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Abstract

We give a general unified method that can be used for L1 closeness testing of a wide range
of univariate structured distribution families. More specifically, we design a sample optimal
and computationally efficient algorithm for testing the equivalence of two unknown (potentially
arbitrary) univariate distributions under the Ak-distance metric: Given sample access to distri-
butions with density functions p, q : I → R, we want to distinguish between the cases that p = q
and ‖p− q‖Ak

≥ ε with probability at least 2/3. We show that for any k ≥ 2, ε > 0, the optimal
sample complexity of the Ak-closeness testing problem is Θ(max{k4/5/ε6/5, k1/2/ε2}). This is
the first o(k) sample algorithm for this problem, and yields new, simple L1 closeness testers, in
most cases with optimal sample complexity, for broad classes of structured distributions.
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1 Introduction

We study the problem of closeness testing (equivalence testing) between two unknown probability
distributions. Given independent samples from a pair of distributions p, q, we want to determine
whether the two distributions are the same versus significantly different. This is a classical problem
in statistical hypothesis testing [NP33, LR05] that has received considerable attention by the TCS
community in the framework of property testing [RS96, GGR98]: given sample access to distribu-
tions p, q, and a parameter ε > 0, we want to distinguish between the cases that p and q are identical
versus ε-far from each other in L1 norm (statistical distance). Previous work on this problem fo-
cused on characterizing the sample size needed to test the identity of two arbitrary distributions of
a given support size [BFR+00, CDVV14]. It is now known that the optimal sample complexity (and
running time) of this problem for distributions with support of size n is Θ(max{n2/3/ε4/3, n1/2/ε2}).

The aforementioned sample complexity characterizes worst-case instances, and one might hope
that drastically better results can be obtained for most natural settings, in particular when the
underlying distributions are known a priori to have some “nice structure”. In this work, we focus
on the problem of testing closeness for structured distributions. Let C be a family over univariate
distributions. The problem of closeness testing for C is the following: Given sample access to
two unknown distribution p, q ∈ C, we want to distinguish between the case that p = q versus
‖p − q‖1 ≥ ε. Note that the sample complexity of this testing problem depends on the underlying
class C, and we are interested in obtaining efficient algorithms that are sample optimal for C.

We give a general algorithm that can be used for L1 closeness testing of a wide range of
structured distribution families. More specifically, we give a sample optimal and computationally
efficient algorithm for testing the identity of two unknown (potentially arbitrary) distributions p, q
under a different metric between distributions – the so called Ak-distance (see Section 2 for a formal
definition). Here, k is a positive integer that intuitively captures the number of “crossings” between
the probability density functions p, q.

Our main result (see Theorem 1) says the following: For any k ∈ Z+, ε > 0, and sample
access to arbitrary univariate distributions p, q, there exists a closeness testing algorithm under
the Ak-distance using O(max{k4/5/ε6/5, k1/2/ε2}) samples. Moreover, this bound is information-
theoretically optimal. We remark that our Ak-testing algorithm applies to any pair of univariate
distributions (over both continuous and discrete domains). The main idea in using this general
algorithm for testing closeness of structured distributions in L1 distance is this: if the underlying
distributions p, q belong to a structured distribution family C, we can use the Ak-distance as a
proxy for the L1 distance (for an appropriate value of the parameter k), and thus obtain an L1

closeness tester for C.
We note that Ak-distance between distributions has been recently used to obtain sample op-

timal efficient algorithms for learning structured distributions [CDSS14, ADLS15], and for testing
the identity of a structured distribution against an explicitly known distribution [DKN15] (e.g.,
uniformity testing). In both these settings, the sample complexity of the corresponding problem
(learning/identity testing) with respect to the Ak-distance is identified with the sample complexity
of the problem under the L1 distance for distributions of support k. More specifically, the sample
complexity of learning an unknown univariate distribution (over a continuous or discrete domain)
up to Ak-distance ε is Θ(k/ε2) [CDSS14] (independent of the domain size), which is exactly the
sample complexity of learning a discrete distribution with support size k up to L1 error ε. Simi-
larly, the sample complexity of uniformity testing of a univariate distribution (over a continuous
or discrete domain) up to Ak-distance ε is Θ(k1/2/ε2) [DKN15] (again, independent of the domain
size), which is identical to the sample complexity of uniformity testing of a discrete distribution
with support size k up to L1 error ε [Pan08].
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Rather surprisingly, this analogy is provably false for the closeness testing problem: we prove
that the sample complexity of the Ak closeness testing problem is Θ(max{k4/5/ε6/5, k1/2/ε2}), while
L1 closeness testing between distributions of support k can be achieved withO(max{k2/3/ε4/3, k1/2/ε2})
samples [CDVV14]. More specifically, our upper bound for Ak closeness testing problem applies for
all univariate probability distributions (both continuous and discrete). Our matching information–
theoretic lower bound holds for continuous distributions, or discrete distributions of support size n
sufficiently large as a function of k, which is the most interesting regime for our applications.

1.1 Related and Prior Work In this subsection we review the related literature and compare
our results with previous work.

Distribution Property Testing Testing properties of distributions [BFR+00, BFR+13] has de-
veloped into a mature research area within theoretical computer science. The paradigmatic problem
in this field is the following: given sample access to one or more unknown probability distributions,
determine whether they satisfy some global property or are “far” from satisfying the property. The
goal is to obtain an algorithm for this task that is both statistically and computationally efficient,
i.e., an algorithm with (information–theoretically) optimal sample size and polynomial runtime.
See [GR00, BFR+00, BFF+01, Bat01, BDKR02, BKR04, Pan08, Val11, VV11, DDS+13, ADJ+11,
LRR11, ILR12, CDVV14, VV14, DKN15] for a sample of works, and [Rub12] for a survey.

Shape Restricted Estimation Statistical estimation under shape restrictions – i.e., inference
about a probability distribution under the constraint that its probability density function satisfies
certain qualitative properties – is a classical topic in statistics [BBBB72]. Various structural re-
strictions have been studied in the literature, starting from monotonicity, unimodality, convexity,
and concavity [Gre56, Bru58, Rao69, Weg70, HP76, Gro85, Bir87a, Bir87b, Fou97, CT04, JW09],
and more recently focusing on structural restrictions such as log-concavity and k-monotonicity
[BW07, DR09, BRW09, GW09, BW10, KM10, Wal09, DW13, CS13, KS14, BD14, HW15]. The
reader is referred to [GJ14] for a recent book on the topic.

Comparison with Prior Work Chan, Diakonikolas, Servedio, and Sun [CDSS14] proposed a
general approach to L1 learn univariate probability distributions whose densities are well approxi-
mated by piecewise polynomials. They designed an efficient agnostic learning algorithm for piece-
wise polynomial distributions, and as a corollary obtained efficient learners for various families of
structured distributions. The approach of [CDSS14] uses the Ak distance metric between distribu-
tions, but is otherwise orthogonal to ours. Batu et al. [BKR04] gave algorithms for closeness testing
between two monotone distributions with sample complexity O(log3 n). Subsequently, Daskalakis
et al. [DDS+13] improved and generalized this result to t-modal distributions, obtaining a close-
ness tester with sample complexity O((t log(n))2/3/ε8/3 + t2/ε4). We remark that the approach
of [DDS+13] inherently yields an algorithm with sample complexity Ω(t), which is sub-optimal.

The main ideas underlying this work are very different from those of [DDS+13] and [DKN15].
The approach of [DDS+13] involves constructing an adaptive interval decomposition of the domain
followed by an application of a (known) closeness tester to the “reduced” distributions over those
intervals. This approach incurs an extraneous term in the sample complexity, that is needed to
construct the appropriate decomposition. The approach of [DKN15] considers several oblivious
interval decompositions of the domain (i.e., without drawing any samples) and applies a “reduced”
identity tester for each such decomposition. This idea yields sample–optimal bounds for Ak identity
testing against a known distribution. However, it crucially exploits the knowledge of the explicit
distribution, and unfortunately fails in the setting where both distributions are unknown. We
elaborate on these points in Section 2.3.
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2 Our Results and Techniques

2.1 Basic Definitions We will use p, q to denote the probability density functions (or probability
mass functions) of our distributions. If p is discrete over support [n] := {1, . . . , n}, we denote by
pi the probability of element i in the distribution. For two discrete distributions p, q, their L1 and
L2 distances are ‖p− q‖1 =

∑n
i=1 |pi− qi| and ‖p− q‖2 =

√∑n
i=1(pi − qi)2. For I ⊆ R and density

functions p, q : I → R+, we have ‖p− q‖1 =
∫
I |p(x)− q(x)|dx.

