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Abstract
A k-modal probability distribution over the domain
{1, ..., n} is one whose histogram has at most k “peaks” and
“valleys.” Such distributions are natural generalizations of
monotone (k = 0) and unimodal (k = 1) probability distri-
butions, which have been intensively studied in probability
theory and statistics.

In this paper we consider the problem of learning an
unknown k-modal distribution. The learning algorithm is
given access to independent samples drawn from the k-
modal distribution p, and must output a hypothesis distri-
bution p̂ such that with high probability the total variation
distance between p and p̂ is at most ε.

We give an efficient algorithm for this problem that runs
in time poly(k, log(n), 1/ε). For k ≤ Õ(

√
log n), the num-

ber of samples used by our algorithm is very close (within an
Õ(log(1/ε)) factor) to being information-theoretically opti-
mal. Prior to this work computationally efficient algorithms
were known only for the cases k = 0, 1 [Bir87b, Bir97].

A novel feature of our approach is that our learning
algorithm crucially uses a new property testing algorithm as
a key subroutine. The learning algorithm uses the property
tester to efficiently decompose the k-modal distribution into
k (near)-monotone distributions, which are easier to learn.

1 Introduction
This paper considers a natural unsupervised learning prob-
lem involving k-modal distributions over the discrete do-
main {1, . . . , n}. A distribution is k-modal if the plot of its
probability density function (pdf) has at most k “peaks” and
“valleys” (see Section 2.1 for a precise definition). Such
distributions arise both in theoretical (see e.g. [CKC83,
Kem91, CT04]) and applied (see e.g. [Mur64, dTF90,
FPP+98]) research; they naturally generalize the simpler
classes of monotone (k = 0) and unimodal (k = 1) distribu-
tions that have been intensively studied in probability theory
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and statistics (see the discussion of related work below).
Our main aim in this paper is to give an efficient al-

gorithm for learning an unknown k-modal distribution p
to total variation distance ε, given access only to indepen-
dent samples drawn from p. As described below there is
an information-theoretic lower bound of Ω(k log(n/k)/ε3)
samples for this learning problem, so an important goal for
us is to obtain an algorithm whose sample complexity is as
close as possible to this lower bound (and of course we want
our algorithm to be computationally efficient, i.e. to run in
time polynomial in the size of its input sample). Our main
contribution in this paper is a computationally efficient al-
gorithm that has nearly optimal sample complexity for small
(but super-constant) values of k.

1.1 Background and related work. There is a rich body
of work in the statistics and probability literatures on esti-
mating distributions under various kinds of “shape” or “or-
der” restrictions. In particular, many researchers have stud-
ied the risk of different estimators for monotone and uni-
modal distributions; see for example the works of [Rao69,
Weg70, Gro85, Bir87a, Bir87b, Bir97], among many oth-
ers. In the language of computational learning theory,
these and related papers from the probability/statistics lit-
erature mostly deal with information-theoretic upper and
lower bounds on the sample complexity of learning mono-
tone and unimodal distributions. It should be noted that
some of these works do give efficient algorithms for the
cases k = 0 and k = 1; in particular we mention the re-
sults of Birgé [Bir87b, Bir97], which give computationally
efficient O(log(n)/ε3)-sample algorithms for learning un-
known monotone or unimodal distributions over [n] respec-
tively. (Birgé [Bir87a] also showed that this sample com-
plexity is asymptotically optimal, as we discuss below; we
describe the algorithm of [Bir87b] in more detail in Sec-
tion 2.2, and indeed use it as an ingredient of our approach
throughout this paper.) However, for these relatively sim-
ple k = 0, 1 classes of distributions the main challenge is in
developing sample-efficient estimators, and the algorithmic
aspects are typically rather straightforward (as is the case in
[Bir87b]). In contrast, much more challenging and interest-
ing algorithmic issues arise for the general values of k which
we consider here.

