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Abstract

Let x be a random vector coming from any k-wise independent distribution over {−1, 1}n. For
an n-variate degree-2 polynomial p, we prove that E[sgn(p(x))] is determined up to an additive
ε for k = poly(1/ε). This gives a large class of explicit pseudo-random generators against such
functions and answers an open question of Diakonikolas et al. (FOCS 2009).

In the process, we develop a novel analytic technique we dub multivariate FT-mollification.
This provides a generic tool to approximate bounded (multivariate) functions by low-degree
polynomials (with respect to several different notions of approximation). A univariate version of
the method was introduced by Kane et al. (SODA 2010) in the context of streaming algorithms.
In this work, we refine it and generalize it to the multivariate setting. We believe that our
technique is of independent interest. To illustrate its generality, we note that it implies a
multidimensional generalization of Jackson’s classical result in approximation theory due to
(Newman and Shapiro, 1963).

To obtain our main result, we combine the FT-mollification technique with several linear
algebraic and probabilistic tools. These include the invariance principle of of Mossell, O’Donnell
and Oleszkiewicz, anti-concentration bounds for low-degree polynomials, an appropriate decom-
position of degree-2 polynomials, and the Hanson-Wright tail bound for quadratic forms which
takes the operator norm of the associated matrix into account. Our analysis is quite modular;
it readily adapts to show that intersections of halfspaces and degree-2 threshold functions are
fooled by bounded independence. From this it follows that Ω(1/ε2)-wise independence deran-
domizes the Goemans-Williamson hyperplane rounding scheme.

Our techniques unify, simplify, and in some cases improve several recent results in the lit-
erature concerning threshold functions. For the case of “regular” halfspaces we give a simple
proof of an optimal independence bound of Θ(1/ε2), improving upon Diakonikolas et al. (FOCS
2009) by polylogarithmic factors. This yields the first optimal derandomization of the Berry-
Esséen theorem and – combined with the results of Kalai et al. (FOCS 2005) – implies a faster
algorithm for the problem of agnostically learning halfspaces.
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1 Introduction

This paper is concerned with the power of limited independence to fool low-degree polynomial
threshold functions. A degree-d polynomial threshold function (henceforth PTF), is a boolean
function f : {−1, 1}n → {−1, 1} expressible as f(x) = sgn(p(x)), where p is an n-variate degree-d
polynomial with real coefficients, and sgn is −1 for negative arguments and 1 otherwise. PTFs
have played an important role in computer science since the early perceptron work of Minsky and
Papert [37], and have since been extensively investigated in circuit complexity and communication
complexity [3, 7, 12, 13, 22, 24, 34, 41, 42, 45, 46] and learning theory [32, 33, 47].

A distribution D on {−1, 1}n is said to ε-fool a function f : {−1, 1}n → {−1, 1} if

|Ex∼D[f(x)]−Ex∼U [f(x)]| ≤ ε

where U is the uniform distribution on {−1, 1}n. A distribution D on {−1, 1}n is k-wise independent
if every restriction of D to k coordinates is uniform on {−1, 1}k. Despite their simplicity, k-wise
independent distributions have been a surprisingly powerful and versatile derandomization tool,
fooling complex functions such as AC0 circuits [5, 11, 44] and half-spaces [16]. As a result, this
class of distributions has played a fundamental role in many areas of theoretical computer science.

Our Results and Techniques. The problem we study is the following: How large must k =
k(n, d, ε) be in order for every k-wise independent distribution on {−1, 1}n to ε-fool the class of
degree-d PTF’s? The d = 1 case of this problem was recently considered in [16], where it was
shown that k(n, 1, ε) = Θ̃(1/ε2), independent of n. The main open problem in [16] was to identify
k = k(n, d, ε) for d ≥ 2. In this work, we make progress on this question by proving the following:

Theorem 1.1 (Main Result). Any Ω̃(ε−9)-wise independent distribution on {−1, 1}n ε-fools all
degree-2 PTFs.

Prior to this work, no nontrivial result was known for d > 1; it was not even known whether o(n)-
wise independence suffices for constant ε. Standard explicit constructions of k-wise independent
distributions over {±1}n have seed length O(k ·log n) [1, 15] which is optimal up to constant factors.
As a consequence, Theorem 1.1 gives a large class of explicit pseudo-random generators (PRGs)
for degree-2 PTFs with seed length log(n) · Õ(ε−9).

Another consequence of Theorem 1.1 is that bounded independence suffices for the invariance
principle of [38] in the case of degree-2 polynomials. Roughly, this says that for a “low influence”
degree-2 polynomial p the distribution of p(x) is essentially invariant if x is drawn from a k-wise
distribution over n uniform random signs versus a k-wise distribution over n standard Gaussians.
Under this interpretation, we believe that our result and its proof represent an advance of some
substance in probability theory.

The techniques we employ to obtain our main result are quite robust. Our approach yields for
example that Theorem 1.1 holds not only over the hypercube, but also over the n-variate Gaussian
distribution. The proof also readily extends to show that the intersection of m halfspaces, or even m
degree-2 threshold functions, is ε-fooled by poly(1/ε)-wise independence for any constant m (over
both the hypercube and the multivariate Gaussian); see Theorem 6.2. As a special case of the
latter result we prove that the Goemans-Williamson hyperplane rounding scheme [21] (henceforth
“GW rounding”) can be derandomized using Ω(1/ε2)-wise independence.1

1Concurrent independent work of [23] also implies Ω(polylog(1/ε)/ε2)-independence suffices. Other derandomiza-
tions of GW rounding are known with better ε-dependence, though not solely via k-wise independence [31, 35, 48].
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The method that we build may be viewed as a generic tool in approximation theory, and in
particular for the approximation of functions by low-degree polynomials.2 In Section 6 we use our
method to obtain a simple proof of a classical result in polynomial approximation. We also obtain
various quantitative improvements for problems related to streaming and agnostic learning.

Motivation and Related Work. The literature is rich with explicit generators for various natural
classes of functions. In recent years, there has been much interest in not only constructing PRGs
for natural complexity classes, but also in doing so with as broad and natural a family of PRGs
as possible. One example is the recent work of Bazzi [5] on fooling depth-2 circuits (simplified by
Razborov [44]), and of Braverman [11] on fooling AC0, with bounded independence3.

During the past year there has been a flurry of results on pseudo-random generators against
threshold functions [8, 16, 23, 26, 31, 36, 43]. Most directly related to the results in this paper
is the work of Meka and Zuckerman [36]. Simultaneously and independently from our work, they
constructed PRGs against degree-d PTFs with seed length log n · 2O(d) · (1/ε)8d+3 [36]. That is,
their seed length for d = 2 is similar to ours (though our generator is better by a poly(1/ε) factor).
Their PRG is not based on k-wise independence alone.

We note that, by a straightforward probabilistic argument, there exist generators with seed-
length O(d log n + log(1/ε)) for degree-d PTFs. Hence, there is still a substantial gap between
probabilistic and explicit constructions. We believe that the development of structural results such
as the ones given in the current work may be useful for later developments of generators with
better seed-length. In particular, we feel that understanding the degree of independence required
to fool degree-d PTFs is an important step towards obtaining better explicit generators for these
functions. For example, it is conceivable that poly(d/ε)-independence suffices, which would yield
generators with seed-length log n · poly(d/ε).

Organization. In Section 2 we give basic notation. Section 3 contains a high-level explanation of
FT-mollification and explains how it is used to obtain our main result. Section 4 contains our FT-
mollification theorem and a brief sketch of its proof. As a warmup for our main result, in Section 5
we show how our approach implies that Ω(1/ε2)-wise independence ε-fools “regular” halfspaces;
the structure of this proof serves as a template which all later proofs follow. In Section 6, we show
that our techniques also have connections to or yield improvements for various problems related to
approximation theory, streaming, agnostic learning and fooling intersections of threshold functions.
In Section 7 we present the proof of our main result. Due to space limitations, some full proofs are
postponed to the appendix.

2 Notation

Let p : {−1, 1}n → R be a polynomial and p(x) =
∑

S⊆[n] p̂SχS be its Fourier-Walsh expansion,

where χS(x)
def
=
∏
i∈S xi. The influence of variable i on p is Infi(p)

def
=
∑

S3i p̂
2
S , and the total

influence of p is Inf(p) =
∑n

i=1 Infi(p). If Infi(p) ≤ τ · Inf(p) for all i, we say that the polynomial
p is τ -regular. If f(x) = sgn(p(x)), where p is τ -regular, we say that f is a τ -regular PTF.

For R ⊆ Rd denote by IR : Rd → {0, 1} its characteristic function. It will be convenient in some
of the proofs to phrase our results in terms of ε-fooling E[I[0,∞)(p(x))] as opposed to E[sgn(p(x))].
It is straightforward that these are equivalent up to changing ε by a factor of 2.

2In fact our method is more general, and also provides good approximations by smooth functions with good
derivative bounds. In some cases this move from polynomials to smooth functions is necessary, e.g. in [30].

3Note that a PRG for AC0 with qualitatively similar – in fact slightly better – seed length had being already given
by Nisan [40].
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We frequently use A ≈ε B to denote that |A − B| = O(ε), and we let the function d2(x,R)
denote the L2 distance from some x ∈ Rd to a region R ⊆ Rd.

Finally, we familiarize the reader with some multi-index notation. A d-dimensional multi-index
is a vector β ∈ Nd (here N is the nonnegative integers). For α, β ∈ Nd, we say α ≤ β if the inequality
holds coordinate-wise, and for such α, β we define |β| =

∑
i βi,

(
β
α

)
=
∏d
i=1

(
βi
αi

)
, and β! =

∏d
i=1 βi!.

For x ∈ Rd we use xβ to denote
∏d
i=1 x

βi
i , and for f : Rd → R we use ∂βf to denote ∂|β|

∂x
β1
1 ···∂x

βd
d

f .

3 Overview of our proof of Theorem 1.1

The program of our proof follows the outline of the proof in [16]: we first prove that bounded
independence fools the class of regular degree-2 PTF’s (Step 1), then reduce the general case to
the regular case (Step 2) to show that bounded independence fools all degree-2 PTF’s. The bulk of
our proof is to establish Step 1; this is the most challenging part of this work and where our main
technical contribution lies. Step 2 is achieved by adapting the recent results of [17]. We stress that
proving Step 1 for the degree-2 case poses significant technical challenges. It turns out that the
proof requires a conceptual departure from the approach used in the degree-1 case. We elaborate
on this below.

Let f : {−1, 1}n → {−1, 1} be a boolean function. To show that f is fooled by k-wise indepen-
dence, it suffices – and is in fact necessary – to prove the existence of two degree-k “sandwiching”
polynomials qu, ql : {−1, 1}n → {−1, 1} that approximate f in L1-norm (see e.g. [5, 9]). (Let us
remark here that, because of the additional “sandwiching” condition this notion of approximation
is at least as hard as L1.) Even though this is an n-dimensional approximation problem, it may
be possible to exploit the additional structure of the function under consideration to reduce it to a
low-dimensional problem. This is exactly what is done in both [16] and [30] for the case of regular
halfspaces.

We now briefly explain the approaches of [16] and [30]. Let f(x) = sgn(〈w, x〉) be an ε2-regular
halfspace, i.e. ‖w‖2 = 1 and maxi |wi| ≤ ε. The works of [16, 30] use the Berry-Esséen theorem,
which states that the random variable 〈w, x〉 behaves approximately like a standard Gaussian and
hence can be treated as if it was one-dimensional. Thus, both [16] and [30] construct (implicitly
in the latter) a (different in each case) univariate polynomial P : R → R that is a good “upper
sandwich” L1-approximation to the sign function under the normal distribution in R. The desired
n-variate sandwiching polynomials are then obtained (roughly) by setting qu(x) = P (〈w, x〉) and
ql(x) = −P (−〈w, x〉). It turns out that this approach suffices for the case of halfspaces. In [16]
the polynomial P is constructed using classical approximation theory tools. In [30] it is obtained
by taking a truncated Taylor expansion of a certain smooth approximation to the sign function,
constructed via a method dubbed “Fourier Transform mollification” (henceforth FT-mollification).

Let f(x) = sgn(p(x)) be a regular degree-2 PTF. A first natural attempt to handle this case
would be to again use some univariate polynomial approximation Q to the sign function – poten-
tially allowing its degree to increase – and then take qu(x) = Q(p(x)), as before. Such an approach
is easily seen to fail for both constructions outlined above – for essentially the same reason. This is
not a coincidence; it is conjectured [19] that no univariate L1 ε-approximating polynomial for the
sign function (i.e., without even requiring the sandwiching condition) can have 2o(1/ε

2)-degree. We
elaborate on this issue in Section E.

We now describe FT-mollification and our departure from the univariate approach.
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3.1 FT-mollification FT-mollification is a general procedure to obtain a smooth function with
bounded derivatives that approximates some bounded function f . The univariate version of the
method in the context of derandomization was introduced in [30]. In this paper we refine the
technique and generalize it to the multivariate setting, and later use it to prove our main theorem.
We remark here that the FT-mollification construction given in the current work is not only a
generalization of that in [30], but is redone from scratch and is simpler, while also yielding improved
bounds even in univariate applications (see Section A.1 for details).

For the univariate case, where f : R→ R, [30] defined f̃ c(x) = (c·b̂(c·t)∗f(t))(x) for a parameter
c, where b̂ has unit integral and is the Fourier transform of a smooth function b of compact support
(a so-called bump function). Here “∗” denotes convolution. The idea of smoothing functions
via convolution with a smooth approximation of the Dirac delta function is old, dating back to
“Friedrichs mollifiers” [18] in 1944. Indeed, the only difference between Friedrichs mollification and
FT-mollification is that in the former, one convolves f with the scaled bump function, and not
its Fourier transform. The switch to the Fourier transform is made to have better control on the
high-order derivatives of the resulting smooth function, which is crucial for our application.

The method can be illustrated as follows. Let X =
∑

i aiXi for independent Xi. Suppose we
would like to argue that E[f(X)] ≈ε E[f(Y )], where Y =

∑
i aiYi for k-wise independent Yi’s that

are individually distributed as the Xi. Let f̃ c be the FT-mollified version of f . If the parameter
c = c(ε) is appropriately selected, we can guarantee that |f(x)− f̃ c(x)| < ε “almost everywhere”,
and furthermore have “good” upper bounds on the high-order derivatives of f̃ c. We could then
hope to show the following chain of inequalities: E[f(X)] ≈ε E[f̃ c(X)] ≈ε E[f̃ c(Y )] ≈ε E[f(Y )]. To
justify the first inequality, f and f̃ c are close almost everywhere, and so it suffices to argue that X
is sufficiently anti-concentrated in the small region where they are not close. The second inequality
would use Taylor’s theorem, bounding the error via upper bounds on moment expectations of X and
the high-order derivatives of f̃ c. Showing the final inequality would be similar to the first, except
that one needs to justify that even under k-wise independence the distribution of Y is sufficiently
anti-concentrated. The argument outlined above was used in [30] to provide an alternative proof
that bounded independence fools regular halfspaces, and to optimally derandomize Indyk’s moment
estimation algorithm in data streams [27].

