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Abstract. This paper makes two contributions towards determining some well-studied optimal
constants in Fourier analysis of Boolean functions and high-dimensional geometry.

1. It has been known since 1994 [14] that every linear threshold function has squared Fourier
mass at least 1/2 on its degree-0 and degree-1 coefficients. Denote the minimum such
Fourier mass by W≤1[LTF], where the minimum is taken over all n-variable linear thresh-
old functions and all n ≥ 0. Benjamini, Kalai and Schramm [4] have conjectured that the
true value of W≤1[LTF] is 2/π. We make progress on this conjecture by proving that
W≤1[LTF] ≥ 1/2 + c for some absolute constant c > 0. The key ingredient in our proof
is a “robust” version of the well-known Khintchine inequality in functional analysis, which
we believe may be of independent interest.

2. We give an algorithm with the following property: given any η > 0, the algorithm runs in
time 2poly(1/η) and determines the value of W≤1[LTF] up to an additive error of ±η. We
give a similar 2poly(1/η)-time algorithm to determine Tomaszewski’s constant to within an
additive error of ±η; this is the minimum (over all origin-centered hyperplanes H) fraction
of points in {−1, 1}n that lie within Euclidean distance 1 of H. Tomaszewski’s constant is
conjectured to be 1/2; lower bounds on it have been given by Holzman and Kleitman [19]
and independently by Ben-Tal, Nemirovski and Roos [3]. Our algorithms combine tools
from anti-concentration of sums of independent random variables, Fourier analysis, and
Hermite analysis of linear threshold functions.

1. Introduction. This paper is inspired by a belief that simple mathematical
objects should be well understood. We study two closely related kinds of simple
objects: n-dimensional linear threshold functions f(x) = sign(w · x − θ), and n-
dimensional origin-centered hyperplanes H = {x ∈ Rn : w · x = 0}. Benjamini, Kalai
and Schramm [4] and Tomaszewski [15] have posed the question of determining two
universal constants related to halfspaces and origin-centered hyperplanes respectively;
we refer to these quantities as “the BKS constant” and “Tomaszewski’s constant.”
While these constants arise in various contexts including uniform-distribution learning
and optimization theory, little progress has been made on determining their actual
values over the past twenty years. In both cases there is an easy upper bound which is
conjectured to be the correct value; Gotsman and Linial [14] gave the best previously
known lower bound on the BKS constant in 1994, and Holzmann and Kleitman [19]
gave the best known lower bound on Tomaszewski’s constant in 1992.

We give two main results. The first of these is an improved lower bound on the
BKS constant; a key ingredient in the proof is a “robust” version of the well-known
Khintchine inequality, which we believe may be of independent interest. Our second
main result is a pair of algorithms for computing the BKS constant and Tomaszewski’s
constant up to any prescribed accuracy. The first algorithm, given any η > 0, runs
in time 2poly(1/η) and computes the BKS constant up to an additive η, and the sec-
ond algorithm runs in time 2poly(1/η) and has the same performance guarantee for
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Tomaszewski’s constant.

1.1. Background and problem statements.

First problem: low-degree Fourier weight of linear threshold functions. A
linear threshold function, henceforth denoted simply LTF, is a function f : {−1, 1}n →
{−1, 1} of the form f(x) = sign(w · x − θ) where w ∈ Rn and θ ∈ R (the univariate
function sign : R → R is sign(z) = 1 for z ≥ 0 and sign(z) = −1 for z < 0). The
values w1, . . . , wn are the weights and θ is the threshold. Linear threshold functions
play a central role in many areas of computer science such as concrete complexity
theory and machine learning, see e.g. [9] and the references therein.

It is well known [4, 31] that LTFs are highly noise-stable, and hence they must
have a large amount of Fourier weight at low degrees. For f : {−1, 1}n → R and
k ∈ [0, n] let us define Wk[f ] =

∑
S⊆[n],|S|=k f̂

2(S) and W≤k[f ] =
∑k
j=0 Wj [f ];

we will be particularly interested in the Fourier weight of LTFs at levels 0 and 1.
More precisely, for n ∈ N let LTFn denote the set of all n-dimensional LTFs, and let
LTF = ∪∞n=1LTFn. We define the following universal constant:

Definition 1.1. W≤1[LTF]
def
= infh∈LTF W≤1(h) = infn∈N W≤1[LTFn], where

W≤1[LTFn]
def
= infh∈LTFn W≤1(h).

Benjamini, Kalai and Schramm (see [4], Remark 3.7) and subsequently O’Donnell
(see the Conjecture following Theorem 2 of Section 5.1 of [27]) have conjectured that
W≤1[LTF] = 2/π, and hence we will sometimes refer to W≤1[LTF] as “the BKS
constant.” As n→∞, a standard analysis of the n-variable Majority function shows
that W≤1[LTF] ≤ 2/π. Gotsman and Linial [14] observed that W≤1[LTF] ≥ 1/2
but until now no better lower bound was known. We note that since the universal
constant W≤1[LTF] is obtained by taking the infimum over an infinite set, it is not a
priori clear whether the computational problem of computing or even approximating
W≤1[LTF] is decidable.

Jackson [20] has shown that improved lower bounds on W≤1[LTF] translate
directly into improved noise-tolerance bounds for agnostic weak learning of LTFs in
the “Restricted Focus of Attention” model of Ben-David and Dichterman [2]. Further
motivation for studying W≤1[f ] comes from the fact that W1[f ] is closely related to
the noise stability of f (see [27]). In particular, if NSρ[f ] represents the noise stability
of f when the noise rate is (1− ρ)/2, then it is known that

dNSρ[f ]
dρ

∣∣∣∣
ρ=0

= W1[f ].

This means that for a function f with E[f ] = 0, we have NSρ[f ] → ρ ·W≤1[f ]
as ρ → 0. Thus, at very large noise rates, W1[f ] quantifies the size of the “noisy
boundary” of the mean-zero function f .

Second problem: how many hypercube points have distance at most 1
from an origin-centered hyperplane? For n ∈ N and n > 1, let Sn−1 denote the
n-dimensional sphere Sn−1 = {w ∈ Rn : ‖w‖2 = 1}, and let S = ∪n>1Sn−1. Each unit
vector w ∈ Sn−1 defines an origin-centered hyperplane Hw = {x ∈ Rn : w · x = 0}.
Given a unit vector w ∈ Sn−1, we define T(w) ∈ [0, 1] to be T(w) = Prx∈{−1,1}n [|w ·
x| ≤ 1], the fraction of hypercube points in {−1, 1}n that lie within Euclidean distance
1 of the hyperplane Hw. We define the following universal constant, which we call
“Tomaszewski’s constant:”

Definition 1.2. T(S)
def
= infw∈S T(w) = infn∈N T(Sn−1), where T(Sn−1)

def
=
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infw∈Sn−1 T(w).
Tomaszewski [15] has conjectured that T(S) = 1/2. The main result of Holzman

and Kleitman [19] is a proof that 3/8 ≤ T(S); the upper bound T(S) ≤ 1/2 is
witnessed by the vector w = (1/

√
2, 1/
√

2). As noted in [19], the quantity T(S) has a
number of appealing geometric and probabilistic reformulations. Similar to the BKS
constant, since T(S) is obtained by taking the infimum over an infinite set, it is not
immediately evident that any algorithm can compute or approximate T(S). 1

An interesting quantity in its own right, Tomaszewski’s constant also arises in a
range of contexts in optimization theory, see e.g. [36, 3]. In fact, the latter paper
proves a lower bound of 1/3 on the value of Tomaszewski’s constant independently of
[19], and independently conjectures that the optimal lower bound is 1/2.

1.2. Our results.

A better lower bound for the BKS constant W≤1[LTF]. Our first main result
is the following theorem:

Theorem 1.3 (Lower Bound for the BKS constant). There exists a universal
constant c′ > 0 such that W≤1[LTF] ≥ 1

2 + c′.

This is the first improvement on the [14] lower bound of 1/2 since 1994. We
actually give two quite different proofs of this theorem, which are sketched in the
“Techniques” subsection below.

An algorithm for approximating the BKS constant W≤1[LTF]. Our next main
result shows that in fact there is a finite-time algorithm that approximates the BKS
constant up to any desired accuracy:

Theorem 1.4 (Approximating the BKS constant). There is an algorithm that,
on input an accuracy parameter ε > 0, runs in time 2poly(1/ε) and outputs a value Γε
such that

W≤1[LTF] ≤ Γε ≤W≤1[LTF] + ε. (1.1)

An algorithm for approximating Tomaszewski’s constant T(S). Our final
main result is a similar-in-spirit algorithm that approximates T(S) up to any desired
accuracy:

Theorem 1.5 (Approximating Tomaszewski’s constant). There is an algorithm
that, on input an accuracy parameter ε > 0, runs in time 2poly(1/ε) and outputs a
value Γε such that

T(S) ≤ Γε ≤ T(S) + ε. (1.2)

1.3. Our techniques for Theorem 1.3: lower-bounding the BKS con-
stant W≤1[LTF]. It is easy to show that it suffices to consider the level-1 Fourier
weight W1 of LTFs that have threshold θ = 0 and have w ·x 6= 0 for all x ∈ {−1, 1}n,
so we confine our discussion to such zero-threshold LTFs (see Fact 4.1 for a proof).
To explain our approaches to lower bounding W≤1[LTF], we recall the essentials of

1Whenever we speak of “an algorithm to compute or approximate” one of these constants, of
course what we really mean is an algorithm that outputs the desired value together with a proof of
correctness of its output value.
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Gotsman and Linial’s simple argument that gives a lower bound of 1/2. The key in-
gredient of their argument is the well-known Khintchine inequality from functional
analysis:

Definition 1.6. For a unit vector w ∈ Sn−1 we define

K(w)
def
= Ex∈{−1,1}n [|w · x|]

to be the “Khintchine constant for w.”
The following is a classical theorem in functional analysis (we write ei to denote the
unit vector in Rn with a 1 in coordinate i):

Theorem 1.7 (Khintchine inequality, [37]). For w ∈ Sn−1 any unit vector, we
have K(w) ≥ 1/

√
2, with equality holding if and only if w = 1√

2
(±ei ± ej) for some

i 6= j ∈ [n]. Szarek [37] was the first to obtain the optimal constant 1/
√

2, and
subsequently several simplifications of his proof were given [16, 38, 23]; we shall give a
simple self-contained proof in Section 3.1 below. This proof has previously appeared
in [13, 12] and is essentially a translation of the [23] proof into “Fourier language.”
With Theorem 1.7 in hand, the Gotsman-Linial lower bound is almost immediate:

Proposition 1.8 ([14]). Let f : {−1, 1}n → {−1, 1} be a zero-threshold LTF
f(x) = sign(w · x) where w ∈ Rn has ‖w‖2 = 1. Then W1[f ] ≥ (K(w))2

.
Proof. We have that

K(w) = Ex[f(x)(w · x)] =
n∑
i=1

f̂(i)wi ≤

√
n∑
i=1

f̂2(i) ·

√
n∑
i=1

w2
i =

√
W1[f ]

where the first equality uses the definition of f , the second is Plancherel’s identity,
the inequality is Cauchy-Schwarz, and the last equality uses the assumption that w
is a unit vector.
First proof of Theorem 1.3: A “robust” Khintchine inequality. Given the
strict condition required for equality in the Khintchine inequality, it is natural to
expect that if a unit vector w ∈ Rn is “far” from 1√

2
(±ei ± ej), then K(w) should be

significantly larger than 1/
√

2. We prove a robust version of the Khintchine inequality
which makes this intuition precise. Given a unit vector w ∈ Sn−1, define d(w) to be
d(w) = min ‖w−w∗‖2, where w∗ ranges over all 4

(
n
2

)
vectors of the form 1√

2
(±ei±ej).

Our “robust Khintchine” inequality is the following:
Theorem 1.9 (Robust Khintchine inequality). There exists a universal constant

c > 0 such that for any w ∈ Sn−1, we have

K(w) ≥ 1√
2

+ c · d(w).

Armed with our robust Khintchine inequality, the simple proof of Proposition 1.8
suggests a natural approach to lower-bounding W≤1[LTF]. If w is such that d(w)
is “large” (at least some absolute constant), then the statement of Proposition 1.8
immediately gives a lower bound better than 1/2. So the only remaining vectors
w to handle are highly constrained vectors which are almost exactly of the form
1√
2
(±ei ± ej). A natural hope is that the Cauchy-Schwarz inequality in the proof of

Proposition 1.8 is not tight for such highly constrained vectors, and indeed this is
essentially how we proceed (modulo some simple cases in which it is easy to bound
W≤1 above 1/2 directly).
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Second proof of Theorem 1.3: anticoncentration, Fourier analysis of LTFs,
and LTF approximation. Our second proof of Theorem 1.3 employs several so-
phisticated ingredients from recent work on structural properties of LTFs [28, 25].
The first of these ingredients is a result (Theorem 6.1 of [28]) which essentially says
that any LTF f(x) = sign(w · x) can be perturbed very slightly to another LTF
f ′(x) = sign(w′ · x) (where both w and w′ are unit vectors). The key properties of
this perturbation are that (i) f and f ′ are extremely close, differing only on a tiny
fraction of inputs in {−1, 1}n; but (ii) the linear form w′ ·x has some nontrivial “anti-
concentration” when x is distributed uniformly over {−1, 1}n, meaning that very few
inputs have w′ · x very close to 0.

Why is this useful? It turns out that the anti-concentration of w′ · x, together
with results on the degree-1 Fourier spectrum of “regular” halfspaces from [25], lets
us establish a lower bound on W≤1[f ′] that is strictly greater than 1/2. Then the
fact that f and f ′ agree on almost every input in {−1, 1}n lets us argue that the
original LTF f must similarly have W≤1[f ] strictly greater than 1/2. Interestingly,
the lower bound on W≤1[f ′] is proved using the Gotsman-Linial inequality W≤1[f ′] ≥
(K(w′))2; in fact, the anti-concentration of w′ · x is combined with ingredients in the
simple Fourier proof of the (original, non-robust) Khintchine inequality (specifically,
an upper bound on the total influence of the function `(x) = |w′ · x|) to obtain the
result.

