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Can we develop learning algorithms that are robust to 
a constant fraction of corruptions in the data?
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PART I: INTRODUCTION



MOTIVATION

• Model Misspecification/Robust Statistics: Any model only approximately valid. Need 
stable estimators [Fisher 1920, Huber 1960s, Tukey 1960s]

• Outlier Removal: Natural outliers in real datasets (e.g., biology). Hard to detect in several 
cases [Rosenberg et al., Science’02; Li et al., Science’08; Paschou et al., Journal of Medical 
Genetics’10]

• Reliable/Adversarial/Secure ML: Data poisoning attacks (e.g., crowdsourcing) 

[Biggio et al. ICML’12, …]



DETECTING OUTLIERS IN REAL DATASETS

• High-dimensional datasets tend to be inherently noisy.

• Outliers: either interesting or can contaminate statistical analysis

Biological Datasets: POPRES project, 
HGDP datasets

[November et al., Nature’08]; 
[Rosenberg et al., Science’02]; 
[Li et al., Science’08];  
[Paschou et al., Medical Genetics’10]



DATA POISONING

Fake Reviews [Mayzlin et al. ‘14]

Recommender Systems: Crowdsourcing: Malware/spam:

[Li et al. ‘16] [Wang et al. ‘14] [Nelson et al. ‘08]



THE STATISTICAL LEARNING PROBLEM

• Input: sample generated by a probabilistic model with unknown
• Goal: estimate parameters    so that  

Question 1: Is there an efficient learning algorithm?

Unknown 
θ* samples ✓

✓⇤

✓ ✓ ⇡ ✓⇤

Main performance criteria:
• Sample size
• Running time
• Robustness

Question 2: Are there tradeoffs between these criteria?



(OUTLIER-) ROBUSTNESS IN A GENERATIVE MODEL

Contamination Model:
Let     be a family of probabilistic models.
We say that a set of N samples is   -corrupted from       if it is 
generated as follows: 
• N samples are drawn from an unknown
• An omniscient adversary inspects these samples and 

changes arbitrarily an   -fraction of them.

F

F 2 F

F✏

✏

cf. Huber’s contamination model [1964]



MODELS OF ROBUSTNESS

• Oblivious/Adaptive Adversary
• Adversary can: add corrupted samples, subtract uncorrupted samples or both.
• Six Distinct Models:

Oblivious Adaptive

Additive Errors Huber’s Contamination Model Additive Contamination
(“Data Poisoning”)

Subtractive Errors Subtractive Contamination

Additive and Subtractive 
Errors

Hampel’s Contamination
Strong Contamination

(“Nasty Learning Model”)



EXAMPLE: PARAMETER ESTIMATION

Given samples from an unknown distribution:

e.g., a 1-D Gaussian

how do we accurately estimate its parameters?

empirical mean: empirical variance: 



The maximum likelihood 
estimator is asymptotically 
efficient (1910-1920)

R. A. Fisher J. W. Tukey

What about errors in the 
model itself? (1960)



“Robust Estimation of a Location Parameter”
Annals of Mathematical Statistics, 1964.

Peter J. Huber



ROBUST STATISTICS

What estimators behave well in a neighborhood around the model?



ROBUST ESTIMATION: ONE DIMENSION

• A single corrupted sample can arbitrarily corrupt the empirical mean and 

variance.

• But the median and interquartile range work.

Given corrupted samples from a one-dimensional Gaussian, can we 

accurately estimate its parameters?



Fact [Folklore]: Given a set S of N -corrupted samples from a one-dimensional 
Gaussian

with high constant probability we have that:                           

where

What about robust estimation in high-dimensions?



HIGH-DIMENSIONAL GAUSSIAN ROBUST MEAN ESTIMATION

Remark: Optimal rate of convergence with N samples is 

[Tukey’75, Donoho’82]

Robust Mean Estimation: Given an     - corrupted set of samples 
from an unknown mean, identity covariance Gaussian                in 
d dimensions, recover      with   

✏



PREVIOUS APPROACHES: ROBUST MEAN ESTIMATION

Error Guarantee Running Time

Tukey Median NP-Hard

Geometric Median

Tournament

Pruning

Unknown Mean

Coordinate-wise Median



All known estimators are either hard to compute or
can tolerate a negligible fraction of corruptions.

Is robust estimation algorithmically possible in high-dimensions?



“[…] Only simple algorithms (i.e., with a low degree of computational complexity) will
survive the onslaught of huge data sets. This runs counter to recent developments in
computational robust statistics. It appears to me that none of the above problems will be
amenable to a treatment through theorems and proofs. They will have to be attacked by
heuristics and judgment, and by alternative “what if” analyses.[…]”

Robust Statistical Procedures, 1996, Second Edition.

