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Abstract. When agents with independent priors bid for a single item, Myerson’s
optimal auction maximizes expected revenue, whereas Vickrey’s second-price
auction optimizes social welfare. We address the natural question of trade-offs
between the two criteria, that is, auctions that optimize, say, revenue under the
constraint that the welfare is above a given level. If one allows for randomized
mechanisms, it is easy to see that there are polynomial-time mechanisms that
achieve any point in the trade-off (the Pareto curve) between revenue and welfare.
We investigate whether one can achieve the same guarantees using deterministic
mechanisms. We provide a negative answer to this question by showing that this
is a (weakly) NP-hard problem. On the positive side, we provide polynomial-time
deterministic mechanisms that approximate with arbitrary precision any point of
the trade-off between these two fundamental objectives for the case of two bid-
ders, even when the valuations are correlated arbitrarily. The major problem left
open by our work is whether there is such an algorithm for three or more bidders
with independent valuation distributions.

1 Introduction
Two are the fundamental results in the theory of auctions. First, Vickrey observed that
there is a simple way to run an auction so that social welfare (efficiency) is maximized:
The second-price (Vickrey) auction is optimally efficient, independently of how bidder
valuations are distributed. However, the whole point of the Vickrey auction is to delib-
erately sacrifice auctioneer revenue in order to achieve efficiency. If auctioneer revenue
is to be maximized, Myerson showed in 1980 that, when the bidders’ valuations are
distributed independently, a straightforward auction (essentially, a clever reduction to
Vickrey’s auction via an ingenious transformation of valuations) achieves this.

These two criteria, social welfare and revenue, are arguably of singular and paramount
importance. It is therefore a pity that they seem to be at loggerheads: It is not hard to
establish that optimizing any one of these two criteria can be very suboptimal with re-
spect to the other. In other words, there is a substantial trade-off between these two
important and natural objectives. What are the various intermediate (Pareto) points of
this trade-off? And can each such point be computed — or all such points summarized
somehow — in polynomial time? This is the fundamental problem that we consider in
this paper. See Figure 1 (a) for a graphical illustration.
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Fig. 1: The Pareto points of the bi-criterion auction problem are shown as squares (a); the Pareto
points may be far off the line connecting the two extremes (b), and may be non-convex (c). The
Pareto points of randomized auctions comprise the upper boundary of the convex closure of the
Pareto points (d). Even though the Pareto set may be exponential in size, for any ε > 0, there is
always a polynomially small set of ε-Pareto points, the triangular points in (e), that is, points that
are not dominated by other solutions by more than ε in any dimension. We study the problem of
computing such a set in polynomial time.

The problem of exploring the revenue/welfare trade-off in auctions turns out to be
a rather sophisticated problem, defying several naive approaches. One common-sense
approach is to simply randomize between the optima of the two extremes, Vickrey’s
and Myerson’s auctions. This can produce very poor results, since it only explores the
straight line joining the two extreme points, which can be very far from the true trade-
off (Figure 1 (b)). A second common-sense approach is the so-called slope search: To
explore the trade-off space, just optimize the objective “revenue + λ· welfare” for var-
ious values of λ > 0. By modifying Myerson’s auction this objective can indeed be
optimized efficiently, as it was pointed out seven years ago by Likhodedov and Sand-
holm [19]. The problem is that the trade-off curve may not be convex (Figure 1 (c)),
and hence the algorithm of [19] can miss vast areas of trade-offs:

Proposition 1. There exist instances with two bidders with monotone hazard rate dis-
tributions for which the Pareto curve is not convex; in contrast the Pareto curve is
always convex for one bidder with a monotone hazard rate distribution.

The proof is deferred to the full version. It follows that the slope search approach of
[19] is incorrect. However, the correctness of the slope search approach is restored if



one is willing to settle for randomized mechanisms: The trade-off space of randomized
mechanisms is always convex (in particular, it is the convex hull of the deterministic
mechanisms, (Figure 1 (d)). It is easy to see (and it had been actually worked out for
different purposes already in [23]) that the optimum randomized mechanism with re-
spect to the metric “revenue + λ· welfare” is easy to calculate.

Proposition 2. The optimum randomized mechanism for the objective “revenue + λ·
welfare” can be computed in polynomial time. Hence, any point of the revenue/welfare
trade-off for randomized mechanisms can be computed in polynomial time.