1.4. Our techniques for Theorem 1.4: approximating the BKS constant
W≤1[LTF]. As in the previous subsection, it suffices to consider only zero-threshold
LTFs sign(w · x). Our algorithm turns out to be very simple (though its analysis is
not):

Let K = Θ(ε−24). Enumerate all K-variable zero-threshold LTFs, and output
the value

Γε
def= min{W1[f ] : f is a zero-threshold K-variable LTF.}.

It is well known (see e.g. [24]) that there exist 2Θ(K2) distinct K-variable LTFs,
and it is straightforward to confirm that they can be enumerated in time 2O(K2 logK).
Since W1[f ] can be computed in time 2O(K) for any given K-variable LTF f , the
above simple algorithm runs in time 2poly(1/ε); the challenge is to show that the value
Γε thus obtained indeed satisfies Equation (1.1).

A key ingredient in our analysis is the notion of the “critical index” of an LTF f .
The critical index was implicitly introduced and used in [35] and was explicitly used
in [10, 9, 28, 7] and other works. To define the critical index we need to first define
“regularity”:

Definition 1.10 (regularity). Fix any real value τ > 0. We say that a vector
w = (w1, . . . , wn) ∈ Rn is τ -regular if maxi∈[n] |wi| ≤ τ‖w‖ = τ

√
w2

1 + · · ·+ w2
n. A

linear form w ·x is said to be τ -regular if w is τ -regular, and similarly an LTF is said
to be τ -regular if it is of the form sign(w · x− θ) where w is τ -regular.

Regularity is a helpful notion because if w is τ -regular then the Berry-Esséen
theorem tells us that for uniform x ∈ {−1, 1}n, the linear form w · x is “distributed
like a Gaussian up to error τ .” This can be useful for many reasons (as we will see
below).
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Intuitively, the critical index of w is the first index i such that from that point
on, the vector (wi, wi+1, . . . , wn) is regular. A precise definition follows:

Definition 1.11 (critical index). Given a vector w ∈ Rn such that |w1| ≥ · · · ≥
|wn| > 0, for k ∈ [n] we denote by σk the quantity

√∑n
i=k w

2
i . We define the τ -

critical index c(w, τ) of w as the smallest index i ∈ [n] for which |wi| ≤ τ · σi. If this
inequality does not hold for any i ∈ [n], we define c(w, τ) =∞.

Returning to Theorem 1.4, since our algorithm minimizes over a proper subset of
all LTFs, it suffices to show that for any zero-threshold LTF f = sign(w · x), there is
a K-variable zero-threshold LTF g such that

W1[g]−W1[f ] < ε. (1.3)

At a high level our proof is a case analysis based on the size of the δ-critical index
c(w, δ) of the weight vector w, where we choose the parameter δ to be δ = poly(ε).
The first case is relatively easy: if the δ-critical index is large, then it is known that
the function f is very close to some K-variable LTF g. Since the two functions agree
almost everywhere, it is easy to show that |W1[f ]−W1[g]| ≤ ε as desired.

The case that the critical index is small is much more challenging. In this case it
is by no means true that f can be well approximated by an LTF on few variables –
consider, for example, the majority function. We deal with this challenge by develop-
ing a novel variable reduction technique which lets us construct a poly(1/ε)-variable
LTF g whose level-1 Fourier weight closely matches that of f .

How is this done? The answer again comes from the critical index. Since the crit-
ical index c(w, δ) is small, we know that except for the “head” portion

∑c(w,δ)−1
i=1 wixi

of the linear form, the “tail” portion
∑n
i=c(w,δ) wixi of the linear form “behaves like

a Gaussian.” Guided by this intuition, our variable reduction technique proceeds in
three steps. In the first step, we replace the tail coordinates xT = (xc(w,δ), . . . , xn) by
independent Gaussian random variables and show that the degree-1 Fourier weight
of the corresponding “mixed” function (which has some ±1-valued inputs and some
Gaussian inputs) is approximately equal to W1[f ]. In the second step, we replace
the tail random variable wT ·GT , where GT is the vector of Gaussians from the first
step, by a single Gaussian random variable G, where G ∼ N (0, ‖wT ‖2). We show
that this transformation exactly preserves the degree-1 weight. At this point we have
reduced the number of variables from n down to c(w, δ) (which is small in this case!),
but the last variable is Gaussian rather than Boolean. As suggested by the Central
Limit Theorem, though, one may try to replace this Gaussian random variable by a
normalized sum of independent ±1 random variables

∑M
i=1 zi/

√
M . This is exactly

the third step of our variable reduction technique. Via a careful analysis, we show
that by taking M = poly(1/ε), this operation preserves the degree-1 weight up to an
additive ε. Combining all these steps, we obtain the desired result.

1.5. Our techniques for Theorem 1.5: approximating Tomaszewski’s
constant T(S). The first step of our proof of Theorem 1.5 is similar in spirit to the
main structural ingredient of our proof of Theorem 1.4: we show (Theorem 7.1) that
given any ε > 0, there is a value Kε = poly(1/ε) such that it suffices to consider linear
forms w · x over Kε-dimensional space, i.e. for any n ∈ N we have

T(Sn−1) ≤ T(SKε−1) ≤ T(Sn−1) + ε.

Similar to the high-level outline of Theorem 1.4, our proof again proceeds by fixing
any w ∈ Sn−1 and doing a case analysis based on whether the critical index of w
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is “large” or “small.” However, the technical details of each of these cases is quite
different from the earlier proof. In the “small critical index” case we employ Gaussian
anti-concentration (which is inherited by the “tail” random variable wTxT since the
tail vector wT is regular), and in the “large critical index” case we use an anti-
concentration result from [28].

Unlike the previous situation for the BKS constant, at this point more work re-
mains to be done for approximating Tomaszewski’s constant. While there are only
2poly(1/ε) many halfspaces over poly(1/ε) many variables and hence a brute-force enu-
meration could cover all of them in 2poly(1/ε) time for the BKS constant, here we must
contend with the fact that SKε−1 is an uncountably infinite set, so we cannot naively
minimize over all its elements. Instead we take a dual approach and exploit the fact
that while there are uncountably infinitely many vectors in SKε−1, there are only 2Kε
many hypercube points in {−1, 1}Kε , and (with some care) the desired infimum over
all unit vectors can be formulated in the language of existential theory of the reals.
We then use an algorithm for deciding existential theory of the reals (see [34]) to
compute the infimum.

Discussion. It is interesting to note that determining Tomaszewski’s constant is an
instance of the well-studied generic problem of understanding tails of Rademacher
sums. For the sake of discussion, let us define Tin(w, a) = Prx∈{−1,1}n [|w · x| ≤ a]
and Tout(w, a) = Prx∈{−1,1}n [|w · x| ≥ a] where w ∈ Sn−1. Further, let Tin(a) =
infw∈S Tin(w, a) and Tout(a) = infw∈S Tout(w, a). Note that Tomaszewski’s constant
T(S) is simply Tin(1). Much effort has been expended on getting sharp estimates
for Tin(a) and Tout(a) for various values of a (see e.g. [33, 5]). As a representative
example, Bentkus and Dzindzalieta [6] proved that

Tin(a) ≥ 1
4

+
1
4
·
√

2− 2
a2

for a ∈ (1,
√

2]. Similarly, Pinelis [32] showed that there is an absolute constant c > 0
such that Tout(a) ≥ 1 − c · φ(a)

a where φ(x) is the density function of the standard
normal N (0, 1) (note this beats the standard Hoeffding bound by a factor of 1/a).

On the complementary side, Montgomery-Smith [26] proved that there is an ab-
solute constant c′ > 0 such that Tout(a) ≥ e−c′·a2

for all a ≤ 1. Similarly, Oleszkiewicz
[29] proved that Tout(1) ≥ 1/10. The conjectured lower bound on Tout(1) is 7/32 (see
[18]). While we have not investigated this in detail, we suspect that our techniques
may be applicable to some of the above problems. Finally, we note that apart from
being of intrinsic interest to functional analysts and probability theorists, the above
quantities arise frequently in the optimization literature (see [17, 3]). Related tail
bounds have also found applications in extremal combinatorics (see [1]).

2. Mathematical Preliminaries.

2.1. Fourier analysis over {−1, 1}n and influences. We consider functions
f : {−1, 1}n → R (though we often focus on Boolean-valued functions which map
to {−1, 1}), and we think of the inputs x to f as being distributed according to the
uniform probability distribution. The set of such functions forms a 2n-dimensional
inner product space with inner product given by 〈f, g〉 = Ex[f(x)g(x)]. The set of
functions (χS)S⊆[n] defined by χS(x) =

∏
i∈S xi forms a complete orthonormal basis

for this space. We will also often write simply xS for
∏
i∈S xi. Given a function

f : {−1, 1}n → R we define its Fourier coefficients by f̂(S) = Ex[f(x)xS ], and we
have that f(x) =

∑
S f̂(S)xS .
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As an easy consequence of orthonormality we have Plancherel’s identity 〈f, g〉 =∑
S f̂(S)ĝ(S), which has as a special case Parseval’s identity, Ex[f(x)2] =

∑
S f̂(S)2.

From this it follows that for every f : {−1, 1}n → {−1, 1} we have
∑
S f̂(S)2 = 1.

Note that for f : {−1, 1}n → R we have that Var[f ] = Ex[f2(x)] − (Ex[f ])2 =∑
S 6=∅ f̂

2(S).
Definition 2.1. Given f : {−1, 1}n → R and i ∈ [n], the influence of variable

i is defined as Inf i(f) = Ex [Varxi [f(x)]]. The total influence of f is defined as
Inf(f) =

∑n
i=1 Inf i(f).

Fact 2.2. We have the identity Inf i(f) =
∑
S3i f̂

2(S); moreover, for f :
{−1, 1}n → {−1, 1} (i.e. Boolean-valued), it holds Inf i(f) = Prx[f(xi−) 6= f(xi+)],
where xi− and xi+ denote x with the i’th bit set to −1 or 1 respectively. If f :
{−1, 1}n → {−1, 1} is unate, then Inf i(f) = |f̂(i)|.

Fact 2.3. Let f = sign(
∑n
i=1 wixi −w0) be an LTF such that |w1| ≥ |wi| for all

i ∈ [n]. Then |Inf1(f)| ≥ |Inf i(f)| for all i ∈ [n]. Moreover, for all i ∈ [n] it holds
wi · f̂(i) ≥ 0.

2.2. Probabilistic Facts. We require some basic probability results including
the standard additive Hoeffding bound:

Theorem 2.4. Let X1, . . . , Xn be independent random variables such that for
each j ∈ [n], Xj is supported on [aj , bj ] for some aj , bj ∈ R, aj ≤ bj. Let X =∑n
j=1Xj. Then, for any t > 0, Pr

[
|X−E[X]| ≥ t

]
≤ 2 exp

(
−2t2/

∑n
j=1(bj − aj)2

)
.

The Berry-Esséen theorem (see e.g. [11]) gives explicit error bounds for the Central
Limit Theorem:

Theorem 2.5. (Berry-Esséen) Let X1, . . . , Xn be independent random variables
satisfying E[Xi] = 0 for all i ∈ [n],

√∑
i E[X2

i ] = σ, and
∑
i E[|Xi|3] = ρ3. Let

S = (X1 + · · ·+Xn)/σ and let F denote the cumulative distribution function (cdf) of
S. Then supx |F (x)−Φ(x)| ≤ ρ3/σ

3 where Φ denotes the cdf of the standard gaussian
random variable.

An easy consequence of the Berry-Esséen theorem is the following fact, which says
that a regular linear form has good anti-concentration (i.e. it assigns small probability
mass to any small interval):

Fact 2.6. Let w = (w1, . . . , wn) be a τ -regular vector in Rn and write σ to
denote ‖w‖2. Then for any interval [a, b] ⊆ R, we have

∣∣Pr[
∑n
i=1 wixi ∈ (a, b]] −

Φ([a/σ, b/σ])
∣∣ ≤ 2τ , where Φ([c, d])

def
= Φ(d) − Φ(c). In particular, it follows that

Pr
[∑n

i=1 wixi ∈ (a, b]
]
≤ |b− a|/σ + 2τ.

2.3. Technical Tools about Regularity and the Critical Index. The fol-
lowing simple fact states that the “tail weight” of the vector w decreases exponentially
prior to the critical index:

Fact 2.7. For any vector w = (w1, . . . , wn) such that |w1| ≥ · · · ≥ |wn| > 0 and
1 ≤ a ≤ c(w, τ), we have σa < (1− τ2)(a−1)/2 · σ1.

Proof. If a < c(w, τ), then by definition |wa| > τ · σa. This implies that σa+1 <√
1− τ2 ·σa. Applying this inequality repeatedly, we get that σa < (1−τ2)(a−1)/2 ·σ1

for any 1 ≤ a ≤ c(w, τ).
We will also need the following corollary (that appears e.g. as Propositions 31 and 32
in [25]).

Fact 2.8. Let `(x) = w ·x−w0 with ‖w‖2 = 1 and w0 ∈ R and f(x) = sign(`(x)).
If w is τ -regular, then we have:
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• (i) Ex∼Un [f(x)] ≈τ Ex∼Nn [f(x)] and
• (ii) Ex∼Un [|`(x)|] ≈τ Ex∼Nn [|`(x)|],

where N denotes the standard Gaussian distribution N(0, 1).

2.4. Miscellaneous. For a, b ∈ R we write a
η
≈ b to indicate that |a−b| ≤ O(η).

For a vector w ∈ Rn, we write w(k) to denote the (n − k)-dimensional vector
obtained by taking the last n− k coordinates of w, i.e. w(k) = (wk+1, . . . , wn).

We will use the following elementary fact, which is a direct consequence of Cauchy-
Schwarz.

Fact 2.9. Let a, b ∈ Rm with ‖a‖2 ≤ 1, ‖b‖2 ≤ 1 such that ‖a− b‖22 ≤ η. Then∣∣‖a‖22 − ‖b‖22∣∣ ≤ 2
√
η.

Proof. We have that∣∣∣∣ m∑
i=1

(a2
i − b2i )

∣∣∣∣ =
∣∣∣∣ m∑
i=1

(
ai − bi

)(
ai + bi

)∣∣∣∣ ≤
√

m∑
i=1

(
ai + bi

)2 ·√ m∑
i=1

(
ai − bi

)2
≤

√
2 ·

m∑
i=1

(
a2
i + b2i

)
· ‖a− b‖2 ≤ 2

√
η

where the first inequality is Cauchy-Schwarz, the second uses the elementary fact
(a + b)2 ≤ 2(a2 + b2), for all a, b ∈ R, while the third uses our assumption that
‖a‖2, ‖b‖2 ≤ 1.