Peter J. Huber, 1975



Robust estimation in high-dimensions is algorithmically possible!

• First computationally efficient robust estimators that can tolerate a 
constant fraction of corruptions.

• General methodology to detect outliers in high dimensions.

Meta-Theorem (Informal): Can obtain dimension-independent error 
guarantees, as long as good data has nice concentration.



FIRST ALGORITHMIC PROGRESS IN UNSUPERVISED SETTING

[D-Kamath-Kane-Li-Moitra-Stewart, FOCS’16]

Can tolerate a constant fraction of corruptions:

• Mean and Covariance Estimation

• Mixtures of Spherical Gaussians, Mixtures of Balanced Product Distributions

[Lai-Rao-Vempala, FOCS’16]

Can tolerate a mild sub-constant (inverse logarithmic) fraction of 

corruptions:

• Mean and Covariance Estimation

• Independent Component Analysis, SVD



BASIC RESULT: ROBUST MEAN ESTIMATION

Theorem: There are polynomial time algorithms with the following behavior:  

Given            and a set of  N - corrupted samples from a d-dimensional 

Gaussian             , they output              that with high probability satisfies:

• [LRV’16]:

in additive contamination model.

• [DKKLMS’16]:

in strong contamination model.

✏ > 0



PART II: ROBUST MEAN AND COVARIANCE ESTIMATION
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ROBUST MEAN ESTIMATION: GAUSSIAN CASE

Error Guarantee Independent of d  ! 

Theorem: Let                   If                       , there is an efficient algorithm 
that outputs an estimate      that with high probability satisfies

in additive contamination model.                                           

Problem: Given data                                  , of which                   come from 
some distribution D, estimate mean     of D.

[D-Kamath-Kane-Li-Moitra-Stewart, SODA’18]



ROBUST MEAN ESTIMATION: SUB-GAUSSIAN CASE

Information-theoretically optimal error, even in one-dimension. 

Theorem: Let                   If D is isotropic and sub-Gaussian, there is an 
efficient algorithm that outputs an estimate     such that with high 
probability we have:

Problem: Given data                                  , of which                   come from 
some distribution D, estimate mean     of D.

[D-Kamath-Kane-Li-Moitra-Stewart, FOCS’16, ICML’17]



ROBUST MEAN ESTIMATION: GENERAL CASE

• Sample-optimal, even without corruptions.

• Information-theoretically optimal error, even in one-dimension. 

Theorem: Let                   If  D has covariance                   , there is an 
efficient algorithm that outputs an estimate     such that with high 
probability we have

Problem: Given data                                  , of which                   come from 
some distribution D, estimate mean     of D.

[D-Kamath-Kane-Li-Moitra-Stewart, ICML’17; Steinhardt, Charikar, Valiant, ITCS’18]



ROBUST COVARIANCE ESTIMATION

Theorem: Let                   If                             then can efficiently recover 
such that

where f depends on the concentration of D.                                             

Problem: Given data                                  , of which                   come from 
some distribution D, estimate covariance     of D.



OUTLINE

Part II: High-Dimensional Robust Mean and Covariance Estimation
• Statements of Results
• Basics: Sample Complexity of Robust Estimation, Naïve Outlier Removal
• Overview of Algorithmic Approaches
• Certificate of Robustness
• Recursive Dimension Halving
• Iterative Filtering
• Soft Outlier Removal 
• Experiments
• Extensions



HIGH-DIMENSIONAL GAUSSIAN MEAN ESTIMATION (I) 

Fact: Let                     be IID samples from               The empirical estimator     

satisfies                       with probability at least 9/10 for 

Moreover, any estimator with this guarantee requires              samples.

Proof: 
By definition,                                , where                        

Then, 

We have 

Therefore, 

and Markov’s inequality gives the upper bound. 



HIGH-DIMENSIONAL GAUSSIAN MEAN ESTIMATION (II) 

Fact: Let                     be IID samples from               The empirical estimator     

satisfies                       with probability at least 9/10 for 

Moreover, any estimator with this guarantee requires              samples.

Proof: 
For the lower bound, consider the following family of distributions: 

where 

Apply Assouad’s lemma to show that learning an unknown distribution in this family 

within error        requires               samples. 



INFORMATION-THEORETIC LIMITS ON ROBUST ESTIMATION

Proposition: Any robust mean estimator for             has error        , even in Huber’s model.