We now describe our switch to multivariate FT-mollification. Let f : {−1, 1}n → {−1, 1} be
arbitrary, and let S = f−1(1) ⊆ Rn. Then, fooling E[f(x)] and fooling E[IS(x)] are equivalent.
A natural attempt to this end would be to generalize FT-mollification to n dimensions, then
FT-mollify IS and argue as above using the multivariate Taylor’s theorem. Such an approach is
perfectly valid, but as one might expect, there is a penalty for working over high dimensions. Both
our quantitative bounds on the error introduced by FT-mollifying, and the error coming from the
multivariate Taylor’s theorem, increase with the dimension. Our approach is then to find a low-
dimensional representation of such a region S which allows us to obtain the desired bounds. We
elaborate below on how this can be accomplished in our setting.

3.2 Our Approach Let f = sgn(p) be a regular multilinear degree-2 PTF with ‖p‖2 = 1 (wlog).
Let us assume for simplicity that p is a quadratic form; handling the additive linear form and
constant is easier. Our approach is now as follows. We decompose p as p1−p2 +p3, where p1, p2 are
positive semidefinite quadratic forms with no small non-zero eigenvalues and p3 is indefinite with
all eigenvalues small in magnitude; such a decomposition follows from elementary linear algebra.

Then, as suggested by the aforementioned, we would like to identify a low-dimensional region
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R ⊆ Rd such that I{z:p(z)≥0}(x) can be written as IR(F (x)) for some F : {−1, 1}n → Rd that
depends on the pi, then FT-mollify IR. The region R is selected as follows: note we can write
p3(x) = xTAp3x, where Ap3 is a real symmetric matrix with trace Υ. We consider the region
R = {z : z2

1 − z2
2 + z3 + Υ ≥ 0} ⊆ R3 and define F (x) = (

√
p1(x),

√
p2(x), p3(x) − Υ), then

observe that IR(F (x)) = 1 iff p(x) ≥ 0. (Recall that p1, p2 are positive-semidefinite, hence the
first two coordinates are always real.) We then prove via FT-mollification that E[IR(F (x))] is
preserved to within ε by bounded independence. Due to our choice of F , when applying Taylor’s

theorem our error grows only like 2O(k) · ck · (E[
√
p1(x)

k
] + E[

√
p2(x)

k
] + E[(p3(x)−Υ)k])/kk for

some (non-constant) c in our proof, and we want this error to be ε. Essentially, these square roots
save us since kth moments of quadratic forms can grow like kk, which would nullify the kk in
the denominator of Taylor’s theorem; by having square roots, we only have to deal with (k/2)th
moments. To handle p3, we use a moment bound for quadratic forms with small eigenvalues. The
fact that we need p1, p2 to not only be positive semidefinite, but to also have no small eigenvalues, is
needed because quadratic forms with no small non-zero eigenvalues satisfy good tail bounds. This
is revelant because ĨcR(F (x)) and IR(F (x)) are not close for F (x) near the boundary of R, and we
can show that the probability of this event is small when p1, p2 satisfy good tail bounds.

4 Multivariate FT-mollification

We now state and sketch the proof of our FT-mollification theorem, which yields generic smoothing
guarantees for arbitrary bounded functions mapping Rd to R. The full proof is in Section A. In
the proof of our main theorem (Theorem 1.1), we are concerned with d = 4. In some of the other
applications of our technique mentioned in Section 6, d can be a growing parameter, e.g. it is the
number of halfspaces when fooling intersections of halfspaces. In what follows, we refer to F̃ c as the
FT-mollification of F (“FT” for “Fourier Transform”, for reasons that become clear in Section A).

Theorem 4.1. Let F : Rd → R be bounded, c > 0 arbitrary. There exists F̃ c : Rd → R satisfying

i. ‖∂βF̃ c‖∞ ≤ ‖F‖∞ · (2c)|β| for all β ∈ Nd.

ii. Fix some x ∈ Rd. Then if |F (x) − F (y)| ≤ ε whenever ‖x − y‖2 ≤ δ for some ε, δ ≥ 0, then
|F̃ c(x)− F (x)| ≤ ε+ ‖F‖∞ ·O(d2/(c2δ2)).

iii. F̃ c is nonnegative if F is nonnegative.

Proof (Sketch). In Section A we show the existence of a probability density B on Rd satisfying
Ex∼B[‖x‖22] = O(d2), and ‖∂βB‖1 ≤ 2|β| for all β ∈ Nd. This density B is obtained by taking a
“smooth enough” function b : Rd → R of compact support with

∫
Rd b

2(y)dy = 1, then letting B be

the square of its Fourier transform. We then define Bc(x) = cd ·B(cx), and F̃ c(x) = (Bc ∗F )(x) =∫
Rd Bc(y)F (x− y)dy.

For (i), using basic properties of convolution we show ‖F̃ c‖∞ ≤ ‖F‖∞ · c|β| ·
∥∥∂βB∥∥

1
, at which

point we use our bounds on ‖∂βB‖1. For (ii), since B is a probability density we have
∫
Rd Bc(y)dy =

1 for all c. Thus,
∫
Rd Bc(x− y)F (y)dy = F (x) +

∫
Rd(F (y)− F (x))Bc(x− y)dy. We then split the

domain of integration into the regions ‖x − y‖2 < δ and ‖x − y‖2 ≥ δ. The integral over the first
region is bounded by ε, and over the second region by the product of ‖F‖∞ and a tail bound for
B, which we can obtain by the second moment method since B has bounded variance. Item (iii)
follows since for F nonnegative, F̃ c is the convolution of two nonnegative functions. �
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The following theorem is a corollary of Theorem 4.1 in the case F is the indicator function of
a subset R ⊆ Rd. In Theorem 4.2, and in later invocations of the theorem, we use the following
notation: for R ⊂ Rd, we let ∂R denote the boundary of R (specifically, ∂R denotes the set of
points x ∈ Rd such that for every ε > 0, the ball about x of radius ε intersects both R and Rd\R).

Theorem 4.2. For any R ⊆ Rd and x ∈ Rd, |IR(x)− ĨcR(x)| ≤ min{1, O(( d
c·d2(x,∂R))2)}.

5 Warmup: fooling regular halfspaces

In this section, as a warmup to our main result we show how to use Theorem 4.2 to provide a
simple proof that Ω(1/ε2)-wise independence fools the class of ε2-regular halfspaces, i.e. halfspaces
{x : 〈w, x〉 ≥ θ} ⊆ {−1, 1}n where |wi| ≤ ε for all i and ‖w‖2 = 1. This result is new and in fact
it is optimal up to constant factors (see e.g. [16] for a straightforward Ω(1/ε2) lower bound). This
improves upon the bounds of [16, 30] by polylog(1/ε) factors.

Theorem 5.1. Let Hw,θ = {x : 〈w, x〉 ≥ θ} be a subset of {−1, 1}n such that |wi| ≤ ε for all
i ∈ [n] with ‖w‖2 = 1, i.e. Hw,θ is ε2-regular. Suppose x1, . . . , xn are independent Bernoulli, and
y1, . . . , yn are k-wise independent Bernoulli for k ≥ C/ε2 for a sufficiently large even constant C.
Let x = (x1, . . . , xn) and y = (y1, . . . , yn). Then |Pr[x ∈ Hw,θ]−Pr[y ∈ Hw,θ]| = O(ε).

Proof. Let X = 〈w, x〉 , Y = 〈w, y〉. It is equivalent to show |E[I[θ,∞)(X)]−E[I[θ,∞)(Y )]| = O(ε).
We show the following chain of inequalities for c = 1/ε:

E[I[θ,∞)(X)] ≈ε E[Ĩc[θ,∞)(X)] ≈ε E[Ĩc[θ,∞)(Y )] ≈ε E[Iθ,∞)(Y )]

Here Ĩc[θ,∞) is as in Theorem 4.2, where R = [θ,∞) and d = 1. Note then d2(z, ∂R) is just |z − θ|.
(A) E[I[θ,∞)(X)] ≈ε E[̃Ic[θ,∞)(X)] : We have

|E[I[θ,∞)(X)]−E[Ĩc[θ,∞)(X)]| ≤ E[|I[θ,∞)(X)− Ĩc[θ,∞)(X)|]

≤ Pr[|X − θ| < ε] +
∞∑
s=0

Pr[2sε ≤ |X − θ| < 2s+1ε] ·O(c−22−2sε−2)

≤ O(ε) +O(c−2ε−2) ·
∞∑
s=0

2−2s ·Pr[|X − θ| < 2s+1ε]

= O(ε) +O(c−2ε−2) ·O(ε)

since Pr[|X − θ| ≤ t] = O(t + ε) for any t > 0, by ε2-regularity and the Berry-Esséen Theorem.
The above is O(ε) by choice of c.

(B) E[̃Ic[θ,∞)(X)] ≈ε E[̃Ic[θ,∞)(Y)] : By Taylor’s theorem, Ĩc[θ,∞)(z) = Pk−1(z)±‖(Ĩc[θ,∞))
(k)‖∞·|z|k/k!

for z ∈ R and f (k) being the kth derivative of f , where Pk−1 is a degree-(k − 1) polynomial. By
k-wise independence, E[Pk−1(X)] = E[Pk−1(Y )] and E[Xk] = E[Y k]. For k even, |z|k = zk. Hence,

|E[Ĩc[θ,∞)(X)]−E[Ĩc[θ,∞)(Y )]| ≤ 2 ·
‖(Ĩc[θ,∞))

(k)‖∞ ·E[Xk]

k!
≤ 2O(k) · c

k · kk/2

kk
,

which is O(ε) since k = Ω(c2). The last inequality used Theorem 4.2 to bound ‖(Ĩc[θ,∞))
(k)‖∞, and

Khintchine’s inequality to bound E[Xk] (also, a simple proof bounding E[Xk] is in Lemma B.1).
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(C) E[I[θ,∞)(Y)] ≈ε E[̃Ic[θ,∞)(Y)] : This is argued identically as in the first inequality, but we now

must show that even under Ω(1/ε2)-wise independence we still have Pr[|Y − θ| ≤ ε] = O(ε).
Suppose we had a function f : R → R such that (1) f ≥ I[θ−ε,θ+ε] on R (implying for example

E[f(Y )] ≥ E[I[θ−ε,θ+ε](Y )]), (2) E[f(X)] = O(ε), and (3) ‖f (`)‖∞ ≤ O(1/ε)` for all ` ≥ 0. Given
(2) and (3), we can apply Taylor’s theorem just as above to show |E[f(X)]−E[f(Y )]| = O(ε), i.e.
E[f(Y )] = O(ε). Using (1) then gives our desired upper bound on E[I[θ−ε,θ+ε](Y )] = Pr[|Y −θ| ≤ ε].

It simply remains to exhibit such a function f : we take f = 2 · Ĩc′[θ−2ε,θ+2ε] for c′ a sufficiently

large constant times 1/ε. To show (1), for x /∈ [θ − ε, θ + ε] we have I[θ−ε,θ+ε] = 0, whereas f is
nonnegative. For x ∈ [θ− ε, θ+ ε], we have min{x− (θ− 2ε), x− (θ+ 2ε)} ≥ ε, implying f(x) ≥ 1
by Theorem 4.2 and choice of c′, and the fact that I[θ−2ε,θ+2ε](x) = 1 for such x. Item (2) follows
by applying step (A) above. Item (3) follows from (i) of Theorem 4.1 and Taylor’s theorem (as in
(B) above). �

The proof structure we gave above is similar to that in [30]. In particular, both use the same
chain of three inequalities. However, due to differences in the FT-mollification guarantees of [30],
the proof there gave a worse bound on k by a polylog(1/ε) factor. Furthermore, the proof we give
here of (C) is arguably more intuitive than that in [30], which relied on some complex analysis.
One consequence of Theorem 5.1 is that the Berry-Esséen theorem is derandomized by Ω(1/ε2)-
independence, which is optimal given an example in [16]. Specifically, Theorem 5.1 implies, af-
ter also carrying out the same argument under the Gaussian instead of Bernoulli measure, that
supt∈R |Pr[〈w, x〉 ≤ t]−Pr[〈w, g〉 ≤ t]| ≤ ε as long as the xi and gi are each Ω(1/ε2)-wise indepen-
dent and ‖w‖∞ ≤ ε, where the xi are Bernoulli and the gi are Gaussian. The original Berry-Esséen
theorem required independent xi and gi, and [16, 30] required polylog(1/ε)/ε2-wise independence.

The theorem we proved above is a worthwhile warmup for the following reason: all our FT-
mollification proofs that bounded independence fools various functions follow the same generic
template as above. Specifically, when showing bounded independence fools some f : Rn → {0, 1},
our proofs always begin by identifying a low-dimensional region R ⊂ Rd, and a map F : Rn →
Rd, such that f(x) = IR(F (x)). Then, fooling E[f(x)] and E[IR(F (x))] are equivalent. In the
proof above, d = 1, R = [θ,∞), F (x) = 〈w, x〉. Our proofs then always proceed via the chain
E[IR(F (x))] ≈ε E[ĨcR(F (x))] ≈ε E[ĨcR(F (y))] ≈ε E[IR(F (y))]. The first requires anticoncentration
near the boundary of R. The second uses the multivariate Taylor’s theorem, employing moment
bounds on the F (x)i. The third requires showing anticoncentration around the boundary of R even
under bounded independence; similarly as to above, to show anticoncentration in some set S under
bounded independence, we argue through the function Ĩc{x:d2(x,S)≤ε} for some sufficiently large c.

6 Other connections and implications of our techniques

To illustrate the generality of our methods, we now give a list of applications and connections to
several problems.

6.1 A multidimensional Jackson’s theorem In 1963, Newman and Shapiro gave the following
multidimensional Jackson’s theorem for the unit L2-ball:

Theorem 6.1 (Newman and Shapiro [39]). For F : Rm → R define

ω(F, δ) = sup
‖x‖2,‖y‖2≤1
‖x−y‖2≤δ

|F (x)− F (y)|.
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For any k ≥ 1 there exists a polynomial pk of degree k with sup‖x‖2≤1 |F (x)−pk(x)| = O(ω(F,m/k)).

In Section J we show how Theorem 6.1 can be recovered by FT-mollification followed by Taylor
expansion to degree k.