3. Proof of Theorem 1.9: A “robust” Khintchine inequality. It will be
convenient for us to reformulate Theorems 1.7 and 1.9 as follows: Let us say that a unit
vector w = (w1, . . . , wn) ∈ Sn−1 is proper if wi ≥ wi+1 ≥ 0 for all i ∈ [n − 1]. Then
we may state the “basic” Khintchine inequality with optimal constant, Theorem 1.7,
in the following equivalent way:

Theorem 3.1 (Khintchine inequality, [37]). Let w ∈ Rn be a proper unit vector,
so w1 ≥ · · · ≥ wn ≥ 0. Then K(w) ≥ 1/

√
2, with equality holding if and only if

w = w∗
def
= (1/

√
2, 1/
√

2, 0, . . . , 0).
And we may restate our “robust” Khintchine inequality, Theorem 1.9, as follows:
Theorem 3.2 (Robust Khintchine inequality). There exists a universal constant

c > 0 such that the following holds: Let w ∈ Rn be a proper unit vector. Then
K(w) ≥ 1/

√
2 + c · ‖w − w∗‖2,where w∗

def
= (1/

√
2, 1/
√

2, 0, . . . , 0).
Before we proceed with the proof of Theorem 3.2, we give a simple Fourier analytic

proof of the “basic” Khintchine inequality with optimal constant, K(w) ≥ 1/
√

2. (We
note that this is a well-known argument by now; it is given in somewhat more general
form in [30] and in [22].) We then build on this to prove Theorem 3.2.

3.1. Warm-up: simple proof that K(w) ≥ 1/
√

2. We consider the function
`(x) = |

∑n
i=1 wixi| where

∑
i w

2
i = 1 and will show that K(w) = Ex[`(x)] ≥ 1/

√
2.

Noting that Ex[(`(x))2] = 1, we have (E[`(x)])2 = 1 −Var[`], so it suffices to show
that Var[`] ≤ 1/2. This follows directly by combining the following claims. The first
bound is an improved Poincaré inequality for even functions:

Fact 3.3. (Poincaré inequality) Let f : {−1, 1}n → R be even. Then Var[f ] ≤
(1/2) · Inf(f).
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Proof. Since f is even, we have that f̂(S) = 0 for all S with odd |S|. We can thus
write

Inf(f) =
∑

S⊆[n],|S| even

|S| · f̂2(S) ≥ 2 ·
∑

∅6=S⊆[n],|S| even

f̂2(S)

= 2 ·
∑

∅6=S⊆[n]

f̂2(S) = 2 ·Var[f ].

The second is an upper bound on the influences in ` as a function of the weights:
Lemma 3.4. Let `(x) = |

∑n
i=1 wixi|. For any i ∈ [n], we have Inf i(`) ≤ w2

i .
Proof. Recall that Inf i(`) = Ex

[
Varxi

[
`(x)

]]
= Ex

[
Exi [`

2(x)]− (Exi [`(x)])2
]
.

We claim that for any x ∈ {−1, 1}n, it holds that Varxi [`(x)] ≤ w2
i , which yields the

lemma. To show this claim we write `(x) = |wixi + ci|, where ci =
∑
j 6=i wj · xj does

not depend on xi.
Since `2(x) = c2i +w2

i + 2ciwixi, it follows that Exi [`
2(x)] = c2i +w2

i , and clearly
Exi [`(x)] = (1/2) · (|wi − ci|+ |wi + ci|). We consider two cases based on the relative
magnitudes of ci and wi.

If |ci| ≤ |wi|, we have Exi [`(x)] = (1/2) ·(sign(wi)(wi − ci) + sign(wi)(wi + ci)) =
|wi|. Hence, in this case Varxi [`(x)] = c2i ≤ w2

i . If on the other hand |ci| > |wi|,
then we have Exi [`(x)] = (1/2) · (sign(ci)(ci − wi) + sign(ci)(ci + wi)) = |ci|, so again
Varxi [`(x)] = w2

i as desired.
The bound K(w) ≥ 1/

√
2 follows from the above two claims using the fact that

` is even and that
∑
i w

2
i = 1.

3.2. Proof of Theorem 3.2. Let w ∈ Rn be a proper unit vector and denote
τ = ‖w − w∗‖2. To prove Theorem 3.2, one would intuitively want to obtain a
robust version of the simple Fourier-analytic proof of Theorem 3.1 from the previous
subsection. Recall that the latter proof boils down to the following:

Var[`] ≤ (1/2) · Inf(`) = (1/2) ·
n∑
i=1

Inf i(`) ≤ (1/2) ·
n∑
i=1

w2
i = 1/2

where the first inequality is Fact 3.3 and the second is Lemma 3.4. While it is clear
that both inequalities can be individually tight, one could hope to show that both
inequalities cannot be tight simultaneously. It turns out that this intuition is not quite
true, however it holds if one imposes some additional conditions on the weight vector
w. The remaining cases for w that do not satisfy these conditions can be handled by
elementary arguments.

We first note that without loss of generality we may assume that w1 = maxi wi >
0.3, for otherwise Theorem 3.2 follows directly from the following result of König et
al:

Theorem 3.5 ([21]). For a proper unit vector w ∈ Rn, we have K(w) ≥
√

2/π−
(1−

√
2/π)w1.

Indeed, if w1 ≤ 0.3, the above theorem gives that

K(w) ≥ 1.3
√

2/π − 0.3 > 0.737 > 1/
√

2 + 3/100 ≥ 1/
√

2 + (1/50)τ,

where the last inequality follows from the fact that τ ≤
√

2 (as both w and w∗ are
unit vectors). Hence, we will henceforth assume that w1 > 0.3. (We note that there is
nothing special about the number 0.3; by adjusting various constants elsewhere in the
argument, our proof can be made to work with 0.3 replaced by any (smaller) absolute
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positive constant. As a result, we could have avoided using Theorem 3.5 and used
quantitatively weaker versions of the theorem which can be shown to follow easily
from the Berry-Esséen theorem. However, for convenience we have used Theorem 3.5
and the number 0.3 in what follows.)

The preceding discussion leads us to the following definition:
Definition 3.6 (canonical vector). We say that a proper unit vector w ∈ Rn is

canonical if it satisfies the following conditions:
(a) w1 ∈ [0.3, 1/

√
2 + 1/100];

(b) τ = ‖w − w∗‖2 ≥ 2/5;
The following lemma establishes Theorem 3.2 for non-canonical vectors:
Lemma 3.7. Let w be a proper non-canonical vector. Then K(w) ≥ 1/

√
2 +

(1/1000)τ , where τ = ‖w − w∗‖2.
The proof of Lemma 3.7 is elementary, using only basic facts about symmetric

random variables, but sufficiently long that we give it in Section 3.3. For canonical
vectors we show:

Theorem 3.8. There exist universal constants c1, c2 > 0 such that: Let w ∈ Rn
be canonical. Consider the mapping `(x) = |w · x|. Then at least one of the following
statements is true :

(1) Inf1(`) ≤ w2
1 − c1;

(2) W>2[`] ≥ c2.
This proof is more involved, using Fourier analysis and critical index arguments.

We defer it to Section 3.4, and proceed now to show that for canonical vectors,
Theorem 3.2 follows from Theorem 3.8. To see this we argue as follows: Let w ∈ Rn
be canonical. We will show that there exists a universal constant c > 0 such that
K(w) ≥ 1/

√
2 + c; as mentioned above, since τ <

√
2, this is sufficient for our

purposes. Now recall that

K(w) = Ex[`(x)] = ̂̀(0) =
√

1−Var[`]. (3.1)

In both cases, we will show that there exists a constant c′ > 0 such that

Var[`] ≤ 1/2− c′. (3.2)

From this (3.1) gives K(w) ≥
√

1/2 + c′ = 1/
√

2 + c′′ where c′′ > 0 is a universal
constant, so to establish Theorem 3.2 it suffices to establish (3.2).

Suppose first that statement (1) of Theorem 3.8 holds. In this case we exploit the
fact that Lemma 3.4 is not tight. We can write

Var[`] ≤ (1/2) · Inf(f) ≤ (1/2) ·
(
w2

1 − c1 +
n∑
i=2

w2
i

)
≤ (1/2)− c1/2,

giving (3.2). Now suppose that statement (2) of Theorem 3.8 holds, i.e. at least a
c2 fraction of the total Fourier mass of ` lies above level 2. Since ` is even, this is
equivalent to the statement W≥4[`] ≥ c2. In this case, we prove a better upper bound
on the variance because Fact 3.3 is not tight. In particular, we have

Inf(`) ≥ 2W2[`] + 4W≥4[`] = 2
(
Var[`]−W≥4[`]

)
+ 4W≥4[`] = 2 Var[`] + 2W≥4[`]

which yields Var[`] ≤ (1/2)Inf(`)−W≥4[`] ≤ (1/2)−c2, again giving (3.2) as desired.
11



3.3. Proof of Lemma 3.7. We will need the following important claim for the
proof of Lemma 3.7.

Claim 3.9. Let X be a symmetric discrete random variable supported on R, i.e.
Pr[X = x] = Pr[X = −x] for all x ∈ R. Then for all c ∈ R we have

max{E[|X|], |c|} ≤ E[|X + c|].

Proof. Since X is symmetric, c+X and c−X have the same distribution. As a
result, we have E[|X + c|] = (1/2) · (E[|c+X|] + E[|c−X|]). Further,

(1/2) · (E[|c+X|] + E[|c−X|]) = E
[
(1/2) ·

(
|c+X|+ |c−X|

)]
= E[max{|X|, |c|}] ≥ max{E[|X|], c}

which finishes the proof.
Proof. [Proof of Lemma 3.7] If w is a non-canonical vector, then there are

exactly two possibilities :

Case 1: w1 6∈ [0.3, 1/
√

2 + 1/100]. In case w1 ≤ 0.3, then the calculation follow-
ing Theorem 3.5 already gives us that K(w) ≥ 1/

√
2 + (1/50)τ . The other possibility

is that w1 ≥ 1/
√

2 + 1/100. In this case,

K(w) = E
[
|
n∑
i=1

wixi|
]

= (1/2) ·E
[
|w1 +

n∑
i=2

wixi|
]

+ (1/2) ·E
[
| − w1 +

n∑
i=2

wixi|
]

≥ |w1|+ |w1|
2

= |w1|

where the inequality is an application of Claim 3.9. As |w1| ≥ 1/
√

2 + 1/100, we get
that

K(w) ≥ 1/
√

2 + 1/100 ≥ 1/
√

2 + 1/200 · τ

(using that τ ≤
√

2).

Case 2: τ ≤ 2/5. Of course, here we can also assume that w1 ∈ [0.3, 1/
√

2 + 1/100]
(since otherwise, Case 1 proves the claim). We let w1 = 1/

√
2−a and w2 = 1/

√
2−b

and
∑
i>2 w

2
i = c2. By definition, we have that a ≤ b and b ≥ 0. Also,

τ2 = ‖w − w∗‖22 = a2 + b2 + c2. (3.3)

Moreover, since w is a unit vector, we have that

a2 + b2 + c2 =
√

2(a+ b). (3.4)

Expanding the expression for K(w) on x1, x2 and recalling that x(2) = (x3, . . . , xn),
we get

K(w) =
1
2
·
(
Ex(2)∈{−1,1}n−2

[∣∣∣√2− (a+ b) + w(2) · x(2)
∣∣∣]

+ Ex(2)∈{−1,1}n−2

[∣∣∣(a− b) + w(2) · x(2)
∣∣∣])

≥ 1
2
·
(

max{|
√

2− (a+ b)|,E[|w(2) · x(2)|]}+ max{|a− b|,E[|w(2) · x(2)|]}
)

≥ 1
2
·
(

max
{
|
√

2− (a+ b)|, c√
2

}
+ max

{
|a− b|, c√

2

})
12



where the first inequality follows from Claim 3.9 and the second inequality uses the
fact E[|w(2) · x(2)|] ≥ c/

√
2 (as follows from Theorem 1.7). We consider two further

sub-cases :
Case 2(a): Let c2 ≥ τ2/20. Then, we can bound the right hand-side from below as
follows:

1
2
·
(

max
{
|
√

2− (a+ b)|, c√
2

}
+ max

{
|a− b|, c√

2

})
≥ 1

2
·
(
|
√

2− (a+ b)|+ c√
2

)
≥ 1

2

(∣∣∣∣√2− τ2

√
2

∣∣∣∣)+
τ

4
√

10
=

1√
2
− τ2

2
√

2
+

τ√
40

where the second inequality uses (3.4). As long as τ ≤ 2/5, it is easy to check that

τ√
40
− τ2

2
√

2
≥ τ

1000

which proves the assertion in this case.
Case 2(b): Let c2 < τ2/20. In this case, we will prove a lower bound on |a − b|.
Using c2 < τ2/20 and (3.3), we have a2 + b2 > (19τ2)/20. Also, using (3.4), we have
a+ b = τ2/

√
2. We now have

(a− b)2 = 2(a2 + b2)− (a+ b)2 ≥ 2 · 19
20
· τ2 − τ4

2
≥ 19

10
τ2 − τ4

2
≥ τ2

The last inequality uses τ ≤ 2/5. Now, as in Case 2(a), we have

1
2
·
(

max
{
|
√

2− (a+ b)|, c√
2

}
+ max

{
|a− b|, c√

2

})
≥ 1

2
·
(
|
√

2− (a+ b)|+ |a− b|
)

≥ 1
2

(∣∣∣∣√2− τ2

√
2

∣∣∣∣)+
τ

2
=

1√
2
− τ2

2
√

2
+
τ

2
≥ 1

2
+

τ

1000

Again, the last inequality uses that τ ≤ 2/5. This finishes the proof of Lemma 3.7.