Fix a partition of the domain I into disjoint intervals I := (Ii)
`
i=1. For such a partition I, the

reduced distribution pIr corresponding to p and I is the discrete distribution over [`] that assigns
the i-th “point” the mass that p assigns to the interval Ii; i.e., for i ∈ [`], pIr (i) = p(Ii). Let Jk be
the collection of all partitions of the domain I into k intervals. For p, q : I → R+ and k ∈ Z+, we
define the Ak-distance between p and q by

‖p− q‖Ak

def
= max
I=(Ii)ki=1∈Jk

k∑
i=1
|p(Ii)− q(Ii)| = max

I∈Jk
‖pIr − qIr ‖1.

2.2 Our Results Our main result is an optimal algorithm and a matching information–theoretic
lower bound for the problem of testing the equivalence between two unknown univariate distribu-
tions under the Ak distance metric:

Theorem 1 (Main). Given ε > 0, an integer k ≥ 2, and sample access to two distributions
with probability density functions p, q : [0, 1] → R+, there is a computationally efficient algorithm
which uses O(max{k4/5/ε6/5, k1/2/ε2}) samples from p, q, and with probability at least 2/3 distin-
guishes whether q = p versus ‖q − p‖Ak

≥ ε. Additionally, Ω(max{k4/5/ε6/5, k1/2/ε2}) samples are
information-theoretically necessary for this task.

Note that Theorem 1 applies to arbitrary univariate distributions (over both continuous and
discrete domains). In particular, the sample complexity of the algorithm does not depend on the
support size of the underlying distributions. We believe that the notion of testing under the Ak
distance is very natural, and well suited for (arbitrary) continuous distributions, where the notion
of L1 testing is (provably) impossible.

As a corollary of Theorem 1, we obtain sample–optimal algorithms for the L1 closeness testing
of various structured distribution families C in a unified way. The basic idea is to use the Ak
distance as a “proxy” for the L1 distance for an appropriate value of k that depends on C and ε.
We have the following simple fact:

Fact 2. For a univariate distribution family C and ε > 0, let k = k(C, ε) be the smallest integer
such that for any f1, f2 ∈ C it holds that ‖f1 − f2‖1 ≤ ‖f1 − f2‖Ak

+ ε/2. Then there exists an L1

closeness testing algorithm for C using O(max{k4/5/ε6/5, k1/2/ε2}) samples.

Indeed, given sample access to q, p ∈ C, we apply the Ak-closeness testing algorithm of Theo-
rem 1 for the value of k in the statement of the fact, and error ε′ = ε/2. If q = p, the algorithm
will output “YES” with probability at least 2/3. If ‖q − p‖1 ≥ ε, then by the condition of Fact 2
we have that ‖q − p‖Ak

≥ ε′, and the algorithm will output “NO” with probability at least 2/3.
We remark that the value of k in Fact 2 is a natural complexity measure for the difference

between two probability density functions in the class C. It follows from the definition of the Ak
distance that this value corresponds to the number of “essential” crossings between f1 and f2 – i.e.,
the number of crossings between the functions f1 and f2 that significantly affect their L1 distance.
Intuitively, the number of essential crossings – as opposed to the domain size – is, in some sense,
the “right” parameter to characterize the sample complexity of L1 closeness testing for C.
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Distribution Family Our upper bound Previous work

t-piecewise constant O
(

max
{
t4/5

ε6/5
, t

1/2

ε2

})
O
(
t
ε2

)
[CDSS14]

t-piecewise degree-d O
(

max
{ (t(d+1))4/5

ε6/5
, (t(d+1))1/2

ε2

})
O
( t(d+1)

ε2

)
[CDSS14]

log-concave O
(

1
ε9/4

)
O
(

1
ε5/2

)
[CDSS14]

k-mixture of log-concave O
(

max
{
k4/5

ε8/5
, k

1/2

ε9/4

})
O
(

k
ε5/2

)
[CDSS14]

t-modal over [n] O
(

max
{ (t logn)4/5

ε2
, (t logn)1/2

ε5/2

})
O
( (t logn)2/3

ε8/3
+ t2

ε4

)
[DDS+13]

MHR over [n] O(max
{ log(n/ε)4/5

ε2
, log(n/ε)1/2

ε5/2

}
) O

( log(n/ε)
ε3

)
[CDSS14]

Table 1: Algorithmic results for closeness testing of selected families of structured probability
distributions. The second column indicates the sample complexity of our general algorithm applied
to the class under consideration. The third column indicates the sample complexity of the best
previously known algorithm for the same problem.

The upper bound implied by the above fact is information-theoretically optimal for a wide
range of structured distribution classes C. In particular, our bounds apply to all the structured
distribution families considered in [CDSS14, DKN15, ADLS15] including (arbitrary mixtures of) t-
flat (i.e., piecewise constant with t pieces), t-piecewise degree-d polynomials, t-monotone, monotone
hazard rate, and log-concave distributions. For t-flat distributions we obtain an L1 closeness testing
algorithm that uses O(max{t4/5/ε6/5, t1/2/ε2}) samples, which is the first o(t) sample algorithm for
the problem. For log-concave distributions, we obtain a sample size of O(ε−9/4) matching the
information–theoretic lower bound even for the case that one of the distributions is explicitly
given [DKN15]. Table 1 summarizes our upper bounds for a selection of natural and well-studied
distribution families. These results are obtained from Theorem 1 and Fact 2, via the appropriate
structural approximation results [CDSS13, CDSS14].

We would like to stress that our algorithm and its analysis are very different than previous
results in the property testing literature. We elaborate on this point in the following subsection.

2.3 Our Techniques In this subsection, we provide a high-level overview of our techniques in
tandem with a comparison to prior work.

Our upper bound is achieved by an explicit, sample near-linear-time algorithm. A good starting
point for considering this problem would be the testing algorithm of [DKN15], which deals with
the case where p is an explicitly known distribution. The basic idea of the testing algorithm in this
case [DKN15] is to partition the domain into intervals in several different ways, and run a known
L2 tester on the reduced distributions (with respect to the intervals in the partition) as a black-box.
At a high-level, these intervals partitions can be constructed by exploiting our knowledge of p, in
order to divide our domain into several equal mass intervals under p. It can be shown that if p
and q have large Ak distance from each other, one of these partitions will be able to detect the
difference.

Generalizing this algorithm to the case where p is unknown turns out to be challenging, because
there seems to be no way to find the appropriate interval partitions with o(k) samples. If we allowed
ourselves to take Ω(k/ε) samples from p, we would be able to approximate an appropriate interval
partition, and make the aforementioned approach go through. Alas, this would not lead to an
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o(k) sample algorithm. If we can only draw m samples from our distributions, the best that we
could hope to do would be to use our samples in order to partition the domain into m+ 1 interval
regions. This, of course, is not going to be sufficient to allow an analysis along the lines of the
above approach to work. In particular, if we partition our domain deterministically into m = o(k)
intervals, it may well be the case that the reduced distributions over those intervals are identical,
despite the fact that the original distributions have large Ak distance. In essence, the differences
between p and q may well cancel each other out on the chosen intervals.

However, it is important to note that our interval boundaries are not deterministic. This
suggests that unless we get unlucky, the discrepancy between p and q will not actually cancel out in
our partition. As a slight modification of this idea, instead of partitioning the domain into intervals
(which we expect to have only O(1) samples each) and comparing the number of samples from p
versus q in each, we sort our samples and test how many of them came from the same distribution
as their neighbors (with respect to the natural ordering on the real line).

We intuitively expect that, if p = q, the number of pairs of ordered samples drawn from the
same distribution versus a different one will be the same. Indeed, this can be formalized and the
completeness of this tester is simple to establish. The soundness analysis, however, is somewhat
involved. We need to show that the expected value of the statistic that we compute is larger than
its standard deviation. While the variance is easy to bound from above, bounding the expectation
is quite challenging. To do so, we define a function, f(t), that encodes how likely it is that the
samples nearby point t come from one distribution or the other. It turns out that f satisfies a
relatively nice differential equation, and relates in a clean way to the expectation of our statistic.
From this, we can show that any discrepancy between p and q taking place on a scale too short to
be detected by the above partitioning approach will yield a notable contribution to our expectation.

The analysis of our lower bound begins by considering a natural class of testers, namely those
that take some number of samples from p and q, sort the samples (while keeping track of which
distribution they came from) and return an output that depends only on the ordering of these
samples. For such testers we exhibit explicit families of pairs of distributions that are hard to
distinguish from being identical. There is a particular pattern that appears many times in these
examples, where there is a small interval for which q has an appropriate amount of probability mass,
followed by an interval of p, followed by another interval of q. When the parameters are balanced
correctly, it can be shown that when at most two samples are drawn from this subinterval, the
distribution on their orderings is indistinguishable from the case where p = q. By constructing
distributions with many copies of the pattern, we essentially show that a tester of this form will
not be able to be confident that p 6= q, unless there are many of these small intervals from which
it draws three or more samples. On the other hand, a simple argument shows that this is unlikely
to be the case.