6.2 Fooling intersections of halfspaces Our approach also implies that the intersection of
halfspaces (or even degree-2 threshold functions) is fooled by bounded independence. While our
main theorem implies that poly(1/ε)-wise independence fools GW rounding, we can obtain much
better polynomial dependence by noting that to fool GW rounding it suffices to fool the intersection
of two halfspaces under the Gaussian measure.

This is because in the GW rounding scheme for MaxCut, each vertex u is first mapped to
a vector xu of unit norm, and the side of a bipartition u is placed in is decided by sgn(〈xu, r〉)
for a random Gaussian vector r. For a vertex u, let H+

u be the halfspace 〈xu, r〉 > 0, and let
H−u be the halfspace 〈−xu, r〉 > 0. Then note that the edge (u, v) is cut if and only if r ∈
(H+

u ∩ H−v ) ∪ (H−u ∩ H+
v ), i.e. I(H+

u ∩H−v )∪(H−u ∩H+
v )(r) = 1. Since H+

u ∩ H−v and H−u ∩ H+
v are

disjoint, we have I(H+
u ∩H−v )∪(H−u ∩H+

v )(r) = IH+
u ∩H−v (r) + IH−u ∩H+

v
(r). Since the sum of expectations

of this quantity over all edges (u, v) gives us the expected number of edges that are cut, the
following theorem implies that to achieve a maximum cut within a factor .878... − ε of optimal
in expectation, it suffices that the entries of the random normal vector r have entries that are
Ω(1/ε2)-wise independent. The proof of the theorem is in Section H.

Theorem 6.2. Let Hi = {x : 〈ai, x〉 > θi} for i ∈ [m] be m halfspaces, with ‖ai‖2 = 1 for all i.
Let X be a vector of n i.i.d. Gaussians, and Y be a vector of k-wise independent Gaussians. Then
for k ≥ poly(m)/ε2, |Pr[X ∈ ∩mi=1Hi]−Pr[Y ∈ ∩mi=1Hi]| < ε.

The proof is essentially the same as in Section 5 and can be summarized succinctly: FT-mollify
the indicator function of R = {z : ∀i ∈ [m] zi ≥ θi} ⊂ Rm, then consider the FT-mollification of
IR evaluated at (〈a1, X〉 , . . . , 〈am, X〉). We also in Section H discuss how our proof of Theorem 6.2
generalizes to handle intersections of degree-2 PTF’s, as well as generalizations to case that X,Y
are Bernoulli vectors as opposed to Gaussian. Our dependence on m in all cases is polynomial.

We note that recent and independent work in [23] also shows that bounded independence
fools intersections of halfspaces. They consider more distributions and also have a slightly lower
polynomial dependence on m, though their proof is considerably more involved and also gives
dependence on ε which is worse by poly-logarithmic factors.

6.3 Agnostic Learning Let C be a concept class (a set of functions f : X → Y ). For a
distribution D over pairs (x, y) ∈ X × Y define err(f) = PrD[f(x) 6= y] and opt = minf∈C err(f).
In agnostic learning, given an ε > 0 and independent samples from D, the task is to efficiently
compute a hypothesis h satisfying err(h) ≤ opt+ ε. The following theorem of Kalai et al translates
low-degree polynomial approximators in L1 to efficient agnostic learning algorithms (where the
range Y is assumed to be {±1}).4

Theorem 6.3 ([29, Theorem 5]). Suppose mindeg(p)≤d EDX [|p(x) − c(x)|] ≤ ε for some degree
d = d(ε), some distribution D over X × {−1, 1} with marginal DX , and any c ∈ C. Then there is
an algorithm using m = poly(nd/ε) examples Z = {(xi, yi)}mi=1 from D which runs in time poly(m)
and outputs an h ∈ C satisfying EZ [err(h)] ≤ opt + ε.

4The statement of the theorem is slightly different in [29]; they require an upper bound of ε2 on the L2
2 error of

p(x) − c(x) instead of ε on the L1 error, but this is only used in their proof to obtain a bound on the L1 error.
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Fix C to be the class of halfspaces, X = R and DX being the standard normal distribution. Note
that by symmetry the n-dimensional problem can be reduced to an L1 polynomial approximation
of the sign function under the Gaussian distribution (on the real line). [29] further reduce this
problem to the corresponding L2 approximation problem (which they analyze using the Hermite
polynomials) and thus get d(ε) = O(1/ε4). This bound can be further improved by directly
constructing L1 approximators. The current work improves the bound to O(1/ε2) (which is optimal
up to constant factors [20]). This is achieved by FT-mollifying and Taylor-expanding to degree
O(1/ε2), as done in Section 5. Our proof does not require specific properties of the distribution DX
beyond moment bounds (to bound the error from Taylor’s theorem), and anticoncentration bounds
(to bound Prx∼DX [|x − θ| ≤ ε] for θ ∈ R). Thus, in addition to improving the degree bound, our
proof also generalizes readily to other distributions.

6.4 Streaming algorithms The introduction of the FT-mollification technique in [30] was made
to obtain an optimal algorithm for moment estimation in data streams, a problem first stud-
ied by Alon, Matias, and Szegedy [2]. In this problem, a vector x ∈ Rn receives m updates
(i1, v1), . . . , (im, vm), with update (i, v) causing the change xi ← xi + v. At the end of the stream,
we must output a (1± ε) approximation to the value Fp =

∑
i |xi|p with 2/3 probability. One goal

is to use as little space as possible to process the stream. The work of [30] showed that Indyk’s
algorithm [27] is fooled by bounded independence, using FT-mollification, yielding a space-optimal
algorithm for Fp-estimation for all real 0 < p < 2. Specifically, [30] showed polylog(1/ε)/εp-wise
independence suffices. Plugging our new FT-mollification theorem into the argument of [30] shows
that in fact Ω(1/εp)-wise independence suffices (the polylog(1/ε) factors are removed).

7 Proof of Theorem 1.1

We now give our proof of Theorem 1.1. In Section 7.1 we state a central moment bound we use for
quadratic forms with small eigenvalues. Section 7.2 analyzes the regular case of our main theorem,
and Section 7.3 reduces the general case to the regular case.

7.1 A spectral moment bound for quadratic forms For a quadratic form p(x) =
∑

i≤j ai,jxixj ,
we can associate a real symmetric matrixAp which has the ai,i on the diagonals and amin{i,j},max{i,j}/2

on the offdiagonals, so that p(x) = xTApx. Our proof of Theorem 1.1 makes use of a moment bound
for quadratic forms which takes into account the maximum eigenvalue of Ap. We give a proof of
this moment bound which builds upon ideas of Whittle [50], who showed the hypercontractive
inequality for degree-2 polynomials when comparing q-norms to 2-norms (see Theorem D.1). We
learned recently that another proof of this moment bound can be derived from a tail inequality for
quadratic forms given in [25]. We provide our own proof to be self-contained.

Recall the Frobenius norm of A ∈ Rn×n is ‖A‖2 =
√∑n,n

i,j=1A
2
i,j =

√∑
i λ

2
i =

√
tr(A2), where

tr denotes trace and A has eigenvalues λ1, . . . , λn. Define ‖A‖∞ to be the largest magnitude of an
eigenvalue of A. We can now state the main theorem of this section, which plays a crucial role in
our analysis of the regular case of Theorem 1.1. Our proof can be found in Section B.

Theorem 7.1. Let A ∈ Rn×n be symmetric and x ∈ {−1, 1}n be random. Then for all k ≥ 2,
E[|(xTAx)− tr(A)|k] ≤ Ck ·max{

√
k‖A‖2, k‖A‖∞}k, where C is an absolute constant.

Note if
∑

i≤j a
2
i,j ≤ 1 then ‖Ap‖∞ ≤ 1, in which case Theorem 7.1 recovers a similar moment

bound as the one obtained via hypercontractivity. Thus, in the special case of bounding kth
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moments of degree-2 polynomials against their 2nd moment, Theorem 7.1 can be viewed as a
generalization of the hypercontractive inequality (and of Whittle’s inequality).

7.2 Fooling regular degree-2 threshold functions In this section we show the following.

Theorem 7.2. Let 0 < ε < 1 be given. Let X1, . . . , Xn be independent Bernoulli and Y1, . . . , Yn
be 2k-wise independent Bernoulli for k a sufficiently large multiple of 1/ε8. If p is multilinear and
of degree 2 with

∑
|S|>0 p̂

2
S = 1, and Infi(p) ≤ τ for all i, then

E[sgn(p(X))]−E[sgn(p(Y ))] = O(ε+ τ1/9).

Throughout this section, p always refers to the polynomial of Theorem 7.2, and τ refers to the
maximum influence of any variable in p. Observe p (over the hypercube) can be written as q+p4+C,
where q is a multilinear quadratic form, p4 is a linear form, and C is a constant. Furthermore,
‖Aq‖2 ≤ 1/2 and

∑
S p̂4

2
S ≤ 1. Using the spectral theorem for real symmetric matrices, we write

p = p1 − p2 + p3 + p4 + C where p1, p2, p3 are quadratic forms satisfying λmin(Ap1), λmin(Ap2) ≥ δ,
‖Ap3‖∞ < δ, and ‖Api‖2 ≤ 1/2 for 1 ≤ i ≤ 3, and also with p1, p2 positive semidefinite (see
Lemma D.7 for details on how this is accomplished). Here λmin(A) denotes the smallest magnitude
of a non-zero eigenvalue of A. Throughout this section we let p1, . . . , p4, C, δ be as discussed here.
We use Υ to denote tr(Ap3). The value δ will be set later in the proof of Theorem 7.2.

It will be convenient to define the map Mp : Rn → R4 for Mp(x) = (
√
p1(x),

√
p2(x), p3(x) −

Υ, p4(x)). Note the the first two coordinates of Mp(x) are indeed real since p1, p2 are posi-
tive semidefinite. To show Theorem 7.2, we follow the template of Section 5, by showing that
E[IR(Mp(X))] is determined by k-wise independence for R = {z : z2

1−z2
2 +z3+z4+C+Υ ≥ 0} ⊂ R4

(note IR(Mp(x)) iff p(x) ≥ 1).
Before giving the proof of Theorem 7.2, we first state Lemma 7.3, which states that for F : R4 →

R, F (Mp(x)) is fooled by bounded independence as long as F is even in x1, x2 and certain technical
conditions are satisfied. The proof of Lemma 7.3 essentially follows from Taylor’s theorem, using
moment bounds on linear and quadratic forms to bound the error term. We provide a proof sketch
here, and the full proof can be found in Section F.

Lemma 7.3. Let ε > 0 be arbitrary. Let F : R4 → R be even in each of its first two arguments
such that ‖∂βF̃ c‖∞ = O(α|β|) for all multi-indices β ∈ N4 and some α > 1. Suppose 1/δ ≥ Bα
for a sufficiently large constant B. Let X1, . . . , Xn be independent Bernoulli, and Y1, . . . , Yn be
k′-independent Bernoulli for k′ = 2k with k ≥ max{log(1/ε), Bα/

√
δ,Bα2} an even integer. Write

X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn). Then |E[F (Mp(X))]−E[F (Mp(Y ))]| < ε.

Proof (Sketch). Taylor-expand F to obtain a polynomial Pk−1 containing all monomials up to
degree k−1. Since F (x) is even in x1, x2, we can assume Pk−1 is a polynomial in x2

1, x
2
2, x3, x4. Let

x ∈ R4 be arbitrary. Via Taylor’s theorem one can show |E[F (Mp(X))]−E[F (Mp(Y ))]| ≤ αk2O(k) ·
(E[(p1(X))k/2] + E[(p2(X))k/2] + E[(p3(X) − Υ)k] + E[(p4(X))k])/kk, since E[Pk−1(Mp(X))] =
E[Pk−1(Mp(Y ))] via sufficient independence. The lemma follows by applying standard moment
bounds to p1, p2, p4, and the bound of Theorem 7.1 to p3 −Υ. �

In proving Theorem 7.2, we will need a lemma which states that p is anticoncentrated even when
evaluated on Bernoulli random variables which are k-wise independent. We state the necessary
lemma and provide a proof sketch here; the full proof is in Section F.

Lemma 7.4. For ε′ > 0, let k ≥ D/(ε′)4 for a universal constant D > 0. Let Y1, . . . , Yn be k-wise
independent Bernoulli, and let t ∈ R be arbitrary. Then Pr[|p(Y )− t| < ε′] ≤ O(

√
ε′ + τ1/9).
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Proof (Sketch). The proof in spirit works similarly to the proof in Section 5 of anticoncentration
under bounded independence of linear forms (specifically, step (C) in the proof of Theorem 5.1). We
define the region Tt,ε′ = {z : |z2

1−z2
2 +z3 +z4 +C+Υ− t| < ε′} ⊂ R4 and note Pr[|p(Y )− t| < ε′] =

E[ITt,ε′ (Mp(Y ))]. Then, just as when proving (C) of Theorem 5.1, we would like a smooth function
f which upper bounds ITt,ε′ and has small expectation under full independence, so that we may
apply Taylor’s theorem (specifically, Lemma 7.3) to show that its expectation is also small under
bounded independence. To accomplish this, we define the region Sρ,t,ε′ = {z : d2(z, Tt,ε′) ≤ ρ} then
take f to be 2 · ĨcSρ,t,ε′ for appropriately selected ρ, c > 0. �

The following lemma follows from the Invariance Principle, the hypercontractive inequality, and
Lemma 7.4. The proof is in Section F.

Lemma 7.5. Let η, η′ ≥ 0 be given, and let Y1, . . . , Yn be k-independent Bernoulli for k as in
Lemma 7.4 with ε′ = min{η/

√
δ, η′}. Also assume k ≥ d2/δe. Then

Pr[|p(X)− t| ≤ η · (
√
p1(X) +

√
p2(X) + 1) + η′] = O(

√
η′ + (η2/δ)1/4 + τ1/9 + exp(−Ω(1/δ))).

We are now ready to prove the main theorem of this section.

Proof (of Theorem 7.2). Consider the region R ⊂ R4 defined by R = {z : z2
1−z2

2 +z3+z4+C+Υ ≥
0}. Then note that I[0,∞)(p(x)) = 1 if and only if IR(Mp(x)) = 1. It thus suffices to show that IR
is fooled in expectation by bounded independence.

We set ρ = ε4, c = 1/ρ, and 1/δ = 2Bc for B the constant in the statement of Lemma 7.3. We
now show a chain of inequalities to give our theorem:

E[IR(Mp(X))] ≈ε+τ1/9 E[ĨcR(Mp(X))] ≈ε E[ĨcR(Mp(Y ))] ≈ε+τ1/9 E[IR(Mp(Y ))]

E[IR(Mp(X))] ≈ε+τ1/9 E[̃IcR(Mp(X))] : First, note

d2(z, ∂R) ≥ 1

2
·min

{
|z2

1 − z2
2 + z3 + z4 + C + Υ|

2(|z1|+ |z2|+ 1)
,
√
|z2

1 − z2
2 + z3 + z4 + C + Υ|

}
.