Claim: Let P1, P2 be such that                                          There exist noise distributions B1, B2
such that 

• Use

• Under different assumptions on good data, we obtain different functions of 



SAMPLE EFFICIENT ROBUST MEAN ESTIMATION (I)

Proposition: There is an algorithm that uses                        - corrupted samples from                
and outputs             that with probability at least 9/10 satisfies

Main Idea: To robustly learn the mean of             , it suffices to learn the mean of all its 1-
dimensional projections (cf. Tukey median).

Basic Fact: 

Claim 1: Suppose we can estimate         for each            ,               , i.e., find           such that      
for all             with               we have                            Then, we can learn     within error 
Proof:
Consider infinite size LP: Find             such that for all with               :  
Let      be any feasible solution. Then 



SAMPLE EFFICIENT ROBUST MEAN ESTIMATION (II)

Main Idea: To robustly learn the mean of             , it suffices to learn the mean of “all” its 1-

dimensional projections.

Claim 2: Suffices to consider a    -net C over all directions, where    is a small positive constant.    

Proof:
This gives the following finite LP:

Find             such that for all          , we have 

Let     be any feasible solution. Let            such that 

Then

or 



SAMPLE EFFICIENT ROBUST MEAN ESTIMATION (III)

Main Idea: To robustly learn the mean of             , it suffices to learn the mean of “all” its 1-

dimensional projections.

So, for              , any feasible solution to the LP has  

Sample Complexity: Note that the empirical median satisfies                with probability at least                

after                               samples.

We need union bound over all           . Since                                       , for 

our algorithm works with probability at least 9/10.
Thus, sample complexity will be

Runtime: 



OUTLIER DETECTION ?



NAÏVE OUTLIER REMOVAL (NAÏVE PRUNING)

Gaussian Annulus Theorem: 



ON THE EFFECT OF CORRUPTIONS

Question: What is the effect of additive and subtractive corruptions?

Let’s study the simplest possible example of             .

Subtractive errors at rate    can: 

• Move the mean by at most

• Increase the variance by         and decrease it

by at most

Additive errors at rate    can: 

• Move the mean arbitrarily

• Increase the variance arbitrarily  and decrease it

by at most
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High-Level Goal: Reduce “structured” high-dimensional problem to a 
collection of “low-dimensional” problems.



THREE APPROACHES: OVERVIEW AND COMPARISON

Three Algorithmic Approaches:
• Recursive Dimension-Halving [LRV’16]
• Iterative Filtering [DKKLMS’16]
• Soft Outlier Removal [DKKLMS’16]

Commonalities:
• Rely on Spectrum of Empirical Covariance to Robustly Estimate the Mean 
• Certificate of Robustness for the Empirical Estimator

Exploiting the Certificate:
• Recursive Dimension-Halving: Find “good” large subspace.
• Iterative Filtering: Check condition on entire space. If violated, filter outliers.
• Soft Outlier Removal: Convex optimization via approximate separation oracle.
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CERTIFICATE OF ROBUSTNESS FOR EMPIRICAL ESTIMATOR

Idea #1 [DKKLMS’16, LRV’16]: If the empirical covariance is “close  
to what it should be”, then the empirical mean works.



CERTIFICATE OF ROBUSTNESS FOR EMPIRICAL ESTIMATOR

Detect when the empirical estimator may be compromised

= uncorrupted
= corrupted

There is no direction of large variance



Key Lemma: Let X1, X2, …, XN be an    -corrupted set of samples from
and                      , then for 

(1) (2)

with high probability we have: 
• [LRV’16]:

• [DKKLMS’16]:
in additive contamination model

in strong contamination model



Key Lemma: Let X1, X2, …, XN be an    -corrupted set of samples from
and                      , then for 

(1) (2)

with high probability we have: 
• [LRV’16]:

• [DKKLMS’16]:
in additive contamination model

in strong contamination model



Idea #2 [DKKLMS’16]: Removing any small constant fraction of good 
points does not move the empirical mean and covariance by much. 



REMARKS ON KEY LEMMA (STRONG CORRUPTIONS)

• Statement holds for any isotropic distribution with sub-Gaussian tails.

• Essentially same argument goes through if covariance is approximately known. 

• Argument extends for (approximately known) covariance and weaker concentration. 

If     is isotropic with sub-exponential tails:

• If only assumption is that      has            :
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Idea #3 [LRV’16]: Additive corruptions can move the covariance in 
some directions, but not in all directions simultaneously.