1.2 Our Results. Our main result is a highly efficient
algorithm for learning an unknown k-modal distribution
over [n]:



THEOREM 1.1. Let p be any unknown k-modal distribution
over [n]. There is an algorithm that uses1(

k log(n/k)
ε3

+
k3

ε3
· log

k

ε
· log log

k

ε

)
· Õ(log(1/δ))

samples from p, runs for poly(k, log n, 1/ε, log(1/δ)) bit-
operations, and with probability 1 − δ outputs a (succinct
description of a) hypothesis distribution p̂ over [n] such that
the total variation distance between p and p̂ is at most ε.

As alluded to earlier, Birgé [Bir87a] gave a sample com-
plexity lower bound for learning monotone distributions.
The lower bound in [Bir87a] is stated for continuous distri-
butions but the arguments are easily adapted to the discrete
case; [Bir87a] shows that (for ε ≥ 1/nΩ(1))2 any algorithm
for learning an unknown monotone distribution over [n] to
total variation distance ε must use Ω(log(n)/ε3) samples.
By a simple construction which concatenates k copies of the
monotone lower bound construction over intervals of length
n/k, using the monotone lower bound it is possible to show:

PROPOSITION 1.1. Any algorithm for learning an unknown
k-modal distribution over [n] to variation distance ε (for
ε ≥ 1/nΩ(1)) must use Ω(k log(n/k)/ε3) samples.

Thus our learning algorithm is nearly optimal in its
sample complexity; more precisely, for k ≤ Õ(

√
log n)

(and ε as bounded above), our sample complexity in The-
orem 1.1 is asymptotically optimal up to a factor of
Õ(log(1/ε)). Since each draw from a distribution over [n] is
a log(n)-bit string, Proposition 1.1 implies that the running
time of our algorithm is optimal up to polynomial factors.
We note that to the best of our knowledge, prior to this work
no learning algorithm for k-modal distributions was known
that simultaneously had poly(k, log n) sample complexity
and poly(n) running time.

1.3 Our Approach. As mentioned in Section 1.1 Birgé
gave a highly efficient algorithm for learning a monotone
distribution in [Bir87b]. Since a k-modal distribution is sim-
ply a concatenation of k + 1 monotone distributions (first
non-increasing, then non-decreasing, then non-increasing,
etc.), it is natural to try to use Birgé’s algorithm as a compo-
nent of an algorithm for learning k-modal distributions, and
indeed this is what we do.

The most naive way to use Birgé’s algorithm would
be to guess all possible

(
n
k

)
locations of the k “modes” of

p. While such an approach can be shown to have good
sample complexity, the resulting Ω(nk) running time is
grossly inefficient. A “moderately naive” approach, which

1We write Õ(·) to hide factors which are polylogarithmic in the
argument to Õ(·); thus for example Õ(a log b) denotes a quantity which is
O((a log b) · (log(a log b))c) for some absolute constant c.

2For ε sufficiently small the generic upper bound of Theorem A.1,
which says that any distribution over [n] can be learned to variation distance
ε using O(n/ε2) samples, provides a better bound.

we analyze in Section 3.1, is to partition [n] into roughly
k/ε intervals each of weight roughly ε/k, and run Birgé’s
algorithm separately on each such interval. Since the target
distribution is k-modal, at most k of the intervals can be
non-monotone; Birgé’s algorithm can be used to obtain
an ε-accurate hypothesis on each monotone interval, and
even if it fails badly on the (at most) k non-monotone
intervals, the resulting total contribution towards the overall
error from those failures is at most O(ε). This approach
is much more efficient than the totally naive approach,
giving running time polynomial in k, log n, and 1/ε, but
its sample complexity turns out to be polynomially worse
than the O(k log(n)/ε3) that we are shooting for. (Roughly
speaking, this is because the approach involves running
Birgé’s O(log(n)/ε3)-sample algorithm k/ε times, so it
uses at least k log(n)/ε4 samples.)