3.4. Proof of Theorem 3.8. We will prove that if w ∈ Rn is a canonical vector
such that Inf1(`) ≥ w2

1 − c1, then W>2[`] ≥ c2. For the sake of intuition, we start by
providing a proof sketch for the special case that c1 = 0. At a high-level, the actual
proof will be a robust version of this sketch using the notion of the critical index to
make the simple arguments for the “c1 = 0 case” robust. For this case, it suffices to
prove the following implication:

If Inf1(`) = w2
1, then at least a constant fraction of the Fourier weight

of ` lies above level 2.
Indeed, we have the following claims:

(1) Let w be canonical and Inf1(`) = w2
1. Then w equals (w1, . . . , w1, 0, . . . , 0)

where there are k repetitions of w1 and k is even. We call such a w “good”.
(2) Let w be a good vector. Then ` has Θ(1) Fourier weight above level 2.

We can prove (1) as follows. Suppose that Inf1(`) = w2
1. Then, as implied by

the proof of Lemma 3.4, every outcome ρ(2) of (x2, . . . , xn) has |w(2) · ρ(2)| ≥ w1.
Suppose, for the sake of contradiction, that some coordinate wj is neither equal to
w1 nor to 0. Let wk (k ≥ 2) be the first such value. By having ρ2, . . . , ρk−1 alternate
between +1 and −1 we can ensure that there is an assignment of ρ2, . . . , ρk−1 such that
w2ρ2 + · · ·+wk−1ρk−1 is either 0 (if k is even) or w1 (if k is odd). In the former case,
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by choosing the remaining ρ bits appropriately we get that there exists an assignment
ρ such that |w(2) ·ρ(2)| ≤ wk < w1, where the inequality uses the fact that the wi’s are
non-increasing and our assumption that wk 6= w1. In the latter case, if wk is the last
nonzero entry, for an appropriate ρ, we can get |w(2) ·ρ(2)| = w1−wk < w1. Otherwise,
if there are other nonzero entries beyond wk we can similarly get |w(2) · ρ(2)| < wk.
So we have argued that if there is any wk /∈ {0, w1} then it cannot be the case that
Inf1(`) = w2

1, so w must be of the form (k copies of w1 followed by 0’s). If k is odd,
then clearly there exists a ρ such that |w(2) · ρ(2)| = 0. So, it must be the case that k
is even. This proves (1). Given (1) in hand, we may conclude (2) using the following
lemma (Lemma 3.10) and the observation (recalling that w is canonical) that since
w1 ≥ 0.3 we must have k ≤ 12:

Lemma 3.10. Let `k(x) =
∣∣∣ (x1+...+xk)√

k

∣∣∣. For k ≥ 4 and even, W≥4[`] ≥ 2−2k

k .

Proof. We start by observing that because `k(x) only takes values which are
integral multiples of k−1/2, it must be the case that for any character χS , the valuề
k(S) = E[χS(x) · `k(x)] is a multiple of 2−k · k−1/2. Hence, any non-zero Fourier

coefficient of `k is at least 2−k · k−1/2 in magnitude. Thus, if W≥4[`] 6= 0, then
W≥4[`] ≥ k−12−2k. Thus, to prove the lemma, we need to show that W≥4[`] 6= 0.

Next, we observe that `k(x) is an even function and hence any Fourier coefficient
f̂(S) = 0 if |S| is odd. Thus, towards a contradiction, if we assume that W≥4[`] = 0,
then the Fourier expansion of `k(x) must consist solely of a constant term and degree 2
terms. As the function `k(x) is symmetric, we may let the coefficient of any quadratic
term be α and the constant term be β, and we have

`k(x) = β +
∑
i<j

α · xixj = β + α ·

∑
i<j

xixj

 = β +
α ·
(

(
∑k
i=1 xi)

2 −
∑k
i=1 x

2
i

)
2

= β +
α ·
(

(
∑k
i=1 xi)

2 − k
)

2
=
α

2
·
(

k∑
i=1

xi

)2

+ β − αk

2
= γ1

(
k∑
i=1

xi

)2

+ γ2

where γ1 = α/2 and γ2 = β − αk
2 . Note that since k is even, there exist assignments

x ∈ {−1, 1}k that cause
∑k
i=1 xi to take any even value in [−k, k]; in particular, since

k ≥ 4, the sum
∑k
i=1 xi may take any of the values 0,2,4.

Now, if
∑k
i=1 xi = 0, then `k(x) = 0. Hence we infer that γ2 = 0. If

∑k
i=1 xi = 2

then `k(x) = 2/
√
k, and if

∑k
i=1 xi = 4 then `k(x) = 4/

√
k. Clearly, there is no γ1

satisfying both γ1 · 22 = 2/
√
k and γ1 · 42 = 4/

√
k. This gives a contradiction. Hence

W≥4[`] 6= 0 and the lemma is proved.

We can now proceed with the formal proof of Theorem 3.8. We will need several
facts and intermediate lemmas. The first few facts show some easy concentration
properties for weighted linear combinations of random signs under certain conditions
on the weights.

Claim 3.11. Fix α > 0. Let w1, . . . , wn ∈ R satisfy |wi| ≤ α for all i. Then
there exists x∗ ∈ {−1, 1}n such that w · x ∈ [0, α] (and clearly −x∗ ∈ {−1, 1}n has
w · (−x∗) ∈ [−α, 0]).

Proof. Construct x′ ∈ {−1, 1}n one bit at a time, by choosing x′i+1 so that
sign(wi+1x

′
i+1) = −sign(w1x

′
1+· · ·+wix′i). The resulting vector x′ satisfies |w·x′| ≤ α.
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As a special case of this we get:
Claim 3.12. Fix 0 < η ≤ α. Let wj ∈ R+, j ∈ [2k + 1], satisfy wj ∈ [α − η, α].

Then, there exists x∗ = (x∗1, . . . , x
∗
2k+1) ∈ {−1, 1}2k+1 such that:

∑2k+1
j=1 wjx

∗
j ∈

[0, α].
The following claim is only slightly less immediate:
Claim 3.13. Fix 0 < η ≤ α. Let wj ∈ R+, j ∈ [2k], satisfy wj ∈ [α − η, α].

Then, there exists x∗ = (x∗1, . . . , x
∗
2k) ∈ {−1, 1}2k such that:

∑2k
j=1 wjx

∗
j ∈ [0, η].

Proof. The vector u ∈ Rk defined by uj = w2j −w2j−1 has |uj | ≤ η for all j ∈ [k].
It is clear that the set of values {w ·x}x∈{−1,1}2k is contained in {u ·x}x∈{−1,1}k . The
claim follows by applying Claim 3.11 to u.

We will also need the following corollary of the Berry-Esséen theorem (more
precisely, it follows from Fact 2.6 together with the fact that the pdf of a standard
Gaussian has value at least 0.2 everywhere on [−1, 1]):

Fact 3.14. Fix 0 < τ < 1/15. Let w ∈ Rn be τ -regular with ‖w‖2 ≤ 1. Then,
Prx[0 ≤ w · x ≤ 15τ ] ≥ τ and Prx[−15τ ≤ w · x ≤ 0] ≥ τ .

We are now ready to prove the following lemma which establishes a concentration
statement for linear forms with a given maximum coefficient:

Lemma 3.15. Let w ∈ Rn be proper with ‖w‖2 ≤ 1 and let δ
def
= w1 > 0. There

exists κ = κ(δ) such that Prx[0 ≤ w · x ≤ δ] ≥ κ.
Proof. We choose a sufficiently small τ > 0, where τ = τ(δ) � δ, and consider

the τ -critical index K= c(w, τ) of w. Fix K0 = Θ(1/τ2) · log(1/δ2) and consider the
following two cases:

[Case 1: K ≤ K0.] In this case, we partition [n] into the head H = [K − 1] and the
tail T = [n] \H. Then, an application of Claims 3.13 and 3.12 for η = α = δ gives us
that

PrxH [wH · xH ∈ [0, δ]] ≥ 2−K ≥ 2−K0 .

An application of Fact 3.14 for the τ -regular tail gives that

PrxT [wT · xT ∈ [−15τ, 0]] ≥ τ

and combining the above inequalities using independence yields

Prx [w · x ∈ [−15τ, δ]] ≥ 2−K0 · τ.

Now note that for any choice of τ ≤ δ/15, the above clearly implies

Prx [w · x ∈ [−δ, δ]] ≥ 2−K0 · τ

and by symmetry we conclude that

Prx [w · x ∈ [0, δ]] ≥ 2−K0−1 · τ

yielding the lemma for κ1 = 2−K0−1 · τ.
[Case 2: L > K0.] In this case, we partition [n] into H = [K0 − 1] and the tail
T = [n] \H. We similarly have that

PrxH [wH · xH ∈ [0, δ]] ≥ 2−K0 .
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Now recall that the tail weight decreases geometrically up to the critical index; in
particular, Fact 2.7 gives that ‖wT ‖2 ≤ δ2. Then, for a sufficiently small δ, the
Hoeffding bound gives

PrxT [wT · xT ∈ [−δ, 0]] ≥ 1/4.

Combining these inequalities we thus get that

Prx [w · x ∈ [−δ, δ]] ≥ 2−K0−2.

By symmetry, we get the desired inequality for κ2 = 2−K0−3.
The proof follows by selecting κ = min{κ1, κ2} = κ1 for any choice of τ ≤ δ/15.

Note the difference between the conditions of Corollary 3.16, stated below, and
Lemma 3.15 stated above: while Lemma 3.15 requires that δ = w1, Corollary 3.16
holds for any δ > 0.

Corollary 3.16. For any δ > 0, there is a value κ = κ(δ) > 0 such that
for any w ∈ Rn with ‖w‖2 ≤ 1 and ‖w‖∞ ≤ δ, Prx[0 ≤ w · x ≤ δ] ≥ κ and
Prx[−δ ≤ w · x ≤ 0] ≥ κ.

Proof. We start by considering the case when ‖w‖2 ≤ δ/100. In this case, by
Theorem 2.4, we certainly get that Prx[|w · x| ≤ δ] ≥ 99/100. Hence, by symmetry,
Prx[−δ ≤ w · x ≤ 0] ≥ 99/200 and Prx[0 ≤ w · x ≤ δ] ≥ 99/200.

Next, we consider the case when ‖w‖2 > δ/1500. In this case, if w1 > δ2/1500,
then we apply Lemma 3.15, to get that Prx[0 ≤ w · x ≤ δ2/1500] ≥ κ1 and (by
symmetry) Prx[−δ2/1500 ≤ w ·x ≤ 0] ≥ κ1 where κ1 is a positive constant dependent
only on δ.

The only remaining case is when w1 ≤ δ2/1500. In this case, the vector w is
δ/15-regular. Now, we can apply Fact 3.14 to get that Prx[0 ≤ w · x ≤ δ] ≥ δ/15
and Prx[−δ ≤ w · x ≤ 0] ≥ δ/15. By taking κ = min{δ/15, κ1, 99/200}, the proof is
completed.

Using the above corollary, we show the following lemma:
Lemma 3.17. Let α, η, ξ ∈ R+ with w ∈ Rn be such that ξ ≤ ‖w‖2 ≤ 1, α > 2η,

and ‖w‖∞ ≤ α−η. Then, there are positive constants κ = κ(α, η, ξ) and γ = γ(α, η, ξ)
such that

Prx[−2α+ 2η ≤ w · x ≤ −γ] ≥ κ.

Proof. We choose a sufficiently small ζ > 0 and consider two cases.
[Case 1: w is ζ-regular.] In this case, Theorem 2.5 gives us (similar to Fact 3.14)
that for ζ ≤ 1/20, we have

Prx[−20ζ · ‖w‖ ≤ w · x ≤ −ζ · ‖w‖] ≥ ζ.

[Case 2: w is not ζ-regular.] We assume without loss of generality that w1 = ‖w‖∞.
In this case, it follows by definition that w1 ≥ ζ · ξ, hence w1 ∈ [ζ · ξ, α − η]. Since
|wj | ≤ α− η for all j ≥ 2, Corollary 3.16 says that (recall that w(1) = (w2, . . . , wn))

Prx(1)

[
−α+ η ≤ w(1) · x(1) ≤ 0

]
≥ c(α, η).

By independence we thus get

Prx [−2α+ 2η ≤ w · x ≤ −ζ · ξ] ≥ c(α, η)/2.
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Combining Case 1 and Case 2 and using 1 ≥ ‖w‖ ≥ ξ, we get

Prx [min{−2α+ 2η,−20ζ} ≤ w · x ≤ −ζ · ξ] ≥ min{c(α, η)/2, ζ}.

We now choose ζ > 0 so that 20ζ ≤ α − η. Finally, we set γ = ζ · ξ and κ =
min{c(α, η)/2, ζ} and get the claimed result.

The next lemma is a robust version of Lemma 3.10. It says that if a vector w
of length n is very close to having its first 2k entries each being α and its remaining
entries all 0, then `(x) = |w · x| must have nonnegligible Fourier mass at levels 4 and
above.

Lemma 3.18. Let α > 0, w ∈ Sn−1 and k ∈ N, k > 1. Then there are sufficiently
small positive constants η = η(k), τ = τ(k) with the following property : If for every
i ∈ [2k], we have wi ∈ [α − η, α] and

∑n
j>2k(wj)2 ≤ τ2, then the map ` : x 7→ |w · x|

satisfies W≥4[`] ≥ γ for some γ = γ(k) > 0.
Proof. Consider the vector w′ = (α, . . . , α︸ ︷︷ ︸

2k

, 0, . . . , 0) and the map `′ : x 7→ |w′ · x|.

We have

`′(x) = α ·
√
k ·
∣∣∣∣x1 + . . .+ xk√

k

∣∣∣∣
By applying Lemma 3.10, we get W≥4[`′] ≥ α2 · 2−2k. Note that if η and τ are
sufficiently small, then clearly α ≥ 1

2
√
k

. This implies W≥4[`′] ≥ 2−2k

4k .
We now observe that

|`(x)− `′(x)| =
∣∣∣∣ | n∑

i=1

wi · xi| − |
n∑
i=1

w′i · xi|
∣∣∣∣

≤
∣∣∣∣ | k∑

i=1

wi · xi| − |
k∑
i=1

w′i · xi|
∣∣∣∣+

∣∣∣∣∣ n∑
j=k+1

wixi

∣∣∣∣∣
Let us use h1(x) = |

∑k
i=1 wi ·xi|, h2(x) = |

∑k
i=1 w

′
i ·xi| and h3(x) = |

∑n
j=k+1 wixi|.