This is because by adding a vector v to z, we can change each individual coordinate of z by at
most ‖v‖2, and can thus change the value of |z2

1 − z2
2 + z3 + z4 + C + Υ − t| − ε′ by at most

2‖v‖2 · (|z1|+ |z2|+ 1) + ‖v‖22. Applying Lemma 7.5,

Pr[d2(Mp(X), ∂R) ≤ w] ≤ Pr[|p(X)| ≤ 4w · (
√
p1(X) +

√
p2(X) + 1)] + Pr[|p(X)| ≤ 4w2]

= O(w +
√
w + (w2/δ)1/4 + τ1/9 + exp(−Ω(1/δ)))

Now, noting |E[IR(Mp(X))]−E[ĨcR(Mp(X))]| ≤ E[|IR(Mp(X))]− ĨcR(Mp(X))|],

|E[IR(Mp(X))]−E[ĨcR(Mp(X))]|

≤ Pr[d2(Mp(X), ∂R) ≤ 2ρ] +O

( ∞∑
s=1

2−2s ·Pr[2sρ < d2(Mp(X), ∂R) ≤ 2s+1ρ]

)
≤ O(

√
ρ+ (ρ2/δ)1/4 + τ1/9 + exp(−Ω(1/δ))

+O

( ∞∑
s=1

2−2s · (
√

2s+1ρ+ (22s+2ρ2/δ)1/4 + τ1/9 + exp(−Ω(1/δ)))

)
= O(ε+ τ1/9)
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by choice of ρ, δ and applications of Theorem 4.2 and Lemma 7.5.

E[̃IcR(Mp(X))] ≈ε E[̃IcR(Mp(Y))] : As in Eq. (F.5), we can assume ĨcR is even in x1, x2. We apply
Lemma 7.3 with α = 2c, noting that 1/δ = Bα and that our setting of k is sufficiently large.

E[̃IcR(Mp(Y))] ≈ε+τ1/9 E[IR(Mp(Y))] : The argument is identical as with the first inequality. We
remark that we do have sufficient independence to apply Lemma 7.5 since, mimicking our analysis
of the first inequality, we have

Pr[|p(Y )| ≤ 4ρ · (
√
p1(Y ) +

√
p2(Y ) + 1)] + Pr[|p(Y )| ≤ 4ρ2]

≤ Pr[|p(Y )| ≤ 4ρ · (
√
p1(Y ) +

√
p2(Y ) + 1)] + Pr[|p(Y )| ≤ ε2] (7.1)

since ρ2 = o(ε2) (we only changed the second summand). To apply Lemma 7.5 to Eq. (7.1), we
need k ≥ d2/δe, which is true, and k = Ω(1/(ε′′)4), for ε′′ = min{ρ/

√
δ, ε2} = ε2, which is also

true. Lemma 7.5 then tells us Eq. (7.1) is O(ε+ τ1/9).
�

Our main theorem of this Section (Theorem 7.2) also holds under the case that the Xi, Yi are
standard normal, and without any error term depending on τ . We give a proof in Section F.2, by
reducing back to the Bernoulli case.

7.3 Reduction to the regular case In this section, we complete the proof of Theorem 1.1. We
accomplish this by providing a reduction from the general case to the regular case. In fact, such a
reduction can be shown to hold for any degree d ≥ 1 and establishes the following:

Theorem 7.6. Suppose Kd-wise independence ε-fools the class of τ -regular degree-d PTF’s, for
some parameter 0 < τ ≤ ε. Then (Kd + Ld)-wise independence ε-fools all degree-d PTFs, where

Ld = (1/τ) ·
(
d log(1/τ)

)O(d)
.

Noting that τ -regularity implies that the maximum influence of any particular variable is at
most d · τ , Theorem 7.2 implies that degree-2 PTF’s that are τ -regular, for τ = O(ε9), are ε-fooled
by K2-wise independence for K2 = O(ε−8) = poly(1/ε). By plugging in τ = O(ε9) in the above
theorem we obtain Theorem 1.1. The proof of Theorem 7.6 is obtained by a simple adaptation of
the regularity lemma in [17]5. Here we give a sketch, with details in Section G.
Proof (Sketch). (of Theorem 7.6). Any boolean function f on {−1, 1}n can be expressed as
a binary decision tree where each internal node is labeled by a variable, every root-to-leaf path
corresponds to a restriction ρ that fixes the variables as they are set on the path, and every leaf is
labeled with the restricted subfunction fρ. The main claim is that, if f is a degree-d PTF, then it has
such a decision-tree representation with certain strong properties. In particular, given an arbitrary

degree-d PTF f = sgn(p), by [17] there exists a decision tree T of depth (1/τ) ·
(
d log(1/τ)

)O(d)
,

so that with probability 1 − τ over the choice of a random root-to-leaf path6 ρ, the restricted
subfunction (leaf) fρ = sgn(pρ) is either a τ -regular degree-d PTF or τ -close to a constant function.

Our proof of Theorem 7.6 is based on the above structural lemma. Under the uniform distri-
bution, there is some particular distribution on the leaves (the tree is not of uniform height); then
conditioned on the restricted variables the variables still undetermined at the leaf are still uniform.

5We note that [36] prove a very similar regularity lemma to obtain their PRGs for degree-d PTF’s. One could

alternatively use this instead of [17]. For d = 2 this would give a worse bound of Ω̃(ε−18).
6A “random root-to-leaf path” corresponds to the standard uniform random walk on the tree.
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With (Kd+Ld)-wise independence, a random walk down the tree arrives at each leaf with the same
probability as in the uniform case (since the depth of the tree is at most Ld). Hence, the probability
mass of the “bad” leaves is at most τ ≤ ε even under bounded independence. Furthermore, the
induced distribution on each leaf (over the unrestricted variables) is Kd-wise independent. Consider
a good leaf. Either the leaf is τ -regular, in which case we can apply Theorem 7.2, or it is τ -close
to a constant function. At this point though we arrive at a technical issue. The statement and
proof in [17] concerning “close-to-constant” leaves holds only under the uniform distribution. For
our result, we need a stronger statement that holds under any distribution (on the variables that
do not appear in the path) that has sufficiently large independence. By simple modifications of the
proof in [17], we show that the statement holds even under O(d · log(1/τ))-wise independence. �
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Appendix

A FT-mollification proofs

In the proof sketch of Theorem 4.1 in Section 4, we required the existence of a probability density
B on Rd satisfying Ex∼B[‖x‖22] = O(d2), and ‖∂βB‖1 ≤ 2|β| for all β ∈ Nd. In this section, we show
that such a B exists.

Definition A.1. In hyperspherical coordinates in Rd, we represent a point x = (x1, . . . , xd) by
xi = r cos(φi)

∏i−1
j=1 sin(φj) for i < d, and xd = r

∏d−1
j=1 sin(φj). Here r = ‖x‖2 and the φi satisfy

0 ≤ φi ≤ π for i < d− 1, and 0 ≤ φd−1 < 2π.

Fact A.2. Let J be the Jacobian matrix corresponding to the change of variables from Cartesian
to hyperspherical coordinates. Then

det(J) = rd−1
d−2∏
i=1

sind−1−i(φi).

We define the function b : Rd → R by

b(x) =
√
Cd ·

{
1− ‖x‖22 for ‖x‖2 < 1

0 otherwise
.

The value Cd is chosen so that ‖b‖2 = 1. Note b is not smooth (its mixed partials do not exist on
the unit sphere), but we will only ever need that ∂

∂xi
b is square-integrable for all i ∈ [d].

Henceforth, we make the setting

Ad = Cd ·
∫ 2π

0

∫
[0,π]d−2

(
d−2∏
i=1

sind−1−i(φi)

)
dφ1dφ2 · · · dφd−1.

We let b̂ : Rd → R denote the Fourier transform of b, i.e.

b̂(t) =
1

(
√

2π)d

∫
Rd
b(x)e−i〈x,t〉dx.

We note b̂ does in fact take real values, since (̂b∗)(t) = (b̂)∗(−t) and b̂ is symmetric about the origin
(here b∗ denotes complex conjugation of b). Finally, we define B = b̂2.

Lemma A.3. B is a probability density on Rd.
Proof. B is nonnegative since it is the square of a real function. Also,

∫
Rd B(x)dx = ‖b̂‖22, which

equals ‖b‖22 = 1 by Plancherel’s theorem. �

We now bound the L1 norm of mixed partials of B.

Lemma A.4. For any β ∈ Nd, ‖∂βB‖1 ≤ 2|β|.

Proof. We have

∂βB =
∑
α≤β

(
β

α

)(
∂αb̂
)
·
(
∂β−αb̂

)
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Thus,

∥∥∥∂βB∥∥∥
1

=

∥∥∥∥∥∥
∑
α≤β

(
β

α

)(
∂αb̂
)
·
(
∂β−αb̂

)∥∥∥∥∥∥
1

≤
∑
α≤β

(
β

α

)∥∥∥∂αb̂∥∥∥
2
·
∥∥∥∂β−αb̂∥∥∥

2
(A.1)

=
∑
α≤β

(
β

α

)
‖xα · b‖2 ·

∥∥∥xβ−α · b∥∥∥
2

(A.2)

≤
∑
α≤β

(
β

α

)
(A.3)

= 2|β| (A.4)

Eq. (A.1) follows by Cauchy-Schwarz. Eq. (A.2) follows from Plancherel’s theorem, since the Fourier
transform of ∂αb̂ is xα · b, up to factors of i. Eq. (A.3) follows since ‖xα · b‖2 ≤ ‖b‖2 = 1. Eq. (A.4)
is seen combinatorially. Suppose we have 2d buckets Aji for (i, j) ∈ [d]× [2]. We also have |β| balls,
with each having one of d types with βi balls of type i. Then the number of ways to place balls into
buckets such that balls of type i only go into some Aji is 2|β| (each ball has 2 choices). However, it

is also
∑

α≤β
(
β
α

)
, since for every placement of balls we must place some number αi balls of type i

in A1
i and βi − αi balls in A2

i . �

Finally, we show the desired variance bound.

Lemma A.5. Ex∼B[‖x‖22] = d(d+ 4)/2.

Proof. Write

S = Ex∼B[‖x‖22] =

∫
Rd
‖x‖22 ·B(x)dx =

d∑
i=1

(∫
Rd
x2
i ·B(x)dx

)
.

Recalling that B = b̂2, the Fourier transform of B is (2π)−d/2(b ∗ b). The above integral is (2π)d/2

times the Fourier transform of x2
i ·B, evaluated at 0. Since multiplying a function by i·xj corresponds

to partial differentiation by xj in the Fourier domain,

S =

d∑
i=1

(
∂2

∂x2
i

(b ∗ b)
)

(0) =
d∑
i=1

((
∂

∂xi
b

)
∗
(
∂

∂xi
b

))
(0) =

d∑
i=1

∥∥∥∥ ∂

∂xi
b

∥∥∥∥2

2

with the last equality using that ∂
∂xi
b is odd.

We have, for x in the unit ball, (
∂

∂xi
b

)
(x) = −2xi

so that, after switching to hyperspherical coordinates,

d∑
i=1

∥∥∥∥ ∂

∂xi
b

∥∥∥∥2

2

= Ad ·
∫ 1

0
4rd+1dr. (A.5)
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Now, by definition of b,

‖b‖22 = Ad ·
∫ 1

0
rd−1 + rd+3 − 2rd+1dr

= Ad ·
8

d(d+ 2)(d+ 4)

We also have by Eq. (A.5) that
d∑
i=1

∥∥∥∥ ∂

∂xi
b

∥∥∥∥2

2

= Ad ·
4

d+ 2
.

The claim follows since ‖b‖22 = 1. �

We now give a full proof of Theorem 4.1.
Theorem 4.1 (restatement). Let F : Rd → R be bounded and c > 0 be arbitrary. Then there
exists F̃ c : Rd → R satisfying

i. ‖∂βF̃ c‖∞ ≤ ‖F‖∞ · (2c)|β| for all β ∈ Nd.

ii. Fix some x ∈ Rd. Then if |F (x)− F (y)| ≤ ε whenever ‖x− y‖2 ≤ δ for some ε, δ ≥ 0, then
|F̃ c(x)− F (x)| ≤ ε+ ‖F‖∞ ·O(d2/(c2δ2)).

iii. F̃ c is nonnegative if F is nonnegative.

Proof. Item (iii) follows since for F nonnegative, F̃ c is the convolution of two nonnegative func-
tions.

For (i), ∣∣∣(∂βF̃ c) (x)
∣∣∣ =

∣∣∣(∂β(Bc ∗ F )
)

(x)
∣∣∣

=
∣∣∣((∂βBc) ∗ F) (x)

∣∣∣
=

∣∣∣∣∫
Rd

(
∂βBc

)
(y)F (x− y)dy

∣∣∣∣
≤ ‖F‖∞ ·

∥∥∥∂βBc∥∥∥
1

= ‖F‖∞ · c|β| ·
∥∥∥∂βB∥∥∥

1
(A.6)

≤ ‖F‖∞ · (2c)|β|

For (ii),

F̃ c(x) = (Bc ∗ F )(x)

=

∫
Rd
Bc(x− y)F (y)dy

= F (x) +

∫
Rd

(F (y)− F (x))Bc(x− y)dy (A.7)

= F (x) +

∫
‖x−y‖2<δ

(F (y)− F (x))Bc(x− y) +

∫
‖x−y‖2≥δ

(F (y)− F (x))Bc(x− y)
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where Eq. (A.7) uses that
∫
Rd Bc(x − y)dy =

∫
Rd B(y)dy = 1 (recall B is a probability density).

The first integral above is at most ε ·
∫
Rd Bc(x − y)dy = ε in magnitude. The second integral

is at most ‖F‖∞ ·
∫
‖u‖2≥δ Bc(u)du = ‖F‖∞ ·

∫
‖z‖2≥cδ B(z)dz in magnitude. Now to bound this

integral, we use Markov’s inequality, which gives Prv∼B[‖v‖2 ≥ t
√

E[‖v‖22]] ≤ 1/t2. Recalling that
Ev∼B[‖v‖22] = O(d2), we have

∫
‖v‖2≥tdB(v)dv = O(1/t2). Thus

∫
‖z‖2≥cδ B(z)dz = O(d2/(c2δ2)). �

We also prove the following lemma, which can be useful when FT-mollifying over high dimen-
sions.

Lemma A.6. Let c > 0 be given, and F : Rd → R be bounded. Let pk be the Taylor expansion
of F̃ c up to degree k about the origin. Then, for any x ∈ Rd,

|F̃ c(x)− pk(x)| ≤ ‖F‖∞ ·
(2c · ‖x‖2)k+1

(k + 1)!