RECURSIVE DIMENSION-HALVING [LRV’16]

Recursive Procedure:

Step #1: Find large subspace where “standard” estimator works.
Step #2: Recurse on complement. 

(If dimension is small, use brute-force.)

Combine Results.

Can reduce dimension by factor of 2 in each recursive step.



FINDING A GOOD SUBSPACE (I)

“Good subspace G”  = one where the empirical mean works

By Key Lemma, sufficient condition is:

Projection of empirical covariance on G has no large eigenvalues.

• Also want G to be “high-dimensional”.

Question: How do we find such a subspace?



FINDING A GOOD SUBSPACE (II)

Good Subspace Lemma: Let X1, X2, …, XN be an additively    -corrupted set 
of                              samples from             . After naïve pruning, we have 
that

Corollary: Let W be the span of the bottom d/2 eigenvalues of     
Then W is a good subspace.



RECURSIVE DIMENSION-HALVING ALGORITHM [LRV’16]

Algorithm works as follows:

• Remove gross outliers (e.g., naïve pruning).

• Let W, V be the span of bottom d/2 and upper d/2 eigenvalues of     respectively .

• Use empirical mean on W.

• Recurse on V (If the dimension is one, use median).

Error Analysis:

levels of the recursion             final error of 
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Idea #4 [DKKLMS’16]: Iteratively “remove outliers” in order to
“fix” the empirical covariance.



ITERATIVE FILTERING [DKKLMS’16]

Iterative Two-Step Procedure:

Step #1: Find certificate of robustness of “standard” estimator

Step #2: If certificate is violated, detect and remove outliers

Iterate on “cleaner” dataset.

General recipe that works for fairly general settings.

Let’s see how this works for robust mean estimation.



FILTERING SUBROUTINE

Either output empirical mean, or remove many outliers.

Filtering Approach: Suppose that:

Let    be the direction of maximum variance.
T

cf. [Klivans-Long-Servedio’09,    
Lai-Rao-Vempala’16] 



FILTERING SUBROUTINE

Either output empirical mean, or remove many outliers.

Filtering Approach: Suppose that:

Let     be the direction of maximum variance.

• Project all the points on the direction of .
• Find a threshold T such that

• Throw away all points x such that 

• Iterate on new dataset.



FILTERING SUBROUTINE: ANALYSIS SKETCH

Either output empirical mean, or remove many outliers.

Filtering Approach: Suppose that:

Claim 1: In each iteration, we remove more corrupted than uncorrupted points.

After a number of iterations, we stop removing points.

Eventually the empirical mean works



FILTERING SUBROUTINE: PSEUDO-CODE

Input:    -corrupted set S from 

Output: Set               that is    -corrupted, for some

OR robust estimate of the unknown mean 

1. Let             be the empirical mean and covariance of the set S. 

2. If , for an appropriate constant C > 0:
Output

3. Otherwise, let             be the top eigenvalue-eigenvector pair of     . 

4. Find           such that 

5. Return



SKETCH OF CORRECTNESS

Claim 2: Can always find a threshold satisfying the Condition of Step 4.

Proof Sketch: 
By contradiction. Suppose that for all           we have 

Can use this to show that                     is smaller than it was assumed to be. 

Main Idea: Exploit concentration.  



SUMMARY: ROBUST MEAN ESTIMATION VIA FILTERING

Certificate for Robustness: 

“Spectral norm of empirical covariance is close to what it should be.”

Exploiting the Certificate: 

• Check if certificate is satisfied. 

• If violated, find “subspace” where behavior of outliers 

different than behavior of inliers.

• Use it to detect and remove outliers.

• Iterate on “cleaner” dataset.



REMARKS ON FILTERING METHOD(S)

• For known covariance sub-Gaussian case, filter relied on violation of concentration.

• This extends to weaker concentration, as long as covariance is (approximately) known. 
• For example, for sub-exponential concentration, filter would be:

Find               such that

• For the bounded covariance setting, need randomized filtering. 

Remove point x with probability proportional to

• Analogue of Claim 1: Remove more corrupted than good points in expectation. 



OPTIMAL GAUSSIAN ROBUST MEAN ESTIMATION: ADDITIVE ERRORS

Theorem [DKKLMS, SODA’18] There is a polynomial time algorithm with 
the following behavior:  Given           and                           corrupted samples 
from an unknown mean, identity covariance Gaussian distribution on      ,  
the algorithm finds a hypothesis mean       that satisfies

in additive contamination model.

• Robustness guarantee optimal up to         factor.
• For any univariate projection, mean robustly estimated by median. 