The above lower bound provides explicit distributions that are hard to distinguish from being
identical by any tester in this limited class. To prove a lower bound against general testers, we
proceed via a reduction: we show that an order–based tester can be derived from any general
tester. It should be noted that this makes our lower bound in a sense non-constructive, as we do
not know of any explicit families of distributions that are hard to distinguish from uniform for
general testers. In order to perform this reduction, we show that for a general tester we can find
some large subset S of its domain such that if all samples drawn from p and q by the tester happen
to lie in S, then the output of the tester will depend only on the ordering of the samples. This
essentially amounts to a standard result from Ramsey theory. Then, by taking any other problem,
we can embed it into our new sample space by choosing new p and q that are the same up to an
order-preserving rearrangement of the domain (which will also preserve Ak distance), ensuring that
they are supported only on S.
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3 Algorithm for Ak Closeness Testing

In this section we provide the sample optimal closeness tester under the Ak distance.

3.1 An O(k4/5/ε6/5)-sample tester In this subsection we give a tester with sample complexity
O(k4/5/ε6/5) that applies for ε = Ω(k−1/6). For simplicity, we focus on the case that we take
samples from two unknown distributions with probability density functions p, q : [0, 1]→ R+. Our
results are easily seen to extend to discrete probability distributions.

Algorithm Simple-Test-Identity-Ak(p, q, ε)
Input: sample access to pdf’s p, q : [0, 1]→ R+, k ∈ Z+, and ε > 0.
Output: “YES” if q = p; “NO” if ‖q − p‖Ak

≥ ε.

1. Let m = C · (k4/5/ε6/5), for a sufficiently large constant C. Draw two sets of samples
Sp, Sq each of size Poi(m) from p and from q respectively.

2. Merge Sp and Sq while remembering from which distribution each sample comes from.
Let S be the union of Sp and Sq sorted in increasing order (breaking ties randomly).

3. Compute the statistic Z defined as follows:

Z
def
= # (pairs of successive samples in S coming from the same distribution)−

# (pairs of successive samples in S coming from different distributions)

4. If Z > 3 · (
√
m) return ”NO”. Otherwise return ”YES”.

Proposition 3. The algorithm Simple-Test-Identity-Ak(p, q, ε), on input two samples each of size
O(k4/5/ε6/5) drawn from two distributions with densities p, q : [0, 1] → R+, an integer k > 2, and
ε = Ω(k−1/6), correctly distinguishes the case that q = p from the case ‖p−q‖Ak

≥ ε, with probability
at least 2/3.

Proof. First, it is straightforward to verify the claimed sample complexity, since the algorithm only
draws samples in Step 1. To simplify the analysis we make essential use of the following simple
claim:

Claim 4. We can assume without loss of generality that the pdf’s p, q : [0, 1]→ R+ are continuous
functions bounded from above by 2.

Proof. We start by showing we can assume that p, q are at most 2. Let p, q : [0, 1]→ R+ be arbitrary
pdf’s. We consider the cumulative distribution function (CDF) Φ of the mixture (p + q)/2. Let
X ∼ p, Y ∼ q, W ∼ (p+ q)/2 be random variables. Since Φ is non-decreasing, replacing X and Y
by Φ(X) and Φ(Y ) does not affect the algorithm (as the ordering on the samples remains the same).
We claim that, after making this replacement, Φ(X) and Φ(Y ) are continuous distributions with
probability density functions bounded by 2. In fact, we will show that the sum of their probability
density functions is exactly 2. This is because for any 0 6 a 6 b 6 1,

Pr[Φ(X) ∈ [a, b]] + Pr[Φ(Y ) ∈ [a, b]] = 2 Pr[Φ(W ) ∈ [a, b]] = 2(b− a) ,

where the second equality is by the definition of a CDF. Thus, we can assume that p and q are
bounded from above by 2.
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To show that we can assume continuity, note that p and q can be approximated by continuous
density functions p′ and q′ so that the L1 errors ‖p − p′‖1, ‖q − q′‖1 are each at most 1/(10m). If
our algorithm succeeds with the continuous densities p′ and q′, it must also succeed for p and q.
Indeed, since the L1 distance between p and p′ and q and q′ is at most 1/(10m), a set of m samples
taken from p or q are statistically indistinguishable to m samples taken from p′ or q′. This proves
that it is no loss of generality to assume that p and q are continuous.

Note that the algorithm makes use of the well-known “Poissonization” approach. Namely,
instead of drawing m = O(k4/5/ε6/5) samples from p and from q, we draw m′ = Poi(m) samples
from p and m′′ = Poi(m) sample from q. The crucial properties of the Poisson distribution are that
it is sharply concentrated around its mean and it makes the number of times different elements
occur in the sample independent.

We now establish completeness. Note that our algorithm draws Poi(2m) samples from p or
q. If p = q, then our process equivalently selects Poi(2m) values from p and then randomly and
independently with equal probability decides whether or not each sample came from p or from q.
Making these decisions one at a time in increasing order of points, we note that each adjacent pair
of elements in S randomly and independently contributes either a +1 or a −1 to Z. Therefore,
the distribution of Z is exactly that of a sum of Poi(2m)− 1 independent {±1} random variables.
Therefore, Z has mean 0 and variance 2m−1. By Chebyshev’s inequality it follows that |Z| 6 3

√
m

with probability at least 7/9. This proves completeness.
We now proceed to prove the soundness of our algorithm. Assuming that ‖p−q‖Ak

> ε, we want
to show that the value of Z is at most 3 ·

√
m with probability at most 1/3. To prove this statement,

we will again use Chebyshev’s inequality. In this case it suffices to show that E[Z]�
√

Var[Z]+
√
m

for the inequality to be applicable. We begin with an important definition.

Definition 5. Let f : [0, 1]→ [−1, 1] equal

f(t)
def
= Pr [largest sample in S that is at most t was drawn from p]

−Pr [largest sample in S that is at most t was drawn from q] .

The importance of this function is demonstrated by the following lemma.

Lemma 6. We have that: E[Z] = m
∫ 1

0 f(t)(p(t)− q(t))dt .

Proof. Given an interval I, we let ZI be the contribution to Z coming from pairs of consecutive
points of S the larger of which is drawn from I. We wish to approximate the expectation of ZI .
We let τ(I) = m(p(I) + q(I)) be the expected total number of points drawn from I. We note that
the contribution coming from cases where more than one point is drawn from I is O(τ(I)2). We
next consider the contribution under the condition that only one sample is drawn from I. For this,
we let EPI and EQI be the events that the largest element of S preceding I comes from p or q
respectively. We have that the expected contribution to ZI coming from events where exactly one
element of S is drawn from I is:

(Pr[EPI ]− Pr[QPI ]) Pr(The only element drawn from I is from p)

−(Pr[EPI ]− Pr[QPI ]) Pr(The only element drawn from I is from q).

Letting xI be the left endpoint of I, this is

f(xI)(mp(I)−mq(I)) +O(τ(I)2).
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Therefore,
E[ZI ] = f(xI)(mp(I)−mq(I)) +O(τ(I)2).

Letting I be a partition of our domain into intervals, we find that

E[Z] =
∑
I∈I

E[ZI ]

=
∑
I∈I

f(xI)(mp(I)−mq(I)) +O(τ(I)2)

= O(mmax
I∈I

τ(I)) +
∑
I∈I

f(xI)(mp(I)−mq(I)).

As the partition I becomes iteratively more refined, these sums approach Riemann sums for the
integral of

mf(x)(p(x)− q(x))dx.

Therefore, taking a limit over partitions I, we have that

E[Z] = m

∫
f(x)(p(x)− q(x))dx.

We will also make essential use of the following technical lemma:

Lemma 7. The function f is differentiable with derivative f ′(t) = m (p(t)− q(t)− (p(t) + q(t))f(t)) .

Proof. Consider the difference between f(t) and f(t + h) for some small h > 0. We note that
f(t) = E[Ft] where Ft is 1 if the sample of S preceding t came from p, −1 if the sample came from
q, and 0 if no sample came before t. Note that

Ft+h =


Ft if no samples from p nor q are drawn from [t, t+ h]

1 if one sample from p and none from q are drawn from [t, t+ h]

−1 if one sample from q and none from p are drawn from [t, t+ h]

±1 if at least two samples from p or q are drawn from [t, t+ h].

Since p and q are continuous at t ∈ [0, 1], these four events happen with probabilities 1−mh(p(t) +
q(t)) + o(h), mhp(t) + o(h), mhq(t) + o(h), o(h), respectively. Therefore, taking an expectation we
find that f(t+h) = f(t)(1−mh(p(t) + q(t))) +mh(p(t)− q(t)) + o(h). This, and a similar relation
relating f(t) to f(t− h), proves that f is differentiable with the desired derivative.

To analyze the desired expectation, E[Z], we consider the quantity
∫ 1

0 f
′(t)f(t)dt = (1/2)

(
f2(1)− f2(0)

)
.

Substituting f ′ from Lemma 7 above gives∫ 1

0
f ′(t)f(t)dt = m

∫ 1

0
f(t)(p(t)− q(t))dt−m

∫ 1

0
f2(t)(p(t) + q(t))dt.