Proof. By the univariate Taylor’s theorem, restricting F to the line passing through the origin
and x,

|F̃ c(x)− pk(x)| ≤ 1

(k + 1)!
· |(Dk+1

x F̃ c)(y)|

=
‖x‖k+1

2

(k + 1)!
· |(Dk+1

x/‖x‖2F̃
c)(y)|,

where Dx is the directional derivative in direction x, and y is some point on the line from the origin
to x. Set u = x/‖x‖2. Now, as in the proof of Theorem 4.1, we can obtain

|(Dk
uF̃

c)(y)| ≤ ‖F‖∞ ·
∥∥∥Dk

uBc

∥∥∥
1
.

Since B is spherically symmetric, Dk+1
u Bc = Dk

e1Bc, and thus
∥∥Dk+1

u Bc
∥∥

1
≤ (2c)k+1. �

A.1 Differences in FT-mollification constructions In this subsection we sketch the main
differences between the univariate FT-mollification construction in [30], and the FT-mollification
construction in this work. We note that [30] only considered FT-mollifying indicator functions of
intervals of the real line, and thus we compare the construction there with that of Theorem 4.2.

In [30], for [a, b] ⊂ R one takes a bump function b (i.e. a smooth function of compact support),
and defines Ĩc[a,b] = b̂c ∗ I[a,b] for b̂ the Fourier transform of b. For a particularly chosen b in

[30], the conclusion is that for c ≥ polylog(1/ε)/ε, one has that |Ĩc[a,b](x) − I[a,b](x)| ≤ ε as long

as x /∈ [a − ε, a + ε] ∪ [b − ε, b + ε]. For x inside these two intervals, we are only guaranteed
that |Ĩc[a,b](x)| = O(1). Further, we have ‖(Ĩc[a,b])

`‖∞ = O(c`). The “polylog(1/ε)” term in the
requirement for c arises as a consequence of the function b chosen. Specifically, the proof given in
[30] relied on fast decay of b̂; the polylog(1/ε) term above corresponds to b̂−1(ε). The choice of b
was then quite important, since the specifics of the decay rate of b̂ played into the conclusion of
the theorem. Proving good bounds on the decay rate of b̂ then required some tedious calculation,
and proving sharp bounds resorted to advanced methods such as saddle-point integration [28].

In the FT-mollification construction in this current work, when FT-mollifying I[a,b] we do not
give an “all-or-nothing” guarantee (i.e., that the FT-mollification is within ε for x far from {a, b},
with no guarantee when near {a, b}). Rather, the quality of the approximation of I[a,b] by its
FT-mollification continuously improves as x moves farther away from the boundary. Furthermore,
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in all our applications it is enough that the rate at which this quality of approximation improves
be quadratic. To accomplish this, we convolve not with b̂, but with b̂2, which is nonnegative.
Since b̂2 is nonnegative and has integral 1, we can view it as a probability density then resort to
probabilistic arguments to show that our convolution produces a good conclusion (specifically, we
use that b̂2 has bounded variance then apply the second moment method). Almost any “smooth
enough” b of compact supports yields a b̂2 with sufficiently small variance while maintaining good
bounds on ‖(b̂2)(`)‖1, and thus our choice of b is largely irrelevant. Furthermore, our proof of
bounded variance is far simpler and less calculation-intensive than the decay bounds needed in
[30]. Lastly, straightforward generalization of the approach in [30] to dimension d would result in
error bounds which blow up at least exponentially in d (which for example would yield bounds of
the form “exp(m) · poly(1/ε)-wise independence fools interesections of m halfspaces”), while our
current approach has only poly(d) blowup. As a bonus, bounds even in our univariate applications
improve by polylog(1/ε) factors when using the newer FT-mollification.

B Proof of Theorem 7.1

We first give two lemmas, the second of which is a discrete analog of one of Whittle’s lemmas.

Lemma B.1. For a ∈ Rn, x ∈ {−1, 1}n random, and k ≥ 2 an even integer, E[(aTx)k] ≤ ‖a‖k2 ·kk/2.
Proof. We may replace the coefficients of a by their absolute values. Note that when expanded
(aTx)k is a sum of monomials in the coefficients of x. Notice that if we replace x by a vector of
independent normal distributions, y, the expectation of each monomial is only made larger. Hence
E[(aTx)k] ≤ E[(aT y)k]. On the other hand aT y is distributed as a normal with standard deviation
‖a‖2 and hence E[(aT y)k] = ‖a‖k2k!/(2k · (k/2)!). �

Lemma B.2. If X,Y are independent with E[Y ] = 0 and if k ≥ 2, then E[|X|k] ≤ E[|X − Y |k].
Proof. Consider the function f(y) = |X−y|k. Since f (2), the second derivative of f , is nonnegative
on R, the claim follows by Taylor’s theorem since |X − Y |k ≥ |X|k − kY (sgn(X) ·X)k−1. �

We are now prepared to prove our Theorem 7.1.
Theorem 7.1 (restatement). Let A ∈ Rn×n be symmetric and x ∈ {−1, 1}n be random. Then
for all k ≥ 2, E[|(xTAx)−tr(A)|k] ≤ Ck ·max{

√
k‖A‖2, k‖A‖∞}k, where C is an absolute constant.

Proof (of Theorem 7.1). Without loss of generality we can assume tr(A) = 0. This is because if
one considers A′ = A− (tr(A)/n) · I, then xTAx− tr(A) = xTA′x, and we have ‖A′‖2 ≤ ‖A‖2 and
‖A′‖∞ ≤ 2‖A‖∞. We now start by proving our theorem for k a power of 2 by induction on k. For
k = 2, E[(xTAx)2] = 4

∑
i<j A

2
i,j and ‖A‖22 =

∑
iA

2
i,i + 2

∑
i<j A

2
i,j . Thus E[(xTAx)2] ≤ 2‖A‖22.

Next we assume the statement of our Theorem for k/2 and attempt to prove it for k.
We note that by Lemma B.2,

E[|xTAx|k] ≤ E[|xTAx− yTAy|k] = E[|(x+ y)TA(x− y)|k],

where y ∈ {−1, 1}n is random and independent of x. Notice that if we swap xi with yi then x+ y
remains constant as does |xj − yj | and that xi − yi is replaced by its negation. Consider averaging
over all such swaps. Let ξi = ((x+ y)TA)i and ηi = xi − yi. Let zi be 1 if we did not swap and −1
if we did. Then (x+ y)TA(x− y) =

∑
i ξiηizi. Averaging over all swaps,

Ez[|(x+ y)TA(x− y)|k] ≤

(∑
i

ξ2
i η

2
i

)k/2
· kk/2 ≤ 2kkk/2 ·

(∑
i

ξ2
i

)k/2
.
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The first inequality is by Lemma B.1, and the second uses that |ηi| ≤ 2. Note that∑
i

ξ2
i = ‖A(x+ y)‖22 ≤ 2‖Ax‖22 + 2‖Ay‖22,

and hence

E[|xTAx|k] ≤ 2k
√
k
k
E[(2‖Ax‖22 + 2‖Ay‖22)k/2] ≤ 4k

√
k
k
E[(‖Ax‖22)k/2],

with the final inequality using Minkowski’s inequality (namely that |E[|X+Y |p]|1/p ≤ |E[|X|p]|1/p+
|E[|Y |p]|1/p for any random variables X,Y and any 1 ≤ p <∞).

Next note ‖Ax‖22 = 〈Ax,Ax〉 = xTA2x. Let B = A2 − tr(A2)
n I. Then tr(B) = 0. Also,

‖B‖2 ≤ ‖A‖2‖A‖∞ and ‖B‖∞ ≤ ‖A‖2∞. The former holds since

‖B‖22 =

(∑
i

λ4
i

)
−

(∑
i

λ2
i

)2/
n ≤

∑
i

λ4
i ≤ ‖A‖22‖A‖2∞.

The latter holds since the eigenvalues of B are λ2
i − (

∑n
j=1 λ

2
j )/n for each i ∈ [n]. The largest

eigenvalue of B is thus at most that of A2, and since λ2
i ≥ 0, the smallest eigenvalue of B cannot

be smaller than −‖A‖2∞.
We then have

E[(‖Ax‖22)k/2] = E
[∣∣‖A‖22 + xTBx

∣∣k/2] ≤ 2k max{‖A‖k2,E[|xTBx|k/2]}.

Hence employing the inductive hypothesis on B we have that

E[|xTAx|k] ≤ 8k max{
√
k‖A‖2, Ck/2k3/4‖B‖2, Ck/2k

√
‖B‖∞}k

≤ 8kCk/2 max{
√
k‖A‖2, k3/4

√
‖A‖2‖A‖∞, k‖A‖∞}k

= 8kCk/2 max{
√
k‖A‖2, k‖A‖∞}k,

with the final equality holding since the middle term above is the geometric mean of the other two,
and thus is dominated by at least one of them. This proves our hypothesis as long as C ≥ 64.

To prove our statement for general k, set k′ = 2dlog2 ke. Then by the power mean inequality and
our results for k′ a power of 2, E[|xTAx|k] ≤ (E[|xTAx|k′ ])k/k′ ≤ 128k max{

√
k‖A‖2, k‖A‖∞}k. �

C Basic linear algebra facts

In this subsection we record some basic linear algebraic facts used in our proofs.
We start with two elementary facts.

Fact C.1. If A,P ∈ Rn×n with P invertible, then the eigenvalues of A and P−1AP are identical.

Fact C.2. For A ∈ Rn×n with eigenvalues λ1, . . . , λn, and for integer k > 0, tr(Ak) =
∑

i λ
k
i .

Note Fact C.1 and Fact C.2 imply the following.

Fact C.3. For a real matrix A ∈ Rn×n and invertible matrix P ∈ Rn×n,

‖P−1AP‖2 = ‖A‖2.

The following standard result will be useful:
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Theorem C.4 (Spectral Theorem [49, Section 6.4]). If A ∈ Rn×n is symmetric, there exists an
orthogonal Q ∈ Rn×n with Λ = QTAQ diagonal. In particular, all eigenvalues of A are real.

Definition C.5. For a real symmetric matrix A, we define λmin(A) to be the smallest magnitude
of a non-zero eigenvalue of A (in the case that all eigenvalues are 0, we set λmin(A) = 0). We define
‖A‖∞ to be the largest magnitude of an eigenvalue of A.

We now give a simple lemma that gives an upper bound on the magnitude of the trace of a
symmetric matrix with positive eigenvalues.

Lemma C.6. Let A ∈ Rn×n be symmetric with λmin(A) > 0. Then |tr(A)| ≤ ‖A‖22/λmin(A).

Proof. We have

|tr(A)| =

∣∣∣∣∣
n∑
i=1

λi

∣∣∣∣∣
≤ ‖A‖2

λmin(A)
·

√√√√ n∑
i=1

λ2
i

=
‖A‖22
λmin(A)

We note
∑n

i=1 λ
2
i = ‖A‖22, implying the final equality. Also, there are at most ‖A‖22/(λmin(A))2

non-zero λi. The sole inequality then follows by Cauchy-Schwarz. �

D Useful facts about polynomials

D.1 Facts about low-degree polynomials. We view {−1, 1}n as a probability space endowed
with the uniform probability measure. For a function f : {−1, 1}n → R and r ≥ 1, we let ‖f‖r
denote (Ex[|f(x)|r])1/r.

Our first fact is a consequence of the well-known hypercontractivity theorem.

Theorem D.1 (Hypercontractivity [6, 10]). If f is a degree-d polynomial and 1 ≤ r < q ≤ ∞,

‖f‖q ≤
√
q − 1

r − 1

d

‖f‖r.

Our second fact is an anticoncentration theorem for low-degree polynomials over independent
standard Gaussian random variables.

Theorem D.2 (Gaussian Anticoncentration [14]). For f a non-zero, n-variate, degree-d polyno-
mial,

Pr[|f(G1, . . . , Gn)− t| ≤ ε ·Var[f ]] = O(dε1/d)

for all ε ∈ (0, 1) and t ∈ R. Here G1, . . . , Gn ∼ N (0, 1) are independent. (Here, and henceforth,
N (µ, σ2) denotes the Gaussian distribution with mean µ and variance σ2.)

The following is a statement of the Invariance Principle of Mossell, O’Donnell, and Oleszkiewicz
[38], in the special case when the random variables Xi are Bernoulli.

Theorem D.3 (Invariance Principle [38]). Let X1, . . . , Xn be independent ±1 Bernoulli, and let
p be a degree-d multilinear polynomial with

∑
|S|>0 p̂

2
S = 1 and maxi Infi(p) ≤ τ . Then

sup
t
|Pr[p(X1, . . . , Xn) ≤ t]−Pr[p(G1, . . . , Gn) ≤ t]| = O(dτ1/(4d+1))
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where the Gi ∼ N (0, 1) are independent.

The following tail bound argument is standard (see for example [4]). We repeat the argument
here just to point out that only bounded independence is required.

Theorem D.4 (Tail bound). If f is a degree-d polynomial, t > 8d/2, and X is drawn at random
from a (dt2/d)-wise independent distribution over {−1, 1}n, then

Pr[|f(X)| ≥ t‖f‖2] = exp(−Ω(dt2/d)).

Proof. Suppose k > 2. By Theorem D.1,

E[|f(X)|k] ≤ kdk/2 · ‖f‖k2,

implying
Pr[|f(X)| ≥ t‖f‖2] ≤ (kd/2/t)k (D.1)

by Markov’s inequality. Set k = 2 ·
⌊
t2/d/4

⌋
and note k > 2 as long as t > 8d/2. Now the right hand

side of Eq. (D.1) is at most 2−dk/2, as desired. Finally, note independence was only used to bound
E[|f(X)|k], which for k even equals E[f(X)k] and is thus determined by dk-independence. �

D.2 Facts about quadratic forms. The following facts are concerned with quadratic forms,
i.e. polynomials p(x) =

∑
i≤j ai,jxixj . We often represent a quadratic form p by its associated

symmetric matrix Ap, where

(Ap)i,j =


ai,j/2, i < j

aj,i/2, i > j

ai,j , i = j

so that p(x) = xTApx.
The following is a bound on moments for quadratic forms.

Lemma D.5. Let f(x) be a degree-2 polynomial. Then, for X = (X1, . . . , Xn) a vector of
independent Bernoullis,

E[|f(X)|k] ≤ 2O(k)(‖Af‖2kk + |tr(Af )|k).