GENERALIZED FILTERING: ADDITIVE CORRUPTIONS

• Univariate filtering based on tails not sufficient to remove the incurred                                 

error, even for additive errors.

• Generalized Filtering Idea: Filter using top - k eigenvectors of empirical covariance.

• Key Observation: Suppose that                         Then either

(1) has k eigenvalues at least              , or

(2) The error comes from a k-dimensional subspace.

• Choose                            
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SOFT OUTLIER REMOVAL

Let

Let                               Consider the convex set

Algorithm:
• Find
• Output  

Main Issue:       unknown. 



SOFT OUTLIER REMOVAL

Let

Let                               Consider the convex set

Algorithm:
• Find
• Output  

• Adaptation of key lemma gives: For all            , we have:



APPROXIMATE SEPARATION ORACLE

Input:    -corrupted set S and weight vector w
Output: Separation oracle for 

• Let  
• Let                             and  

• Let              be the top eigenvalue-eigenvector pair of        . 
• If                  , return “YES”. 
• Otherwise, return the hyperplane                         with 
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EXPERIMENTS

Being Robust (in High Dimensions) Can Be Practical 
D., Kamath, Kane, Li, Moitra, Stewart, ICML’17 



SYNTHETIC EXPERIMENTS: UNKNOWN MEAN

+ 10% noise

Error rates on synthetic data (unknown mean):



Error rates on synthetic data (unknown mean):

SYNTHETIC EXPERIMENTS: UNKNOWN MEAN



SYNTHETIC EXPERIMENTS: UNKNOWN COVARIANCE (I)

Error rates on synthetic data (unknown covariance, isotropic):

+ 10% noise

close to identity



SYNTHETIC EXPERIMENTS: UNKNOWN COVARIANCE (I)

Error rates on synthetic data (unknown covariance, isotropic):



SYNTHETIC EXPERIMENTS: UNKNOWN COVARIANCE (II)

Error rates on synthetic data (unknown covariance):

+ 10% noise

far from identity



SYNTHETIC EXPERIMENTS: UNKNOWN COVARIANCE (II)
Error rates on synthetic data (unknown covariance, anisotropic):



REAL DATA EXPERIMENTS

[Novembre et al. ’08]: Take top two singular vectors of people x SNP matrix (POPRES) 

“Genes Mirror Geography in Europe” 



EXPERIMENTS: PRUNING PROJECTION

A comparison of error rate on semi-synthetic data:



EXPERIMENTS: RANSAC PROJECTION

A comparison of error rate on semi-synthetic data:



EXPERIMENTS: ROBUST PCA (XCS)

A comparison of error rate on semi-synthetic data:



EXPERIMENTS: FILTER PROJECTION
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BEYOND ROBUST STATISTICS: ROBUST UNSUPERVISED LEARNING

Robustly Learning Graphical Models

[Cheng-D-Kane-Stewart’16, 

D-Kane-Stewart’18]

Clustering in Mixture Models

[Charikar-Steinhardt-Valiant’17,

D-Kane-Stewart’18, 

Hopkins-Li’18, 

Kothari-Steinhardt-Steurer’18]

Computational/Statistical-Robustness Tradeoffs

[D-Kane-Stewart’17, D-Kong-Stewart’18]



ROBUST UNSUPERVISED LEARNING

Clustering in Mixture Models
[D-Kane-Stewart’18]



CLUSTERING IN MIXTURE MODELS

Under what assumptions can we disentangle mixture models?

Assumption Separation Robustness? Reference

Spherical Gaussians                                      NO                  [VW02]

Second Moments                                           NO                  [AM05]

…

Second Moments                                           YES         [CSV’17, DKS’18]

Spherical Gaussians                                      YES                [DKS’18,

HL’18, KSS’18]



ROBUSTNESS AS A LENS

Under what assumptions can we disentangle mixture models?

Assumption Separation Robustness? Reference

Second Moments                                           YES                  [DKS’18]

Spherical Gaussians                                      YES                  [DKS’18]

Main Idea: Remove Outliers from a dataset when the majority of the 
points are corrupted (List-Decodable Learning).



BEYOND ROBUST STATISTICS: ROBUST SUPERVISED LEARNING

Malicious PAC Learning
[Klivans-Long-Servedio’10, 
Awasthi-Balcan-Long’14, 
D-Kane-Stewart’18]

Stochastic (Convex) Optimization
[Prasad-Suggala-Balakrishnan-Ravikumar’18,
D-Kamath-Kane-Li-Steinhardt-Stewart’18] 

Robust Linear Regression
[D-Kong-Stewart’18, 
Klivans-Kothari-Meka’18]
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ROBUST SUPERVISED LEARNING

Sever: A Robust Meta-Algorithm for Stochastic 
Optimization. 
[D-Kamath-Kane-Li-Steinhardt-Stewart, ICML’19]



ROBUST STOCHASTIC CONVEX OPTIMIZATION

Theorem: Suppose    is convex and       

Under mild assumptions on     , can recover a point such that 

Problem: Given loss function                and    - corrupted samples 

from a distribution     over     , minimize 

Difficulty: Corrupted data can move the gradients.

