1/4/c) as long as the list size is any function of «.

 Initial algorithm [CSV’17] based on ellipsoid method.
» Generalization of filtering (“multi-filtering”) works for list-decodable setting [DKS’18].