Then we may rewrite the above as |`(x) − `′(x)| ≤ |h1(x) − h2(x)| + h3(x). This
implies that |`(x)− `′(x)|2 ≤ 2(h1(x)− h2(x))2 + 2(h3(x))2. This in turn yields

E[(`(x)− `′(x))2] ≤ 2E[(h1(x)− h2(x))2] + 2E[(h3(x))2].

Note that E[(h3(x))2] =
∑n
j=k+1 w

2
j ≤ τ2. Next, observe that

|h1(x)− h2(x)| =
∣∣∣∣| k∑
i=1

wi · xi| − |
k∑
i=1

w′i · xi|
∣∣∣∣ ≤ ∣∣∣∣ k∑

i=1

(wi − w′i) · xi
∣∣∣∣

Hence, we get that E[(h1(x)− h2(x))2] ≤ E[(
∑k
i=1(wi − w′i) · xi)2] ≤

∑k
i=1 η

2 = kη2.
Combining these bounds, we get that E[(`(x)− `′(x))2] ≤ 2(kη2 + τ2). Hence, we

have that

W≥4[`] ≥W≥4[`′]−E[(`(x)− `′(x))2] ≥ 2−2k

4k
− 2(kη2 + τ2).

We may choose η and τ small enough so that 2−2k

4k − 2(kη2 + τ2) ≥ 2−2k

8k , and the
proof is finished.
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Given the above lemmas, the proof of Theorem 3.8 proceeds as follows: Let
w1 = α and η = η(α) > 0 be a sufficiently small constant. Let L be the first index
such that wL ≤ α− η. Recalling that w is canonical, since w1 > 0.3 and ‖w‖ = 1, it
is clear that L ≤ 1/0.09 < 12. We now consider two cases :

[Case I: L is even] Then by Claim 3.13, there is a choice of x2, . . . , xL−1, such that∑L−1
k=2 wkxk ∈ [−η, 0]. Using Corollary 3.16 and noting that wL ≤ α−η, there is some

κ = κ(α, η) such that Prx(L−1) [0 ≤ w(L−1)x(L−1) ≤ α− η] ≥ κ. By independence, we
thus get

Prx[−η ≤ w(1) · x(1) ≤ α− η] ≥ κ · 2−L. (3.5)

Note that (3.5) implies (by definition) that Inf1(`) ≤ w2
1 − c1, for an appropriate

constant c1 = c1(κ, L, η) > 0.

[Case II: L is odd] Let us choose a sufficiently small ξ > 0. If ‖w(L−1)‖2 > ξ, then
observe that from Claim 3.13 (applied to the weights w1, . . . , wL−1) there is a choice
of x2, . . . , xL−1 satisfying

∑L−1
k=2 wkxk ∈ [α− η, α], i.e.

Pr
[
α− η ≤

L−1∑
k=2

wkxk ≤ α
]
≥ 2−L.

Combining this with Lemma 3.17 applied to w(L−1), we get that

Prx(1) [−α+ η ≤ w(1) · x(1) ≤ α− γ(α, η,ξ)] ≥ 2−L · κ. (3.6)

Exactly as before, (3.6) implies (by definition) that Inf1(`) ≤ w2
1 − c1, for an appro-

priate constant c1 > 0.
Now consider the only remaining case which is that ‖w(L−1)‖2 ≤ ξ. Recall that

1 < L < 12 and L is odd; we first claim that that L > 3. Indeed, this must be the
case because L = 3 contradicts (for ξ and η sufficiently small) the assumption τ ≥ 2/5
(recall that w is canonical). Now, since ` ≤ 11 and η and ξ are sufficiently small, by
applying Lemma 3.18), we get that ` has a constant fraction of its Fourier mass above
level 2, completing the proof. This finishes the proof of Theorem 3.8.

4. Proof of Theorem 1.3 using Theorem 1.9. We first observe that it suffices
to prove the theorem for balanced LTFs, i.e. LTFs f : {−1, 1}n → {−1, 1} with
f̂(∅) = E[f ] = 0. (Note that any balanced LTF can be represented with a threshold
of 0, i.e. f(x) = sign(w · x) for some w ∈ Rn.)

Fact 4.1. Let f : {−1, 1}n → {−1, 1} be an n-variable LTF. Then there is a
balanced (n+1)-variable LTF g : {−1, 1}n+1 → {−1, 1} such that W≤1[f ] = W≤1[g].

Proof. Let f(x) = sign(w0 +
∑n
i=1 wixi) and note that we may assume that

w0 6= w · x for all x ∈ {−1, 1}n. Consider the (n + 1)-variable balanced LTF g :
(x, y) → {−1, 1}, where y ∈ {−1, 1}, defined by g(x, y) = sign(w0y +

∑n
i=1 wixi).

Then it is easy to see that ĝ(y) = E[f ] and ĝ(i) = f̂(i) for all i ∈ [n]. Therefore,
W≤1[f ] = W1[g] = W≤1[g].

Let f = sign(w ·x) be an LTF. We may assume that w is a proper unit vector, i.e.
that ‖w‖2 = 1 and wi ≥ wi+1 > 0 for i ∈ [n−1]. We can also assume that w ·x 6= 0 for
all x ∈ {−1, 1}n. We distinguish two cases: If w is “far” from w∗ (i.e. the worst-case
vector for the Khintchine inequality), the desired statement follows immediately from
our robust inequality (Theorem 1.9). For the complementary case, we use a separate
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argument that exploits the structure of w. More formally, we have the following two
cases:

Let τ > 0 be a sufficiently small universal constant, to be specified.

[Case I: ‖w − w∗‖2 ≥ τ ]. In this case, Proposition 1.8 and Theorem 1.9 give us

W1[f ] ≥ (K(w))2 ≥ (1/
√

2 + cτ)2 ≥ 1/2 +
√

2cτ

which completes the proof of Theorem 1.3 for Case I.

[Case II: ‖w − w∗‖2 ≤ τ ]. In this case the idea is to consider the restrictions of f
obtained by fixing the variables x1, x2 and argue based on their bias. Recall that for a
vector y = (y1, . . . , yn) ∈ Rn and i ∈ [n] we denote y(i) = (yi+1, . . . , yn). We consider
the restrictions fij : {−1, 1}n−2 → {−1, 1} defined by

fij(y) = sign(w1 · (−1)i + w2 · (−1)j + w(2) · y).

We fix λ = 3/4 and consider the following two subcases:
(a) (Ey[f01(y)] ≤ λ) In this case the function f01 is not very positively biased;

we show that the Cauchy-Schwarz inequality is not tight. In particular, the
degree-1 Fourier vector (f̂(i))i=1,...,n of f(x) = sign(w ·x) and the correspond-
ing weight-vector w form an angle bounded away from zero:
Lemma 4.2. There are universal constants τ, κ = κ(τ) > 0 such that the
following holds: Let w ∈ Rn be any proper unit vector such that ‖w−w∗‖2 ≤ τ
and Ey[f01(y)] ≤ λ where f(x) = sign(w · x). Then we have

W1[f ] ≥ (1 + κ) · (K(w))2
.

Proof. Note that since w1 ≥ w2 the function f01(y) is an LTF of the form
sign(w(2) · y(2) + θ) with θ ≥ 0, and hence E[f01] ≥ 0. To deal with this case
we recall the following simple fact:
Fact 4.3 (Lemma 2.4 in [28]). Let f : {−1, 1}n → {−1, 1} be an LTF with
1− |E[f ]| = p. Then W1[f ] ≥ p2/2.
An application of Fact 4.3 for f01 gives

W1[f01] ≥ 1/(32).

Note that by symmetry we also have that Ey[f10(y)] ≥ −λ and therefore

W1[f10] ≥ 1/(32).

Fix k ∈ {3, . . . , n}. We have that

f̂(k) = Infk(f)

= (1/4) ·
∑

i,j∈{0,1}
Infk−2(fij) ≥ (1/4) ·

(
f̂01(k − 2) + f̂10(k − 2)

)
.

Since the sign of f̂01(k − 2) agrees with the sign of f̂10(k − 2) for all k ∈
{3, . . . , n}, we get that

n∑
k=3

f̂(k)2 ≥ (1/16) ·
(
W1[f01] + W1[f10]

)
≥ 1/(256).
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Recall that by assumption of the lemma it holds ‖w(2)‖2 =
√∑n

i=3 w
2
i ≤ τ

and Parseval’s identity implies that
∑n
i=1 f̂

2(i)2 ≤ 1. We can therefore now
write

K(w) =
n∑
i=1

f̂(i)wi ≤
√
w2

1 + w2
2 ·
√
f̂2(1) + f̂2(2) + ‖w(2)||2 ·

√
n∑
k=3

f̂(k)2

≤
√

W1[f ]− 1/(256) + τ

where the first inequality follows by two applications of Cauchy-Schwarz and
the second follows by our assumptions. By squaring and expanding, assuming
that τ > 0 is sufficiently small, we obtain

(K(w))2 ≤W1[f ]− 1/300
≤W1[f ]− (1/300)W1[f ] = (299/300) ·W1[f ]

where the second inequality follows from the fact that W1[f ] ≤ 1. This
proves Lemma 4.2.
Theorem 1.3 follows easily from Lemma 4.2 in this subcase using the “basic”
Khintchine inequality with optimal constant, (K(w))2 ≥ 1/2. We turn now
to the remaining subcase:

(b) (Ey[f01(y)] > λ = 3/4) In this case, we show that the value f̂(1) is so
large that it alone causes W≤1[f ] to be significantly larger than 1/2. Since
Ey[f01(y)] > 3/4 it must certainly also be the case that Ey[f00(y)] > 3/4,
and by symmetry Ey[f10(y)] < −3/4 and Ey[f11(y) < −3/4. Consequently
we have f̂(1) = Ex[f(x)x1] > 3/4, and so W≤1[f ] ≥ f̂(1)2 ≥ 9/16.
This concludes the proof of Theorem 1.3.

5. Alternate proof of Theorem 1.3. Recall that it suffices to prove the the-
orem for balanced LTFs. The idea of the second proof is to perturb the original
halfspace slightly so that the perturbed halfspace is defined by a sufficiently anti-
concentrated linear form w′ · x. If the perturbed halfspace is regular, one can show
that its degree-1 Fourier weight is close to 2/π. Otherwise, there exists a large weight,
hence an influential variable x1 (say). We are then able to show a non-trivial upper
bound on the influence of x1 on the function `(x) = |w′ · x|.

We require the following terminology:
Definition 5.1. The (relative) Hamming distance between two Boolean func-

tions f, g : {−1, 1}n → {−1, 1} is defined as follows: dist(f, g)
def
= Prx[f(x) 6= g(x)].

If dist(f, g) ≤ ε we say that f and g are ε-close.
Definition 5.2. Let f : {−1, 1}n → {−1, 1} be an LTF, f(x) = sign(w0 +∑n

i=1 wixi), where the weights are scaled so that
∑n
i=0 w

2
i = 1. Given a particular

input x ∈ {−1, 1}n we define marg(f, x) = |w0 +
∑n
i=1 wixi|.

We start by recalling the following result from [28] which essentially says that any
LTF is extremely close to another LTF for which almost all points have large margin:

Theorem 5.3. [Theorem 6.1 in [28]] Let f : {−1, 1}n → {−1, 1} be any LTF and
let 0 < τ < 1/2. Then there is an LTF f ′ : {−1, 1}n → {−1, 1} with dist(f, f ′) ≤ η(τ)
satisfying Prx[marg(f ′, x) ≤ κ(τ)] ≤ τ , where κ(τ) = 2−O(log3(1/τ)/τ2) and η(τ) =
2−1/κ(τ).

Let 0 < τ < δ be sufficiently small universal constants (to be chosen later). Given
any balanced LTF f(x) = sign(w ·x), we consider the LTF f ′ = sign(w′ ·x), ‖w′‖2 = 1,
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obtained from Theorem 5.3, so dist(f, f ′) ≤ η(τ) and Prx[|w′ ·x| ≤ κ(τ)] ≤ τ. We will
exploit the anti-concentration of w′ · x to establish the theorem for f ′. We will then
use the fact that f and f ′ are close in Hamming distance to complete the theorem.

We apply Fact 2.9 for the degree-1 Fourier vectors of f and f ′, i.e. ai = f̂(i)
and bi = f̂ ′(i), i ∈ [n]. Note that Parseval’s identity gives that

∑n
i=1(f̂(i))2 ≤ 1 and∑n

i=1(f̂ ′(i))2 ≤ 1. Moreover, Plancherel’s identity implies that

n∑
i=1

(f̂(i)− f̂ ′(i))2 ≤
∑
S⊆[n]

(f̂(S)− f̂ ′(S))2 = Ex[(f(x)− f ′(x))2] = 4dist(f, f ′) ≤ 4η.

Therefore, ∣∣W1[f ]−W1[f ′]
∣∣ ≤ 4

√
η. (5.1)

Therefore, Fact 2.9 gives that
The above equation implies that if we show the theorem for f ′ we are done as

long as η is sufficiently small. We can guarantee this by making τ sufficiently small.
To show the theorem for f ′, we consider two possibilities depending on whether the
vector w′ defining f ′ is δ-regular (where δ will be determined later).

[Case I: w′ is δ-regular] In this case, we use the following result from [25]:
Theorem 5.4 (Theorem 48 in [25]). Let δ > 0 be a sufficiently small universal

constant and f be a δ-regular LTF. Then |W1[f ] −W (E[f ])| ≤ δ1/6. We give a full
description of the W (·) function in Section 6.1; here we only will use the fact that
W (0) = 2/π. Theorem 5.4 thus gives that W1[f ′] ≥ 2

π − δ
1/6 and by (5.1) we obtain

W1[f ] ≥ 2
π
− δ1/6 − 4

√
η. (5.2)

This quantity can be made arbitrarily close to 2/π by selecting δ, τ to be small enough
constants.