Main Idea: Filter at minimizer of empirical risk.



SPECIFIC APPLICATIONS

Corollary: Outlier-robust learning algorithms with dimension-independent error guarantees 
for: 
• SVMs
• Linear Regression
• Logistic Regression
• GLMs
• Experimental Performance Against Data Poisoning Attacks.

Concurrent works obtained tighter guarantees in terms of either sample complexity or error, by 
focusing on specific tasks and distributional assumptions [Klivans-Kothari-Meka’18, 
Diakonikolas-Kong-Stewart’18, …].



EXPERIMENTS: RIDGE REGRESSION



SUBSEQUENT RELATED WORKS

• Graphical Models [Cheng-D-Kane-Stewart’16, D-Kane-Stewart’18] 

• Sparse models (e.g., sparse PCA, sparse regression) [Li’17, Du-Balakrishan-Singh’17, Liu-Shen-
Li-Caramanis’18, D-Karmalkar-Kane-Price-Stewart’18]

• List-Decodable Learning [Charikar-Steinhardt-Valiant ’17, Meister-Valiant’18, D-Kane-Stewart’18,
Karmalkar-Klivans-Kothari’19, Raghavendra-Yau’19]

• Robust PAC Learning [Klivans-Long-Servedio’10, Awasthi-Balcan-Long’14, D-Kane-Stewart’18]

• Robust estimation of higher moments via SoS [Hopkins-Li’18, Kothari-Steinhardt-Steurer’18, …]

• “SoS Free” robust estimation of higher moments [D-Kane-Stewart’18] 

• Robust Regression [Klivans-Kothari-Meka’18, D-Kong-Stewart’18, …]

• Robust Stochastic Optimization [Prasad-Suggala-Balakrishnan-Ravikumar’18, D-Kamath-Kane-
Li-Steinhard-Stewart’18]

• Near-Linear Time Robust Estimators [Chen-D-Ge’18, Cheng-D-Ge-Woodruff’19, Depersin-
Lecue’19, Dong-Hopkins-Li’19, …]



PART III: COMPUTATIONAL LIMITS IN ROBUST ESTIMATION
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STATISTICAL QUERIES [KEARNS’93]

!", !$, … , !& ∼ ( over )



STATISTICAL QUERIES [KEARNS’93]

!" − $%∼' (" ) ≤ +
+ is tolerance of the query; + = 1/ /

(0

!"
(1
!1

!0SQ algorithm STAT'(+) oracle

7

(": 9 → −1,1

Problem < ∈ SQCompl D,/ : 
If exists a SQ algorithm that solves < using D queries 
to STAT'(+ = 1/ /)



POWER OF SQ LEARNING ALGORITHMS

• Restricted Model: Hope to prove unconditional computational lower bounds.

• Powerful Model: Wide range of algorithmic techniques in ML are implementable using SQs*:

• PAC Learning: AC0, decision trees, linear separators, boosting.

• Unsupervised Learning: stochastic convex optimization, moment-based methods, k-means 
clustering, EM, …
[Feldman-Grigorescu-Reyzin-Vempala-Xiao/JACM’17]

• Only known exception: Gaussian elimination over finite fields (e.g., learning parities).

• For all problems in this talk, strongest known algorithms are SQ.



METHODOLOGY FOR PROVING SQ LOWER BOUNDS

Statistical Query Dimension:

• Fixed-distribution PAC Learning 
[Blum-Furst-Jackson-Kearns-Mansour-Rudich’95; …]

• General Statistical Problems
[Feldman-Grigorescu-Reyzin-Vempala-Xiao’13, …, Feldman’16]

• Pairwise correlation between D1 and D2 with respect to D:

• Fact: Suffices to construct a large set of distributions that are nearly uncorrelated. 
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GENERIC SQ LOWER BOUND CONSTRUCTION

General Technique for SQ Lower Bounds:
Leads to Tight Lower Bounds 

for a range of High-dimensional Estimation Tasks

Concrete Applications of our Technique:

• Robustly Learning Mean and Covariance

• Learning Gaussian Mixture Models (GMMs)

• Statistical-Computational Tradeoffs (e.g., sparsity)

• Robustly Testing a Gaussian



SQ LOWER BOUND FOR ROBUST MEAN ESTIMATION

Theorem: Suppose                                     Any SQ algorithm that learns an    - corrupted 

Gaussian              in the strong contamination model within error

requires either:

• SQ queries of accuracy 

or

• At least                   many SQ queries.

