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Abstract

We show that any distribution on {−1,+1}n that is k-wise independent fools any half-
space (a.k.a. linear threshold function) h : {−1, +1}n → {−1,+1}, i.e., any function of the
form h(x) = sign(

∑n
i=1 wixi − θ) where the w1, . . . , wn, θ are arbitrary real numbers, with

error ε for k = O(ε−2 log2(1/ε)). Our result is tight up to log(1/ε) factors. Using standard
constructions of k-wise independent distributions, we obtain the first explicit pseudorandom
generators G : {−1, +1}s → {−1, +1}n that fool halfspaces. Specifically, we fool halfspaces
with error ε and seed length s = k · log n = O(log n · ε−2 log2(1/ε)).

Our approach combines classical tools from real approximation theory with structural re-
sults on halfspaces by Servedio (Comput. Complexity 2007).
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1 Introduction
Halfspaces, or threshold functions, are a central class of Boolean functions h : {−1, +1}n →
{−1, +1} of the form:

h(x) = sign(w1x1 + · · ·+ wnxn − θ),

where the weights w1, . . . , wn and the threshold θ are arbitrary real numbers. These functions have
been studied extensively in a variety of contexts. In computer science, the work on halfspaces
dates back to the study of switching functions, see for instance the books [16, 31, 38, 58, 44]. In
computational complexity, much effort has been put into understanding constant-depth circuits of
halfspaces. On the one hand this has resulted in surprising inclusions (such as the simulation of
depth-d circuits of halfspaces by depth-(d+1) circuits of majority gates [24, 25]), but on the other
hand many seemingly basic questions remain unsolved: for instance it is conceivable that every
function in NP is computable by a polynomial-size depth-2 circuit of halfspaces [28, 36, 37, 23].
In learning theory, the problem of learning an unknown halfspace has arguably been the most
influential problem in the development of the field, with algorithms such as Perceptron, Weighted
Majority, Boosting, and Support Vector Machines emerging from this study. Halfspaces (with
non-negative weights) have also been studied extensively in game theory and social choice theory,
where they are referred to as “weighted majority games” and have been analyzed as models for
voting, see e.g., [52, 32, 21, 59].

In this work we make progress on a natural complexity-theoretic question about halfspaces.
We construct the first explicit pseudorandom generators G : {−1, +1}s → {−1, +1}n with short
seed length s that fool any halfspace h : {−1, +1}n → {−1, +1}, i.e. satisfy

|Ex∈{−1,+1}s [h(G(x))]− Ex∈{−1,+1}n [h(x)]| ≤ ε,

for a small ε. We actually prove that the class of distributions known as k-wise independent dis-
tribution has this “fooling” property for a suitable k; as pointed out below, a generator can then be
obtained using any of the standard explicit constructions of such distributions.

Definition 1.1. A distributionD on {−1, +1}n is k-wise independent if the projection ofD on any
k indices is uniformly distributed over {−1, +1}k.

Theorem 1.2 (Main). Let D be a k-wise independent distribution on {−1, +1}n, and let h :
{−1, +1}n → {−1, +1} be a halfspace. Then D fools h with error ε, i.e.,

|Ex←D[h(x)]− Ex←U [h(x)]| ≤ ε, provided k ≥ C

ε2
log2(

1

ε
),

where C is an absolute constant and U is the uniform distribution over {−1, +1}n.

Our Theorem 1.2 is tight up to log(1/ε) factors, as can be seen by considering the halfspace

h(x) := sign(
∑

i≤k+1

xi)
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and the k-wise independent distribution

x := (x1, x2, . . . , xk,
∏

i≤k

xi, xk+2, . . . , xn)

where the variables xi are independent and uniform in {−1, +1}. For k a multiple of 4, the
probability that h(U) = 1 equals 1/2 by symmetry, whereas the probability that h(x) = 1 is
1/2 + Ω(1/

√
k).

Standard explicit constructions of k-wise independent distributions over {−1, +1}n have seed
length O(k · log n) [15, 3], which is optimal up to constant factors [14]. Plugging these in Theorem
1.2, we obtain explicit pseudorandom generators G : {−1, +1}s → {−1, +1}n that fool any half-
space h : {−1, +1}n → {−1, +1} with error ε and have seed length s = O(log n · ε−2 log2(ε−1)).

Finally, we mention that Theorem 1.2 can be seen as a derandomization of the Berry-Esseen
theorem: for convergence to the normal distribution, bounded independence suffices.

Discussion and comparison with previous explicit generators. The literature is rich with explicit
generators for various classes, such as small constant-depth circuits with various gates [2, 49,
41, 61, 5, 10], low-degree polynomials [46, 4, 9, 40, 60], and one-way small-space algorithms
[47]. Many of these classes (such as low-degree polynomials and AC0 circuits) provably cannot
implement halfspaces, and it is not known how to implement an arbitrary halfspace in any of these
classes, so none of these results gives Theorem 1.2. However, some of these results [47, 41, 61]
give generators for the restricted class of halfspaces given by h(x) = sign(

∑n
i=1 wixi − θ) where

the weights are integers of magnitude at most poly(n). While it is well known that every halfspace
has a representation with integer weights, it is not possible to represent an arbitrary halfspace with
poly(n) integer weights. Indeed, an easy counting argument (see e.g. [42, 29]) shows that if the
weights are required to be integers then almost all halfspaces require weights of magnitude 2Ω(n);
in fact some halfspaces require weights of magnitude 2Θ(n log n) [29]. Our result is for the entire
class of halfspaces with no restriction on the weights, and much of the richness of halfspaces only
comes in this setting; for example, the “odd-max-bit” function [6], the “universal halfspace” [24],
and other important halfspaces [29] all require exponentially large integer weights. Moreover, even
for the restricted class of halfspaces where the weights are integers of magnitude at most poly(n),
previous techniques [47] give seed length s = O(log2 n) at best, while we achieve s = O(log n)
for constant error. Also note that, while halfspaces can be approximated by ones with small integer
weights [57], this approximation is not immediately useful for generators as it only holds for the
uniform distribution, not the pseudorandom one.

Other related results. Several recent papers have studied the power of k-wise independent distri-
butions. An exciting recent result of Braverman [10], which builds on an earlier breakthrough
of Bazzi [5] (simplified by Razborov [55]), shows that polylog(n)-wise independent distribu-
tions fool small constant-depth circuits, settling a conjecture of Linial and Nisan [39]. Ben-
jamini et al. [7] showed that any O(1/ε2)-wise independent distribution D on {−1, +1}n satisfies
|Prx←D[

∑
i xi ≥ 0]− 1/2| ≤ ε, i.e., such distributions fool the majority function. (We discuss [7]

in more detail shortly; here we note that their result does not seem to lead directly to pseudorandom
generators for general halfspaces.)
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The problem of constructing generators for halfspaces has been considered by several authors
in the recent literature. Rabani and Shpilka give an explicit construction of an ε-net, or ε-hitting
set, for halfspaces [54]: a set of size poly(n, 1/ε) which is guaranteed to contain at least one point
where h(x) = +1 and at least one point where h(x) = −1 for any halfspace h which takes on
both values with probability at least ε under the uniform distribution. However, their construction
does not offer any guarantees about the distribution of these values. [54] pose as a research goal
“to build methodically a theory of generators for geometric functions” such as halfspaces.