1.1 Our results

In this paper we consider the problem of exploring the revenue/welfare trade-off for de-
terministic mechanisms, and show that it is an intractable problem in general, even for
two bidders (Theorem 2). Comparing with Proposition 2, this result adds to the recent
surge in literature pointing out complexity gaps between randomized and determinis-
tic mechanisms [26, 12, 13, 11]. Randomized mechanisms are of course a powerful
and useful analytical concept, but it is deterministic mechanisms and auctions that we
are chiefly interested in. Hence such complexity gaps are meaningful and onerous. We
also show that there are instances for which the set of Pareto optimal mechanisms has
exponential size.

On the positive side, we show that the problem can be solved for two bidders, even
for correlated valuations (Theorem 4). By “solved” we mean that any trade-off point
can be approximated with arbitrarily high precision in polynomial time in both the in-
put and the precision — that is to say, by an FPTAS. It also means (by results in [28])
that an approximate summary of the trade-off (the ε-Pareto curve), of polynomial size
(Figure 1(e)), can be computed in polynomial time. The derivation of the two-bidders
algorithm (see Section 4.1) is quite involved. We first find a pseudo-polynomial dy-
namic programming algorithm for the problem of finding a mechanism with welfare
(resp. revenue) exactly a given number. This algorithm is very different from the one
in [26] for optimal auctions in the two bidder case, but it exploits the same feature of
the problem, namely its planar nature. We then recall Theorem 4 of [28] (Section 2)
which establishes a connection between such pseudo-polynomial algorithms for the
exact problems and FPTAS for the trade-off problem. However, the present problem
violates several key assumptions of that theorem, and a custom reduction to the exact
problem is needed.

Unfortunately for three or more bidders the above approach no longer works; this
is not surprising since, as it was recently shown in [26], just maximizing revenue is
an APX-hard problem in the correlated case. The main problem left open in this work
is whether there is an FPTAS for three or more bidders with independent valuation
distributions.

We also look at another interesting case of the n-bidder problem, in which the val-
uation distributions have support two. This case is of some methodological interest
because, in general, n-dimensional problems of this sort in mechanism design have not
been characterized computationally, because of the difficulty related to the exponential
size of the solution sought; binary-valued bidders have served as a first step towards



the understanding of auction problems in the past, for example in the study of opti-
mal multi-object auctions [3]. We show that the trade-off problem is in PSPACE and
(weakly) NP-hard (Theorem 5).

1.2 Related work

Although [19] appears to be the only previous paper explicitly treating optimal auc-
tion design as a multi-objective optimization problem, there has been substantial work
in studying the relation of the two objectives. The most prominent paper in the area
is that of Bulow and Klemperer [4] who show that the revenue benefits of adding one
extra bidder and running the efficiency-maximizing auction surpasses those of running
the revenue-maximizing auction. In [2] the authors show that for valuations drawn in-
dependently from the same monotone hazard rate distribution, an analogous theorem
holds for efficiency: by adding Θ(log n) extra bidders and running Myerson’s auction,
one gets at least the efficiency of Vickrey’s auction. This paper also shows that for these
distributions both the welfare and the revenue ratios between Vickrey and Myerson’s
auctions are bounded by 1/e: in our terms this implies that the extreme points of the
Pareto curve lie within a constant factor of each other and so constant factor approx-
imations are trivial; we note that no such constant ratios are known for more general
distributions (not even for the case of regular distributions), assuming of course that
the ratio between all bidders’ maximum and minimum valuation is arbitrary. This kind
of revenue and welfare ratios are also studied in [29] for keyword auctions (multi-item
auctions), and in [24] for single-item english auctions and valuations drawn from a dis-
tribution with bounded support. In [1] the authors present some tight bounds for the
efficiency loss of revenue-optimal mechanisms, which depend on the number of bid-
ders and the size of the support. Finally, and very recently, [7] gives simple auctions (in
particular, second-price auctions with appropriately chosen reserve prices) that simul-
taneously guarantee a 20% fraction of both the optimal revenue and the optimal social
welfare, when bidders’ valuations are drawn independently from (possibly different)
regular distributions: in multiobjective optimization parlance, their auctions belong to
the knee of the Pareto curve. In this work (Section 4) we provide an algorithm for ap-
proximating any point of the Pareto curve within arbitrary precision, albeit sacrificing
the simplicity of the auction format.