Our main learning result is achieved by augmenting
the “moderately naive” algorithm sketched above with a
new property testing algorithm. We give a property testing
algorithm for the following problem: given samples from
a k-modal distribution p, output “yes” if p is monotone
and “no” if p is ε-far from every monotone distribution.
Crucially, our testing algorithm uses O(k2/ε2) samples
independent of n for this problem. Roughly speaking, by
using this algorithm O(k/ε) times we are able to identify
k + 1 intervals that (i) collectively contain almost all of p’s
mass, and (ii) are each (close to) monotone and thus can be
handled using Birgé’s algorithm. Thus the overall sample
complexity of our approach is (roughly) (k/ε)3 (for the k/ε
runs of the tester) plus k log(n)/ε3 (for the k runs of Birgé’s
algorithm), which gives Theorem 1.1 and is very close to
optimal for k not too large.

1.4 Discussion. Our learning algorithm highlights a novel
way that property testing algorithms can be useful for learn-
ing. Much research has been done on understanding the re-
lation between property testing algorithms and learning al-
gorithms, see e.g. [GGR98, KR00] and the lengthy survey
[Ron08]. As Goldreich has noted [Gol11], an often-invoked
motivation for property testing is that (inexpensive) testing
algorithms can be used as a “preliminary diagnostic” to de-
termine whether it is appropriate to run a (more expensive)
learning algorithm. In contrast, in this work we are using
property testing rather differently, as an inexpensive way of
decomposing a “complex” object (a k-modal distribution)
which we do not a priori know how to learn, into a collection
of “simpler” objects (monotone or near-monotone distribu-
tions) which can be learned using existing techniques. We
are not aware of prior learning algorithms that successfully
use property testers in this way; we believe that this high-
level approach to designing learning algorithms, by using
property testers to decompose “complex” objects into sim-
pler objects that can be efficiently learned, may find future
applications elsewhere.



2 Preliminaries
2.1 Notation and Problem Statement. For n ∈ Z+,
denote by [n] the set {1, . . . , n}; for i, j ∈ Z+, i ≤ j, denote
by [i, j] the set {i, i+1, . . . , j}. For v = (v(1), . . . , v(n)) ∈
Rn denote by ‖v‖1 =

∑n
i=1 |v(i)| its L1-norm.

We consider discrete probability distributions over [n],
which are functions p : [n] → [0, 1] such that

∑n
i=1 p(i) =

1. For S ⊆ [n] we write p(S) to denote
∑
i∈S p(i). For

S ⊆ [n], we write pS to denote the conditional distribution
over S that is induced by p. We use the notation P for the
cumulative distribution function (cdf) corresponding to p,
i.e. P : [n]→ [0, 1] is defined by P (j) =

∑j
i=1 p(i).

A distribution p over [n] is non-increasing (resp. non-
decreasing) if p(i + 1) ≤ p(i) (resp. p(i + 1) ≥ p(i)),
for all i ∈ [n − 1]; p is monotone if it is either non-
increasing or non-decreasing. We call a nonempty interval
I = [a, b] ⊆ [2, n − 1] a max-interval of p if p(i) = c for
all i ∈ I and max{p(a− 1), p(b+ 1)} < c; in this case, we
say that the point a is a left max point of p. Analogously, a
min-interval of p is an interval I = [a, b] ⊆ [2, n − 1] with
p(i) = c for all i ∈ I and min{p(a − 1), p(b + 1)} > c;
the point a is called a left min point of p. If I = [a, b] is
either a max-interval or a min-interval (it cannot be both)
we say that I is an extreme-interval of p, and a is called a
left extreme point of p. Note that any distribution uniquely
defines a collection of extreme-intervals (hence, left extreme
points). We say that p is k-modal if it has at most k extreme-
intervals.