Proof. Over the hypercube we can write f = q + tr(Af ) where q is multilinear. Note ‖Aq‖2 ≤
‖Af‖2. Then by Theorem D.1,

E[|f(x)|k] = E[|q(x) + tr(Af )|k]

≤
k∑
i=0

(‖Af‖2 · i)i|tr(Af )|k−i

≤
k∑
i=0

(‖Af‖2 · k)i|tr(Af )|k−i

= 2O(k) max{‖Af‖2 · k, |tr(Af )|}k

�

The following corollary now follows from Theorem D.4 and Lemma C.6.
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Corollary D.6. Let f be a quadratic form with Af positive semidefinite, ‖Af‖2 ≤ 1, and
λmin(Af ) ≥ δ for some δ ∈ (0, 1]. Then, for x chosen at random from a d2/δe-independent family
over {−1, 1}n,

Pr[f(x) > 2/δ] = exp(−Ω(1/δ)).

Proof. Write f = g+C via Lemma C.6 with 0 ≤ C ≤ 1/δ and g multilinear, ‖Ag‖2 ≤ ‖Af‖2 ≤ 1.
Apply Theorem D.4 to g with t = 1/δ. �

The following lemma gives a decomposition of any multi-linear quadratic form as a sum of
quadratic forms with special properties for the associated matrices. It is used in the proof of
Theorem 7.2.

Lemma D.7. Let δ > 0 be given. Let f be a multilinear quadratic form. Then f can be written
as f1 − f2 + f3 for quadratic forms f1, f2, f3 where:

1. Af1 , Af2 are positive semidefinite with λmin(Af1), λmin(Af2) ≥ δ.

2. ‖Af3‖∞ < δ.

3. ‖Af1‖2, ‖Af2‖2, ‖Af3‖2 ≤ ‖Af‖2.

Proof. Since Af is real and symmetric, we can find an orthogonal matrix Q such that Λ = QTAfQ
is diagonal. Each diagonal entry of Λ is either at least δ, at most −δ, or in between. We create a
matrix P containing all entries of Λ which are at least δ, with the others zeroed out. We similarly
create N to have all entries at most −δ. We place the remaining entries in R. We then set
Af1 = QPQT , Af2 = QNQT , Af3 = QRQT . Note ‖Λ‖22 = ‖Af‖22 by Fact C.3, so since we remove
terms from Λ form each Afi , their Frobenius norms can only shrink. The eigenvalue bounds hold
by construction and Fact C.1. �

E Why the previous approaches failed

Here we attempt to provide an explanation as to why the approaches of [16] and [30] fail to fool
degree-2 PTFs. Furthermore, Ganzburg has shared with us a conjecture [19] that for any distribu-
tion with tail bound e−O(|x|), any polynomial which L1-approximates the sign function to within
ε with respect to that distribution must have degree 2Ω(1/ε2). Since the degree of sandwiching
polynomials with small L1-error characterizes the independence required to fool a boolean func-
tion, this conjecture would imply that any attempt to find a univariate polynomial qε such that
E[|qε(p(x)) − sgn(p(x))|] ≤ ε would require deg(qε) = 2Ω(1/ε2) if deg(p) = 2, given known (and
tight) tail bounds for degree-2 polynomials, i.e. it would be impossible to prove a poly(1/ε) bound
on the amount of independence required via a univariate approach.

E.1 Why the approximation theory approach failed The analysis in [16] crucially exploits
the strong concentration and anti-concentration properties of the gaussian distribution. (Recall that
in the linear regular case, the random variable 〈w, x〉 is approximately Gaussian.) Now consider a
regular degree-2 polynomial p and the corresponding PTF f = sgn(p). Since p is regular, it has still
has “good” concentration and anti-concentration properties – though quantitatively inferior than
those of the Gaussian. Hence, one would hope to argue as follows: use the univariate polynomial
P (constructed using approximation theory), allowing its degree to increase if necessary, and carry
out the analysis of the error as in the linear case.
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The reason this fails is because the (tight) concentration properties of p – as implied by hyper-
contractivity – are not sufficient for the analysis to bound the error of the approximation, even if
we let the degree of the polynomial P tend to infinity. (Paradoxically, the error coming from the
worst-case analysis becomes worse as the degree of P increases.)

Without going into further details, we mention that an additional problem for univariate ap-
proximations to work is this: the (tight) anti-concentration properties of p – obtained via the
Invariance Principle and the anti-concentration bounds of [14] – are quantitatively weaker than
what is required to bound the error, even in the region where P has small point-wise error (from
the sgn function).

E.2 Why the analysis for univariate FT-mollification failed We discuss why the argument
in [30] failed to generalize to higher degree. Recall that the argument was via the following chain
of inequalities:

E[I[0,∞)(p(X))] ≈ε E[Ĩc[0,∞)(p(X))] ≈ε E[Ĩc[0,∞)(p(Y ))] ≈ε E[I[0,∞)(p(Y ))] (E.1)

The step that fails for high-degree PTFs is the second inequality in Eq. (E.1), which was argued
by Taylor’s theorem. Our bounds on derivatives of Ĩc[0,∞), the FT-mollification of I[0,∞) for a

certain parameter c = c(ε) to make sure |I[0,∞) − Ĩc[0,∞)| < ε “almost everywhere”, are such that

||(Ĩc[0,∞))
(k)||∞ ≥ 1 for all k. Thus, we have that the error term from Taylor’s theorem is at least

E[(p(X))k]/k!. The problem comes from the numerator. Since we can assume the sum of squared
coefficients of p is 1 (note the sgn function is invariant to scaling of its argument), known (and
tight) moment bounds (via hypercontractivity) only give us an upper bound on E[(p(x))k] which
is larger than kdk/2, where degree(p) = d. Thus, the error from Taylor’s theorem does not decrease
to zero by increasing k for d ≥ 2, since we only are able to divide by k! ≤ kk (in fact, strangely,
increasing the amount of independence k worsens this bound).

F Proofs omitted from Section 7.2

F.1 Boolean setting.

Lemma F.1. For a quadratic form f and random x ∈ {−1, 1}n,

E[|f(x)|k] ≤ 2O(k) · (‖Af‖2kk + (‖Af‖22/λmin(Af ))k).

Proof. Combine Lemma C.6 and Lemma D.5. �

Lemma 7.3 (restatement). Let ε > 0 be arbitrary. Let F : R4 → R be even in each of its
first two arguments such that ‖∂βF̃ c‖∞ = O(α|β|) for all multi-indices β ∈ N4 and some α > 1.
Suppose 1/δ ≥ Bα for a sufficiently large constant B. Let X1, . . . , Xn be independent Bernoulli, and
Y1, . . . , Yn be k′-independent Bernoulli for k′ = 2k with k ≥ max{log(1/ε), Bα/

√
δ,Bα2} an even

integer. Write X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn). Then |E[F (Mp(X))]−E[F (Mp(Y ))]| < ε.
Proof. We Taylor-expand F to obtain a polynomial Pk−1 containing all monomials up to degree
k − 1. Since F (x) is even in x1, x2, we can assume Pk−1 is a polynomial in x2

1, x
2
2, x3, x4. Let

x ∈ R4 be arbitrary. We apply Taylor’s theorem to bound R(x) = |F (x) − Pk−1(x)|. Define
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x∗ = maxi{|xi|}. Then

R(x) ≤ αk ·
∑
|β|=k

|x1|β1 · |x2|β2 · |x3|β3 · |x4|β4
β1! · β2! · β3! · β4!

≤ αkxk∗ ·
∑
|β|=k

1

β1! · β2! · β3! · β4!

= αkxk∗ ·
1

k!
·
∑
|β|=k

(
k

β1, . . . , β4

)

≤ αk4k · x
k
1 + xk2 + xk3 + xk4

k!
, (F.1)

with the absolute values unnecessary in the last inequality since k is even. We now observe

|E[F (Mp(X))]−E[F (Mp(Y ))]|

≤ αk2O(k) · E[(p1(X))k/2] + E[(p2(X))k/2] + E[(p3(X)−Υ)k] + E[(p4(X))k]

kk

since (a) every term in Pk−1(Mp(X)) is a monomial of degree at most 2k−2 in the Xi, by evenness
of Pk−1 in x1, x2, and is thus determined by 2k-independence, (b)

√
p1(X),

√
p2(X) are real by

positive semidefiniteness of p1, p2 (note that we are only given that the high order partial derivatives
are bounded by O(αk) on the reals; we have no guarantees for complex arguments), and (c) the
moment expectations above are equal for X and Y since they are determined by 2k-independence.

We now bound the error term above. We have

E[(p1(X))k/2] = 2O(k)(kk/2 + δ−k/2)

by Lemma F.1, with the same bound holding for E[(p2(X))k/2]. We also have

E[(p3(X)−Υ)k] ≤ 2O(k) ·max{
√
k, (δk)}k

by Theorem 7.1. We finally have
E[(p4(X))k] ≤ kk/2

by Lemma B.1. Thus in total,

|E[F (Mp(X))]−E[F (Mp(Y ))]| ≤ 2O(k) · ((α/
√
k)k + (α/(k

√
δ))k + (αδ)k),

which is at most ε for sufficiently large B by our lower bounds on k and 1/δ. �

To prove Lemma 7.4, we make use of the following lemma, which follows from the Invariance
Principle, the hypercontractive inequality, and the anticoncentration bound of [14]. Here p1, p2, δ
are as in Section 7.2 (recall p = p1 − p2 + p3 + p4 + C where p1, p2 are positive semidefinite with
minimum non-zero eigenvalues at least δ).

Lemma F.2. Let η, η′ ≥ 0, t ∈ R be given, and let X1, . . . , Xn be independent Bernoulli. Then

Pr[|p(X)− t| ≤ η · (
√
p1(X) +

√
p2(X) + 1) + η′] = O(

√
η′ + (η2/δ)1/4 + τ1/9 + exp(−Ω(1/δ))).
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Proof. Applying Corollary D.6, we have

Pr[
√
p1(X) ≥

√
2/δ] = exp(−Ω(1/δ)),

and similarly for
√
p2(X). We can thus bound our desired probability by

Pr[|p(X)− t| ≤ 2η
√

2/δ + η + η′] + exp(−Ω(1/δ)).

By Theorem D.2, together with Theorem D.3, we can bound the probability in the lemma statement
by

O(
√
η′ + (η2/δ)1/4 + τ1/9 + exp(−Ω(1/δ))).

�

We now prove our anticoncentration lemma in the case of limited independence.
Lemma 7.4 (restatement). Let ε′ be given. Suppose k ≥ D/(ε′)4 for a sufficiently large constant
D > 0. Let Y1, . . . , Yn be k-wise independent Bernoulli, and let t ∈ R be arbitrary. Then

Pr[|p(Y )− t| < ε′] ≤ O(
√
ε′ + τ1/9).

Proof. Define the region Tt,ε′ = {(x1, x2, x3, x4) : |x2
1 − x2

2 + x3 + x4 +C + Υ− t| < ε′}, and also
the region Sρ,t,ε′ = {x : d2(x, Tt,ε′) ≤ ρ} for ρ ≥ 0. Consider the FT-mollification ĨcSρ,t,ε′

of ISρ,t,ε′

for c = A/ρ, with A a large constant to be determined later. We note a few properties of ĨcSρ,t,ε′
:

i. ‖∂β ĨcSρ,t,ε′‖∞ ≤ (2c)|β|

ii. ĨcSρ,t,ε′
(x) ≥ 1

2 · ITt,ε′ (x)

iii. ĨcSρ,t,ε′
(x) = max

{
1, O

(
(c · d2(x, Tt,ε′))

−2
)}

for any x with d2(x, Tt,ε′) ≥ 2ρ

Item (i) is straightforward from Theorem 4.1. For item (ii), note that if x ∈ Tt,ε′ , then
d2(x, ∂Sρ,t,ε′) ≥ ρ, implying

|ĨcSρ,t,ε′ (x)− 1| = O

(
1

c2ρ2

)
,

which is at most 1/2 for A a sufficiently large constant. Furthermore, ĨcSρ,t,ε′
is nonnegative. Finally,

for (iii), by Theorem 4.2 we have

ĨcSρ,t,ε′ (x) = max
{

1, O
(
(c · d2(x, ∂Sρ,t,ε′))

−2
)}

≤ max
{

1, O
(
(c · d2(x, Sρ,t,ε′))

−2
)}

≤ max
{

1, O
(
(c · (d2(x, Tt,ε′)− ρ))−2

)}
≤ max

{
1, O

(
(c · d2(x, Tt,ε′))

−2
)}

with the last inequality using that d2(x, Tt,ε′) ≥ 2ρ.
Noting Pr[|p(Z) − t| < ε′] = E[ITt,ε′ (Mp(Z))] for any random variable Z = (Z1, . . . , Zn), item

(ii) tells us that
Pr[|p(Z)− t| ≤ ε′] ≤ 2 ·E[ĨcSρ,t,ε′ (Mp(Z))]. (F.2)
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We now proceed in two steps. We first show E[ĨcSρ,t,ε′
(Mp(X))] = O(

√
ε′ + τ1/9) by applications of

Lemma F.2. We then show E[ĨcSρ,t,ε′
(Mp(Y ))] = O(

√
ε′ + τ1/9) by applying Lemma 7.3, at which

point we will have proven our lemma via Eq. (F.2) with Z = Y .

E[̃IcSρ,t,ε′
(Mp(X))] = O(

√
ε′ + τ1/9): We first observe that for x /∈ Tt,ε′ ,

d2(x, Tt,ε′) ≥
1

2
·min

{
|x2

1 − x2
2 + x3 + x4 + C + Υ− t| − ε′

2(|x1|+ |x2|+ 1)
,
√
|x2

1 − x2
2 + x3 + x4 + C + Υ− t| − ε′

}
.

(F.3)
This is because by adding a vector v to x, we can change each individual coordinate of x by at
most ‖v‖2, and can thus change the value of |x2

1 − x2
2 + x3 + x4 + C + Υ − t| − ε′ by at most

2‖v‖2 · (|x1|+ |x2|+ 1) + ‖v‖22.
Now let X ∈ {−1, 1}n be uniformly random. We thus have that, for any particular w > 0,

Pr[0 < d2(Mp(X), Tt,ε′) ≤ w] ≤ Pr

[
min

{
|p(X)− t| − ε′

2(
√
p1(X) +

√
p2(X) + 1)

,
√
|p(X)− t| − ε′

}
≤ 2w

]
≤ Pr[|p(X)− t| ≤ 4w · (√p1(X) +

√
p2(X) + 1) + ε′]

+ Pr[|p(X)− t| ≤ 4w2 + ε′]

= O(
√
ε′ + w +

√
w + (w2/δ)1/4 + τ1/9 + exp(−Ω(1/δ)))

with the last inequality holding by Lemma F.2.
Now, by item (iii),

E[ĨcSρ,t,ε′ (Mp(X))]

≤ Pr[d2(Mp(X), Tt,ε′) ≤ 2ρ] +O

( ∞∑
s=1

2−2s ·Pr[2sρ < d2(Mp(X), Tt,ε′) ≤ 2s+1ρ]

)
≤ O(

√
ε′ +
√
ρ+ (ρ2/δ)1/4 + τ1/9 + exp(−Ω(1/δ))

+O

( ∞∑
s=1

2−2s · (
√
ε′ + 2s+1ρ+

√
2s+1ρ+ (22s+2ρ2/δ)1/4 + τ1/9 + exp(−Ω(1/δ)))

)
= O(

√
ε′ +
√
ρ+ (ρ2/δ)1/4 + τ1/9 + exp(−Ω(1/δ)) (F.4)

We now make the settings

ρ = (ε′)2,
1

δ
= 2Bc =

2AB

ρ
.

where B > 1 is the sufficiently large constant in Lemma 7.3. Thus Eq. (F.4) is now O(
√
ε′ + τ1/9).