2 Preliminaries
2.1 Bayesian Mechanism Design
We are interested in auctioning a single, indivisible item to n bidders. We assume every
bidder i has a private valuation vi for the item and that her valuation is drawn from
some discrete probability distribution over support of size hi with probability density
function fi(·). We use vki and fki , k = 1, . . . , hi, to denote the k-th smallest element in
the support of bidder i and its probability mass respectively.

Formally an auction consists of an allocation rule xi(v1, . . . , vn), the probability
of bidder i getting allocated the item, and a payment rule pi(v1, . . . , vn) which is the
price paid by bidder i. In this paper we focus our attention on deterministic mechanisms



so that xi(·) ∈ {0, 1}. We demand from our auctions to satisfy the two standard con-
straints of ex-post incentive compatibility (IC) and individual rationality (IR); it is well
known [25] that any such auction has the following special form: if we fix the valua-
tion of all bidders except for bidder i, then there is a threshold value ti(v−i), such that
bidder i only gets the item for values vi ≥ ti(vi) and pays ti(v−i). In particular one
can show that, for the discrete setting and for the objectives of welfare and revenue we
are interested in, we can wlog assume that the threshold values ti of any Pareto optimal
auction will always be on the support of bidder i.

Relying on the above characterization, we will describe our mechanisms using the
concept of an allocation matrix A: a h1 × . . . × hn matrix where entry (i1, . . . , in)
corresponds to the tuple (vi11 , . . . , v

in
n ) of bidder’s valuations. Each entry takes values

from {0, 1, . . . , n} indicating which bidder gets allocated the item for the given tuple of
valuations, with 0 indicating that the auctioneer keeps the item. In order for an allocation
matrix to correspond to a valid (ex-post IC and IR) auction a necessary and sufficient
condition is the following monotonicity constraint: if A[i1, . . . , ij , . . . , in] = j then
A[i1, . . . , k, . . . , in] = j for all k ≥ ij . Notice that the payment of the bidder who
gets allocated the item can be determined as the least value in his support for which
he still gets the item, keeping the values of the other bidders fixed; moreover, when
there is only a constant number of bidders, the allocation matrix provides a polynomial
representation of an auction.

2.2 Multi-Objective Optimization

Trade-offs are present everywhere in life and science — in fact, one can argue that op-
timization theory studies the very special and degenerate case in which we happen to
be interested in only one objective. There is a long research tradition of multi-objective
or multi-criterion optimization, developing methodologies for computing the trade-off
points (called the Pareto set) of optimization problems with many objectives, see for
example [18, 14, 20]. However, there is a computational awkwardness about this prob-
lem: Even for simple cases, such as bicriterion shortest paths, the Pareto set (the set of
all undominated feasible solutions) can be exponential, and thus it can never be poly-
nomially computed. In 2000, Papadimitriou and Yannakakis [28] identified a sense in
which this is a meaningful problem: They showed that there is always a set of solutions
of polynomial size that are approximately undominated, within arbitrary precision; a
multi-objective problem is considered tractable if such a set can be computed in poly-
nomial time. Since then, much progress has been made in the algorithmic theory of
multi-objective optimization [30, 10, 9, 17, 6, 5, 8], and much methodology has been
developed, some of which has been applied to mechanism design before [16]. In this
paper we use this methodology for studying Bayesian auctions under the two criteria of
expected revenue and social welfare.

The BI-CRITERION AUCTION problem. We want to design deterministic auctions
that perform favorably with respect to (expected) social welfare, defined as SW =
E[
∑
i xivi] and (expected) revenue, defined as Rev = E[

∑
i pi]. Based on the afore-

mentioned characterization with allocation matrices, we can view an auction as a feasi-
ble solution to a combinatorial problem. An instance specifies the number n of bidders



and for each bidder its distribution on valuations. The size of the instance is the num-
ber of bits needed to represent these distributions. We map solutions (mechanisms) to
points (x, y) in the plane, where we use the x-axis for the welfare and the y-axis for the
revenue. The objective space is the set of such points.