The problem of generators for halfspaces also arose in recent work by Gopalan and Radhakr-
ishnan [27] on finding duplicates in a data stream. They required a generator that allows one
to estimate the influence of a variable in a halfspace, a problem which is in fact equivalent to
constructing a generator for a related halfspace. They observe that Nisan’s space generator [47]
suffices for the halfspaces arising in their context, and raise the problem of constructing generators
for general halfspaces. Our result does not improve theirs, but it makes the analysis simpler by
showing that one can use Õ(ε−2)-wise independence to estimate the influence to within an additive
ε.

Recent Developments. Two natural questions are (1) to construct generators for halfspaces with a
better dependence on ε in their seed length, ultimately achieving the information-theoretic optimum
s = O(log(n/ε)), and (2) to understand the degree of independence required to fool degree-d
polynomial threshold functions (PTFs). After our work, there has been progress on the above
(and other related) questions by several researchers [45, 26, 12, 19, 18, 30] who improved and
generalized our results in various directions. Meka and Zuckerman [45] constructed a generator
for halfspaces with seed-length O(log(1/ε) · log n), and subsequently [26, 30] gave generators for
intersections of halfspaces. In [45] the authors also constructed generators for degree-d PTFs with
seed-length 2O(d) · log n · (1/ε)8d+3. Diakonikolas, Kane, and Nelson [18] showed that poly(1/ε)-
wise independence ε-fools degree-2 PTFs and intersections of such functions. At the time of
writing, the analogous statement for d > 2 remains open. As implied by reductions in [19, 18, 45],
to show that k(d, ε)-wise independence ε-fools degree-d PTFs, it suffices to consider the subclass
of degree-d PTFs f = sign(p) that are “regular” in the sense that no variable in p has a large
fraction of the total influence in p.

1.1 Techniques
Our proof combines tools from real approximation theory with structural results regarding half-
spaces. An important notion is that of an ε-regular halfspace, which is a halfspace h(x) =
sign(

∑
i wixi−θ) where no more than an ε-fraction of the 2-norm of its coefficient vector (w1, . . . , wn)

comes from any single coefficient wi. We first show that k-wise independence fools all ε-regular
halfspaces, and then use this to prove that k-wise independence fools all halfspaces. Our proof can
be broken into three steps.

Step 1: Fooling regular halfspaces. Our starting point is Bazzi’s observation [5, Theorem 4.2]
(also in [7]), that to establish that every k-wise independent distribution on {−1, +1}n fools a
Boolean function f : {−1, +1}n → {−1, +1} with error ε, it is sufficient to exhibit two “sand-
wiching” polynomials q`, qu : {−1, +1}n → {−1, +1} of degree at most k such that:
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• qu(x) ≥ f(x) ≥ q`(x) for all x ∈ {−1, +1}n; and

• EU [qu(x)− f(x)],EU [f(x)− q`(x)] ≤ ε.

Using only classical tools from real approximation theory, we give a proof of the existence
of univariate polynomials of degree K(ε) := Õ(1/ε2) which, roughly speaking, provide a good
sandwich approximator to the univariate function sign(t) under the normal distribution on R.
This is useful because of the following simple but crucial insight: for any regular halfspace h(x) =
sign(w · x − θ), the argument w · x − θ is well-approximated by a normal random variable (a
precise error-estimate is given by the Berry-Esséen theorem). For any ε-regular halfspace, we can
plug w ·x− θ into our univariate polynomials, and obtain low-degree sandwich polynomials for h,
establishing that K(ε)-wise independence fools all ε-regular halfspaces. The construction of these
polynomials is the most technical part of this paper.

Of course, there are halfspaces sign(w · x − θ) that are far from being ε-regular and have
w · x − θ distributed very unlike a Gaussian. To tackle general halfspaces, we use the notion
of the ε-critical index of a halfspace, which was (implicitly) introduced in [57] and has since
played a useful role in several recent results on halfspaces [50, 43, 20]. Briefly, assuming that
the weights w1, . . . , wn are sorted by absolute value, the ε-critical index is the first index ` so that
the weight vector (w`, w`+1, . . . , wn) is ε-regular. The previous Step 1 handled halfspaces that are
regular, corresponding to ` = 1. We now proceed by analyzing two cases, based on whether or not
1 < ` < L(ε), or ` ≥ L(ε), for L(ε) := Õ(1/ε2). In both cases, it is convenient to think of the
variables as partitioned into a “head” part consisting the first L(ε) variables and corresponding to
the largest weights, and of a “tail” part consisting of the rest.

Step 2: Fooling halfspaces with small critical index (` < L(ε)). We argue that for every setting
of the head variables, the ε-regularity of the tail is sufficient to ensure that the overall halfspace
gives the right bias. More precisely, assume that D is (K(ε) + L(ε))-wise independent, and note
that each setting of the ` head variables gives an ε-regular halfspace sign(w · x − θ′) over the tail
variables (with the constant θ′ depending on the values of the head variables). Since the marginal
distribution on the tail variables is K(ε)-wise independent for every setting of the head variables,
the distribution D fools all such halfspaces.

Step 3: Fooling halfspaces with large critical index (` ≥ L(ε)). In this case, we show that the
setting of the head variables alone is very likely to determine the value of the halfspace by a large
margin. More precisely, we show that a uniform random assignment to the head variables is very
likely to yield a halfspace sign(wT ·xT − θ′) over the tail variables T where |θ′| > ‖wT‖2/(4ε). As
long as the tail variables are pairwise independent, Chebyshev’s inequality implies that the value
wT · xT will be sharply concentrated within [−‖wT‖2/(4ε), +‖wT‖2/(4ε)]. So, for most settings
of the head variables, we get something very close to a constant function over the tail variables.
Since a (L(ε) + 2)-wise independent distribution gives uniform randomness for the head variables
and pairwise independence for the tail variables, bounded independence fools these halfspaces as
well.

The idea behind the proof of the large margin property is that up to the critical index ` – which
in this case is large (` ≥ L(ε)) – the weights (w1, . . . , w`−1) must be decreasing fairly rapidly; this
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implies strong anti-concentration for the distribution of θ′, which yields large margin with good
probability.

The amount of independence required for all three steps to work is max{K(ε), K(ε)+L(ε), L(ε)+
2} = Õ(1/ε2).

Remark 1.3. We remark that the program of the proofs in most subsequent works mentioned above
is very similar to ours – both for halfspaces and for degree-d PTFs. That is, it is first shown how to
fool “regular” functions (i.e. functions such that all variables have “low” influence) and then the
general case is reduced to the regular case.