Combining this with Lemma 6, we get

E[Z] = m

∫ 1

0
f2(t)(p(t) + q(t))dt+ f2(1)/2 . (1)

8



The second term in (1) above is O(1), so we focus our attention to bound the first term from below.
To do this, we consider intervals I ⊂ [0, 1] over which |p(I) − q(I)| is “large” and show that they
must produce some noticeable contribution to the first term. Fix such an interval I. We want to
show that f2 is large somewhere in I. Intuitively, we attempt to prove that on at least one of the
endpoints of the interval, the value of f is big. Since f does not vary too rapidly, f2 will be large
on some large fraction of I. Formally, we have the following lemma:

Lemma 8. For δ > 0, let I ⊂ [0, 1] be an interval with |p(I) − q(I)| = δ and p(I) + q(I) < 1/m.
Then, there exists an x ∈ I such that |f(x)| > mδ

3 .

Proof. Suppose for the sake of contradiction that |f(x)| < mδ/3 for all x ∈ I = [X,Y ]. Then, we
have that

2mδ/3 > |f(X)− f(Y )| =
∣∣∣∣∫ Y

X
f ′(t)dt

∣∣∣∣ =

∣∣∣∣∫ Y

X
(m(p(t)− q(t))−mf(t)(p(t) + q(t))) dt

∣∣∣∣
=

∣∣∣∣m(p(I)− q(I))−m
∫ Y

X
f(t)(p(t) + q(t))dt

∣∣∣∣ > m|p(I)− q(I)| −m
∣∣∣∣∫ Y

X
f(t)(p(t) + q(t))dt

∣∣∣∣
> mδ −m

∫ Y

X
(mδ/3) (p(t) + q(t))dt = mδ (1−m(p(I) + q(I))/3) > 2mδ/3 ,

which yields the desired contradiction.

We are now able to show that the contribution to E[Z] coming from such an interval is large.

Lemma 9. Let I be an interval satisfying the hypotheses of Lemma 8. Then∫
I
f2(t)(p(t) + q(t))dt = Ω(m2δ3) .

Proof. By Lemma 8, f is large at some point x of the interval I = [X,Y ]. Without loss of
generality, we assume that p([X,x]) + q([X,x]) 6 (p(I) + q(I))/2. Let I ′ = [x, Y ′] be the interval
so that p(I ′) + q(I ′) = δ/9. Note that I ′ ⊂ I (since by assumption |p(I) − q(I)| > δ and thus
p(I) + q(I) > δ). Furthermore, note that since with probability at least 1−mδ/9, no samples from
S lie in I ′, we have that for all z in I ′ it holds |f(x)− f(z)| 6 2mδ/9, so |f(z)| > mδ/9. Therefore,∫

I
f2(t)(p(t) + q(t))dt >

∫
I′
f2(t)(p(t) + q(t))dt >

∫
I′

(
mδ

9

)2

(p(t) + q(t))dt

=
m2δ2

81
(p(I ′) + q(I ′)) =

m2δ3

729
.

Since ‖p − q‖Ak
> ε, there is a partition I of [0, 1] into k intervals so that ‖pIr − qIr ‖1 > ε.

By subdividing intervals further if necessary, we can guarantee that I has at most 3k intervals,
‖pIr − qIr ‖ > ε, and for each subinterval I ∈ I it holds p(I), q(I) 6 1/k. For each such interval
I ∈ I, let δI = |p(I)− q(I)|. Note that

∑
I∈I δI > ε.

By (1) we have that

E[Z] = m
∑
I∈I

∫
I
f2(t)(p(t) + q(t))dt+O(1)

= Ω

(
m
∑
I∈I

m2δ3
I

)
= Ω

(
m3(

∑
I∈I

δI)
3/(3k)2

)
= Ω

(
m3ε3/k2

)
= Ω(C5/2√m) .

9



We note that the second to last line above follows by Hölder’s inequality. It remains to bound from
above the variance of Z.

Lemma 10. We have that Var[Z] = O(m) .

Proof. We divide the domain [0, 1] into m intervals Ii, i = 1, . . . ,m, each of total mass 2/m under
the sum-distribution p + q. Consider the random variable Xi denoting the contribution to Z
coming from pairs of adjacent samples in S such that the right sample is drawn from Ii. Clearly,
Z =

∑m
i=1Xi and Var[Z] =

∑m
i=1 Var[Xi] +

∑
i 6=j Cov(Xi, Xj).

To bound the first sum, note that the number of pairs of S in an interval Ii is no more than
the number of samples drawn from Ii, and the variance of Xi is less than the expectation of the
square of the number of samples from Ii. Since the number of samples from Ii is a Poisson random
variables with parameter 2, we have Var[Xi] = O(1). This shows that

∑m
i=1 Var[Xi] = O(m).

To bound the sum of covariance, consider Xi and Xj conditioned on the samples drawn from
intervals other than Ii and Ij . Note that if any sample is drawn from an intermediate interval,
Xi and Xj are uncorrelated, and otherwise their covariance is at most

√
Var(Xi)Var(Xj) = O(1).

Since the probability that no sample is drawn from any intervening interval decreases exponentially
with their separation, it follows that Cov(Xi, Xj) = O(1) · e−Ω(|j−i|). This completes the proof.

An application of Chebyshev’s inequality completes the analysis of the soundness and the proof
of Proposition 3.

3.2 The General Tester In this section, we present a tester whose sample complexity is optimal
(up to constant factors) for all values of ε and k, thereby establishing the upper bound part of
Theorem 1. Our general tester (Algorithm Test-Identity-Ak) builds on the tester presented in
the previous subsection (Algorithm Simple-Test-Identity-Ak). It is not difficult to see that the
latter algorithm can fail once ε becomes sufficiently small, if the discrepancy between p and q
is concentrated on intervals of mass larger than 1/m. In this scenario, the tester Simple-Test-
Identity-Ak will not take sufficient advantage of these intervals. To obtain our enhanced tester
Test-Identity-Ak, we will need to combine Simple-Test-Identity-Ak with an alternative tester when
this is the case. Note that we can easily bin the distributions p and q into intervals of total mass
approximately 1/m by taking m random samples. Once we do this, we can use an identity tester
similar to that in our previous work [DKN15] to detect the discrepancy in these intervals. In
particular we show the following:

Proposition 11. Let p, q be discrete distributions over [n] satisfying ‖p‖2, ‖q‖2 = O(1/
√
n). There

exists a testing algorithm with the following properties: On input k ∈ Z+, 2 ≤ k ≤ n, and δ, ε > 0,

the algorithm draws O
(

(
√
k/ε2) · log(1/δ)

)
samples from p and q and with probability at least 1− δ

distinguishes between the cases p = q and ‖p− q‖Ak
> ε.

The above proposition says that the identity testing problem under the Ak distance can be
solved with O(

√
k/ε2) samples when both distributions p and q are promised to be “nearly” uni-

form (in the sense that their L2 norm is O(1) times that of the uniform distribution). To prove
Proposition 11 we follow a similar approach as in [DKN15]: Starting from the L2 identity tester
of [CDVV14], we consider several oblivious interval decompositions of the domain into intervals of
approximately the same mass, and apply a “reduced” identity tester for each such decomposition.
The details of the analysis establishing Proposition 11 are postponed to Appendix A.

We are now ready to present our general testing algorithm:

10



Algorithm Test-Identity-Ak(p, q, ε)
Input: sample access to distributions p, q : [0, 1]→ R+, k ∈ Z+, and ε > 0.
Output: “YES” if q = p; “NO” if ‖q − p‖Ak

≥ ε.

1. Let m = Ck4/5/ε6/5, for a sufficiently large constant C. Draw two sets of samples Sp,
Sq each of size Poi(m) from p and from q respectively.

2. Merge Sp and Sq while remembering from which distribution each sample comes from.
Let S be the union of Sp and Sq sorted in increasing order (breaking ties randomly).

3. Compute the statistic Z defined as follows:

Z
def
= # (pairs of successive samples in S coming from the same distribution)−

# (pairs of successive samples in S coming from different distributions)

4. If Z > 5
√
m return “NO”.

5. Repeat the following steps O(C) times:

(a) Draw Poi(m) samples from (p+ q)/2.

(b) Split the domain into intervals with the interval endpoints given by the above
samples. Let p′ and q′ be the reduced distributions with respect to these intervals.

(c) Run the tester of Proposition 11 on p′ and q′ with error probability 1/C2 to
determine if ‖p′ − q′‖A2k+1

> ε/C. If the output of this tester is “NO”, output
“NO”.

6. Output “YES”.

Our main result for this section is the following:

Theorem 12. Algorithm Test-Identity-Ak draws O(max{k4/5/ε6/5, k1/2/ε2}) samples from p, q and
with probability at least 2/3 returns “YES” if p = q and “NO” if ‖p− q‖Ak

> ε.