Let p, q ∈ R2
+. We say that p dominates q if p ≥ q (coordinate-wise). We say that p

ε-covers q (ε ≥ 0) if p ≥ q/(1+ε). LetA ⊆ R2
+. The Pareto set ofA, denoted by P (A),

is the subset of undominated points in A (i.e. p ∈ P (A) iff p ∈ A and no other point in
A dominates p). We say that P (A) is convex if it contains no points that are dominated
by convex combinations of other points. Given a set A ⊆ R2

+ and ε > 0, an ε-Pareto set
of A, denoted by Pε(A), is a subset of points in A that ε-cover all vectors in A. Given
two mechanismsM,M ′ we define domination between them according to the 2-vectors
of their objective values. This naturally defines the Pareto set and approximate Pareto
sets for our auction setting.

As shown in [28], for every instance and ε > 0, there exists an ε-Pareto set of
polynomial size. The issue is one of efficient computability. There is a simple necessary
and sufficient condition, which relates the efficient computability of an ε-Pareto set
to the following GAP Problem: given an instance I , a (positive rational) 2-vector b =
(W0, R0), and a rational δ > 0, either return a mechanismM whose 2-vector dominates
b, i.e. SW(M) ≥ W0 and Rev(M) ≥ R0, or report that there does not exist any
mechanism that is better than b by at least a (1 + δ) factor in both coordinates, i.e. such
that SW(M) ≥ (1 + δ) · W0 and Rev(M) ≥ (1 + δ) · R0. There is an FPTAS for
constructing an ε-Pareto set iff there is an FPTAS for the GAP Problem [28].
Remark 1. Even though our exposition focuses on discrete distributions, our results
easily extend to continuous distributions as well. As in [26], given a sufficiently smooth
continuous density (say Lipschitz-continuous), whose support lies in a finite interval
[v, v],3 we can appropriately discretize (while preserving the optimal values within
O(ε)) and run our algorithms on the discrete approximations.

From exact to bi-criterion. We will make essential use of a result from [28] reducing
the multi-objective version of a linear optimization problemA to its exact version: LetA
be a discrete linear optimization problem whose objective function(s) have non-negative
coefficients. The exact version of a A is the following problem: Given an instance x of
A, and a positive rational C, is there a feasible solution with objective function value
exactly C? For such problems, a pseudo-polynomial algorithm for the exact version of
implies an FPTAS for the multi-objective version:

Theorem 1 ([28]). LetA be a linear multi-objective problem whose objective functions
have non-negative coefficients: If there exists a pseudo-polynomial algorithm for the
exact version of A, then there exists an FPTAS for constructing an approximate Pareto
curve for A.

To obtain our main algorithmic result (Theorem 4), we design a pseudo-polynomial
algorithm for the exact version of the BI-CRITERION AUCTION problem and apply
Theorem 1 to deduce the existence of an FPTAS. However, it is not obvious why BI-
CRITERION AUCTION satisfies the condition of the theorem, since in the standard rep-
resentation of the problem as a linear problem, the objective functions typically have

3 This is the standard approach in economics, see for example [22].



negative coefficients. We show however (Lemma 2) that there exists an alternate repre-
sentation with monotonic linear functions.

3 The complexity of Pareto optimal auctions

Our main result in this section is that – in contrast with randomized auctions – design-
ing deterministic Pareto optimal auctions under welfare and revenue objectives is an
intractable problem; in particular, we show that, even for 2 bidders 4 whose distribu-
tions are independent and regular, the problem of maximizing one criterion subject to a
lower bound on the other is (weakly) NP-hard.

Theorem 2. For two bidders with independent regular distributions, it is NP-hard to
decide whether there exists an auction with welfare at least W and revenue at least R.

Proof (Sketch). Due to space constraints, in this version of the paper we only provide
the reduction for the exact problem for the welfare objective; quite simple and intuitive,
it also captures the main idea in the (significantly more elaborate) proof for the bi-
criterion problem, which can be found in the full version.