Univariate approximations to the sign function. As mentioned above, our approach relies on the
existence of low-degree univariate sandwich approximators to the sign function under the normal
distribution on R. Low-degree approximations to the sign function have been studied in both com-
puter science and mathematics (see for instance [51, 22, 35] and the references therein). However
it appears that these results do not fit all our requirements. Below we discuss how our approach
relates to the work of Benjamini et al. [7] and Eremenko and Yuditskii [22].

Benjamini et al. prove that O(1/ε2)-wise independence suffices to fool the majority function,
using machinery from the theory of the classical moment problem. However, their proof seems
to be tailored quite specifically to the majority function, where the moments can be understood in
terms of Krawtchouk polynomials and known bounds on such polynomials can be applied, so it
seems difficult to extend their approach to general halfspaces (or indeed even to slight variants of
the majority function).

Bazzi’s condition on the existence of sandwiching polynomials mentioned above is in fact
both necessary and sufficient for all k-wise independent distributions to fool a function f. Thus
the result of [7] implies the existence of O(1/ε2)-degree multivariate sandwich polynomials for
the majority function; symmetrization then implies that there exist univariate polynomials which,
roughly speaking, provide good sandwich approximation to the function sign(t) under the bino-
mial distribution. This is similar in spirit to the result we establish (mentioned in Step 1 above)
about univariate polynomial approximators, but there is a crucial difference: since the binomial
distribution is supported only on the integers {−n, . . . , n}, it seems difficult to infer much about
the behavior of the univariate polynomial on values outside of {−n, . . . , n}. Hence, it is unclear
whether these polynomials can be used for general (or even regular) halfspaces.

In contrast, we work with the best possible pointwise approximation to the function sign(t)
on the (piecewise) continuous domain [−1,−a] ∪ [a, 1]. This uniform error bound is convenient
for dealing with regular halfspaces; moreover, working with the optimal pointwise approximator
allows us to exploit various properties of optimal approximators that follow from the theory of
Chebyshev approximation, in a way that is crucial for us to obtain the required “univariate sand-
wich approximators.”

We note that a recent work in approximation theory [22] analyzes the error achieved by this
optimal polynomial and in particular establishes the limiting behavior of the error, using tools from
complex analysis. For our purposes, though, we require the error to converge to the limit fairly
rapidly and it is unclear whether the results of [22] guarantee this. We present an error analysis
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which is elementary (it only uses basic approximation theory) and moreover matches the limiting
bounds of [22] up to a constant factor.

Finally, we briefly discuss some other work on polynomial approximations to halfspaces, a
topic that has been studied extensively, motivated by applications to complexity theory and com-
putational learning [48, 51, 34, 33, 35]. Nisan and Szegedy showed that the n-variable OR function
has a pointwise (`∞) approximation of degree O(

√
n) [48], and Paturi showed that such approx-

imations to Majority require degree Ω(n). A beautiful theorem by Peres shows that halfspaces
have noise sensitivity O(

√
ε) [53], improving on an O(ε1/4) bound due to Benjamini et al. [8].

Klivans et al. used this to show that every halfspace has an ε-approximation in `2 of degree O(ε−2)
[34]. We note that while low-degree `2 approximations do imply the existence of low-degree `1

approximations, Benjamini et al. [7] showed that they do not imply the existence of sandwich ap-
proximations: indeed, recursive Majorities of depth 2 have `2 approximations of degree O(ε−4) but
require degree Ω(

√
n) for sandwich approximations. Thus this paper’s results do not follow from

the O(ε−2)-degree `2 approximators of [34].

Organization. In Section 2 we record some useful probabilistic facts. In Sections 3 and 4 we show
how to fool regular halfspaces. First, we discuss how a certain univariate polynomial approximator
to sign(t) yields low-degree sandwich polynomials for regular halfspaces, then in Section 3.1 we
construct the required univariate polynomial, and finally in Section 4 we put everything together
to fool regular halfspaces. We show how to fool non-regular halfspaces in Section 5.

2 Probability Background
We require a few basic facts from probability theory: the Berry-Esséen theorem (a version of the
Central Limit Theorem with explicit error bounds) and the standard tail bounds of Hoeffding and
Chebyshev. We discuss them next.

Theorem 2.1. (Berry-Esséen) Let X1, . . . , Xn be a sequence of independent random variables
satisfying E[Xi] = 0 for all i,

√∑
i E[X2

i ] = σ, and
∑

i E[|Xi|3] = ρ3. Let S = (X1+· · ·+Xn)/σ
and let F denote the cumulative distribution function (cdf) of S. Then

sup
x
|F (x)− Φ(x)| ≤ ρ3/σ

3,

where Φ is the cdf of a standard Gaussian random variable (with mean zero and variance one).

Corollary 2.2. Let x1, . . . , xn denote independent uniformly±1 random signs and let w1, . . . , wn ∈
R. Write σ =

√∑
i w

2
i , and assume |wi|/σ ≤ τ for all i. Then for any interval [a, b] ⊆ R,
∣∣Pr[a ≤ w1x1 + · · ·+ wnxn ≤ b]− Φ([ a

σ
, b

σ
])
∣∣ ≤ 2τ,

where Φ([c, d]) := Φ(d)− Φ(c). In particular,

Pr[a ≤ w1x1 + · · ·+ wnxn ≤ b] ≤ |b− a|
σ

+ 2τ.
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Theorem 2.3 (Hoeffding). Let U denote the uniform distribution on {+1,−1}n. For any w ∈ Rn,
γ > 0, we have Prx←U [w · x ≥ γ‖w‖] ≤ e−γ2/2.

Theorem 2.4 (Chebyshev). For any random variable X with E[X] = µ and Var[X] = σ2 and
any k > 0,

Pr[|X − µ| ≥ kσ] ≤ 1

k2
.

3 Fooling regular halfspaces
Throughout this paper we assume without loss of generality that halfspaces are normalized to
satisfy

∑
i w

2
i = 1. Such a representation can always be obtained by appropriate scaling.

Definition 3.1 (Regular Halfspace). A halfspace f is said to be ε-regular if it can be expressed as
f(x) = sign(w · x− θ) where for all i = 1, . . . , n, we have |wi| ≤ ε.

An ε-regular halfspace f(x) = sign(w · x− θ) has the convenient property that the cumulative
distribution function (cdf) of w·x−θ is everywhere within±O(ε) of the cdf of the shifted Gaussian
N(−θ, 1). This is a direct consequence of the Berry-Esséen theorem (Theorem 2.1). In this section
we show how to fool regular halfspaces. Given ε > 0, we define the following parameters:

a(ε) :=
ε2

C log(1/ε)
,

K(ε) :=
4c log(1

ε
)

a
+ 2 <

5c

a
log(1/ε) = O

(
log2(1/ε)/ε2

)
.

Intuitively, the role of these parameters is that we will construct a univariate degree-K poly-
nomial that is a good approximator to the sign function over [−1/2, 1/2] except for an interval of
width 2a near 0 (see Theorem 3.5 for a precise statement). We assume without loss of generality
that ε is a sufficiently small power of 2 (i.e., ε = 2−i for some integer i). The positive constants C
and c will be chosen later; but (with foresight), we will require that C À c.