Proof. First, it is easy to see that the sample complexity of the algorithm is O(m+k1/2/ε2). Recall
that we can assume that p, q are continuous pdf’s bounded from above by 2.

We start by establishing completeness. If p = q, it is once again the case that E[Z] = 0 and
Var[Z] < 2m, so by Chebyshev’ s inequality, Step 4 will fail with probability at most 1/9. Next
when taking our samples in Step 5(a), note that the expected samples size is O(m) and that the
expected squared L2 norms of the reduced distributions p′ and q′ are O(1/m). Therefore, with
probability at least 1− 1/C2, p′ and q′ satisfy the hypothesis of Proposition 11. Hence, this holds
for all C iterations with probability at least 8/9.

Conditioning on this event, since p′ = q′, the tester in Step 5(c) will return “YES” with
probability at least 1− 1/C2 on each iteration. Therefore, it returns “YES” on all iterations with
probability at least 8/9. By a union bound, it follows that if p = q, our algorithm returns “YES”
with probability at least 2/3.

We now proceed to establish soundness. Suppose that ‖p − q‖Ak
> ε. Then there exists a

partition I of the domain into k intervals such that ‖pIr − qIr ‖ > ε. For an interval I ∈ I, let
δ(I) = |p(I)−q(I)|. We will call an I ∈ I small if there is a subinterval J ⊆ I so that p(J)+q(J) <
1/m and |p(J) − q(J)| > δ(I)/3. We will call I large otherwise. Note that

∑
I∈I,I small δ(I) +

11



∑
I∈I,I large δ(I) =

∑
I∈I δ(I) > ε. Therefore either

∑
I∈I,I small δ(I) > ε/2, or

∑
I∈I,I large δ(I) >

ε/2. We analyze soundness separately in each of these cases.
Consider first the case that

∑
I∈I,I small δ(I) > ε/2. The analysis in this case is very similar to

the soundness proof of Proposition 3 which we describe for the sake of completeness.
By definition, for each small interval I, there exists a subinterval J so that p(J)+q(J) < 1/m and

|p(J)− q(J)| > δ(I)/2. By Lemma 9, for such J we have that
∫
J f

2(t)(p(t) + q(t))dt = Ω(m2δ3(I)),
and therefore, that

∫
I f

2(t)(p(t) + q(t))dt = Ω(m2δ3(I)). Hence, we have that

E[Z] > m

∫ 1

0
f2(t)(p(t) + q(t))dt

>
∑

I∈I,I small

m

∫
I
f2(t)(p(t) + q(t))dt

>
∑

I∈I,I small

Ω(m3δ3(I))

> Ω(m3)

 ∑
I∈I,I small

δ(I)

3

/k2

= Ω(m3ε3/k2)

= Ω(C5/2√m).

On the other hand, Lemma 10 gives that Var[Z] = O(m), so for C sufficiently large, Chebyshev’s
inequality implies that with probability at least 2/3 it holds Z > 5

√
m. That is, our algorithm

outputs “NO” with probability at least 2/3.
Now consider that case that

∑
I∈I,I large δ(I) > ε/2. We claim that the second part of our tester

will detect the discrepancy between p and q with high constant probability. Once again, we can say
that with probability at least 8/9 the squared L2 norms of the reduced distributions p′ and q′ are
both O(1/m) and that the size of the reduced domain is O(m). Thus, the conditions of Proposition
11 are satisfied on all iterations with probability at least 8/9. To complete the proof, we will show
that with constant probability we have ‖p′ − q′‖A2k+1

> ε/C. To do this, we construct an explicit
partition I ′ of our reduced domain into at most 2k + 1 intervals so that with constant probability
‖pI′r − qI

′
r ‖1 > ε/C. This will imply that with probability at least 8/9 that on at least one of our

C trials that ‖pI′r − qI
′

r ‖1 > ε/C.
More specifically, for each interval I ∈ I we place interval boundaries at the smallest and largest

sample points taken from I in Step 5(a) (ignoring them if fewer than two samples landed in I).
Since we have selected at most 2k points, this process defines a partition I ′ of the domain into at
most 2k+1 intervals. We will show that the reduced distributions p′′ = pI

′
r and q′′ = qI

′
r have large

expected L1 error.
In particular, for each interval I ∈ I let I ′ be the interval between the first and last sample

points of I. Note that I ′ is an interval in the partition I ′. We claim that if I is large, then with
constant probability

|p(I ′)− q(I ′)| = Ω(δ(I)).

Let I = [X,Y ] and I ′ = [x, y] (so x and y are the smallest and largest samples taken from I,
respectively). We note that if p([X,x]) + q([X,x]) < 1/m and p([y, Y ]) + q([y, Y ]) < 1/m then

|p(I ′)−q(I ′)| > |p(I)−q(I)|−|p([X,x])−q([X,x])|−|p([y, Y ])−q([y, Y ])| > δ(I)−δ(I)/3−δ(I)/3 = δ(I)/3,
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where the second inequality uses the fact that I is large. On the other hand, we note that p([X,x])+
q([X,x]) and p([y, Y ])+q([y, Y ]) are exponential distributions with mean 1/m, and thus, this event
happens with constant probability. Let NI be the indicator random variable for the event that
|p(I ′)− q(I ′)| > δ(I)/3. We have that

‖p′′ − q′′‖1 >
∑
I

NIδ(I)/3 >
∑

I∈I,I large

NIδ(I)/3.

Thus, we have that

‖p′′ − q′′‖1 >
∑

I∈I,I large

δ(I)/3−
∑

I∈I,I large

(1−NI)δ(I)/3.

Therefore, since

E

 ∑
I∈I,I large

(1−NI)δ(I)/3

 <
 ∑
I∈I,I large

δ(I)/3

 (1− c)

for some fixed c > 0, we have that with constant probability that

‖p′′ − q′′‖1 > c
∑

I∈I,I large

δ(I)/3 > cε/6 > ε/C.

This means that with probability at least 8/9 for at least one iteration we will have that ‖p′ −
q′‖A2k+1

> ε/C, and therefore, with probability at least 2/3, our algorithm outputs “NO”.

4 Lower Bound for Ak Closeness Testing

Our upper bound from Section 3 seems potentially suboptimal. Instead of obtaining an upper
bound of O(max{k2/3/ε4/3, k1/2/ε2}), which would be analogical to the unstructured testing result
of [CDVV14], we obtain a very different bound of O(max{k4/5/ε6/5, k1/2/ε2}). In this section
we show, surprisingly, that our upper bound is optimal for continuous distributions, or discrete
distributions with support size n that is sufficiently large as a function of k.

Intuitively, our lower bound proof consists of two steps. In the first step, we show it is no loss
of generality to assume that an optimal algorithm only considers the ordering of the samples, and
ignores all other information. In the second step, we construct a pair of distributions which is hard
to distinguish given the condition that the tester is only allowed to look at the ordering of the
samples and nothing more.

Our first step is described in the following theorem. We note that unlike the arguments in the
upper bound proofs, this part of our lower bound technique will work best for random variables of
discrete support.

Theorem 13. For all n, k,m ∈ Z+ there exists N ∈ Z+ such that the following holds: If there
exists an algorithm A that for every pair of distributions p and q, supported over [N ], distinguishes
the case p = q from the case ‖p − q‖Ak

> ε drawing m samples, then there exists an algorithm A′

that for every pair of distributions p′ and q′ supported on [n] distinguishes the case p′ = q′ versus
‖p′− q′‖Ak

> ε using the same number samples m. Moreover, A′ only considers the ordering of the
samples and ignores all other information.
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Proof. As a preliminary simplification, we assume that our algorithm, instead of taking m samples
from any combination of p or q of its choosing, takes exactly m samples from p and m samples from
q, as such algorithms are strictly more powerful. This also allows us to assume that the algorithm
merely takes these random samples and applies some processing to determine its output.

As a critical tool of our proof, we will use the classical Ramsey theorem for hypergraphs. For
completeness, we restate it here in a slightly adapted form.

Lemma 14 (Ramsey theorem for hypergraphs, [CFS10]). Given a set S and an integer t let
(
S
t

)
denote the set of subsets of S of cardinality t. For all positive integers, a, b and c, there exists a
positive integer N so that for any function f :

(
[N ]
a

)
→ [b], there exists an S ⊂ [N ] with |S| = c so

that f is constant on
(
S
a

)
.

In words, this means that if we color all subsets of size a of a size N set with at most b different
colors, then for large enough N we will find a (bigger) subset T such that all its subsets are colored
with the same color. Note that in our setting c from the theorem equals n.