(We remark that a different δ is used when proving Theorem 7.2.)

E[̃IcSρ,t,ε′
(Mp(Y))] = O(

√
ε′ + τ1/9): It suffices to show

E[ĨcSρ,t,ε′ (Mp(Y ))] ≈ε E[ĨcSρ,t,ε′ (Mp(X))].

29



We remark that ĨcSρ,t,ε′
can be assumed to be even in both x1, x2. If not, then consider the

symmetrization

(ĨcSρ,t,ε′ (x1, x2, x3, x4)+ ĨcSρ,t,ε′ (−x1, x2, x3, x4)+ ĨcSρ,t,ε′ (x1,−x2, x3, x4)+ ĨcSρ,t,ε′ (−x1,−x2, x3, x4))/4,

(F.5)
which does not affect any of our properties (i),(ii), (iii).

Now, by our choice of k, δ and item (i), we have by Lemma 7.3 (with α = 2c) that

|E[ĨcSρ,t,ε′ (Mp(X))]−E[ĨcSρ,t,ε′ (Mp(Y ))]| < ε′.

This completes our proof by applying Eq. (F.2) with Z = Y . �

Lemma 7.5 (restatement). Let η, η′ ≥ 0 be given, and let Y1, . . . , Yn be k-independent Bernoulli
for k as in Lemma 7.4 with ε′ = min{η/

√
δ, η′}. Also assume k ≥ d2/δe. Then

Pr[|p(X)− t| ≤ η · (
√
p1(X) +

√
p2(X) + 1) + η′] = O(

√
η′ + (η2/δ)1/4 + τ1/9 + exp(−Ω(1/δ))).

Proof. There were two steps in the proof of Lemma F.2 which required using the independence
of the Xi. The first was in the application of Corollary D.6, but that only required d2/δe-wise
independence, which is satisfied here. The next was in using the anticoncentration of p(X) (the
fact that Pr[|p(X)− t| < s] = O(

√
s+ τ1/9) for any t ∈ R and s > 0). However, given Lemma 7.4,

anticoncentration still holds under k-independence. �

F.2 Gaussian Setting In the following Theorem we show that the conclusion of Theorem 7.2
holds even under the Gaussian measure.

Theorem F.3. Let 0 < ε < 1 be given. Let G = (G1, . . . , Gn) be a vector of independent standard
normal random variables, and G′ = (G′1, . . . , G

′
n) be a vector of 2k-wise independent standard

normal random variables for k a sufficiently large multiple of 1/ε8. If p(x) =
∑

i≤j ai,jxixj has∑
i≤j a

2
i,j = 1,

E[sgn(p(G))]−E[sgn(p(G′))] = O(ε).

Proof. Our proof is by a reduction to the Bernoulli case, followed by an application of Theorem 7.2.
We replace each Gi with Zi =

∑N
j=1Xi,j/

√
N for a sufficiently large N to be determined later. We

also replace each G′i with Z ′i =
∑N

j=1 Yi,j/
√
N . We determine these Xi,j , Yi,j as follows. Let Φ : R→

[0, 1] be the cumulative distribution function (CDF) of the standard normal. Define T−1,N = −∞,

TN,N = ∞, and Tk,N = Φ−1(2−N
∑k

j=0

(
N
k

)
) for 0 ≤ k ≤ N . Now, after a Gi is chosen according

to a standard normal distribution, we identify the unique ki such that Tki−1,N ≤ Gi < Tki,N . We
then randomly select a subset of ki of the Xi,j to make 1, and we set the others to −1. The Yi,j
are defined similarly. It should be noted that the Xi,j , Yi,j are Bernoulli random variables, with
the Xi,j being independent and the Yi,j being 2k-wise independent. Furthermore, we define the
nN -variate polynomial p′ : {−1, 1}nN → R to be the one obtained from this procedure, so that
p(G) = p′(X). We then define p′′(x) = α · p′(x) for α = (

∑
i<j a

2
i,j + (1 − 1/N)

∑
i a

2
i,i)
−1 so that

the sum of squared coefficients in p′′ (ignoring constant terms, some of which arise because the x2
i,j

terms are 1 on the hypercube) is 1. It should be observed that 1 ≤ α ≤ 1 + 1/(N − 1).
Now, we make the setting ε = log1/3(N)/

√
N . By the Chernoff bound,

Pr[|ki −N/2| ≥ εN/2] = o(1) as N grows. (F.6)
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Claim F.4. If (1− ε)N/2 ≤ ki ≤ (1 + ε)N/2, then |Tki,N − Tki+1,N | = o(1).

Before proving the claim, we show how now we can use it to prove our Theorem. We argue by
the following chain of inequalities:

E[sgn(p(G))] ≈ε E[sgn(p′′(X))] ≈ε E[sgn(p′′(Y ))] ≈ε E[sgn(p(G′))].

E[sgn(p(G))] ≈ε E[sgn(p′′(X))] : First we condition on the event E that |Zi − Gi| ≤ ε3/n2 for all
i ∈ [n]; this happens with probability 1−o(1) as N grows by coupling Claim F.4 and Eq. (F.6), and
applying a union bound over all i ∈ [n]. We also condition on the event E ′ that |Gi| = O(

√
log(n/ε))

for all i ∈ [n], which happens with probability 1−ε2 by a union bound over i ∈ [n] since a standard
normal random variable has probability e−Ω(x2) of being larger than x in absolute value. Now,
conditioned on E , E ′, we have

|p(G)−p′′(X)| ≤ n2(ε3/n2)2 +(ε3/n2)
∑
i

|Gi|

∑
j

|ai,j |

 ≤ ε2 +(ε3/n2) ·O(
√

log(n/ε)) ·
∑
i,j

|ai,j |.

We note
∑

i,j a
2
i,j = 1, and thus

∑
i,j |ai,j | ≤ n by Cauchy-Schwarz. We thus have that |p′(X) −

p(G)| ≤ ε2 with probability at least 1 − ε2, and thus |p′′(X) − p(G)| ≤ ε2 + |(α − 1) · p(X)| with
probability at least 1− ε2. We finally condition on the event E ′′ that |(α − 1) · p′(X)| ≤ ε2. Since
p′ can be written as a multilinear quadratic form with sum of squared coefficients at most 1, plus
its trace tr(Ap′) (which is

∑
i ai,i ≤

√
n, by Cauchy-Schwarz), we have

Pr[|(α− 1) · p′(X)| ≥ ε2] ≤ Pr[|p′(X)| ≥ ε2 · (N − 1)] = o(1),

which for large enough N and the fact that ‖p′‖2 = O(1 + tr(Ap′)) irrespective of N , is at most

Pr[|p′(X)| ≥ c · log(1/ε)‖p′‖2],

for a constant c we can make arbitrarily large by increasing N . We thus have Pr[E ′′] ≥ 1 − ε2

by Theorem D.4. Now, conditioned on E ∧ E ′ ∧ E ′′, sgn(p′′(X)) 6= sgn(p(G)) can only occur if
|p′′(X)| = O(ε2). However, by anticoncentration (Theorem D.2) and the Invariance Principle
(Theorem D.3), this occurs with probability O(ε) for N sufficiently large (note the maximum
influence of p′′ goes to 0 as N →∞).

E[sgn(p′′(X))] ≈ε E[sgn(p′′(Y))] : Since the maximum influence τ of any xi,j in p′′ approaches 0
as N →∞, we can apply Theorem 7.2 for N sufficiently large (and thus τ sufficiently small).

E[sgn(p′′(Y))] ≈ε E[sgn(p(G′))] : This case is argued identically as in the first inequality, except
that we use anticoncentration of p′′(Y ), which follows from Lemma 7.4, and we should ensure that
we have sufficient independence to apply Theorem D.4 with t = O(log(1/ε)), which we do.
Proof (of Claim F.4). The claim is argued by showing that for ki sufficiently close to its ex-
pectation (which is N/2), the density function of the Gaussian (i.e. the derivative of its CDF)
is sufficiently large that the distance we must move from Tki,N to Tki+1,N to change the CDF

by Θ(1/
√
N) ≥ 2−N

(
N
ki+1

)
is small. We argue the case (1 − ε)N/2 ≤ ki ≤ N/2 since the case

N/2 ≤ ki ≤ (1 + ε)N/2 is argued symmetrically. Also, we consider only the case ki = (1 − ε)N/2
exactly, since the magnitude of the standard normal density function is smallest in this case.
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Observe that each Zi is a degree-1 polynomial in the Xi,j with maximum influence 1/N , and
thus by the Berry-Esséen Theorem,

sup
t∈R
|Pr[Zi ≤ t]−Pr[Gi ≤ t]| ≤

1√
N
.

Also note that

Pr[Gi ≤ Tki,N ] = Pr

[
Zi ≤

2ki√
N
−
√
N

]
by construction. We thus have

Pr[Gi ≤ Tki,N ] = Pr

[
Gi ≤

2ki√
N
−
√
N

]
± 1√

N

= Pr[Gi ≤ log1/3(N)]± 1√
N

By a similar argument we also have

Pr[Gi ≤ Tki+1,N ] = Pr

[
Gi ≤ log1/3(N) +

2√
N

]
± 1√

N

Note though for t = Θ(log1/3(N)), the density function f of the standard normal satisfies f(t) =
e−t

2/2 = N−o(1). Thus, in this regime we can change the CDF by Θ(1/
√
N) by moving only

No(1)/
√
N = o(1) along the real axis, implying Tki+1,N − Tki,N = o(1). �

�

G Proofs from Section 7.3

G.1 Proof of Theorem 7.6 We begin by stating the following structural lemma:

Theorem G.1. Let f(x) = sgn(p(x)) be any degree-d PTF. Fix any τ > 0. Then f is equivalent

to a decision tree T of depth depth(d, τ)
def
= (1/τ) · (d log(1/τ))O(d) with variables at the internal

nodes and a degree-d PTF fρ = sgn(pρ) at each leaf ρ, with the following property: with probability
at least 1 − τ , a random path from the root reaches a leaf ρ such that either: (i) fρ is τ -regular
degree-d PTF, or (ii) For any O(d · log(1/τ))-independent distribution D′ over {−1, 1}n−|ρ| there
exists b ∈ {−1, 1} such that Prx∼D′ [fρ(x) 6= b] ≤ τ .

We now prove Theorem 7.6 assuming Theorem G.1. We will need some notation. Consider a leaf
of the tree T . We will denote by ρ both the set of variables that appear on the corresponding root-
to-leaf path and the corresponding partial assignment; the distinction will be clear from context.
Let |ρ| be the number of variables on the path. We identify a leaf ρ with the corresponding restricted
subfunction fρ = sgn(pρ). We call a leaf “good” if it corresponds to either a τ -regular PTF or to a
“close-to constant” function. We call a leaf “bad” otherwise. We denote by L(T ), GL(T ), BL(T )
the sets of leaves, good leaves and bad leaves of T respectively.

In the course of the proof we make repeated use of the following standard fact:

Fact G.2. Let D be a k-wise independent distribution over {−1, 1}n. Condition on any fixed
values for any t ≤ k bits of D, and let D′ be the projection of D on the other n− t bits. Then D′
is (k − t)-wise independent.

32



Throughout the proof, D denotes a (Kd + Ld)-wise independent distribution over {−1, 1}n.
Consider a random walk on the tree T . Let LD(T ,D) (resp. LD(T ,U)) be the leaf that the
random walk will reach when the inputs are drawn from the distribution D (resp. the uniform
distribution). The following straightforward lemma quantifies the intuition that these distributions
are the same. This holds because the tree has small depth and D has sufficient independence.

Lemma G.3. For any leaf ρ ∈ L(T ) we have Pr
[
LD(T ,D) = ρ

]
= Pr

[
LD(T ,U) = ρ

]
.

The following lemma says that, if ρ is a good leaf, the distribution induced by D on ρ O(ε)-fools
the restricted subfunction fρ.

Lemma G.4. Let ρ ∈ GL(T ) be a good leaf and consider the projection D[n]\ρ of D on the
variables not in ρ. Then we have

∣∣Prx∼D[n]\ρ [fρ(x) = 1]−Pry∼U[n]\ρ [fρ(y) = 1]
∣∣ ≤ 2ε.

Proof. If fρ is τ -regular, by Fact G.2 and recalling that |ρ| ≤ depth(d, τ) ≤ Ld, the distribution
D[n]\ρ is Kd-wise independent. Hence, the statement follows by assumption. Otherwise, fρ is ε-
close to a constant, i.e. there exists b ∈ {−1, 1} so that for any t = O(d log(1/τ))-wise distribution
D′ over {−1, 1}n−|ρ| we have Prx∼D′ [fρ(x) 6= b] ≤ τ (∗). Since Ld >> t, Fact G.2 implies that
(∗) holds both under D[n]\ρ and U[n]\ρ, hence the statement follows in this case also, recalling that
τ ≤ ε. �

The proof of Theorem 7.6 now follows by a simple averaging argument. By the decision-tree
decomposition of Theorem G.1, we can write

Prx∼D′n [f(x) = 1] =
∑

ρ∈L(T )

Pr
[
LD(T ,D′) = ρ

]
·Pry∈D′

[n]\ρ

[
fρ(y) = 1

]
where D′ is either D or the uniform distribution U . By Theorem G.1 and Lemma G.3 it follows
that the probability mass of the bad leaves is at most ε under both distributions. Therefore, by
Lemma G.3 and Lemma G.4 we get∣∣∣Prx∼D[f(x) = 1]−Prx∼U [f(x) = 1]

∣∣∣ ≤ ε+∑
ρ∈GL(T )

Pr
[
LD(T ,U) = ρ

]
·
∣∣Pry∈U[n]\ρ

[
fρ(y) = 1

]
−Pry∈D[n]\ρ

[
fρ(y) = 1

]∣∣ ≤ 3ε.

This completes the proof of Theorem 7.6.