Theorem 3.2 (Fooling ε-regular halfspaces). Any K(ε)-wise independent distribution fools ε-
regular halfspaces with error 12ε.

To prove the theorem we construct certain “sandwiching” polynomials. We now define such
polynomials and then explain why they are sufficient for our purposes.

Definition 3.3. Let f : {−1, +1}n → {−1, +1} be a Boolean function. A pair of real-valued
polynomials q`(x1, . . . , xn), qu(x1, . . . , xn) are said to be ε-sandwich polynomials of degree k for
f if they have the following properties:

• deg(qu), deg(q`) ≤ k;

• qu(x) ≥ f(x) ≥ q`(x) for all x ∈ {−1, +1}n;

• Ex←U [qu(x)− f(x)] ≤ ε and Ex←U [f(x)− q`(x)] ≤ ε.
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The following fact proved via LP-duality relates sandwiching polynomials to fooling [5]. We
only use the “if” direction of this lemma, which follows easily by linearity of expectation.

Lemma 3.4 (Bazzi). Let f : {−1, +1}n → {−1, +1} be a Boolean function. Every k-wise
independent distribution ε-fools f if and only if there exist ε-sandwich polynomials of degree k for
f .

The crux of our construction of sandwiching polynomials for regular halfspaces is good uni-
variate approximations to the sign function:

Theorem 3.5. Let 0 < ε < 0.1 and let a and K be as defined above. There is a univariate
polynomial P (t) such that deg(P ) ≤ K with the following properties:

(1) P (t) ≥ sign(t) ≥ −P (−t) for all t ∈ R;

(2) P (t) ∈ [sign(t), sign(t) + ε] for t ∈ [−1/2,−2a]
⋃

[0, 1/2];

(3) P (t) ∈ [−1, 1 + ε] for t ∈ (−2a, 0);

(4) |P (t)| ≤ 2 · (4t)K for all |t| ≥ 1/2.

Property (1) says that P (t) is an upper sandwich to the sign function. By property (2), P gives
a point-wise approximation with error ε in the interval [−1/2, 1/2], except for the interval [−2a, 0]
where it has error at most 2 + ε by property (3). For t ≥ 1

2
, property (4) bounds how rapidly

P (t) grows. For a qualitative depiction of P we refer the reader to Figure 1 (this figure is not an
actual plot, it is intended to illustrate the behavior of P on various intervals; also the parameter
1/2 is replaced by 1 − a ≥ 1/2 for later needs). Before constructing P , we outline the proof of
Theorem 3.2 using the polynomial P ; the full proof is in Section 4.

Figure 1: Qualitative plot of polynomial P .
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Overview of the proof of Theorem 3.2. Let h(x) = sign(w · x − θ) be an ε-regular halfspace,
and assume that |θ| is small (the case where |θ| is large is simpler). Let us define

t :=
w · x− θ

Z

where we choose the scaling factor Z to be Θ̃(ε−1). We use qu(x) = P (t) and q`(x) = −P (−t)
as the upper and lower sandwich polynomials respectively. The sandwiching property is easy to
verify, the crux is to bound Ex[qu(x)− h(x)]. We do this by case analysis.

(1) If t lies in the interval [−2a, 0] then, although the error qu(x) − h(x) may be large, by
our choice of Z it must be the case that w · x lands in an interval of length O(ε). By the anti-
concentration of w · x (which is a consequence of the ε-regularity of w), this only happens with
probability O(ε). Thus the contribution to Ex[qu(x)− h(x)] from this event is O(ε).

(2) In the event that t lies in [−1/2, 1/2] \ [−2a, 0], the pointwise error qu(x)− h(x) is at most
ε because, by Property (2), P gives a good pointwise approximation to the sign function in this
range. So this event contributes at most O(ε) to Ex[qu(x)− h(x)].

(3) Finally, the event that the input t has absolute value bigger than 1/2 corresponds to the
event that |w · x − θ| ≥ Z/2. Since

∑
i w

2
i = 1, |θ| is small, and Z is Θ̃(ε−1), we can bound this

probability using the Hoeffding bound. In this event, the pointwise error is large but we can bound
it from above using Property (4). Our choice of parameters ensures that the Hoeffding bound
dominates the growth of the polynomial P , so that the contribution to Ex[qu(x)− h(x)] is again at
most O(ε).

Thus, overall Ex[qu(x)− h(x)] = O(ε). One can similarly bound the error of q`.

3.1 Constructing P

This section contains our proof of Theorem 3.5. The key step is to exhibit a low-degree univariate
polynomial that approximates sign(t) well when |t| ∈ [a, 1] and is well-behaved even for larger
values of |t| to be compatible with the sandwich condition. We phrase this as a problem in uni-
variate approximation. The solution we use is a low-degree polynomial p(t) which is an optimal
pointwise approximator to sign(t) on [−1,−a] ∪ [a, 1]. Such an optimal polynomial exists and
we prove that it is well-behaved for large |t|, using ideas from classical approximation theory.
However, it seems difficult to construct this polynomial explicitly and bound its error.

Recent work by [22] analyzes the error achieved by such a polynomial and in particular estab-
lishes the limiting behavior of the error function. For our purposes, though, we require the error to
converge to the limit fairly rapidly and it is unclear whether the results of [22] guarantee this.

Instead, we bound the error by constructing a small error approximator q(t) using Jackson’s
theorem together with standard amplification ideas. While q(t) might not be well-behaved for
large values of t, we only use it to bound from above the error of p(t) on [−1,−a] ∪ [a, 1]. Our
approach has the advantage of being fairly elementary (using only standard ingredients from basic
approximation theory) and matches the limiting bounds of [22] up to a constant factor.

For a bounded continuous function f : [−1, 1] → R, we define its modulus of continuity ωf (δ)
as

ωf (δ) := sup{|f(x)− f(y)| : x, y ∈ [−1, 1]; |x− y| ≤ δ}.

9



A classical result of Dunham Jackson from the early twentieth century bounds the error of the best
degree-` approximation to f .

Theorem 3.6. (Jackson’s Theorem) [11, Page 104], [13]. For f as above and any integer ` ≥ 1,
there exists a polynomial J(t) with deg(J) ≤ ` so that

max
t∈[−1,1]

|J(t)− f(t)| ≤ 6ωf

(
1

`

)
.

Recall the parameter a = ε2

C log(1/ε)
. We now define m := c log(1/ε)

a
. It will be crucial for us that

m is even (see in particular the last paragraph in the proof of Theorem 3.10.); for this condition to
be satisfied, it is of course enough that c is even. (We also note that the parameters K and m are
such that K = 4m + 2.)

Lemma 3.7. For a,m as above, there is a polynomial q(t) of degree at most 2m such that

max
|t|∈[a,1]

|q(t)− sign(t)| ≤ ε2.

Proof. Define the piecewise linear continuous function f(t) as

f(t) =

{
sign(t) a ≤ |t| ≤ 1

t/a |t| ≤ a.