The idea of our proof is as follows. Given an algorithm A, we will use it to implement the
algorithm A′. Given A, we produce some monotonic function f : [n] → [N ], and run A on the
distributions f(p) and f(q). Since f is order preserving, ‖f(p) − f(q)‖Ak

= ‖p − q‖Ak
, so our

algorithm is guaranteed to work. The tricky part will be to guarantee that the output of this new
algorithm A′ depends only on the ordering of the samples that it takes. Since we may assume that
A is deterministic, once we pick which 2m samples are taken from [N ] the output will be some
function of the ordering of these samples (and in particular which are from p and which are from
q). For the algorithm A, this function may depend upon the values that the samples happened to
have. Thus, for A′ to depend only on order, we need it to be the case that A behaves the same way
on any subset of Im(f) of size 2m. Fortunately, we can find such a set using Lemma 14.

Since our sample set has size at most 2m, it is clear that the total number of possible sample
sets is at most N2m. We color each of these subsets of [N ] of size a = 2m one of a finite number of
colors. The color associates to the sample set the function that A uses to obtain an output given
2m samples given by this set coming in a particular order (some of which are potentially equal).
The total number of such functions is at most b = 224m . We let n be the proposed support size for
p′ and q′. By Lemma 14, for N sufficiently large, there are sets of size n such that the function has
the same value in samples from these sets. Letting f be the unique monotonic function from [n] to
[N ] with this set as its image, causes the output A′ to depend only on the ordering of the samples.

The above reduction works as long as the samples given to our algorithm A′ are distinct. To
deal with the case where samples are potentially non-distinct, we show that it is possible to reduce
to the case where all 2m samples are distinct with 9/10 probability. To do this, we divide each
of our original bins into 200m2 sub-bins, and upon drawing a sample from a given bin, we assign
it instead to a uniformly random sub-bin. This procedure maintains the Ak distance between our
distributions, and guarantees that the probability of a collision is small. Now, our algorithm A′

will depend only on the order of the samples so long as there is no collision. As this happens
with probability 9/10, we can also ensure that this is the case when collisions do occur without
sacrificing correctness. This completes our proof.

We will now give the “hard” instance of the testing problem for algorithms that only consider
the ordering of the samples. We will first describe a construction that works for ε = Ω(k−1/6). We
define a mini-bucket to be a segment I, which can be divided into three subsegments I1, I2, I3 in
that order so that p(I1) = p(I3) = ε/(2k), p(I2) = 0, and q(I1) = q(I3) = 0, q(I2) = ε/k. We define
a bucket to be an interval consisting of a mini-bucket followed by an interval on which p = q and on
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which both p, q have total mass (1−ε)/k. Our distributions for p and q will consist of k consecutive
buckets. See Figure 1 for an illustration.
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Figure 1: φ = 1
2p+ 1

2q when ε = 1

Next consider partitioning the domain into macro-buckets each of which is a union of buckets
of total mass Θ(1/m). Note that these distributions have A2k+1 distance of 2ε. An important fact
to note is the following:

Observation 15. If zero, one or two draws are made randomly and independently from (p+ q)/2
on a mini-bucket, then the distribution of which of p or q the samples came from and their relative
ordering is indistinguishable from the case where p = q.

To prove the lower bound for the algorithm A′, which is only allowed to look at the ordering
of samples. We let X be a random variable that is taken to be 0 or 1 each with probabilty 1/2.
When X = 0 we define p and q as above with mini-buckets, macro-buckets and regular buckets as
described. When X = 1, we let p = q and define mini-buckets to have total mass ε/k for each of p
and q, buckets to have total mass 1/k each, and we combine buckets into macro-buckets as in the
X = 0 case.

Let Y be the distribution on the (ordered) sequences, obtained by drawing m′ = Poi(m) samples
from p and m′′ = Poi(m) samples from q, with p and q given by X. We are interested in bounding
the mutual information between X and Y , since it must be Ω(1) if the algorithm is going to succeed
with probability bounded away from 1/2. We show the following:

Theorem 16. We have that I(X : Y ) = O(m5ε6/k4).

Proof. We begin with a couple of definitions. Let Y ′ denote (Y, α), where α is the information
about which draws come from which macro-bucket. Y ′ consists of Y ′i , the sequence of samples
coming from the i-th macro-bucket. Note that

I(X : Y ) 6 I(X : Y ′) 6
O(m)∑
i=1

I(X : Y ′i ) .

We will now estimate I(X : Y ′i ). We claim that it is O(m
4ε6

k4
) for each i. This would cause the

sum to be small enough and give our theorem. We have that,

I(X : Y ′i ) = Ey

[
O

(
1− Pr(Y ′i = y|X = 0)

Pr(Y ′i = y|X = 1)

)2
]
.
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We then have that

I(X : Y ′i ) =

∞∑
`=0

∑
y:|y|=`

O(1)`

`!
O

(
1− Pr(Y ′i = y|X = 0, |y| = `)

Pr(Y ′i = y|X = 1, |y| = `)

)2

.

We note that if X = 1, |y| = ` that any of the 2` possible orderings are equally likely. On
the other hand, if X = 0, this also holds in an approximate sense. To show this, first consider
picking which mini-buckets our ` draws are from. If no three land in the same mini-bucket, then
Observation 15 implies that all orderings are equally likely. Therefore, the statistical distance
between Y ′i |X = 0, |y| = ` and Y ′i |X = 1, |y| = ` is at most the probability that some three draws
come from the same mini-bucket. This is in turn at most the expected number of triples that
land in the same mini-bucket, which is equal to

(
`
3

)
times the probability that a particular triple

does. The probability of landing in a particular mini-bucket is O(mε/k)3. By definition, there are
O(m/k) mini-buckets in a macro-bucket, so this probability is O(`3ε3(m/k)2). Therefore, we have
that

I(X : Y ′i ) =
∑
`

O(1)`

`!

∑
y:|y|=`

O(4`)
(
Pr(Y ′i = y|X = 0, |y| = `)− Pr(Y ′i = y|X = 1, |y| = `)

)2

6
∑
`

O(1)`

`!

 ∑
y:|y|=`

∣∣Pr(Y ′i = y|X = 0, |y| = `)− Pr(Y ′i = y|X = 1, |y| = `)
∣∣2

=
∑
`

O(1)`

`!
O
(
`6ε6m4/k4

)
=
m4

k4

∑
`

O(1)``6ε6

`!

= O

(
m4ε6

k4

)
.

This completes our proof.

The above construction only works when k > m, or equivalently, when ε = Ω(k−1/6). When ε is
small, we need a slightly different construction. We will similarly split our domain into mini-buckets
and macro-buckets and argue based on shared information. Once again we define two distributions
p and q, though this time the distributions themselves will need to be randomized. Given k and
ε, we begin by splitting the domain into k macro-buckets. Each macro-bucket will have mass 1/k
under both p and q.

First pick a global variable X to be either 0 or 1 with equal probability. If X = 1 then we
will have p = q and if X = 0, ‖p − q‖A2k+1

= ε. For each macro-bucket, pick an x uniformly in
[0, (1 − ε)/k]. The macro-bucket will consist of an interval on which p = q with mass x (for each
of p, q), followed by a mini-bucket, followed by an interval of mass (1 − ε)/k − x on which p = q.
The mini-bucket is an interval of mass ε/k under either p or q. If X = 1, we have p = q on the
mini-bucket. If X = 0, the mini-bucket consists of an interval of mass ε/(2k) under q and 0 under
p, an interval of mass ε/k under p and 0 under q, and then another interval of mass ε/(2k) under
q and 0 under p.

We let Y be the random variable associated with the ordering of elements from a set of Poi(m)
draws from each of p and q. We show:
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Theorem 17. If mε = O(k), log(mk/ε) = O(ε−1), and k = O(m), with implied constants suffi-
ciently small, then I(X : Y ) = O(m5ε6/k4).

Note that the above statement differs from Theorem 16 in that X and Y are defined differently.

Proof. Once again, we let Y ′ be Y along with the information of which draws came from which
macro-bucket, and let Y ′i be the information of the draws from the i-th macro-bucket along with
their ordering. It suffices for us to show that I(X : Y ′i ) = O(m5ε6k−5) for each i (as now there are
only k macro-buckets rather than m).

Let s be a string of ` ordered draws from p and q. In particular, we may consider s to be a
string s1s2 . . . s`, where si ∈ {p, q}. We wish to consider the probability that Y ′i = s under the
conditions that X = 0 or that X = 1. In order to do this, we further condition on which elements
of s were drawn from the mini-bucket. For 1 6 a 6 b 6 ` we consider the probability that not
only did we obtain sequence s, but that the draws sa, . . . , sb were exactly the ones coming from the
mini-bucket within this macro-bucket. Let h denote the ordered string coming from elements drawn
from the mini-bucket and M the ordered sequence of strings coming from elements not drawn from
the mini-bucket. The probability of the event in question is then

Pr(h = sa . . . sb) Pr(M = s1 . . . sa−1sb+1 . . . s`) Pr(the mini-bucket is placed between sa−1 and sb+1).