G.2 Proof of Theorem G.1 In this section we provide the proof of Theorem G.1. For the sake
of completeness, we give below the relevant machinery from [17]. We note that over the hypercube
every polynomial can be assumed to be multilinear, and so whenever we discuss a polynomial in
this section it should be assumed to be multilinear. We start by defining the notion of the critical
index of a polynomial:

Definition G.5 (critical index). Let p : {−1, 1}n → R and τ > 0. Assume the variables are
ordered such that Infi(p) ≥ Infi+1(p) for all i ∈ [n− 1]. The τ -critical index of p is the least i such
that:

Infi+1(p)∑n
j=i+1 Infj(p)

≤ τ. (G.1)

If Eq. (G.1) does not hold for any i we say that the τ -critical index of p is +∞. If p is has τ -critical
index 0, we say that p is τ -regular.
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We will be concerned with polynomials p of degree-d. The work in [17] establishes useful random
restriction lemmas for low-degree polynomials. Roughly, they are as follows: Let p be a degree-d
polynomial. If the τ -critical index of p is zero, then f = sgn(p) is τ -regular and there is nothing to
prove.

• If the τ -critical index of p is “very large”, then a random restriction of “few” variables causes
f = sgn(p) to become a “close-to-constant” function with probability 1/2O(d). We stress that
the distance between functions is measured in [17] with respect to the uniform distribution
on inputs. As previously mentioned, we extend this statement to hold for any distribution
with sufficiently large independence.

• If the τ -critical index of p is positive but not “very large”, then a random restriction of a
“small” number of variables – the variables with largest influence in p – causes p to become
“sufficiently” regular with probability 1/2O(d).

Formally, we require the following lemma which is a strengthening of Lemma 10 in [17]:

Lemma G.6. Let p : {−1, 1}n → R be a degree-d polynomial and assume that its variables are in
order of non-increasing influence. Let 0 < τ ′, β < 1/2 be parameters. Fix α = Θ(d log log(1/β) +
d log d) and τ ′′ = τ ′ · (C ′d ln d ln(1/τ ′))d, where C ′ is a universal constant. One of the following
statements holds true:

1. The function f = sgn(p) is τ ′-regular.

2. With probability at least 1/2O(d) over a random restriction ρ fixing the first L′ = α/τ ′

variables of p, the function fρ = sgn(pρ) is β-close to a constant function. In particular,
under any O(d log(1/β))-wise independent distribution D′ there exists b ∈ {−1, 1} such that
Prx∼D′ [fρ(x) 6= b] ≤ τ ′.

3. There exists a value k ≤ α/τ ′, such that with probability at least 1/2O(d) over a random
restriction ρ fixing the first k variables of p, the polynomial pρ is τ ′′-regular.

By applying the above lemma in a recursive manner we obtain Theorem G.1. This is done
exactly as in the proof of Theorem 1 in [17]. We remark that in every recursive application of the
lemma, the value of the parameter β is set to τ . This explains why O(d log(1/τ))-independence
suffices in the second statement of Theorem G.1. Hence, to complete the proof of Theorem G.1, it
suffices to establish Lemma G.6.
Proof (of Lemma G.6). We now sketch the proof of the lemma. The first statement of the lemma
corresponds to the case that the value ` of τ ′-critical index is 0, the second to the case that it is
` > L′ and the third to 1 ≤ ` ≤ L′.

The proof of the second statement proceeds in two steps. Let H denote the first L′ most
influential variables of p and T = [n] \H. Let p′(xH) =

∑
S⊆H p̂(S)xS . We first argue that with

probability at least 2−Ω(d) over a random restriction ρ to H, the restricted polynomial pρ(xT ) will
have a “large” constant term p̂ρ(∅) = p′(ρ), in particular at least θ = 2−Ω(d). The proof is based
on the fact that, since the critical index is large, almost all of the Fourier weight of the polynomial
p lies in p′, and it makes use of a certain anti-concentration property over the hypercube. Since
the randomness is over H and the projection of D on those variables is still uniform, the argument
holds unchanged under D.
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In the second step, by an application of a concentration bound, we show that for at least half of
these restrictions to H the surviving (non-constant) coefficients of pρ, i.e. the Fourier coefficients of
the polynomial pρ(xT )−p′(ρ), have small `2 norm; in particular, we get that ‖pρ−p′ρ‖2 ≤ log(1/β)−d.
We call such restrictions good. Since the projection of D on these “head” variables is uniform, the
concentration bound applies as is.

Finally, we need to show that, for the good restrictions, the event the “tail” variables xT change
the value of the function fρ, i.e. sgn(pρ(xT ) + p′(ρ)) 6= sgn(p′(ρ)) has probability at most β. This
event has probability at most

PrxT [|pρ(xT )− p′(ρ)| ≥ θ].

This is done in [17] using a concentration bound on the “tail”, assuming full independence. Thus,
in this case, we need to modify the argument since the projection of D on the “tail” variables is
not uniform. However, a careful inspection of the parameters reveals that the concentration bound
needed above actually holds even under an assumption of O(d log(1/β))-independence for the “tail”
xT . In particular, given the upper bound on ‖pρ − p′ρ‖2 and the lower bound on θ, it suffices to

apply Theorem D.4 for t = log(1/β)d/2, which only requires (dt2/d)-wise independence. Hence, we
are done in this case too.

The proof of the third statement remains essentially unchanged for the following reason: One
proceeds by considering a random restriction of the variables of p up to the τ -critical index – which
in this case is small. Hence, the distribution induced by D on this space is still uniform. Since the
randomness is over these “head” variables, all the arguments remain intact and the claim follows.
�

H Appendix to Section 6.2

We here give a proof of Theorem 6.2.
Theorem 6.2 (restatement). Let m > 1 be an integer. Let Hi = {x : 〈ai, x〉 > θi} for i ∈ [m],
with ‖ai‖2 = 1 for all i. Let X be a vector of n i.i.d. Gaussians, and Y be a vector of k-wise
independent Gaussians. Then for k = Ω(m6/ε2),

|Pr[X ∈ ∩mi=1Hi]−Pr[Y ∈ ∩mi=1Hi]| < ε

Proof. Define F : Rn → Rm by F (x) = (〈a1, x〉 , . . . , 〈am, x〉), and let R be the region {x : ∀i xi >
θi}. Similarly as in Section 5, we show a chain of inequalities after setting ρ = ε/m and c = m/ρ:

E[IR(F (X))] ≈ε E[ĨcR(F (X))] ≈ε E[ĨcR(F (Y ))] ≈ε E[IR(F (Y ))]. (H.1)

For the first inequality, observe d2(x, ∂R) ≥ mini{|xi − θi|}. Then by a union bound,

Pr[d2(F (X), ∂R) ≤ w] ≤ Pr[min
i
{| 〈ai, X〉 − θi|} ≤ w] ≤

m∑
i=1

Pr[| 〈ai, X〉 − θi| ≤ w] = O(mw).

Now,

|E[IR(F (X))]−E[ĨcR(F (X))]| ≤ E[|IR(F (X))]− ĨcR(F (X))|]
≤ Pr[d2(F (X), ∂R) ≤ 2ρ]

+O

( ∞∑
s=1

(
m2

c222sρ2

)
·Pr[d2(F (X), ∂R) ≤ 2s+1ρ]

)
(H.2)
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= Pr[d2(F (X), ∂R) ≤ 2ρ] +O

( ∞∑
s=1

2−2s ·Pr[d2(F (X), ∂R) ≤ 2s+1ρ]

)
= O(mρ)

= O(ε)

where Eq. (H.2) follows from Theorem 4.2.
The last inequality in Eq. (H.1) is argued identically, except that we need to have anticoncen-

tration of the | 〈ai, Y 〉 | in intervals of size no smaller than ρ = ε/m; this was already shown to hold
under Ω(1/ρ2)-wise independence in the proof of Theorem 5.1.

For the middle inequality we use Taylor’s theorem, as was done in Section 5. If we truncate the
Taylor polynomial at degree-(k− 1) for k even, then by our derivative bounds on mixed partials of
ĨcR from Theorem 4.1, the error term is bounded by

(2c)k ·mk ·
∑m

i=1 E[〈ai, X〉k]
k!

≤ (cm)k · 2O(k)/kk/2,

with the inequality holding by Lemma B.1, and the mk arising as the analogue of the 4k term that
arose in Eq. (F.1). This is at most ε for k a sufficiently large constant times (cm)2, and thus overall
k = Ω(m6/ε2)-wise independence suffices. �

Remark H.1. A couple improvements are possible to reduce the dependence on m in Theorem 6.2.
We presented the simplest proof we are aware of which obtains a polynomial dependence on m, for
clarity of exposition. See Section I for an improvement on the dependence on m to quartic.

Our approach can also show that bounded independence fools the intersection of any constant
number m of degree-2 threshold functions. Suppose the degree-2 polynomials are p1, . . . , pm. Ex-
actly as in Section 7.2 we decompose each pi into pi,1 − pi,2 + pi,3 + pi,4 + Ci. We then define a
region R ⊂ R4m by {x : ∀i ∈ [m] x2

4i−3 − x2
4i−2 + x4i−1 + x4i + Ci + tr(Api,3) > 0}, and the map

F : Rn → R4m by
F (x) = (Mp1(X), . . . ,Mpn(X))

for the map Mp : Rn → R4 defined in Section 7.2. The goal is then to show E[IR(F (X))] ≈ε
E[IR(F (Y ))], which is done identically as in the proof of Theorem 7.2. We simply state the
theorem here:

Theorem H.2. Let m > 1 be an integer. Let Hi = {x : pi(x) ≥ 0} for i ∈ [m], for some degree-2
polynomials pi : Rn → R. Let X be a vector of n i.i.d. Gaussians, and Y be a vector of k-wise
independent Gaussians with k = Ω(poly(m)/ε8). Then,

|Pr[X ∈ ∩mi=1Hi]−Pr[Y ∈ ∩mi=1Hi]| < ε

Identical conclusions also hold for X,Y being drawn from {−1, 1}n, since we can apply the de-
cision tree argument from Theorem G.1 to each of the m polynomial threshold functions separately
so that, by a union bound, with probability at least 1−mτ ′ each of the m PTF restrictions is either
τ ′-close to a constant function, or is τ ′-regular. Thus for whatever setting of τ sufficed for the case
m = 1 (τ = ε2 for halfspaces [16] and τ = ε9 for degree-2 threshold functions (Theorem 7.2)), we
set τ ′ = τ/m then argue identically as before.
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I Improvements to fooling the intersection of halfspaces

In the proof of Theorem 6.2 in Section H, we presented a proof showing that Ω(m6/ε2)-independence
ε-fools the intersection of m halfspaces under the Gaussian measure. In fact, this dependence on
m can be improved to quartic. One factor of m is shaved by using Lemma A.6, and another factor
of m is shaved by a suitable change of basis. The argument used to shave the second factor of m
is specific to the Gaussian case, and does not carry over to the Bernoulli setting.

Theorem I.1. Let m > 1 be an integer. Let Hi = {x : 〈ai, x〉 > θi} for i ∈ [m], with ‖ai‖2 = 1
for all i. Let X be a vector of n independent standard normals, and Y be a vector of k-wise
independent Gaussians. Then for k = Ω(m4/ε2) and even,

|Pr[X ∈ ∩mi=1Hi]−Pr[Y ∈ ∩mi=1Hi]| < ε

Proof. Let v1, . . . , vm ∈ Rn be an orthonormal basis for a linear space containing the ai. Define
the region R = {x : ∀i ∈ [m]

∑m
j=1 〈ai, vj〉xj > θi} in Rm. Note R is itself the intersection of m

halfspaces in Rm, with the ith halfspace having normal vector bi ∈ Rm with (bi)j = 〈ai, vj〉.
We now define the map F : Rn → Rm by F (x) = (〈x, v1〉 , . . . , 〈x, vm〉). It thus suffices to show

that E[IR(F (X))] ≈ε E[IR(F (Y ))]. We do this by a chain of inequalities, similarly as in the proof
of Theorem 6.2. Below we set c = m2/ε.

E[IR(F (X))] ≈ε E[ĨcR(F (X))] ≈ε E[ĨcR(F (Y ))] ≈ε E[IR(F (Y ))]. (I.1)

For the first inequality and last inequalities, since we performed an orthonormal change of basis
the F (X)i remain independent standard normals, and we can reuse the same analysis from the
proof of Theorem 6.2 without modification.

For the middle inequality we use Taylor’s theorem. Let Pk−1 the degree-(k−1) Taylor polynomial
approximating ĨcR. Then by Lemma A.6,

|ĨcR(F (x))− Pk−1(F (x))| ≤ 2O(k) · ck · ‖F (x)‖k2
kk

(I.2)

Since the F (X)i are independent standard normal random variables,
∑m

i=1 F (X)2
i follows a

chi-squared distribution with m degrees of freedom, and its k/2th moment is determined by k-wise
independence, and thus

E

( m∑
i=1

F (X)2
i

)k/2 = 2k/2 · Γ(k/2 +m/2)

Γ(m/2)
= 2O(k) · km · kk/2 ≤ 2O(k) · kk/2. (I.3)

Thus, the expected value of our Taylor error is 2O(k) · (c/
√
k)k = O(ε) for k = Ω(c2). �

J An FT-mollification proof of a multivariate Jackson’s theorem

We remind the reader of the setup in Section 6.1. We have F : Rm → R and define

ω(F, δ) = sup
‖x‖2,‖y‖2≤1
‖x−y‖2≤δ

|F (x)− F (y)|.
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Given some positive integer k, we would like to construct a polynomial pk of degree k such
that sup‖x‖2≤1 |F (x) − pk(x)| = O(ω(F,m/k)). We show here how this can be achieved via FT-
mollification followed by Taylor’s theorem.

Define the function G to be F − F (0) in the ball of radius 2 about the origin and 0 otherwise.
Now, consider the FT-mollification G̃c, and suppose ‖x‖2 ≤ 1. Then,∣∣∣G(x)− G̃c(x)

∣∣∣ =

∣∣∣∣∫
Rm

(G(x)−G(x− y))Bc(y)

∣∣∣∣
≤ Ey∼Bc [|G(x)−G(x− y)|]

≤ ω(F,m/k) +
∞∑
s=0

Pry∼Bc [2
sm/k < ‖y‖2 ≤ 2s+1m/k] · 2s+1 · ω(F,m/k)

≤ ω(F,m/k) +

∞∑
s=0

(
Ey∼Bc [‖y‖22]

(2sm/k)2

)
· 2s+1 · ω(F,m/k)

= O(ω(F,m/k) · (k/c)2)

Now, let qk be the degree-k Taylor expansion of G̃c about 0. By Lemma A.6, |G̃c(x)− qk(x)| ≤
(2k/m) · ω(F,m/k) · (D · c/k)k for some absolute constant D, since ‖G‖∞ ≤ (2k/m) · ω(F,m/k).
We thus obtain |G(x)− qk(x)| ≤ O(ω(F,m/k)) by setting c = k/(2D). Finally, set pk = qk +F (0).
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