Let p, q be distributions over [n] with corresponding
cdfs P,Q. The total variation distance between p and q is
dTV (p, q) := maxS⊆[n] |p(S) − q(S)| = (1/2) · ‖p − q‖1.
The Kolmogorov distance between p and q is defined as
dK(p, q) := maxj∈[n] |P (j)−Q(j)| . Note that dK(p, q) ≤
dTV (p, q).

Learning k-modal Distributions. Given independent sam-
ples from an unknown k-modal distribution p ∈ Mk

n and
ε > 0, the goal is to output a hypothesis distribution h such
that with probability 1 − δ we have dTV (p, h) ≤ ε. We
say that such an algorithm A learns p to accuracy ε and
confidence δ. The parameters of interest are the number of
samples and the running time required by the algorithm.

2.2 Basic Tools. We will need three tools from probability
theory.

Our first tool says that O(1/ε2) samples suffice to
learn any distribution within error ε with respect to the
Kolmogorov distance. This fundamental fact is known as the
Dvoretzky-Kiefer-Wolfowitz (DKW) inequality ([DKW56]).
Given m independent samples s1, . . . , sm, drawn from p :
[n] → [0, 1], the empirical distribution p̂m : [n] → [0, 1]
is defined as follows: for all i ∈ [n], p̂m(i) = |{j ∈
[m] | sj = i}|/m. The DKW inequality states that
for m = Ω((1/ε2) · ln(1/δ)), with probability 1 − δ the
empirical distribution p̂m will be ε-close to p in Kolmogorov
distance. This sample bound is asymptotically optimal and

independent of the support size.

THEOREM 2.1. ([DKW56, MAS90]) For all ε > 0, it
holds: Pr[dK(p, p̂m) > ε] ≤ 2e−2mε2 .

Our second tool, due to Birgé [Bir87b], provides a
sample-optimal and computationally efficient algorithm to
learn monotone distributions to ε-accuracy in total variation
distance. Before we state the relevant theorem, we need a
definition. We say that a distribution p is δ-close to being
non-increasing (resp. non-decreasing) if there exists a non-
increasing (resp. non-decreasing) distribution q such that
dTV (p, q) ≤ δ. We are now ready to state Birgé’s result:

THEOREM 2.2. ([BIR87B], THEOREM 1) (semi-agnostic
learner) There is an algorithm L↓ with the following per-
formance guarantee: Given m independent samples from
a distribution p over [n] which is opt-close to being non-
increasing, L↓ performs Õ(m · log n + m1/3 · (log n)5/3)
bit-operations and outputs a (succinct description of a)
hypothesis distribution p̃ over [n] that satisfies

E[dTV (p̃, p)] ≤ 2 · opt +O
((

log n/(m+ 1)
)1/3)

.

The aforementioned algorithm partitions the domain [n] in
O(m1/3 · (log n)2/3) intervals and outputs a hypothesis
distribution that is uniform within each of these intervals.

By taking m = Ω(log n/ε3), one obtains a hypothesis
such that E[dTV (p̃, p)] ≤ 2 · opt + ε. We stress that Birgé’s
algorithm for learning non-increasing distributions [Bir87b]
is in fact “semi-agnostic”, in the sense that it also learns dis-
tributions that are close to being non-increasing; this robust-
ness will be crucial for us later (since in our final algorithm
we will use Birgé’s algorithm on distributions identified by
our tester, that are close to monotone but not necessarily per-
fectly monotone). This semi-agnostic property is not explic-
itly stated in [Bir87b] but it can be shown to follow easily
from his results. We show how the semi-agnostic property
follows from Birgé’s results in Appendix A. Let L↑ denote
the corresponding semi-agnostic algorithm for learning non-
decreasing distributions.