The reduction is from the Partition problem: we are given a setB = {b1, . . . , bk} of
k positive integers, and we wish to determine whether it is possible to partition B into
two subsets with equal sum. We assume that bi ≥ bi+1 for all i. Consider the rescaled
values b′i := bi/(10k · T ), where T =

∑k
i=1 bi, and the set B′ = {b′1, . . . , b′k}. It is

clear that there exists a partition of B iff there exists a partition of B′.
We construct an instance of the auction problem with two bidders whose inde-

pendent valuations vr (row bidder) and vc (column bidder) are uniformly distributed
over supports of size k. (To avoid unnecessary clutter in the expressions, we assume
w.l.o.g – by linearity – that the “probability mass” of all elements in the support is
equal to 1, as opposed to 1/k.) The valuation distribution for the row bidder is sup-
ported on the set {1, 2, . . . , k}, while the column bidder’s valuation comes from the set
{1 + b′1, 2 + b′2, . . . , k + b′k}. Since b′i ≥ b′i+1 and

∑k
i=1 b

′
i = 1/(10k), it is straight-

forward to verify that both distributions are indeed regular (the proof is deferred to the
full version).

The main idea of the proof is this: appropriately isolate a subset of 2k feasible
mechanisms whose welfare values encode the sum of values

∑
i∈S b

′
i for all possible

subsets S ⊆ [k]. The existence of a mechanism with a specified welfare value would
then reveal the existence of a partition. Formally, we prove that there exists a Partition
of B′ iff there exists a feasible mechanism M∗ with (expected) welfare

SW(M∗) = (2/3) · (k− 1)k(k+1)+ (1/2) · k(k+1)+
k∑
i=2

(i− 1)b′i+1/(20k) (1)

Consider the allocation matrix of a feasible mechanism. Recall that a mechanism is
feasible iff its allocation matrix satisfies the monotonicity constraint. The main claim
is that all mechanisms that could potentially satisfy (1) must allocate the item to the
highest bidder, except potentially for the outcomes (vr = i, vc = i + b′i) (i.e. the ones

4 Note that for a single bidder, one can enumerate all feasible mechanisms in linear time.



corresponding to entries on the secondary diagonal of the matrix) when the item can be
allocated to either bidder. Denote by R the aforementioned subclass of mechanisms.
The above claim follows from the next lemma, which shows that mechanisms in R
maximize welfare (see full version for the proof):

Lemma 1. We have maxM/∈R SW(M) < minM∈R SW(M) < SW(M∗).

To complete the proof, observe that all 2k mechanisms inR satisfy monotonicity, hence
are feasible. Also note that there is a natural bijection between subsets S ⊆ [k] and these
mechanisms: we include i in S iff on input (vr = i, vc = i + b′i) the item is allocated
to the column bidder. Denote by M(S) the mechanism inR corresponding to subset S
under this mapping; we will compute the welfare of M(S). Note that the contribution
of each entry of the allocation matrix (input) to the welfare equals the valuation of the
bidder who gets the item for that input. By the definition ofR, for the entries above the
secondary diagonal, the row bidder gets the item (since her valuation is strictly larger
than that of the column bidder – this is evident since maxi b

′
i < 1/(10k)). Therefore, the

contribution of these entries to the welfare equals
∑k
i=2 i(i−1) = (1/3)(k−1)k(k+1).

Similarly, for the entries below the diagonal, the column bidder gets the item and their
contribution to the welfare is

∑k
i=2(i+ b

′
i)(i−1) = (1/3)(k−1)k(k+1)+

∑k
i=2(i−

1)b′i. Finally, for the diagonal entries, if S ⊆ [k] is the subset of indices for which the
column bidder gets the item, the welfare contribution is

∑
i∈S(i+ b′i) +

∑
i∈[k]\S i =

k(k + 1)/2 +
∑
i∈S b

′
i. Hence, we have:

SW(M(S)) = (2/3) · (k− 1)k(k+1)+ (1/2) · k(k+1)+
k∑
i=2

(i− 1)b′i+
∑
i∈S

b′i (2)

Recalling that
∑k
i=1 b

′
i = 1/(10k), (1) and (2) imply that there exists a partition of B′

iff there exists a feasible mechanism satisfying (1). This completes the proof sketch.
(See the full version of the paper for the much more elaborate proof of the general
case.) ut

We can also prove that the size of the Pareto curve can be exponentially large (in
other words, the problem of computing the entire curve is exponential even if P =
NP ). The construction is given in the full version.

Theorem 3. There exists a family of two-bidder instances for which the size of the
Pareto curve for BI-CRITERION AUCTION grows exponentially.

4 An FPTAS for 2 bidders

In this section we give our main algorithmic result:

Theorem 4. For two bidders, there is an FPTAS to approximate the Pareto curve of the
BI-CRITERION AUCTION problem, even for arbitrarily correlated distributions.