[Case II: w′ is not δ-regular] In this case, we have that |w′1| = maxi |w′i| > δ. Let
us assume without loss of generality that w′1 > 0. (The other case is entirely similar.)
By Proposition 1.8 and Fact 3.3 we have

W1[f ′] ≥ (K(w′))2 = 1−Var(`) ≥ 1− (1/2) · Inf(`),

where `(x) = |w′ · x|. Lemma 3.4 already implies that Var[`] ≤ 1/2, but we are able
to prove a better upper bound in this case. To prove a better upper bound on the
variance, we exploit that w′1 > δ to upper bound Inf1(`) by a quantity strictly smaller
than (w′1)2. For this, we recall the following result from [25]:

Theorem 5.5 (Theorem 39 in [25]). Let f(x) = sign(
∑n
i=1 wixi−w0) be an LTF

such that
∑
i w

2
i = 1 and δ

def
= |w1| ≥ |wi| for all i ∈ [n]. Let 0 ≤ ε ≤ 1 be such that

|E[f ]| ≤ 1− ε. Then |f̂(1)| = Ω(δε6 log(1/ε)).
We can now state and prove our main lemma for this case:

Lemma 5.6. In the context of Case II, we have Inf1(`) ≤ (w′1)2 − 2(f̂ ′(1) −
2τ)κ(τ)w′1 + (f̂ ′(1)− 2τ)κ(τ)2.

Proof. Since w′1 > δ and
∑n
i=1(w′i)

2 = 1, an application of Theorem 5.5 gives
Inf1(f ′) = f̂ ′(1) > c1 · w′1, where c1 is a universal constant.

To analyze the desired quantity, we partition the hypercube {−1, 1}n into pairs
(x+, x−) that differ only in the fist coordinate with x+

1 = 1 and x−1 = −1. That is
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x+ = (1, y) and x− = (−1, y) with y ∈ {−1, 1}n−1. We say that such a pair is “good”
if both the following conditions hold: (1) the corresponding hypercube edge is bi-
chromatic (i.e. f ′(x+) = 1 and f ′(x−) = −1)2, and (2) min{|w′ ·x+|, |w′ ·x−|} ≥ κ(τ).
It is easy to see that the fraction of pairs that are “good” is at least f̂ ′(1) − 2τ , i.e.
Pry∈{−1,1}n−1 [G] ≥ f̂ ′(1) − 2τ , where G is the event G = {y ∈ {−1, 1}n−1 | the
pair (1, y), (−1, y) is good}. Indeed, the probability that the edge (1, y), (−1, y) is
monochromatic is 1− Inf1(f ′) = 1− f̂ ′(1) and the probability that either |w′ · x+| ≤
κ(τ) or |w′ · x−| ≤ κ(τ) is at most τ , hence the claim follows by a union bound.

Now if y ∈ {−1, 1}n−1 is such that the corresponding pair x+ = (1, y) and x− =
(−1, y) is good, we have that |w′ ·x+| = w′1 + c′ ≥ κ(τ) and |w′ ·x−| = w′1− c′ ≥ κ(τ),
where c′ = (w′2, . . . , w

′
n) · y. From this we deduce that |c′| ≤ |w′1−κ(τ)| ≤ |w′1|, where

the second inequality holds for a sufficiently small choice of τ . Hence, the analysis of
Lemma 3.4 yields that in this case Var[`(x1, y)] = c′2 ≤ (w′1 − κ(τ))2

. In all other
cases, Lemma 3.4 yields the upper bound Var[`(x1, y)] = c′2 ≤ (w′1)2. We can thus
bound from above the desired influence as follows:

Inf1(`) = Ey∈{−1,1}n−1 [Var[`(x1, y)]]

≤ (f̂ ′(1)− 2τ) · (w′1 − κ(τ))2 + (1− f̂ ′(1) + 2τ)(w′1)2

≤ (w′1)2 − 2(f̂ ′(1)− 2τ)κ(τ)w′1 + (f̂ ′(1)− 2τ)κ(τ)2.

This completes the proof.
Combining Lemma 5.6 with our earlier arguments, we obtain

W1[f ′] ≥ 1
2

+ (f̂ ′(1)− 2τ)κ(τ)w′1 −
(f̂ ′(1)− 2τ)κ(τ)2

2

and using (5.1) we conclude

W1[f ] ≥ 1
2

+ (f̂ ′(1)− 2τ)κ(τ)w′1 −
(f̂ ′(1)− 2τ)κ(τ)2

2
− 4
√
η(τ). (5.3)

At this point it is straightforward to complete the proof of Theorem 1.3. Indeed,
we select δ > 0 to be a sufficiently small constant and τ

def= c1 · δ/4 � δ. First, note
that the bound of (5.2) for the regular case can be made arbitrarily close to 2/π.
Regarding the bound of (5.3) for the non-regular case observe that

f̂ ′(1)− 2τ > c1δ − c1δ/2 = c1δ/2

which means that the advantage over 1/2 is at least

(1/2) · c1δ2κ(τ)− (1/4) · c1δκ(τ)2 − 4
√
η(τ)

which is lower bounded by a universal positive constant, since the second and the
third terms are negligible compared to the first for our choice of parameters. This
concludes the proof of Theorem 1.3.

6. Proof of Theorem 1.4: An approximation algorithm for W≤1[LTF].
Our approach heavily uses Gaussian analysis, so we record some basic definitions and
facts that we will need below.

2This is the only possibility since w′1 > 0, hence f ′ is monotone nondecreasing in x1.
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6.1. Gaussian Facts. Definition 6.1. We write φ for the probability den-
sity function of a standard (i.e. zero mean, unit variance) Gaussian; i.e. φ(t) =
(2π)−1/2e−t

2/2. We denote by N (0, 1) the corresponding distribution and by N (0, 1)n

(or Nn) the standard n-dimensional Gaussian distribution.
Fact 6.2. (Rotational Invariance) Let U : Rn → Rn be a unitary transformation,

i.e., U tU = I. If x ∼ N (0, 1)n, then Ux ∼ N (0, 1)n.
Definition 6.3. Let hθ : R → {−1, 1} denote the function of one Gaussian

random variable x given by hθ(x) = sign(x− θ).
Definition 6.4. The function µ : R ∪ {±∞} → [−1, 1] is defined as µ(θ) =

Ex∼N (0,1)[hθ(x)]. Explicitly, µ(θ) = −1 + 2
∫∞
θ
φ(x)dx. We note that µ is strictly

monotone decreasing, hence invertible on [−1, 1].
Definition 6.5. The function W : [−1, 1] → [0, 2/π] is defined by W (x) =

(2φ(µ−1(x)))2. Equivalently, W is defined so that W (µ(θ)) = (2φ(θ))2.
The next two facts appear as Propositions 24 and 25 in [25] respectively.

Fact 6.6. Let X ∼ N (0, 1). We have:
• (i) E[|X − θ|] = 2φ(θ)− θµ(θ),
• (ii) |µ′| ≤

√
2/π everywhere and |W ′| < 1 everywhere, and

• (iii) If |ν| = 1− η, then W (ν) = Θ(η2 log(1/η)).
Fact 6.7. Let f(x) = sign(w · x− θ) be an LTF such that ‖w‖2 = 1. Then

• (i) f̃(0)
def
= Ex∼Nn [f(x)] = µ(θ),

• (ii) f̃(i)
def
= Ex∼Nn [f(x)xi] =

√
W (f̃(0))wi, for all i ∈ [n], and

• (iii)
∑n
i=1 f̃

2(i) = W (f̃(0)).

6.2. Proof of Theorem 1.4. We recall the statement of Theorem 1.4:

Theorem 1.4. There is an algorithm that, on input an accuracy parameter ε > 0,
runs in time 2poly(1/ε) and outputs a value Γε such that

W≤1[LTF] ≤ Γε ≤W≤1[LTF] + ε.

We recall the simple algorithm used to prove Theorem 1.4 from Section 1.4:
Let K = Θ(ε−24). Enumerate all K-variable zero-threshold LTFs,
and output the value

Γε
def= min{W1[f ] : f is a zero-threshold K-variable LTF.}.

As described in Section 1.4, it suffices to prove that for any zero-threshold n-
variable LTF f(x) = sign(w · x), there is a K-variable zero-threshold LTF g, where
K = Θ(ε−24), such that

|W1[f ]−W1[g]| < ε; (6.1)

we now proceed with the proof. We can of course assume that n > K, since otherwise
(6.1) is trivially satisfied for g = f with ε = 0.

We choose a parameter δ = O(ε6); as described in Section 1.4, the proof is by case
analysis on the value of the δ-critical index c(w, δ) of the weight vector w. Consider
a parameter L = L(δ) = Θ̃(δ−2). We consider the following two cases:
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[Case I: Large critical index, i.e. c(w, δ) ≥ L(δ)] In this case, the proof follows
easily from the following lemma:

Lemma 6.8 (Case II(a) of Theorem 1 of [35]). Let f(x) = sign(w ·x) = sign(wH ·
xH +wT ·xT ), where w is proper, H = [L(δ)] and T = [n] \H. If c(w, δ) ≥ L(δ), then
f is δ-close in Hamming distance to function the junta g(x) = sign(wH · xH).

Since dist(f, g) ≤ δ, Fact 2.9 implies that |W1[f ] −W1[g]| < 4
√
δ < ε. Noting

that g is a zero-threshold K-variable LTF (since L < K) completes the proof of Case
I.

[Case II: Small critical index, i.e. c(w, δ) < L(δ)] This case requires an elaborate
analysis: at a high-level we apply a variable reduction technique to obtain a junta
g that closely approximates the degree-1 Fourier weight of f . Note that there is
no guarantee (and it is typically not the case) that f and g are close in Hamming
distance. Formally, we prove the following theorem:

Theorem 6.9. Let f(x) = sign(w · x) = sign(wH · xH + wT · xT ), where w is
proper, H = [c(w, δ)] and T = [n]\H. Consider the LTF g : {−1, 1}|H|+M → {−1, 1},
with M = Θ(ε−24), defined by

g(xH , z) = sign
(
wHxH + ‖wT ‖2 ·

M∑
i=1

zi√
M

)
.

Then |W1[f ]−W1[g]| < ε.
Note that g depends on |H| + M ≤ L + M ≤ K variables. Hence, Theorem 6.9

completes the analysis of Case II. We refer the reader to Section 1.4 for intuition and
motivation behind Theorem 6.9 and proceed to its proof in the next subsection.

6.3. Proof of Theorem 6.9. Let f : {−1, 1}n → {−1, 1} where f(x) = sign(w ·
x) = sign(wHxH + wTxT ), where the tail vector wT is δ-regular. Assume wlog that
‖wT ‖2 = 1. We proceed in the following three steps, which together yield Theorem 6.9.

Step 1: “Gaussianizing” the tail. First some notation: we write Un to denote
the uniform distribution over {−1, 1}n. Our main result in this case is the following
theorem, which roughly says that letting tail variables take Gaussian rather than
Boolean values does not change the “degree-1 Fourier coefficients” by much:

Theorem 6.10. Let f = sign(wH · xH + wT · xT ). For i ∈ [n] define f̂(i) =
Ex∼Un [f(x)xi] and f̃(i) = ExH∼U|H|,xT∼N |T | [f(x)xi]. If wT is τ -regular then

n∑
i=1

(
f̂(i)− f̃(i)

)2

= O(τ1/6).

Note that by applying Fact 2.9 the above theorem implies that W1[f ] ≈τ1/12
W̃1[f ],

where we define W̃1[f ] def=
∑n
i=1(f̃(i))2.

To prove Theorem 6.10 we need a few lemmas. Our first lemma shows that for
a regular LTF, its degree-1 Fourier coefficients are close to its corresponding Hermite
coefficients.

Lemma 6.11. Let f(x) = sign(w · x − w0) be an LTF. For i ∈ [n] define

f̂(i)
def
= Ex∈Un [f(x)xi] and f̃(i)

def
= Ex∈Nn [f(x)xi]. If w is τ -regular, then

∑n
i=1(f̂(i)−

f̃(i))2 = O(τ1/6).
Proof. We can assume that ‖w‖2 = 1. Since w is τ -regular, by Fact 2.8 (i) we

have that f̂(0) ≈τ f̃(0). It suffices to show that
n∑
i=1

f̂(i)2 +
n∑
i=1

f̃(i)2 ≈τ
1/6

2
n∑
i=1

f̂(i)f̃(i). (6.2)
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We first note that the lemma follows easily for the case that |w0| >
√

2 ln(2/τ).
In this case, by an application of the Hoeffding bound (Theorem 2.4) it follows that
|f̂(0)| ≥ 1− 2τ , hence |f̃(0)| ≥ 1− 3τ . By Parseval’s identity we have

n∑
i=1

f̂(i)2 ≤
∑

∅6=S⊆[n]

f̂(S)2 = 1− f̂(0)2 ≤ 4τ ;

similarly, in the Gaussian setting, we get

n∑
i=1

f̃(i)2 ≤
∑
∅6=S

f̃(S)2 ≤ 1− f̃(0)2 ≤ 6τ.

Hence, we conclude that
∑n
i=1(f̂(i)− f̃(i))2 ≤ 2

∑n
i=1 f̂(i)2 + 2

∑n
i=1 f̃(i)2 = O(τ).

We now consider the case that |w0| ≤
√

2 ln(2/τ) and proceed to prove (6.2).
By Fact 6.7 (iii) we get

∑n
i=1 f̃(i)2 = W (f̃(0)). Moreover, Theorem 5.4 gives that∑n

i=1 f̂(i)2 ≈τ1/6
W (f̂(0)). We now claim that W (f̂(0)) ≈τ W (f̃(0)). This follows

from the mean value theorem, since f̂(0) ≈τ f̃(0) and |W ′| < 1 everywhere, by
Fact 6.6. Therefore, we conclude that the LHS of (6.2) satisfies

n∑
i=1

f̂(i)2 +
n∑
i=1

f̃(i)2 ≈τ
1/6

2W (f̃(0)).

For the RHS of (6.2) we can write

n∑
i=1

f̂(i)f̃(i) =
√
W (f̃(0))

n∑
i=1

wif̂(i) =
√
W (f̃(0)) Ex∈Un [(w · x)sign(w · x− w0)]

where the first equation follows from Fact 6.7 (ii) and the third is Plancherel’s identity.
Moreover, by definition we have

Ex∈Un [(w · x)sign(w · x− w0)] = Ex∈Un [|w · x− w0|] + w0 Ex∈Un [f(x)].

Recalling Fact 2.8 we deduce that

Ex∈Un [(w · x)sign(w · x− w0)] ≈(|w0|+1)τ Ex∈Nn [(w · x)sign(w · x− w0)].