Take-away: Any asymptotic improvement in error guarantee over prior work requires super-

polynomial time.



SQ LOWER BOUNDS FOR LEARNING SEPARATED GMMS

Theorem: Suppose that                        . Any SQ algorithm that learns separated k-GMMs over       
to constant error requires either:
• SQ queries of accuracy
or
• At least                            many SQ queries.

Take-away: Computational complexity of learning GMMs is inherently exponential in number of 
components.



APPLICATIONS: CONCRETE SQ LOWER BOUNDS

Learning Problem Upper Bound SQ Lower Bound

Robust Gaussian Mean
Estimation

Error:

[DKKLMS’16]

Runtime Lower Bound:

for factor M improvement in 
error.

Robust Gaussian 
Covariance Estimation

Error:

[DKKLMS’16]

Learning k-GMMs 
(without noise)

Runtime:

[MV’10, BS’10]

Runtime Lower Bound:

Robust k-Sparse Mean 
Estimation

Sample size:

[BDLS’17]

If sample size is 
runtime lower bound:

Robust Covariance
Estimation in Spectral 

Norm

Sample size: 

[DKKLMS’16]

If sample size is 
runtime lower bound:
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GENERAL RECIPE FOR SQ LOWER BOUNDS

• Step #1: Construct distribution       that is standard Gaussian 
in all directions except   .   

• Step #2: Construct the univariate projection in the    direction
so that it matches the first m moments of 

• Step #3: Consider the family of instances 

Non-Gaussian Component Analysis [Blanchard et al. 2006]



HIDDEN DIRECTION DISTRIBUTION

Definition: For a unit vector v and a univariate distribution 
with density A, consider the high-dimensional distribution 

Example:



GENERIC SQ LOWER BOUND

Definition: For a unit vector v and a univariate distribution 

with density A, consider the high-dimensional distribution 

Proposition: Suppose that: 

• A matches the first m moments of  

• We have                                      as long as v, v’ are 

nearly orthogonal.

Then any SQ algorithm that learns an unknown       within 

error    requires either queries of accuracy           or            

many queries.



WHY IS FINDING A HIDDEN DIRECTION HARD

Observation: Low-Degree Moments do not help.

• A matches the first m moments of
• The first m moments of         are identical to those of
• Degree-(m+1) moment tensor has              entries. 

Claim: Random projections do not help.

• To distinguish between       and              , would need 
exponentially many random projections.  



1-D PROJECTIONS ARE ALMOST STANDARD GAUSSIANS

Key Lemma: Let Q be the distribution of            , where              .                
Then, we have that:



PROOF OF KEY LEMMA (I)



PROOF OF KEY LEMMA (I)



PROOF OF KEY LEMMA (II)

where is the operator over                       

Gaussian Noise (Ornstein-Uhlenbeck)
Operator



EIGEN-DECOMPOSITION OF ORNSTEIN-UHLENBECK OPERATOR

Linear Operator acting on functions

Fact (Mehler’66):

• denotes the degree-i Hermite polynomial.
• Note that                                             are orthonormal with respect to 

the inner product



GENERIC SQ LOWER BOUND

Definition: For a unit vector v and a univariate distribution 

with density A, consider the high-dimensional distribution 

Proposition: Suppose that: 

• A matches the first m moments of  

• We have                                  as long as v, v’ are nearly
orthogonal.

Then any SQ algorithm that learns an unknown       within 

error    requires either queries of accuracy          or            

many queries.
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SQ LOWER BOUND FOR ROBUST MEAN ESTIMATION (I)

Proposition: Suppose that: 
• A matches the first m moments of  
• We have                                      as long as v, v’ are nearly

orthogonal.

Then any SQ algorithm that learns an unknown       within error    
requires either queries of accuracy          or            many queries.

Theorem: Any SQ algorithm that learns an    - corrupted Gaussian              
in the strong contamination model within error
requires either SQ queries of accuracy                    or
at least                   many SQ queries.

Want to show:

by using our generic proposition:



SQ LOWER BOUND FOR ROBUST MEAN ESTIMATION (II)

Proposition: Suppose that: 

• Amatches the first m moments of  

• We have                                      as long as v, v’ are nearly orthogonal.