Thus f(t) increases linearly from −1 to 1 in the range [−a, a]. A simple calculation yields that
ωf (

1
`
) = 1/(a`). Taking ` = 25/a, Jackson’s theorem gives a polynomial J(t) of degree at most `

such that
max

a≤|t|≤1
|J(t)− sign(t)| ≤ max

t∈[−1,1]
|J(t)− f(t)| ≤ 6

a`
<

1

4
.

Our goal is to bring the error down to ε2. Rather than using Jackson’s theorem for this (which
would require degree Õ(ε−4)), we use the degree-k amplifying polynomial

Ak(u) :=
∑

j≥ k
2

(
k

j

) (
1 + u

2

)j (
1− u

2

)k−j

. (1)

Direct inspection shows that for u ∈ [−1, 1], the value of Ak(u) equals Pr[X ≥ k/2] where
X is a random variable distributed as a sum of k i.i.d. Bernoulli (0/1) random variables each of
which has expected value 1+u

2
. The polynomial Ak(u) has the following properties (easily proved

via elementary calculation and also following from the Chernoff bound):

Claim 3.8. The polynomial Ak(u) satisfies:

1. If u ∈ [3/5, 1], then 2Ak(u)− 1 ∈ [1− 2e−k/6, 1].

2. If u ∈ [−1,−3/5], then 2Ak(u)− 1 ∈ [−1,−1 + 2e−k/6].

10



We define the polynomial

q(t) := 2Ak

(
4

5
J(t)

)
− 1

where k = 15 log(1/ε). Scaling J(t) by 4
5

ensures that the argument to Ak lies in the range
[−1,−3/5] ∪ [3/5, 1] whenever |t| ∈ [a, 1]. Applying Claim 3.8 with k = 15 log(1/ε) gives

max
|t|∈[a,1]

|q(t)− sign(t)| < 2e−k/6 < ε2.

Finally, by selecting c large enough, we have

deg(q) ≤ deg(J) deg(Ak)

≤ 25

a
· 15 log(1/ε) <

2c

a
log(1/ε) = 2m.

We use Chebyshev’s classical theorem on (weighted) real polynomial approximation.

Theorem 3.9. (Chebyshev’s Theorem) [1, Page 55]. Let f : [a, b] → R be a continuous function.
Let s : [a, b] → R be a continuous function that does not vanish on [a, b]. The polynomial r(z) of
degree m that minimizes

M(m) = max
z∈[a,b]

|f(z)− s(z)r(z)|
is unique, and it is characterized by the property that there exist m + 2 points a ≤ z0 < z1 · · · <
zm+1 ≤ b such that for each zi

M(m) = |f(zi)− s(zi)r(zi)|
and the sign of the error at the zi’s alternates.

Figure 2: Qualitative representation of polynomial p.
We now present the “well-behaved” polynomial p(t) mentioned at the beginning of this section.

To help the reader visualize p(t), we provide a schematic representation in Figure 2. (As before,
this figure is not an actual plot, but rather is intended to illustrate the behavior of p on various
intervals.)
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Theorem 3.10. Let a and m be as previously specified. There is a univariate polynomial p(t)
where deg(p) ≤ 2m + 1 such that:

1. p(t) ∈ [sign(t)− ε2, sign(t) + ε2] for all |t| ∈ [a, 1];

2. p(t) ∈ [−(1 + ε2), 1 + ε2] for all t ∈ [−a, a];

3. p(t) is monotonically increasing on the intervals (−∞,−1] and [1,∞).

Proof. Intuitively, the polynomial p is the “best possible” approximator to the function sign. How-
ever, some care is required because the function sign is not continuous. We present an analysis that
assumes no background in approximation theory.

Invoking Theorem 3.9, let r(z) be the polynomial of degree m that minimizes

max
z∈[a2,1]

|√zr(z)− 1|.

Define p(t) := t · r(t2).
Bounding the error of p(t) for |t| ∈ [a, 1]: A polynomial p∗(t) is odd if the coefficients of the

even powers of t are 0; it can be written as p∗(t) = t · r∗(t2). Note that

max
|t|∈[a,1]

|p∗(t)− sign(t)| = max
|t|∈[a,1]

|t · r∗(t2)− sign(t)|
= max

z∈[a2,1]
|√z · r∗(z)− 1|. (2)

By Theorem 3.6 there exists a polynomial p∗(t) of degree 2m ≤ 2m + 1 such that

max
|t|∈[a,1]

|p∗(t)− sign(t)| ≤ ε2.

We can assume that p∗(t) is odd, for else we can replace it by the odd polynomial (p∗(t)−p∗(−t))/2
whose error is no worse. Therefore we can write p∗(t) = t ·r∗(t2). Using Equation 2, the definition
of r, and the property of p∗ above, we can now bound the error of p as follows:

max
|t|∈[a,1]

|p(t)− sign(t)| = max
z∈[a2,1]

|√z · r(z)− 1|

≤ max
z∈[a2,1]

|√z · r∗(z)− 1| = max
|t|∈[a,1]

|p∗(t)− sign(t)| ≤ ε2.

This concludes the proof of Property (1).
Other properties of p: By Theorem 3.9 we find that there is a sequence of points

a2 ≤ z0 < z1 . . . < zm+1 ≤ 1

so that the error
√

zr(z)− 1 achieves its maximum magnitude exactly at the points zi, and the sign
of the error alternates. Set ti =

√
zi > 0 so that a ≤ t0 < t1 . . . < tm+1 ≤ 1. Let φ(t) be the error

function φ(t) = p(t)− sign(t). Note that for t ≥ a, we have

φ(t) = p(t)− 1, and
φ(−t) = p(−t)− (−1) = −p(t) + 1 = −φ(t).
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In particular, for each ti we have |φ(ti)| = |φ(−ti)|.
Now consider the interval [a, 1], on which φ(t) = p(t) − 1. Note that φ′(t) is well de-

fined and equals p′(t) at any point in (a, 1). The points t1, . . . , tm lie in (a, 1) and they are lo-
cal maxima/minima, since φ(t) cannot increase in magnitude in the neighborhood of ti. Thus
φ′(ti) = p′(ti) = 0 for each i ∈ [m]. Similarly, we can show that φ′(−ti) = p′(−ti) = 0 for
i ∈ [m]. But deg(p′) is at most 2m, and so we have located all its roots. As we now show, this
allows us to determine the sign of p in the intervals [−∞,−1], [−a, a] and [1,∞].

Note that p(t1) is close to 1 whereas p(−t1) is close to −1, and thus p increases monotonically
in the interval (−t1, t1) which includes [−a, a]. This gives Property (2). Also t1 is a local maximum
for p, which shows that the ti’s are maxima when i is odd, and minima when i is even. Thus, since
m is even, p(tm) is a local minimum, so p(t) increase monotonically in the range (tm,∞), which
includes [1,∞). Since p(t) is odd, this also implies that p(t) is monotonically increasing in the
range (−∞,−tm) which contains (−∞,−1]. This gives Property (3).