Now, the RHS above satisfies

Ex∈Nn [(w · x)sign(w · x− w0)] = EX∈N [|X − w0|] + w0 Ex∈Nn [f(x)]

= 2φ(w0) =
√
W (f̃(0))

where the first equality follows by definition, the second uses Fact 6.6 (i) and the third
uses the definition of φ. Therefore,

Ex∈Un [(w · x)sign(w · x− w0)] ≈(w0+1)τ

√
W (f̃(0)).

Since the function W is uniformly bounded from above by 2/π, we conclude that the
RHS of (6.2) satisfies

n∑
i=1

f̂(i)f̃(i) ≈(|w0|+1)τ W (f̃(0)).
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The proof now follows from the fact that (|w0| + 1)τ < τ1/6, which holds since
|w0| = O(

√
log(1/τ)).

Our next lemma, a simple generalization of Lemma 6.11 above, shows that for
any LTF, if the variables in its tail are replaced by independent standard Gaussians,
the corresponding degree 1-Fourier and Hermite coefficients of the tail variables are
very close to each other.

Lemma 6.12. Let f = sign(wH · xH + wT · xT ). For i ∈ T , define f̂(i) =
Ex∼Un [f(x)xi] and f̃(i) = ExH∼U|H|,xT∼N |T | [f(x)xi]. If wT is τ -regular, then we

have
∑
i∈T (f̂(i)− f̃(i))2 = O(τ1/6).

Proof. Fix an assignment ρ ∈ {−1, 1}|H| to the variables in H (head coordinates)
and consider the restriction fρ over the coordinates in T , i.e. fρ(xT ) = sign(wH ·
ρ + wT · xT ). For every assignment ρ, the restriction fρ is a τ -regular LTF (with a
different threshold); hence Lemma 6.11 yields that for all ρ ∈ {−1, 1}|H| we have

∑
i∈T

(
f̂ρ(i)− f̃ρ(i)

)2

= O(τ1/6). (6.3)

Hence, we obtain

∑
i∈T

(
f̂(i)− f̃(i)

)2

=
∑
i∈T

(
Eρ∼U|H|

[
f̂ρ(i)− f̃ρ(i)

])2

≤
∑
i∈T

Eρ∼U|H|

[(
f̂ρ(i)− f̃ρ(i)

)2
]

= Eρ∼U|H|

[∑
i∈T

(
f̂ρ(i)− f̃ρ(i)

)2
]

= O(τ1/6)

where the first equality uses the definition of the Fourier/Hermite coefficients, the first
inequality follows from Jensen’s inequality for each summand, the second equality
follows by linearity and the last equality uses (6.3).

Replacing the Boolean tail variables by Gaussians alters the Fourier coefficients
of the head variables as well. Our next lemma shows that the corresponding change
is bounded in terms of the regularity of the tail.

Lemma 6.13. Let f = sign(wH · xH + wT · xT ). For i ∈ H define f̂(i) =
Ex∼Un [f(x)xi] and f̃(i) = ExH∼U|H|,xT∼N |T | [f(x)xi]. If wT is τ -regular, then we

have
∑
i∈H(f̂(i)− f̃(i))2 = O(τ2).

Proof. We define the functions f ′ : {−1, 1}|H| → [−1, 1] and f ′′ : {−1, 1}|H| →
[−1, 1] as follows :

f ′(xH) = ExT∈U|T | [f(xH , xT )] and f ′′(xH) = ExT∈N |T | [f(xH , xT )] .

By definition, for all i ∈ H it holds f̂ ′(i) = f̂(i) and f̂ ′′(i) = f̃(i). We can therefore
write∑
i∈H

(f̂(i)− f̃(i))2 =
∑
i∈H

(f̂ ′(i)− f̂ ′′(i))2

≤
∑
S⊆H

(f̂ ′(S)− f̂ ′′(S))2 = Ex∈U|H|(f
′(x)− f ′′(x))2 ≤ ‖f ′ − f ′′‖2∞

where the second equality is Parseval’s identity and the final inequality follows from
the monotonicity of the norms (‖ · ‖∞ denotes the sup-norm of a random variable).
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In order to bound ‖f ′ − f ′′‖∞ we exploit the regularity of the tail via the Berry-
Esséen theorem. Indeed, fix an assignment ρ ∈ {−1, 1}|H| to xH . Then

|f ′(ρ)− f ′′(ρ)| ≤ 2
∣∣PrxT∈{−1,1}|T | [wT · xT + wH · ρ ≥ 0]−

PrxT∈N |T | [wT · xT + wH · ρ ≥ 0]
∣∣

Since wT is τ -regular, by Fact 2.6, the RHS above is bounded from above by 2τ .
Since this holds for any restriction ρ to the head we conclude that ‖f ′ − f ′′‖∞ ≤ 2τ
as desired.
Theorem 6.10 follows by combining Lemmas 6.12 and 6.13.

Step 2: “Collapsing” the tail. Let F : {−1, 1}|H| × R → {−1, 1} be defined by
F (xH , y) = sign(wHxH + y) (recall that we have assumed that w is scaled so that the
“tail weight” ‖wT ‖2 equals 1). For i ∈ H, we define

F̂ (i) = ExH∼U|H|,y∼N (0,1)[F (xH , y)xi]

and

F̂ (y) = ExH∼U|H|,y∼N (0,1)[F (xH , y)y].

We also denote W̃1[F ] =
∑
i∈H(F̂ (i))2 + F̂ (y)2. Our main result for this step is that

“collapsing” all |T | tail Gaussian variables to a single Gaussian variable does not
change the degree-1 “Fourier weight”:

Theorem 6.14. We have that W̃1[F ] = W̃1[f ].
The theorem follows by combining the following two lemmas.
Lemma 6.15. For every i ∈ H, f̃(i) = F̂ (i).
Proof. The lemma follows straightforwardly by the definitions. Indeed, for every

i ∈ H,

f̃(i) = ExH∼U|H|,xT∼N |T | [sign(wHxH + wTxT )xi]

= ExH∼U|H|,y∼N (0,1)[sign(wHxH + y)xi] = F̂ (i)

where the third equality uses the fact that wT · xT is distributed as N (0, 1).
Lemma 6.16. We have that (F̂ (y))2 =

∑
i∈T (f̃(i))2.

Proof. This lemma is intuitively clear but we nonetheless give a proof. We need
the following simple propositions.

Proposition 6.17. Let h : Rm → R with h ∈ L2(N (0, 1)m). Let U : Rm → Rm
be a unitary linear transformation. For i ∈ [m], define h̃(i) = Ex∼Nm [h(x)xi] and
h̃(i)′ = Ex∼Nm [h(x)(Ux)i]. Then,

∑m
i=1 h̃(i)2 =

∑m
i=1 h̃(i)′2.

Proof. Let (Ux)i =
∑m
j=1 aijxj . By linearity, we get that h̃(i)′ =

∑m
j=1 aij h̃(j).

Then,

m∑
i=1

h̃(i)′2 =
m∑
j=1

(
m∑
i=1

a2
ij

)
h̃(j)2 +

∑
j 6=i

(
m∑
k=1

akjaki

)
h̃(i)h̃(j)

By elementary properties of unitary matrices, we have (i)
∑m
i=1 a

2
ij = 1 for all j, and

(ii)
∑m
k=1 akjaki = 0 for i 6= j. Substitution completes the proof.

Proposition 6.18. Let Ψ : R→ R and Φ : Rm → R with Φ ∈ L2(N (0, 1)m) de-
fined as Φ(x) = Ψ (

∑m
i=1 wixi), where x,w ∈ Rm with ‖w‖2 = 1. Then

∑m
i=1 Φ̃(xi)2 =

Ψ̃(y)2.
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Proof. It is clear there is a unitary matrix U such that U : x1 7→
∑m
i=1 wixi.

Hence, an application of Proposition 6.17 gives us
m∑
i=1

Φ̃(xi)2 =
m∑
i=1

(Ex∈Nm [Φ(x) · (Ux)i])
2 (6.4)

Now observe that for i > 1, Ex∈Nm [Φ(x) · (Ux)i] = 0 as Φ(x) is independent of (Ux)i.
Using the rotational invariance of the Gaussian measure and using y instead of (Ux)1

we deduce

Ex∈Nm [Φ(x) · (Ux)1] = Ey∈N (0,1)[(Ψ(y)y] = Ψ̃(y).

Combining with (6.4) completes the proof.
The proof of the lemma follows by a simple application of the above proposition.

Indeed, set Ψ(y) = ExH∼U|H| [F (xH , y)]. An application of Proposition 6.18 gives us∑
i∈T Φ̃(xi)2 = Ψ̃(y)2. Now note that for i ∈ T , by definition, Φ̃(xi) = f̃(i), and

Ψ̃(y) = F̂ (y). This completes the proof of the lemma.

Step 3: “Booleanizing” the tail. Let M = Θ(ε−24). Consider the LTF g mapping
(xH , z)→ {−1, 1}, where xH ∈ {−1, 1}|H| and z ∈ {−1, 1}M , defined by

g(xH , z) = sign
(
wH · xH + (

M∑
i=1

zi)/
√
M

)
.

In this step we show that replacing the (single) Gaussian tail variable with a
scaled sum of Boolean variables does not change the degree-1 “Fourier weight” by
much:

Theorem 6.19. We have that |W̃1[F ]−W1[g]| = O(M−1/24).
As expected the theorem follows by combining two lemmas, one to deal with the

head and one for the tail.
Lemma 6.20. We have

∑
i∈H(F̂ (i)− ĝ(i))2 = O(M−1).

Proof. The proof closely parallels that of Lemma 6.13. Namely, we will de-
fine the function h, h′ : {−1, 1}|H| → [−1, 1] as h(xH) = Ey∼N (0,1)[F (xH , y)] and
h′(xH) = Ez∼UM [g(xH , z)]. Note that for i ∈ H, ĥ(i) = F̂ (i) and ĥ′(i) = ĝ(i). As in
Lemma 6.13, we have

∑
i∈H(ĥ(i) − ĥ′(i))2 ≤ ‖h − h′‖2∞. For any ρ ∈ {−1, 1}|H|, we

can write

|h(ρ)− h′(ρ)| = 2|Pry∈N (0,1)[wHρ+ y ≥ 0]−Prz∈UM [wHρ+
M∑
i=1

zi/
√
M ≥ 0]|.

Theorem 2.5 shows that the RHS is bounded from above by 2/
√
M , which completes

the proof of the lemma.
Lemma 6.21. Let F and g as defined above. Then |

∑M
i=1(ĝ(zi))2 − (F̂ (y))2| =

O(M−1/24).
Proof. First note that, by symmetry, for all i, j ∈ [M ] we have ĝ(zi) = ĝ(zj). By

definition, we can write

ĝ(zi) = ExH Ez∼UM

[
sign

(
wH · xH + (

M∑
i=1

zi)/
√
M

)]
and let us also denote

g̃(zi) = ExH Ez∼NM

[
sign

(
wH · xH + (

M∑
i=1

zi)/
√
M

)]
.
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Since the tail of g is 1/
√
M -regular Lemma 6.12 implies that

M∑
i=1

(ĝ(zi)− g̃(zi))2 = O(M−1/12)

and by Fact 2.9

|
M∑
i=1

(ĝ(zi))2 −
M∑
i=1

(g̃(zi))2| = O(M−1/24).

Since F̂ (y) = ExH Ey∼N [sign (wH · xH + y)], arguments identical to those of Lemma
6.16 give us

M∑
i=1

(g̃(zi))2 = (F̂ (y))2.

This completes the proof.

7. Proof of Theorem 1.5: An approximation algorithm for T(S). In this
section we prove Theorem 1.5 (restated below):

Theorem 1.5. There is an algorithm that, on input an accuracy parameter ε > 0,
runs in time 2poly(1/ε) and outputs a value Γε such that

T(S) ≤ Γε ≤ T(S) + ε.

The main structural result required to prove Theorem 1.5 is the following theorem
(recall that Sn−1 denotes the unit sphere in Rn, i.e. Sn−1 = {x ∈ Rn : ‖x‖2 = 1}):

Theorem 7.1. For any ε > 0, there is a value Kε = poly(1/ε) such that for any
n ∈ N,

T(Sn−1) ≤ T(SKε−1) ≤ T(Sn−1) + ε.

As a corollary, we have T(S) ≤ T(SKε−1) ≤ T(S) + ε. Theorem 7.1 implies that
to compute T(S) up to accuracy ε, it suffices to compute T(SKε−1); i.e., we need
to compute infw∈SKε−1 T(w). While SKε−1 is a finite-dimensional object, it is an
(uncountably) infinite set and hence it is not immediately obvious how to compute
infw∈SKε−1 T(w). The next lemma says that this can indeed be computed in time
2 eO(K2

ε ).
Lemma 7.2. For any m ∈ N, T(Sm−1) can be computed exactly in time 2Õ(m2).

Theorem 1.5 follows by combining Theorem 7.1 and Lemma 7.2.

7.1. Proof of Theorem 7.1. Proof. [Proof of Theorem 7.1] Let w ∈ Sn−1. For
ε > 0, we will prove that there exists a value Kε = O(1/ε3) and v ∈ SKε−1 such that
|T(v) − T(w)| ≤ ε. Clearly, the upper bound on T(SKε−1) in Theorem 7.1 follows
from this. The lower bound on T(SKε−1) is obvious.

To prove the existence of vector v ∈ SKε−1, we begin by considering the η-critical
index of w for η = ε/64. We also let K = C ·t/η2 · log(t/η) where t will be chosen later
to be O(log(1/η)) and C to be a sufficiently large constant. Clearly, for this choice of
η and t, we have that K = O(1/ε3). The next two claims show that whether c(w, η),
the η-critical index of w, is larger or smaller than K, the desired vector v exists in
either case.
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Claim 7.3. Let w ∈ Sn−1 be such that c(w, η) > K. Then there is a vector
v ∈ SK such that |T(v)−T(w)| ≤ η.

Claim 7.4. Let w ∈ Sn−1 be such that c(w, η) ≤ K. Then there exists v ∈
SK+λ(η)−1 such that |T(v) − T(w)| ≤ 8η, where λ(η) = 4/η2. In both Claim 7.3
and Claim 7.4, the final vector v is at most K + λ(η) ≤ O(1/ε3)-dimensional. Hence
Theorem 7.1 follows by choosing Kε = O(1/ε3). We start by proving Claim 7.3. We
will require the following anti-concentration lemma from [28]:

Lemma 7.5. (Theorem 4.2 in [28]) Let w ∈ Sn−1, 0 < η < 1/2, t > 1 and let K
be defined (in terms of t and η) as above. If c(w, η) > K, then for any w0 ∈ R, we
have

Prx∈{−1,1}n

[∣∣∣∣ n∑
i=1

wixi − w0

∣∣∣∣ ≤ √t · σK] ≤ 2−t

where σK = ‖w(K)‖2 =
√∑

j>K w
2
j .