Note that the mini-bucket can be thought of as being randomly and uniformly inserted within an
interval of length (1−ε)/k and that this is equally likely to be inserted between any pair of elements
of M . Thus, the probability of the third term in the product is exactly 1/(`+ a− b). The second
probability is the probability that ` + a − b − 1 elements are drawn from the complement of the
mini-bucket times 2−(`+a−b+1), as draws from p and q are equally likely. Thus, letting t = b− a+ 1
(i.e., the number of elements in the mini-bucket), we have that

Pr(Y ′i = s) = e−m/k
∑̀
t=0


(
m(1−ε)

2k

)`−t
(`− t)!

((mεk )t
t!

)(
1

`− t

)∑
a

Pr(h = sa . . . sa+t−1 : |h| = t).

Note that this equality holds even after conditioning upon X. We next simplify this expression fur-
ther by grouping together terms in the last sum based upon the value of the substring sa . . . sa+t−1,
which we call r. We get that

Pr(Y ′i = s) = e−m/k
∑̀
t=0


(
m(1−ε)

2k

)`−t
(`− t)!

((mεk )t
t!

)(
1

`− t

)∑
|r|=t

Pr(h = r : |h| = t)Nr,s,

where Nr,s is the number of occurrences of r as a substring of s.
Next, we wish to bound∑

|s|=`

|Pr(Y ′i = s : X = 0)− Pr(Y ′i = s : X = 1)|2. (2)

By the above formula this is at most

e−2m/k
∑
|s|=`

∑̀
t=0


(
m(1−ε)

2k

)`−t
(`− t)!

((mεk )t
t!

)(
1

`− t

)
·

∣∣∣∣∣∣
∑
|r|=t

Nr,s (Pr(h = r : |h| = t,X = 0)− Pr(h = r : |h| = t,X = 1))

∣∣∣∣∣∣
2

.
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For fixed values of t we consider the sum

∑
|s|=`

∣∣∣∣∣∣
∑
|r|=t

Nr,s(Pr(h = r : |h| = t,X = 0)− Pr(h = r : |h| = t,X = 1))

∣∣∣∣∣∣
2

.

Note that if t 6 2 then Pr(h = r : |h| = t,X = 0) = Pr(h = r : |h| = t,X = 1), and so the above
sum is 0. Otherwise, it is at most∑

|s|=`

∑
|r|=t

|Nr,s − (`+ 1− t)/2t|2

because
∑

r Pr(h = r : |h| = t,X = 0) =
∑

r Pr(h = r : |h| = t,X = 1) = 1. Note on the other hand
that the expectation over random strings s of length ` of Nr,s − (` + 1 − t)/2t is 0. Furthermore,
the variance of Nr,s is easily bounded by t`2−t as whether or not two disjoint substrings of s are
equal to r are independent events. Therefore, the above sum is at most

2`2tt`2−t = 2`t`.

Hence, by Cauchy-Schwartz, we have that

∑
|s|=`

∣∣∣∣∣∣
∑
|r|=t

Nr,s − (`+ 1− t)/2t
∣∣∣∣∣∣
2

6 2`2tt`.

Therefore, the expression in (2) is at most

e−2m/k

∑̀
t=3


(
m(1−ε)

2k

)`−t
(`− t)!

(O (mεk )t
t!

)(
1

`− t

)(
2`2t`t

)1/2


2

.

Assuming that `ε is sufficiently small, these terms are decreasing exponentially with t, and thus
this is

O

(
e−2m/k

(
(m2/(2k2))`

(`!)2

)
ε6`5

)
.

Now we have that for N a sufficiently small constant times ε−1,

I(X : Y ′i ) =
∑
s

Pr(Y ′i = s : X = 1)O

(
1− Pr(Y ′i = s : X = 0)

Pr(Y ′i = s : X = 1)

)2

=
∑
`

∑
s:|s|=`

em/k
(

(m/(2k))`

`!

)−1

O(Pr(Y ′i = s : X = 1)− Pr(Y ′i = s : X = 0))2

6
∑
`

em/k
(

(m/(2k))`

`!

)−1

O

 ∑
s:|s|=`

|Pr(Y ′i = s : X = 1)− Pr(Y ′i = s : X = 0)|2


6
∑
`>N

O

(
(2m/k)`

`!

)
+
∑
`<N

em/k
(

(m/(2k))`

`!

)−1

O

(
e−2m/k

(
(m2/(2k2))`

(`!)2

)
ε6`5

)

6
∑
`>N

O
( m
kN

)`
+
∑
`

O

(
e−m/k

(m/k)`

`!
ε6`5

)
.
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Since m
kN ≤

mε
k is sufficiently small, the first term is at most (1/2)N which is polynomially small

in mk/ε, and thus negligible. The second term is the expectation of ε6`5 for ` a Poisson random
variable with mean m/k. Thus, it is easily seen to be O((m/k)5ε6). Therefore, we have that
I(X : Y ′i ) = O(m5ε6k−5), and therefore, I(X : Y ) = O(m5ε6k−4), as desired.

We are now ready to complete the proof of our general lower bound.

Theorem 18. For any k > 2, there exists an N so that any algorithm that is given sample access
to two distributions, p and q over [N ], and can distinguish between the cases p = q and ‖p− q‖Ak

with probability at least 2/3, requires at least Ω
(
max

{
k4/5/ε6/5, k1/2/ε2

})
samples.

Proof. The lower bound of k1/2/ε2 follows from the known lower bound [Pan08] even in the case
where q is known and p and q have support of size k. It now suffices to consider the case that
ε > k−1/2 and m a sufficiently small constant times k4/5ε−6/5.

Note that by Theorem 13, we may assume that the algorithm in question takes m samples from
each of p and q and determines its output based only on the ordering of the samples. We need to
show that this is impossible for N sufficiently large.

We note that if we allow p and q to be continuous distributions instead of discrete ones we
are already done. If m < k, we use our first counter-example construction, and if m > k use the
second one. If we let X be randomly 0 or 1, and set p = q for X = 1 and p, q as described above
when X = 0, then by Theorems 16 and 17, the shared information between X and the output of
our algorithm is at most O(m5ε6k−4) = o(1), and thus our algorithm cannot correctly determine
X with constant probability.

In order to prove our Theorem, we will need to make this work for distributions p and q
with finite support size as follows: By splitting our domain into m3 intervals each of equal mass
under p + q, we note that the Ak distance between the distributions is only negligibly affected.
Furthermore, with high probability, m samples will have no pair chosen from the same bin. Thus,
the distribution on orderings of samples from these discrete distributions are nearly identical to
the continuous case, and thus our algorithm would behave nearly identically. This completes the
proof.
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Appendix

A Proof of Proposition 11

In this section, we prove Proposition 11. We note that it suffices to attain confidence probability
2/3 with O(

√
k/ε2) samples, as we can then run O(log(1/δ)) independent iterations to boost the

confidence to 1− δ. Our starting point is the following Theorem from [CDVV14]:

Theorem 19 ([CDVV14], Proposition 3.1). For any distributions p and q over [n] such that ‖p‖2 6
O(1)√
n

and ‖q‖2 6 O(1)√
n

there is a testing algorithm that distinguishes with probability at least 2/3 the

case that q = p from the case that ||q − p||2 > ε/
√
n when given O(

√
n/ε2) samples from q and p.

Our Ak testing algorithm for this regime is the following:
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Algorithm Test-Identity-Flat-Ak(p, q, n, ε)
Input: sample access to distributions p and q over [n] with ‖p‖2, ‖q‖2 = O(1/

√
n), k ∈ Z+

with 2 ≤ k ≤ n, and ε > 0.
Output: “YES” if q = p; “NO” if ‖q − p‖Ak

≥ ε.

1. Draw samples S1, S2 of size m = O(
√
k/ε2) from q and p.

2. By artificially increasing the support if necessary, we can guarantee that n = k · 2j0 ,

where j0
def
= dlog2(1/ε)e+O(1).

3. Consider the collection {I(j)}j0−1
j=0 of j0 partitions of [n] into intervals; the partition

I(j) = (I
(j)
i )

`j
i=1 consists of `j = k ·2j many intervals with I

(j0)
i of length n/`j +O(1), and

I
(j)
i the union of two adjacent intervals of I

(j+1)
i .

4. For j = 0, 1, . . . , j0 − 1:

(a) Consider the reduced distributions qI
(j)

r and pI
(j)

r . Use the samples S1, S2 to simulate

samples to qI
(j)

r and pI
(j)

r .
(b) Run Test-Identity-L2(qI

(j)

r , pI
(j)

r , `j , εj , δj) for εj = C ·ε ·23j/8 for C > 0 a sufficiently

small constant and δj = 2−j/6, i.e., test whether qI
(j)

r = pI
(j)

r versus ‖qI(j)r −
pI

(j)

r ‖2 > γj
def
= εj/

√
`j .

5. If all the testers in Step 3(b) output “YES”, then output “YES”; otherwise output “NO”.

Note in the above that when εj > 1, that the appropriate tester requires no samples. The
following proposition characterizes the performance of the above algorithm.