Our final tool is a routine to do hypothesis testing, i.e. to
select a high-accuracy hypothesis distribution from a collec-
tion of hypothesis distributions one of which has high accu-
racy. The need for such a routine arises in several places; in
some cases we know that a distribution is monotone, but do
not know whether it is non-increasing or non-decreasing. In
this case, we can run both algorithms L↑ and L↓ and then
choose a good hypothesis using hypothesis testing. An-
other need for hypothesis testing is to “boost confidence”
that a learning algorithm generates a high-accuracy hypoth-
esis. Our initial version of the algorithm for Theorem 1.1
generates an ε-accurate hypothesis with probability at least
9/10; by running it O(log(1/δ)) times using a hypothesis
testing routine, it is possible to identify an O(ε)-accurate



hypothesis with probability 1 − δ. Routines of the sort that
we require have been given in e.g. [DL01] and [DDS11];
we use the following theorem from [DDS11]:

THEOREM 2.3. There is an algorithm
Choose-Hypothesisp(h1, h2, ε

′, δ′) which is given
oracle access to p, two hypothesis distributions h1, h2 for
p, an accuracy parameter ε′, and a confidence parameter
δ′. It makes m = O(log(1/δ′)/ε′2) draws from p and
returns a hypothesis h ∈ {h1, h2}. If one of h1, h2 has
dTV (hi, p) ≤ ε′ then with probability 1−δ′ the hypothesis h
that Choose-Hypothesis returns has dTV (h, p) ≤ 6ε′.

For the sake of completeness, we describe and analyze the
Choose-Hypothesis algorithm in Appendix B.

3 Learning k-modal Distributions
In this section, we present our main result: a nearly sample-
optimal and computationally efficient algorithm to learn an
unknown k-modal distribution. In Section 3.1 we present a
simple learning algorithm with a suboptimal sample com-
plexity. In Section 3.2 we present our main result which
involves a property testing algorithm as a subroutine.

3.1 Warm-up: A simple learning algorithm. In this
subsection, we give an algorithm that runs in time
poly(k, log n, 1/ε, log(1/δ)) and learns an unknown k-
modal distribution to accuracy ε and confidence δ. The sam-
ple complexity of the algorithm is suboptimal as a function
of ε, by a polynomial factor.

In the following figure we give the algorithm
Learn− kmodal− simple which produces an ε-accurate
hypothesis with confidence 9/10 (see Theorem 3.1). We ex-
plain how to boost the confidence to 1− δ after the proof of
the theorem.

The algorithm Learn− kmodal− simple works as
follows: We start by partitioning the domain [n] into con-
secutive intervals of mass approximately ε/k. To do this,
we make use of the DKW inequality, with accuracy param-
eter roughly ε2/k. (Some care is needed in this step, since
there may be “heavy” points in the support of the distribu-
tion; however, we gloss over this technical issue for the sake
of this intuitive explanation.) If this step is successful, we
have partitioned the domain into a set of O(k/ε) consecu-
tive intervals of probability mass roughly ε/k. Our next step
is to apply Birgé’s monotone learning algorithm to each in-
terval.

Learn-kmodal-simple
Inputs: ε > 0; sample access to k-modal distribution p
over [n]

1. Fix τ := ε2/(100k). Draw r = Θ(1/τ2) samples
from p and let p̂ denote the resulting empirical
distribution.

2. Greedily partition the domain [n] into ` atomic
intervals I := {Ii}`i=1 as follows: I1 := [1, j1],
where j1 := min{j ∈ [n] | p̂([1, j]) ≥ ε/(10k)}.
For i ≥ 1, if ∪ij=1Ij = [1, ji], then Ii+1 :=
[ji + 1, ji+1], where ji+1 is defined as follows: If
p̂([ji + 1, n]) ≥ ε/(10k), then ji+1 := min{j ∈
[n] | p̂([ji + 1, j]) ≥ ε/(10k)}, otherwise, ji+1 :=
n.

3. Construct a set of ` light intervals I ′ := {I ′i}`i=1

and a set {bi}ti=1 of t ≤ ` heavy points as follows:
For each interval Ii = [a, b] ∈ I, if p̂(I) ≥ ε/(5k)
define I ′i := [a, b − 1] and make b a heavy point.
(Note that it is possible to have I ′i = ∅.) Otherwise,
define I ′i := Ii.