Using the polynomial p(t), we construct the polynomial P (t) which is a good “upper” approx-
imator to sign(t) (i.e. P (t) ≥ sign(t) for all t), completing the proof of Theorem 3.5.

Proof of Theorem 3.5. Let p denote the polynomial of degree 2m+1 from Theorem 3.10. Consider
the following polynomial:

P (t) =
1

2
(1 + ε2 + p(t + a))2 − 1.

Note that deg(P ) = 2 deg(p) ≤ K. We now consider the behavior of P on the relevant intervals.
We repeatedly use the inequality 1

2
(2+2ε2)2−1 = 1+4ε2 +2ε4 ≤ 1+ ε which holds since ε < 1

10
.

Note that P (t) ≥ −1 holds for all t. We now analyze the behavior of P (t) interval by interval:

(a) t ∈ [−1− a,−2a]. Here p(t + a) ∈ [−1− ε2,−1 + ε2], hence P (t) ∈ [−1,−1 + ε].

(b) t ∈ (−2a, 0). Here p(t + a) ∈ [−1− ε2, 1 + ε2], hence P (t) ∈ [−1, 1 + ε].

(c) t ∈ [0, 1− a]. Here p(t + a) ∈ [1− ε2, 1 + ε2], hence P (t) ∈ [1, 1 + ε].

(d) t ∈ (1− a,∞]. Here p(t + a) ≥ 1− ε2, hence P (t) ≥ 1.

This shows that P (t) ≥ sign(t) for all t ∈ R. Thus we also have

P (−t) ≥ sign(−t) ⇒ sign(t) ≥ −P (−t)

which establishes Property (1). Properties (2) and (3) follow immediately from (a), (b) and (c)
above.

For Property (4), we use the following standard fact from approximation theory.

Fact 3.11. [11, Page 61], [56]. Let a(t) be a polynomial of degree at most d for which |a(t)| ≤ b
in the interval [−1, 1]. Then |a(t)| ≤ b|2t|d for all |t| ≥ 1.

Taking a(t) to be P (t/2), properties (2) and (3) give us that |P (t/2)| ≤ 2 for t ∈ [−1, 1]. So
the fact gives |P (t/2)| < 2|2t|4m+2 for |t| ≥ 1, i.e. |P (t)| < 2|4t|4m+2 for |t| ≥ 1/2. Theorem 3.5
is proved.
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4 Proof of Theorem 3.2
In this section we prove Theorem 3.2: any K(ε)-wise independent distribution fools ε-regular half-
spaces with error 12ε. In light of Lemma 3.4, it is sufficient to exhibit sandwiching polynomials.
For this, we use our univariate polynomial approximator P from the previous section.

Let h(x) = sign(w · x− θ) be an ε-regular halfspace (and recall
∑

i w
2
i = 1.) Let

Z :=
ε

2a
=

C log(1/ε)

2ε
.

We break the analysis into the following two cases, based on the magnitude of the threshold θ.

4.1 |θ| is small (|θ| ≤ Z/4)
The sandwich polynomials we use are:

qu(x) := P

(
w · x− θ

Z

)
, ql(x) := −P

(
θ − w · x

Z

)
. (3)

First, observe that for every x ∈ {−1, +1}n we have

qu(x) ≥ h(x) ≥ ql(x).

This is because from Theorem 3.5 with t = (w · x− θ)/Z we get

qu(x) ≥ sign

(
w · x− θ

Z

)
= sign(w · x− θ) = h(x) ≥ ql(x).

In the rest of this section we bound the error of the approximation.

Lemma 4.1. Ex[qu(x)− h(x)] < 10ε.

Proof. Define the random variable H(x) = (w · x − θ)/Z. We prove the desired upper bound by
partitioning the space into three events and bounding the contribution from each:

1. S1 is the event that H(x) ∈ [−ε/Z, 0].

2. S2 is the event that |H(x)| ≤ 1/2, but S1 does not happen.

3. S3 is the event that |H(x)| > 1/2.

We have

Ex[qu(x)− h(x)] =
3∑

i=1

Pr
x

[Si]Ex[qu(x)− h(x)|Si].
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Case 1: In this case, the pointwise error is moderate – at most (2 + ε) – and we use gaussian
anti-concentration to argue that the event has small probability mass. The event H(x) ∈ [−ε/Z, 0]
implies that

w · x− θ

Z
∈ [−2a, 0] ⇒ qu(x) ≤ 1 + ε

⇒ qu(x)− h(x) ≤ 2 + ε,

using Item (3) in Theorem 3.5.
Since h is ε-regular, from Corollary 2.2 it follows that Prx[H(x) ∈ [−ε/Z, 0]] ≤ 3ε. So,

Pr
x

[S1]Ex[qu(x)− h(x)|S1] ≤ (2 + ε) · 3ε < 8ε.

Case 2: This event has high probability, but in this range we get good pointwise approxima-
tion. The event S2 implies that

H(x) ∈ [−1/2, 1/2] \ [−2a, 0] ⇒ qu(x) ≤ h(x) + ε

⇒ qu(x)− h(x) ≤ ε,

where we used Item (2)in Theorem 3.5. So,

Pr
x

[S2]Ex[qu(x)− h(x)|S2] ≤ 1 · ε ≤ ε.

Case 3: Here we trade off the large magnitude of error (Item (4) in Theorem 3.5) with the
small probability of the event (bounded by the Hoeffding bound). Define the intervals

I+
j =

[
j

2
,
(j + 1)

2

)
for j = 1, 2, . . .

I−k =

(−(k + 1)

2
,
−k

2

]
for k = 1, 2, . . . .

We can write

Pr
x

[S3]Ex[qu(x)− h(x)|S3] =
∑
j≥1

Pr
x

[H(x) ∈ I+
j ]Ex[qu(x)− h(x)|H(x) ∈ I+

j ]

+
∑

k≥1

Pr
x

[H(x) ∈ I−k ]Ex[qu(x)− h(x)|H(x) ∈ I−k ]. (4)

Fix any integer j ≥ 1. If H(x) ∈ I+
j , then

j

2
≤ H(x) <

j + 1

2
.

15



Recalling that we have |P (t)| ≤ 2 · (4t)K for t ≥ 1/2, we get that

qu(x) = P (H(x)) ≤ 2(2j + 2)K .

Since h(x) = 1, we get

qu(x)− h(x) = q(x)− 1 ≤ 2(2j + 2)K − 1. (5)

Next we bound Prx[H(x) ∈ I+
j ] using the Hoeffding bound.