Proposition 20. The algorithm Test-Identity-Flat-Ak(p, q, n, ε), on input a sample of size m =
O(
√
k/ε2) drawn from distributions q and p over [n] with ‖p‖2, ‖q‖2 = O(1/

√
n), ε > 0, and an

integer k with 2 ≤ k ≤ n, correctly distinguishes the case that q = p from the case that ‖q−p‖Ak
≥ ε,

with probability at least 2/3.

Proof. First, it is straightforward to verify the claimed sample complexity, as the algorithm only
draws samples in Step 1. Note that the algorithm uses the same set of samples S1, S2 for all testers
in Step 4(b). Note that it is easy to see that ‖pI(j)r ‖2, ‖qI

(j)

r ‖2 = O(1/
√
`j), and therefore, by

Theorem 19, the tester Test-Identity-L2(qI
(j)

r , pI
(j)

r , `j , εj , δj), on input a set of mj = O((
√
`j/ε

2
j ) ·

log(1/δj)) samples from qI
(j)

r and pI
(j)

r distinguishes the case that qI
(j)

r = pI
(j)

r from the case that

‖qI(j)r − pI(j)r ‖2 ≥ γj
def
= εj/

√
`j with probability at least 1 − δj . From our choice of parameters

it can be verified that maxjmj ≤ m = O(
√
k/ε2), hence we can use the same sample S1, S2 as

input to these testers for all 0 ≤ j ≤ j0 − 1. In fact, it is easy to see that
∑j0−1

j=0 mj = O(m),
which implies that the overall algorithm runs in sample-linear time. Since each tester in Step 3(b)
has error probability δj , by a union bound over all j ∈ {0, . . . , j0 − 1}, the total error probability

is at most
∑j0−1

j=0 δj ≤ (1/6) ·
∑∞

j=0 2−j = 1/3. Therefore, with probability at least 2/3 all the
testers in Step 4(b) succeed. We will henceforth condition on this “good” event, and establish the
completeness and soundness properties of the overall algorithm under this conditioning.

We start by establishing completeness. If q = p, then for any partition I(j), 0 ≤ j ≤ j0 − 1,
we have that qI

(j)

r = pI
(j)

r . By our aforementioned conditioning, all testers in Step 3(b) will output
“YES”, hence the overall algorithm will also output “YES”, as desired.

We now proceed to establish the soundness of our algorithm. Assuming that ‖q− p‖Ak
≥ ε, we
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want to show that the algorithm Test-Identity-Ak(q, n, ε) outputs “NO” with probability at least
2/3. Towards this end, we prove the following structural lemma:

Lemma 21. For C > 0 a sufficiently small constant, if ‖q − p‖Ak
≥ ε, there exists j ∈ Z+ with

0 ≤ j ≤ j0 − 1 such that ‖qI(j)r − pI(j)r ‖22 ≥ γ2
j .

Given the lemma, the soundness property of our algorithm follows easily. Indeed, since all
testers Test-Identity-L2(qI

(j)

r , `j , εj , δj) of Step 4(b) are successful by our conditioning, Lemma 21
implies that at least one of them outputs “NO”, hence the overall algorithm will output “NO”.

The proof of Lemma 21 is very similar to the analogous lemma in [DKN15]. For the same of
completeness, it is given in the following subsection.

A.1 Proof of Lemma 21 We claim that it is sufficient to take C 6 5 · 10−6. Thus, we are in
the case where n = 2j0−1 · k and have argued that it suffices to show that our algorithm works to
distinguish Ak-distance in this setting with εj = 10−5 · ε · 23j/8.

We make use of the following definition:

Definition 22. For p and q arbitrary distributions over [n], we define the scale-sensitive-L2 distance
between q and p to be

‖q − p‖2[k]
def
= max
I=(I1,...,Ir)∈W1/k

r∑
i=1

Discr2(Ii)

width1/8(Ii)

where W1/k is the collection of all interval partitions of [n] into intervals of width at most 1/k,
Discr(I) = |p(I)− q(I)|, and width(I) is the number of bins in I divided by n.

The first thing we need to show is that if q and p have large Ak distance then they also have
large scale-sensitive-L2 distance. Indeed, we have the following lemma:

Lemma 23. For p and q an arbitrary distributions over [n], we have that

‖q − p‖2[k] >
‖q − p‖2Ak

(2k)7/8
.

Proof. Let ε = ‖q− p‖2Ak
. Consider the optimal I∗ in the definition of the Ak distance. By further

subdividing intervals of width more than 1/k into smaller ones, we can obtain a new partition,
I ′ = (I ′i)

s
i=1, of cardinality s ≤ 2k all of whose parts have width at most 1/k. Furthermore, we have

that
∑

i Discr(I ′i) > ε. Using this partition to bound from below ‖q − p‖2[k], by Cauchy-Schwarz
we obtain that

‖q − p‖2[k] >
∑
i

Discr2(I ′i)

width(I ′i)
1/8

>
(
∑

i Discr(I ′i))
2∑

i width(I ′i)
1/8

>
ε2

2k(1/(2k))1/8

=
ε2

(2k)7/8
.

24



The second important fact about the scale-sensitive-L2 distance is that if it is large then one of
the partitions considered in our algorithm will produce a large L2 error.

Proposition 24. Let p and q be distributions over [n]. Then we have that

‖q − p‖2[k] 6 108
j0−1∑
j=0

2j ·k∑
i=1

Discr2(I
(j)
i )

width1/8(I
(j)
i )

. (3)

Proof. Let J ∈W1/k be the optimal partition used when computing the scale-sensitive-L2 distance

‖q− p‖[k]. In particular, it is a partition into intervals of width at most 1/k so that
∑

i
Discr2(Ji)

width(Ji)1/8

is as large as possible. To prove (3), we prove a notably stronger claim. In particular, we will prove
that for each interval J` ∈ J

Discr2(J`)

width1/8(J`)
6 108

j0−1∑
j=0

∑
i:I

(j)
i ⊂J`

Discr2(I
(j)
i )

width1/8(I
(j)
i )

. (4)

Summing over ` would then yield ‖q − p‖2[k] on the left hand side and a strict subset of the terms

from (3) on the right hand side. From here on, we will consider only a single interval J`. For
notational convenience, we will drop the subscript and merely call it J .

First, note that if |J | 6 108, then this follows easily from considering just the sum over j = j0−1.
Then, if t = |J |, J is divided into t intervals of size 1. The sum of the discrepancies of these
intervals equals the discrepancy of J , and thus, the sum of the squares of the discrepancies is at
least Discr2(J)/t. Furthermore, the widths of these subintervals are all smaller than the width of
J by a factor of t. Thus, in this case the sum of the right hand side of (4) is at least 1/t7/8 > 1

107

of the left hand side.
Otherwise, if |J | > 108, we can find a j so that width(J)/108 < 1/(2j · k) 6 2 ·width(J)/108.

We claim that in this case Equation (4) holds even if we restrict the sum on the right hand side to
this value of j. Note that J contains at most 108 intervals of I(j), and that it is covered by these
intervals plus two narrower intervals on the ends. Call these end-intervals R1 and R2. We claim
that Discr(Ri) 6 Discr(J)/3. This is because otherwise it would be the case that

Discr2(Ri)

width1/8(Ri)
>

Discr2(J)

width1/8(J)
.

(This is because (1/3)2 · (2/108)−1/8 > 1.) This is a contradiction, since it would mean that
partitioning J into Ri and its complement would improve the sum defining ‖q − p‖[k], which was

assumed to be maximum. This means that the sum of the discrepancies of the I
(j)
i contained in

J must be at least Discr(J)/3, so the sum of their squares is at least Discr2(J)/(9 · 108). On
the other hand, each of these intervals is narrower than J by a factor of at least 108/2, thus the

appropriate sum of
Discr2(I

(j)
i )

width1/8(I
(j)
i )

is at least Discr2(J)

108width1/8(J)
. This completes the proof.

We are now ready to prove Lemma 21.

Proof. If ‖q − p‖Ak
> ε we have by Lemma 23 that

‖q − p‖2[k] >
ε2

(2k)7/8
.
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By Proposition 24, this implies that

ε2

(2k)7/8
6 108

j0−1∑
j=0

2j ·k∑
i=1

Discr2(I
(j)
i )

width1/8(I
(j)
i )

= 108
j0−1∑
j=0

(2jk)1/8‖qI(j) − pI(j)‖22.

Therefore,
j0−1∑
j=0

2j/8‖qI(j) − pI(j)‖22 > 5 · 10−9ε2/k. (5)

On the other hand, if ‖qI(j) − pI(j)‖22 were at most 10−102−j/4ε2/k for each j, then the sum above
would be at most

10−10ε2/k
∑
j

2−j/8 < 5 · 10−9ε2/k.

This would contradict Equation (5), thus proving that ‖qI(j) −U`j‖22 > 10−102−j/4ε2/k for at least
one j, proving Lemma 21.
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