Then any SQ algorithm that learns an unknown       within error    requires 

either queries of accuracy           or            many queries.

Lemma: There exists a univariate distribution A that is    - close to 

such that:

• A agrees with               on the first M moments.

• We have that 

• Whenever v and v’ are nearly orthogonal 



Proposition: Suppose that: 
• A matches the first m moments of  
• We have                                      as long as v, v’ are nearly

orthogonal.

Then any SQ algorithm that learns an unknown       within error    
requires either queries of accuracy          or            many queries.

SQ LOWER BOUND FOR LEARNING GMMS (I)

Theorem: Any SQ algorithm that learns separated k-GMMs over       to 
constant error requires either SQ queries of accuracy
or at least                               many SQ queries. 

Want to show:

by using our generic proposition:



SQ LOWER BOUND FOR LEARNING GMMS (II)

Proposition: Suppose that: 
• A matches the first m moments of  
• We have                                      as long as v, v’ are nearly orthogonal.

Then any SQ algorithm that learns an unknown       within error    requires 
either queries of accuracy           or            many queries.

Lemma: There exists a univariate distribution A that is a k-GMM with 
components Ai such that:
• A agrees with               on the first 2k-1 moments.
• Each pair of components are separated.
• Whenever v and v’ are nearly orthogonal 



SQ LOWER BOUND FOR LEARNING GMMS (III)

Lemma: There exists a univariate distribution A that is a k-GMM with 
components Ai such that:
• A agrees with               on the first 2k-1 moments.
• Each pair of components are separated.
• Whenever v and v’ are nearly orthogonal 



SQ LOWER BOUND FOR LEARNING GMMS (IV)

High-Dimensional Distributions       look like “parallel 
pancakes”:  

Efficiently learnable for k=2. [Brubaker-Vempala’08]



PART IV: FUTURE DIRECTIONS



FUTURE DIRECTIONS: COMPUTATIONAL LOWER BOUNDS

• General Technique to Prove SQ Lower Bounds

• Robustness can make high-dimensional estimation harder 

computationally and information-theoretically.

Future Directions:

• Further Applications of this Framework 

List-Decodable Mean Estimation [D-Kane-Stewart’18]

Robust Regression [D-Kong-Stewart’18] 

Adversarial Examples [Bubeck-Price- Razenshteyn’18]

Discrete Distributions [D-Gouleakis-Kane-Stewart’19]

• Alternative Evidence of Computational Hardness?

v SoS Lower Bounds

v Reductions from Average-Case Problems (e.g., Planted Clique, R-3SAT)

v Reductions from Worst-case Problems? First step: [Hopkins-Li, COLT’19]



FUTURE DIRECTIONS: ALGORITHMS

• Pick your favorite high-dimensional probabilistic model for 
which a (non-robust) efficient learning algorithm is known. 

• Make it robust!



CONCRETE ALGORITHMIC OPEN PROBLEMS

Spherical components: [Diakonikolas-Kane-Stewart’18, Hopkins-Li’18, Kothari-
Steinhardt’18] 

Open Problem 1: Robustly Estimating Gaussian CovarianceWithin Error
in Additive Contamination Model (Huber’s Model)

Currently Best Known Algorithm [DKKLMS’18] runs in time 

Open Problem 2: Robustly Learn a Mixture of 2 Arbitrary Gaussians



FAST / NEAR-LINEAR TIME ALGORITHMS

Filtering for robust mean estimation is practical, but runtime is super-linear

Question: Can we design near-linear time algorithms? 

• Robust Mean Estimation: 
v [Cheng-D-Ge,  SODA’19] 
v [Depersin-Lecue, Arxiv-June 2019]
v [Dong-Hopkins-Li, June 2019]

• How about more general estimation tasks?
v Robust Covariance Estimation [Cheng-D-Ge-Woodruff, COLT’19]
v Robust Sparse Estimation?
v List-Decodable Learning?



BROADER RESEARCH DIRECTIONS

Broader Challenges:
• Richer Families of Problems and Models

• Connections to Non-convex Optimization, Adversarial Examples, GANs, …

• Relation to Related Notions of Algorithmic Stability

(Differential Privacy, Adaptive Data Analysis)

• Further Applications (ML Security, Computer Vision, …)

• Other notions of robustness?

General Algorithmic Theory of Robustness

How can we robustly learn rich representations of data, based on natural hypotheses about 

the structure in data?

Can we robustly test our hypotheses about structure in data before learning?

Thank you! 
Questions?