Pr[H(x) ∈ I+
j ] ≤ Pr

x

[
w · x− θ ≥ jZ

2

]

≤ Pr
x

[
w · x ≥ jZ

4

]
≤ e−j2Z2/32 (6)

where the second inequality uses the fact that |θ| ≤ Z/4.
The analysis of the intervals I−k is similar (except h(x) = −1). For H(x) ∈ I−k we get

|H(x)| ≤ k + 1

2
⇒ qu(x) ≤ 2(2k + 2)K

⇒ qu(x)− h(x) ≤ 2(2k + 2)K + 1. (7)

Similarly, the Hoeffding bound gives

Pr[H(x) ∈ I−k ] ≤ Pr
x

[
w · x− θ ≤ −kZ

2

]

≤ Pr
x

[
w · x ≤ −kZ

4

]
≤ e−k2Z2/32. (8)

Plugging equations (5), (6), (7), (8) back into (4), we get

Pr
x

[S3]Ex[qu(x)− h(x)|S3] ≤
∑
j≥1

2(2j + 2)K − 1

ej2Z2/32
+

∑

k≥1

2(2k + 2)K + 1

ek2Z2/32

= 4
∑
j≥1

(2j + 2)K

ej2Z2/32
< 4

∑
j≥1

ej(2K−Z2/32),

where the last inequality follows by noting that, for j ≥ 1, (2j+2)K < e2Kj and ej2Z2/32 ≥ ejZ2/32.
But now observe that

2K − Z2

32
<

C log2(1/ε)

ε2

(
10c− C

128

)
.

For a suitable choice of C À c, we have that 10c− C/128 ≤ −1, so

Pr
x

[S3]Ex[qu(x)− h(x)|S3] < 4
∑

j

e−jC
log2(1/ε)

ε2 < ε.

Thus overall, we have Ex[qu(x)− h(x)] ≤ 10ε.
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The lower sandwich bound follows by symmetry:

Lemma 4.2. Ex[h(x)− ql(x)] < 10ε.

Proof. Since ql(x) ≤ h(x) for every x, we also have −h(x) ≤ −ql(x). Thus

−ql(x) = P

(
θ − w · x

Z

)

is an upper sandwich for the function −h(x) = sign(θ − w · x). As this does not change the
magnitude of θ, we can apply the analysis of Lemma 4.1 to conclude that
Ex[h(x)− ql(x)] = Ex[−ql(x)− (−h(x))] < 10ε.

4.2 |θ| is large (|θ| > Z/4)
We assume for simplicity that θ ≥ Z/4 (the case when θ is negative is handled similarly). The
sandwich polynomials we use are:

ru(x) = P

(
w · x− Z/4

Z

)
, rl(x) = −1. (9)

Lemma 4.3. h(x) ≥ rl(x) for all x ∈ {−1, +1}n. Further, Ex[h(x)− rl(x)] ≤ 2ε.

Proof. Note that Ex[h(x) − rl(x)] = 2 Prx[h(x) = 1]. For large enough C we have Prx[h(x) =
1] = Prx[w · x ≥ θ] < e−Z2/32 < ε.

Lemma 4.4. ru(x) ≥ h(x) for all x ∈ {−1, +1}n. Further, Ex[ru(x)− h(x)] ≤ 12ε.

Proof. Observe that ru(x) is the upper sandwich polynomial for the halfspace h′(x) = sign(w ·
x− Z/4) as specified in Section 4.1. Thus we have ru(x) ≥ h′(x) ≥ h(x) hence

Ex[ru(x)− h(x)] = Ex[ru(x)− h′(x)] + Ex[h
′(x)− h(x)].

By Lemma 4.1, Ex[ru(x)− h′(x)] ≤ 10ε whereas by the Hoeffding bound Ex[h
′(x)− h(x)] ≤ 2ε

which completes the proof.

5 Fooling non-regular halfspaces
In this section we show how to fool halfspaces that are not regular. We proceed by case analysis
based on the critical index of the halfspace, which we define shortly. Throughout this section we
assume that the weights of the halfspace are decreasing:

|w1| ≥ |w2| . . . ≥ |wn|.
We can assume this without loss of generality because we are going to prove that, for a suitable
k, any k-wise independent distribution fools such halfspaces, and the property of being k-wise
independent is clearly invariant under permutation of the variables.

Some notation: For T ⊆ [n] we denote by σT the quantity σT :=
√∑

i∈T w2
i . For k ∈ [n] we

also write σk for σ{k,k+1,...,n}.
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Definition 5.1 (Critical index). We define the τ -critical index `(τ) of a halfspace h = sign(w·x−θ)
as the smallest index i ∈ [n] for which

|wi| ≤ τ · σi.

If this inequality does not hold for any i ∈ [n], we define `(τ) = ∞.

Note that a halfspace is τ -regular if `(τ) = 1; in this section we handle the case `(τ) > 1.
We assume without loss of generality that ε is sufficiently small. Given ε, our threshold for the

critical index is

L(ε) :=
8 log2(10/ε)

ε2
.

We argue separately depending on whether `(ε) > L(ε) or not. Both proofs rely on the following
simple property of k-wise independent distributions.

Fact 5.2. Let D be a k-wise independent distribution over {−1, +1}n. Condition on any fixed
values for any t ≤ k bits of D, and let D′ be the projection of D on the other n − t bits. Then D′

is (k − t)-wise independent.

The first theorem addresses the simpler case when `(ε) ≤ L(ε).

Theorem 5.3 (Fooling non-regular halfspaces with small critical index). Let h(x) be a halfspace
with ε-critical index `(ε) ≤ L(ε). Then any (K(ε)+L(ε))-wise independent distribution O(ε)-fools
h.

Proof. Condition on any setting to the first ` − 1 variables. Each of these defines a halfspace of
the form

h′(x) = sign

(∑

i≥`

wixi − θ′
)

where θ′ depends on the values assigned to the head. Every such halfspace is ε-regular by the
definition of ε-critical index. Also, the conditional distribution on the remaining variables is K(ε)-
wise independent by Fact 5.2. Thus, Theorem 3.2 implies that we fool h′ with error ε. Since both
the uniform distribution and D induce the same (uniform) distribution on the first `− 1 variables,
an averaging argument concludes the proof of the theorem.

In the rest of this section we study the case of large critical index `(ε) > L(ε), and prove the
following theorem.

Theorem 5.4 (Fooling non-regular halfspaces with large critical index). Let h(x) be a halfspace
with critical index `(ε) > L(ε). Any (L(ε) + 2)-wise independent distribution D fools h with error
9ε.
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To prove Theorem 5.4 we partition the coordinate set [n] into a head H consisting of the first
L(ε) coordinates, and a tail T = [n] \H consisting of the rest. We then show that a random setting
of the head variables induces with high probability a partial sum

∑
i∈H wixi − θ which is so large

in magnitude that the values of the tail variables are essentially irrelevant, in the sense that they are
very unlikely to change the sign of w · x− θ and hence the value of the halfspace.

We will show that this statement holds both for the uniform distribution and for the distribution
D with limited independence. For the latter we will use that after restricting the variables in the
head we still have a 2-wise independent distribution on the tail (by Fact 5.2), which is enough for
Chebyshev’s concentration bound to apply. To show that the partial sum is likely to be large we
use ideas from [57], in particular that the weights decrease geometrically up to the critical index.

We partition the coordinate set [n] into a head H consisting of the first L(ε) coordinates, and a
tail T = [n] \H consisting of the rest. Any fixing of the variables in H results in a halfspace

h′(xT ) := sign

(∑
i∈T

wixi − θ′H

)

over the tail variables xT where
θ′H := θ −

∑
i∈H

wixi.