In the proof, we design a pseudo-polynomial algorithm for the exact version of the
problem (for both the welfare and revenue objectives) and then appeal to Theorem 1.
There is a difficulty, however, in showing that the problem satisfies the assumptions
of Theorem 1, because in the most natural linear representation of the problem, the



coefficients for revenue, coinciding with the virtual valuations, may be negative, thus
violating the hypothesis of Theorem 1.

We use the following alternate representation: Instead of considering the contribu-
tion of each entry (bid tuple) of the allocation matrix separately, we consider the rev-
enue and welfare resulting from all the single-bidder mechanisms (pricings) obtained
by fixing the valuation of the other bidder.

Definition 1. Let ri1,i21 andwi1,i21 be the (contribution to the) revenue and welfare from
bidder 1 of the pricing which offers bidder 1 a price of vi11 when bidder 2’s value is vi22 :
ri1,i21 =

∑
j≥i1 v

i1
1 · f(j, i2) and wi1,i21 =

∑
j≥i1 v

j
1 · f(j, i2), where f(·, ·) is the

joint (possibly non-product) valuation distribution. (The quantities ri1,i22 and wi1,i22 are
defined analogously.)

Lemma 2. The BI-CRITERION AUCTION problem can be expressed in a way that sat-
isfies the conditions of Theorem 1.

Proof. We consider variables xij , yij , i ∈ [h1], j ∈ [h2]. The xij’s are defined as
follows: xij = 1 iff A[i, j] = 1 and A[i′, j] 6= 1 for all i′ < i. I.e. xij = 1 iff the
(i, j)-th entry of A is allocated to bidder 1 and, for this fixed value of j, i is the smallest
index for which bidder 1 gets allocated; symmetrically, yij = 1 iff A[i, j] = 2 and
A[i, j′] 6= 2 for all j′ < j. It is easy to see that the feasibility constraints are linear in
these variables. We can also express the objectives as linear functions with non-negative
coefficients as follows:

Rev(x, y) =
h1∑
i=1

h2∑
j=1

xijr
i,j
1 +

h1∑
i=1

h2∑
j=1

yijr
i,j
2

SW(x, y) =
h1∑
i=1

h2∑
j=1

xijw
i,j
1 +

h1∑
i=1

h2∑
j=1

yijw
i,j
2

ut

4.1 An algorithm for the exact version of BI-CRITERION AUCTION

The main idea behind our algorithm, inspired by the characterization of Lemma 2, is
to consider the contribution from each bidder (fixing the value of the other) indepen-
dently, by going over all (linearly many) single-bidder mechanisms for both bidders.
The challenging part is to combine the individual single-bidder mechanisms into a sin-
gle two-bidder mechanism and to this end we employ dynamic programming:

Assume that both bidders have valuations of support size h; the subproblems we
consider in our dynamic program correspond to settings where we condition that the
valuation of each bidder is drawn from an upwards closed subset of his original support.
Formally, let M [i, j,W ] be True iff there exists an auction that uses the valuations
(vi1, . . . , v

h
1 ) and (vj2, . . . , v

h
2 ) and has welfare exactly W . In what follows Ni,j is the

normalization factor for valuations (jointly) drawn from (vi1, . . . , v
h
1 ) and (vj2, . . . , v

h
2 ),

namely Ni,j =
∑
k≥i,l≥j f(v

k
1 , v

l
2).



Lemma 3. We can update the quantity M [i, j,W ] as follows:

M [i, j,W ] =
∨
k≥j

M [i+ 1, j,
(
W ·Ni,j − wi,k2

)
·N−1i+1,j ]

∨
∨
k≥i

M [i, j + 1,
(
W ·Ni,j − wk,j1

)
·N−1i,j+1]

∨
∨
k>i
l>j

M [i+ 1, j + 1,
(
W ·Ni,j − wk,j1 − wi,l2

)
·N−1i+1,j+1]

Proof. LetA[i . . . h, j . . . h] be the allocation matrix of the auction that results from the
above update rule, fixing i and j. We start by noting that any allocation matrix A can
have one of the following four forms:

F1: There exist i′ and j′ such that A[i, j′] = 1 and A[i′, j] = 2.
F2: There exists i′ such that A[i′, j] = 2 but there is no j′ such that A[i, j′] = 1.
F3: There exists j′ such that A[i, j′] = 1 but there is no i′ such that A[i′, j] = 2.
F4: There exist no i′ and j′ such that A[i, j′] = 1 or A[i′, j] = 2.