Remark 7.6. Lemma 7.5 as stated in [28] has the probability bounded by O(2−t).
However, by making C large enough, it is obvious that the probability can be made
2−t.

Proof. [ Proof of Claim 7.3] Choose a specific w0 (we will fix it later). By
Lemma 7.5, we have that,

Prx∈{−1,1}n

[∣∣∣∣ n∑
i=1

wixi − w0

∣∣∣∣ ≤ √t · σK] ≤ 2−t. (7.1)

Note that
∑n
i=1 wixi =

∑
i≤K wixi +

∑
i>K wixi. Let wT denote the “tail weight

vector” wT = (wK+1, . . . , wn). Since ‖wT ‖2 = σK , by Hoeffding’s inequality (Theo-
rem 2.4), we have that

Prx∈{−1,1}n−K

[
|wT · xT |>

1
2
·
√
t

2
· σK

]
≤ 2

−t
8 . (7.2)

Define the set Agood,w0 as follows :

Agood,w0 :=

{
x ∈ {−1, 1}n :

∣∣∣∣ n∑
i=1

wixi − w0

∣∣∣∣ ≥ √t · σK and
∣∣∣∣ ∑
i>K

wixi

∣∣∣∣ ≤
√
t

8
· σK

}

We next make a couple of observations about the set Agood,w0 . The first is that
combining (7.1) and (7.2), we get that Prx∈{−1,1}n [x 6∈ Agood,w0 ] ≤ 2

−t
8 +2−t. Second,

for every x ∈ Agood,w0 , we have∣∣∣∣ K∑
i=1

wixi − w0

∣∣∣∣ ≥ ∣∣∣∣ n∑
i=1

wixi − w0

∣∣∣∣− ∣∣∣∣ ∑
i>K

wixi

∣∣∣∣ ≥ √t · σK · (1− 1
2
√

2

)
≥
√
t · σK ·

3
5
.

Hence for every x ∈ Agood,w0 , we have

1∑n

i=1 wixi≤w0
= 1∑K

i=1 wixi≤w0
.

Now, consider the vector v′ ∈ Sn defined as follows:
• v′i = wi for 1 ≤ i ≤ K;
• v′K+1 = σK ; and
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• v′j = 0 for j > K + 1.
Note that for every x ∈ {−1, 1}n (and hence for every x ∈ Agood,w0), we have∑K
i=1 wixi =

∑K
i=1 v

′
ixi. Recalling that∣∣∣∣ K∑

i=1

v′ixi − w0

∣∣∣∣ =
∣∣∣∣ K∑
i=1

wixi − w0

∣∣∣∣ ≥ √t · σK · 3
5

for x ∈ Agood,w0

and that all x ∈ {−1, 1}n satisfy |
∑
i>K v

′
ixi| ≤ σK , for t sufficiently large we get

that every x ∈ Agood,w0 satisfies

1∑n

i=1 v
′
ixi≤w0

= 1∑K

i=1 v
′
ixi≤w0

.

Thus, for x ∈ Agood,w0 , we have that all four events coincide:

1∑n

i=1 v
′
ixi≤w0

= 1∑K

i=1 v
′
ixi≤w0

= 1∑K

i=1 wixi≤w0
= 1∑n

i=1 wixi≤w0
.

Likewise, we also get that for x ∈ Agood,w0 ,

1∑n

i=1 v
′
ixi≥w0

= 1∑K

i=1 v
′
ixi≥w0

= 1∑K

i=1 wixi≥w0
= 1∑n

i=1 wixi≥w0
.

Now, let S = Agood,1 ∩Agood,−1. We then get that for x ∈ S,

1∑n

i=1 v
′
ixi∈[−1,1]

= 1∑n

i=1 wixi∈[−1,1]
.

Since Prx∈{−1,1}n [x 6∈ Agood,w0 ] ≤ 2
−t
8 + 2−t for w0 ∈ {−1, 1}, as a result we have

Pr[x 6∈ S] ≤ 2 · (2−t/8 + 2−t). Taking t = 8 log(16/η), we get that Pr[x 6∈ S] ≤ η/4.
This implies that∣∣∣∣Prx∈{−1,1}n

[∣∣∣∣ n∑
i=1

wixi

∣∣∣∣ ≤ 1
]
−Prx∈{−1,1}n

[∣∣∣∣ n∑
i=1

v′ixi

∣∣∣∣ ≤ 1
]∣∣∣∣ ≤ η/4.

Since the final n −K − 1 coordinates of v′ are zero, if we simply truncate v′ to the
first K + 1 coordinates, we get a vector v ∈ SK such that∣∣∣∣Prx∈{−1,1}n

[∣∣∣∣ n∑
i=1

wixi

∣∣∣∣ ≤ 1
]
−Prx∈{−1,1}K+1

[∣∣∣∣K+1∑
i=1

vixi

∣∣∣∣ ≤ 1
]∣∣∣∣ ≤ η/4,

and Claim 7.3 is proved.
We next move to the proof of Claim 7.4. For that, we will need the following key

proposition.
Proposition 7.7. Let w, u ∈ Sn−1 be such that wi = ui for 1 ≤ i ≤ K. Suppose

moreover that w(K) def
= (wK+1, . . . , wn) and u(K) def

= (uK+1, . . . , un) are both η-regular.
Then, for any w0 ∈ R, we have that∣∣Prx∈{−1,1}n [w · x ≤ w0]−Prx∈{−1,1}n [u · x ≤ w0]

∣∣ ≤ 4η

and ∣∣Prx∈{−1,1}n [w · x ≥ w0]−Prx∈{−1,1}n [u · x ≥ w0]
∣∣ ≤ 4η.
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Proof. Consider any fixed setting of variables x1, . . . , xK ∈ {−1, 1}. Note that∑n
i=1 wixi =

∑
i≤K wixi +

∑
i>K wixi. We have

Prx(K)∈{−1,1}n−K

[
n∑
i=1

wixi ≤ w0

]
= Prx(K)∈{−1,1}n−K

[ ∑
i>K

wixi ≤ w0 −
∑
i≤K

wixi

]
.

However, as w(K) is η-regular, by Theorem 2.5, we get∣∣∣∣∣Prx(K)∈{−1,1}n−K

[ ∑
i>K

wixi ≤ w0 −
∑
i≤K

wixi

]

−Pr

[
N (0, ‖w(K)‖) ≤ w0 −

∑
i≤K

wixi

]∣∣∣∣∣ ≤ 2η.

Likewise, we have ∣∣∣∣∣Prx(K)∈{−1,1}n−K

[ ∑
i>K

uixi ≤ w0 −
∑
i≤K

uixi

]

−Pr

[
N (0, ‖u(K)‖) ≤ w0 −

∑
i≤K

uixi

]∣∣∣∣∣ ≤ 2η.

As wi = ui for 1 ≤ i ≤ K, we get that∣∣∣∣∣Prx(K)∈{−1,1}n−K

[ ∑
i>K

uixi ≤ w0 −
∑
i≤K

uixi

]

−Prx(K)∈{−1,1}n−K

[ ∑
i>K

wixi ≤ w0 −
∑
i≤K

wixi

]∣∣∣∣∣ ≤ 4η.

As the above equation is true for any setting of x1, . . . , xK , we get that∣∣Prx∈{−1,1}n [w · x ≤ w0]−Prx∈{−1,1}n [u · x ≤ w0]
∣∣ ≤ 4η.

The second part of the proposition follows in exactly the same way.
Proof. [ Proof of Claim 7.4] Let w = (w1, . . . , wK , . . . , wn) where K ′ ≤ K is the

η-critical index of w. Construct a new vector v′ such that v′i = wi for 1 ≤ i ≤ K ′.
For 1 ≤ j ≤ λ(η) = 4/η2, we let v′i+j = (η/2) · ‖w(K′)‖, where as before w(K′) denotes
the (n−K ′)-dimensional vector (wK′+1, . . . , wn). For j > λ(η), we define v′i+j = 0.

It is clear that v′ ∈ Sn and that v′(K
′) is η-regular. By Proposition 7.7, we have∣∣Prx∈{−1,1}n [w · x ≤ 1]−Prx∈{−1,1}n [v′ · x ≤ 1]

∣∣ ≤ 4η

and ∣∣Prx∈{−1,1}n [w · x ≥ −1]−Prx∈{−1,1}n [v′ · x ≥ −1]
∣∣ ≤ 4η.

Combining these two, we get∣∣Prx∈{−1,1}n [|w · x| ≤ 1]−Prx∈{−1,1}n [|v′ · x| ≤ 1]
∣∣ ≤ 8η.

As all the coordinates of v′ beyond the first K ′ + λ(η) coordinates are zero, if we
truncate v′ to its first K ′ + λ(η) coordinates, we get v ∈ SK′+λ(η)−1 such that∣∣∣Prx∈{−1,1}n [|w · x| ≤ 1]−Prx∈{−1,1}K′+λ(η) [|v · x| ≤ 1]

∣∣∣ ≤ 8η

and Claim 7.4 is proved.
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7.2. Proof of Lemma 7.2. The proof of Lemma 7.2 that we give below is
based on the decidability of the existential theory of the reals. We believe that it may
be possible to prove this lemma without invoking the existential theory of the reals,
by combining perturbation-based arguments with convex programming. However,
carefully formalizing such arguments is a potentially involved process, so we have
given (what seemed to us to be) a more concise proof, using the existential theory of
reals, below.

Proof. [Proof of Lemma 7.2] We use the following result due to Renegar [34].
Theorem 7.8. [34] There is an algorithm ARen which, given a set of real polyno-

mials p1, . . . , pm : Rn → R and q1, . . . , qk : Rn → R with rational coefficients, decides
whether there exists an x ∈ Rn such that

• ∀i ∈ [m], pi(x) ≥ 0, and
• ∀i ∈ [k], qi(x) > 0.

If the bit length of all coefficients in all polynomials is at most L and the maximum
degree of any polynomial is at most d, then the running time of ARen is LO(1) · ((m+
k) · d)O(n). The following is an obvious corollary of the above theorem :

Corollary 7.9. There is an algorithm which, given a set S ⊂ {−1, 1}m, decides
whether there exists a vector w ∈ Sm−1 such that every x ∈ S has |w · x| > 1. The
algorithm runs in time 2O(m2).

Proof. Let p0 : Rm → R be defined as p0(w) =
∑m
i=1 w

2
i − 1. For each x ∈ S,

define qx : Rm → R to be qx(w) = (
∑m
i=1 wi · xi)2 − 1. Consider the following set of

constraints (call it L) :
• p0(w) ≥ 0.
• −p0(w) ≥ 0.
• ∀x ∈ S, qx(w) > 0.

Clearly, this set of constraints has a solution if and only if there exists some w ∈ Sm−1

such that |w ·x| > 1 for all x ∈ S. Note that each of the polynomials in L is of degree 2
and all coefficients have constant-size representations. The total number of constraints
in L is |S|+ 2 ≤ 2m + 2. This means that ARen can decide the feasibility of L in time
2m·O(m) = 2O(m2) which proves the claim.

Next, we define a set S ⊆ {−1, 1}m to be a separable set if there exists some
w ∈ Sm−1 such that S = {x ∈ {−1, 1}m : |w · x| > 1}. The next claim says that we
can enumerate over (a superset of) the set of all separable sets in time 2Õ(m2).

Claim 7.10. There is an algorithm which runs in time 2Õ(m2) and lists (a su-
perset of ) all the separable sets of {−1, 1}m.

Proof. Consider any separable set S ⊆ {−1, 1}m, so there is some w ∈ Sm−1 such
that S = {x ∈ {−1, 1}m : |w · x| > 1}. Define S+,w = {x ∈ {−1, 1}m : w · x > 1}. If
we define S′+,w to be the set obtained by negating every element of S+,w, then it is
easy to see that S = S+,w ∪ S′+,w. Thus, it suffices to enumerate over the sets S+,w

for all choices of w ∈ Sm−1, and output S = S+,w ∪ S′+,w.
Next, we show how to enumerate all such sets S+,w. For this, given any w ∈ Sm−1,

we define αw = infx∈S+,w(w · x − 1). It is easy to see that if we define hw(x) =
sign(w·x−1−α/2), then S+,w = h−1

w (1). Thus, if we enumerate all possible halfspaces
h over {−1, 1}m and list h−1(1) for each halfspace h, then all possible subsets of the
form h−1

w (1) are included in this list. However, it is well known that there are 2O(m2)

halfspaces h over {−1, 1}m, and that these halfspaces can be enumerated in time
2O(m2 logm) (see e.g. [25]). This finishes the proof of the claim.

Finally, our algorithm is simply the following:
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• Run the algorithm in Claim 7.10 and arrange the sets in the output in
decreasing order of their size. For each set S in this list,

– Use the algorithm in Corollary 7.9 to decide whether there is a vector
w ∈ Sm−1 such that |w · x| > 1 for all x ∈ S.

– If there is such a vector w then exit and return 1 − |S|/2m−1, else
go to the next set S.

The total running time of the first step of the algorithm is clearly 2 eO(m2). Since
the total number of sets in the list is 2Õ(m2) and every step in the algorithm takes
time 2O(m2), hence the total running time is 2 eO(m2).

To establish the correctness of the algorithm, fix a vector w∗ ∈ Sm−1 such that
Prx∈{−1,1}m [|w∗ ·x| ≤ 1] = T(Sm−1), i.e. Prx∈{−1,1}m [|w∗ ·x| ≤ 1] ≤ Prx∈{−1,1}m [|w ·
x| ≤ 1] for all w ∈ Sm−1. We have that Prx∈{−1,1}m [|w∗ · x| > 1] ≥ Prx∈{−1,1}m [|w ·
x| > 1]. Since our algorithm enumerates over all sets S ⊆ {−1, 1}m in the output of
Claim 7.10 in decreasing order of their size, its correctness follows.

Acknowledgements. We thank Mihalis Yannakakis for helpful conversations.
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