As discussed before, our goal is to show that, for a random setting of the head variables, θ′H is
likely to be so large in magnitude that the value of the tail sum

∑
i∈T wixi is unlikely to influence

the outcome of h(x). The key idea here is the following lemma from [57] showing that the weights
decrease geometrically up to the critical index.

Lemma 5.5. For any 1 ≤ i < j ≤ ` + 1 we have

|wj| ≤ σj <
(√

1− ε2
)j−i

σi ≤
(√

1− ε2
)j−i

|wi|/ε.

In particular, if j ≥ i + (4/ε2) ln(1/ε) then

|wj| ≤ |wi|/3.

Proof. For any k ≤ `, we have by the definition of ε-critical index that

w2
k > ε2σ2

k.

Hence
σ2

k+1 = σ2
k − w2

k < (1− ε2)σ2
k.

Repeating this calculation yields
σ2

j < (1− ε2)j−iσ2
i .

To conclude the first chain of inequalities in the statement of the lemma, use again σ2
i < w2

i /ε
2

and the obvious inequality σ2
j ≥ w2

j . The “in particular” part can be verified by straightforward
calculation, using that ε is sufficiently small.
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Now consider the set of
t := log(10/ε)

“nicely separated” coordinates (variables)

G := {ki := 1 + i · (4/ε2
)
ln(1/ε) : i = 0, 1, . . . , t− 1} ⊆ H.

Observe that indeed G ⊆ H because the maximum index in G is at most 1 + t · (4/ε2) log(1/ε) ≤
(4/ε2) log2(10/ε), whereas H consists of all the first L(ε) = (8/ε2) log2(10/ε) indices. The key
features of G are that we can apply the ‘in particular” part of Lemma 5.5 and prove the following
claim.

Claim 5.6. σT < ε|wkt|.
Proof. By our choice of L(ε), t, and kt, we have

L(ε)− kt ≥ 8 log2(10/ε)/ε2 − 4 log2(10/ε)/ε2 ≥ log2(1/ε)/ε2.

An application of Lemma 5.5 gives

σT <
√

1− ε2
log2(1/ε)/ε2|wkt |/ε ≤ ε2|wkt|/ε = ε|wkt |

where we use that ε is sufficiently small.

We now show that a random setting of H is likely to result in a value of |θ′H | which is at least
|wkt |/4. The proof relies on the following claim.

Claim 5.7. Let v1 > v2 > · · · > vt > 0 be a sequence of numbers so that vi+1 ≤ vi/3. Then for
any two points x 6= y ∈ {−1, +1}t, we have |v · x− v · y| ≥ vt.

Proof. Let z := x − y ∈ {−2, 0, 2}t, which is not zero. Let j ≤ t be the smallest index such that
zj 6= 0. Then

|v · x− v · y| = |v · z| = |
∑
i≥j

vizi| ≥ |vjzj| −
∑
i>j

|vizi| ≥ 2(vj −
∑
i>j

vi)

≥ 2(vj −
∑
i>j

vj

3i−j
) ≥ 2(vj − vj/2) = vj ≥ vt,

using vi ≤ vj/3
i−j by assumption.

We are now ready to show our intended lemma:

Lemma 5.8. Prxi:i∈H

[∣∣θ −∑
i∈H wixi

∣∣ ≤ |wkt|/4
] ≤ ε/10.
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Proof. Fix any assignment to the variables in H \G. For this fixing, the event |θ−∑
i∈H wixi| ≤

|wkt |/4 happens only if

∑
i∈G

wixi ∈

θ −

∑

i∈H\G
wixi − |wkt |/4, θ −

∑

i∈H\G
wixi + |wkt|/4


 ,

i.e.,
∑

i∈G wixi falls in an interval of length |wkt|/2. Applying Claim 5.7 to the weights in G, any
two possible outcomes of

∑
i∈G wixi differ by at least |wkt |. So there is at most one setting xk1 =

a1, . . . , xkt = at of the variables in G for which this event occurs. This setting has probability at
most 2−t = ε/10.

With this lemma in hand, we can show that limited independence suffices to fool halfspaces
with a large critical index.

Proof of Theorem 5.4. We compare the behavior of h(x) on D and the uniform distribution U . In
either case, the marginal distribution for the variables in H is uniform. For each setting of these
variables, we are left with a halfspace of the form h′(xT ) = sign(

∑
i∈T wixi−θ′H) on the variables

in T . The combination of Lemma 5.8 and Claim 5.6 shows that with probability at least 1− ε/10
we have

|θ −
∑
i∈H

wi · xi| ≥ |wkt |
4

≥ σT

4ε
. (?)

We condition on this event (?). Consider the projections U ′ and D′ of U and D on xT . By
Fact 5.2, D′ is 2-wise independent. We now argue that for both U ′ and D′, it is very likely that
h′(xT ) = −sign(θ′H) (for small enough ε). Indeed if this does not happen, then we have

|
∑
i∈T

wixi| ≥ |θ −
∑
i∈H

wi · xi| ≥ |wkt|
4

≥ σT

4ε
.

Under the uniform distribution, by a Hoeffding bound (Theorem 2.3), the probability of this
event is bounded by

Pr
x∼U ′

[∣∣∣∣∣
∑
i∈T

wixi

∣∣∣∣∣ ≥
σT

4ε

]
≤ 2e−

1
32ε2 ¿ 4ε.

While by Chebyshev’s inequality (Theorem 2.4) we get

Pr
x∼D′

[∣∣∣∣∣
∑
i∈T

wixi

∣∣∣∣∣ ≥
σT

4ε

]
≤ 16ε2 ≤ 4ε.

Thus, we have

|ED′ [h′(xT )]− EU ′ [h′(xT )]| ≤ 2|Pr
D′

[h′(xT ) = −sign(θ′H)]− Pr
U ′

[h′(xT ) = −sign(θ′H)]| ≤ 8ε.

To conclude, our goal was to bound from above |EU [h(x)] − ED[h(x)]|. Using the fact that
both distributions induce the uniform distribution on variables in H , and conditioning on the event
(?), we get

|EU [h(x)]− ED[h(x)]| ≤ 8ε + 2 · ε/10 < 9ε.
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5.1 Proof of the main theorem
For completeness in this section we summarize what is needed to prove our main theorem.

Theorem 1.2 (Main). (Restated.) Let D be a k-wise independent distribution on {−1, +1}n, and
let h : {−1, +1}n → {−1, +1} be a halfspace. Then D fools h with error ε, i.e.,

|Ex←D[h(x)]− Ex←U [h(x)]| ≤ ε, provided k ≥ C

ε2
log2(

1

ε
),

where C is an absolute constant and U is the uniform distribution over {−1, +1}n.

Proof. Consider the parameters K(ε), L(ε) defined in Sections 3 and 5, respectively, and recall
that they are both O(log2(1/ε)/ε2). For a given halfspace, consider its critical index `. If ` ≤ L(ε)
we apply Theorem 5.3, otherwise we apply Theorem 5.4.
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