Because of monotonicity it follows immediately that no allocation matrix of form F1
can be valid, and the other three forms correspond to the three terms of the recurrence;
finally note that for any such form, say F2, the first term of the update rule forM [i, j,W ]
runs over all possible pricings for bidder 1 (keeping the value of bidder 2 at vj2) and
checks whether they induce the required welfare. ut

We omit the straightforwards details of how the above recurrence can be efficiently
implemented as a pseudo-polynomial dynamic programming algorithm. The algorithm
for deciding whether there exists an auction with revenue exactly R is identical to the
above by simply replacing R (the revenue target value) for W and ri1,i2j for wi1,i2j .

5 The case of n bidders

When the number n of bidders is part of the input, the allocation matrix is no longer a
polynomially succinct representation of a mechanism. In fact, it is by no means clear
whether BI-CRITERION AUCTION is even in NP in this case: we next show that for
the case of n binary bidders, the problem is NP -hard and in PSPACE:

Theorem 5. For n binary-valued bidders BI-CRITERION AUCTION is (weakly) NP-
hard and in PSPACE.

Proof (Sketch). For simplicity, we prove both results for the exact version of the prob-
lem for welfare; the bi-objective case follows by a straightforward but tedious general-
ization.

The NP-hardness reduction is from Partition. Let B = {b1, . . . , bk} be a set of pos-
itive rationals; we can assume by rescaling that

∑k
i=1 bi = 1/100. We construct an

instance of the auction problem as follows: there are k bidders, with uniform distri-
butions (again we will assume unit masses for simplicity) over the following supports



{li, hi}, i = 1 . . . n, where li < hi. We set li = bi and demand that {hi}i=1,...,n

forms a super-increasing sequence (i.e. hi+1 >
∑i
j=1 hj), with h1 > maxi bi. The

claim is that there exists a partition of B iff there exists an auction with welfare equal
to
∑k
i=1 hi + (1/2)

∑k
i=1 bi. To see this notice that – since the sequence {hi}i=1...n

is super-increasing – any mechanism with the above welfare value must must allocate
to bidder i for exactly one valuation tuple (vi, v−i) where vi = hi; the corresponding
contribution to the welfare from this case is hi. Monotonicity then implies that this auc-
tion can allocate to bidder i for at most one valuation tuple (vi, v−i) where vi = li;
the corresponding contribution to the welfare from this case is bi. We therefore get a
bijection between subsets of B and mechanisms, by including an element bi in the set
S iff bidder i gets allocated the item for some valuation tuple (vi, v−i) where vi = li,
and the claim follows.

For the PSPACE upper bound, we start by noting that the problem of computing
an auction with welfare (or revenue) exactly W , can be formulated as the problem of
computing a matching of weight exactly W in a particular type of bipartite graphs (first
pointed out in [12], see also the full version of the paper) with a number of nodes that
is exponential in the number of bidders. The EXACT MATCHING problem is known to
be solvable in RNC [21]; since our input provides an exponentially succinct representa-
tion of the constructed graph, we are interested in the so-called succinct version of the
problem [15, 27]. By standard techniques, the succinct version of EXACT MATCHING
in our setting is solvable in PSPACE, and the theorem follows. ut

We conjecture the above upper bound to be tight (i.e. the problem is actually PSPACE-
complete) even for n bidders with arbitrary supports.

6 Open Questions
Is there is an FPTAS for 3 bidders? We conjecture that there is, and in fact for any
constant number of bidders. Of course, the approach of our FPTAS for 2 bidders cannot
be generalized, since it works for the correlated case, which is APX-complete for 3
or more bidders. We have derived two different dynamic programming-based PTAS’s
for the uncorrelated problem, but so far, despite a hopeful outlook, we have failed to
generalize them to 3 bidders. Finally, we conjecture that for n bidders the problem is
significantly harder, namely PSPACE-complete and inapproximable.

On a different note, it would be interesting to see if we can get better approximations
for some special types of distributions; we give one such type of result in the full version
of the paper. Are there improved approximation guarantees for more general kinds of
distributions and n bidders?
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