Fix δ′ := ε/(500k).

4. Draw m = (k/ε4) · log(n) · Θ̃(log(1/δ′)) samples
s = {si}mi=1 from p. For each light interval I ′i ,
i ∈ [`], run both L↓δ′ and L↑δ′ on the conditional
distribution pI′i using the samples in s ∩ I ′i . Let
p̃↓I′i

, p̃↑I′i be the corresponding conditional hypothesis
distributions.

5. Draw m′ = Θ((k/ε4) · log(1/δ′)) samples s′ =
{s′i}m

′

i=1 from p. For each light interval I ′i , i ∈ [`],
run Choose-Hypothesisp(p̃↑I′i , p̃

↓
I′i
, ε, δ′) using

the samples in s′ ∩ I ′i . Denote by p̃I′i the returned
conditional distribution on I ′i .

6. Output the hypothesis h =
∑`
j=1 p̂(I

′
j) · p̃I′j +∑t

j=1 p̂(bj) · 1bj .

A caveat comes from the fact that not all such inter-
vals are guaranteed to be monotone (or even close to be-
ing monotone). However, since our input distribution is as-
sumed to be k-modal, all but (at most) k of these intervals
are monotone. Call a non-monotone interval “bad”. Since
all intervals have probability mass at most ε/k and there are
at most k bad intervals, these intervals contribute at most ε
to the total mass. So even though Birgé’s algorithm gives no
guarantees for bad intervals, these intervals do not affect the
error by more than ε.

Let us now focus on the monotone intervals. For each
such interval, we do not know if it is monotone increasing
or monotone decreasing. To overcome this difficulty, we run
both monotone algorithms L↓ and L↑ for each interval and



then use hypothesis testing to choose the correct candidate
distribution.

Also, note that since we have k/ε intervals, we need to
run each instance of both the monotone learning algorithms
and the hypothesis testing algorithm with confidence 1 −
O(ε/k), so that we can guarantee that the overall algorithm
has confidence 9/10. Note that Theorem 2.2 and Markov’s
inequality imply that if we draw Ω(log n/ε3) samples from
a non-increasing distribution p, the hypothesis p̃ output by
L↓ satisfies dTV (p̃, p) ≤ ε with probability 9/10. We
can boost the confidence to 1 − δ with an overhead of
O(log(1/δ) log log(1/δ)) in the sample complexity:

FACT 3.1. Let p be a non-increasing distribution over [n].
There is an algorithm L↓δ with the following performance
guarantee: Given (log n/ε3) ·Õ(log(1/δ))) samples from p,
L↓δ performs Õ

(
(log2 n/ε3) · log(1/δ)

)
bit-operations and

outputs a (succinct description of a) hypothesis distribution
p̃ over [n] that satisfies dTV (p̃, p) ≤ ε with probability at
least 1− δ.

The algorithm L↓δ runs L↓ O(log(1/δ)) times and per-
forms a tournament among the candidate hypotheses using
Choose-Hypothesis. Let L↑δ denote the correspond-
ing algorithm for learning non-decreasing distributions with
confidence δ. We postpone further details on these algo-
rithms to Appendix C.

THEOREM 3.1. The algorithm Learn-kmodal-simple

uses k logn
ε4 · Õ

(
log k

ε

)
+ O

(
k2

ε4

)
samples, performs

poly(k, log n, 1/ε) bit-operations, and learns a k-modal
distribution to accuracy O(ε) with probability 9/10.

Proof. We first prove that with probability 9/10 (over its
random samples), algorithm Learn-kmodal-simple
outputs a hypothesis h such that dTV (h, p) ≤ O(ε).

Since r = Θ(1/τ2) samples are drawn in Step 1,
the DKW inequality implies that with probability of fail-
ure at most 1/100, for each interval I ⊆ [n] we have
|p̂(I) − p(I)| ≤ 2τ . For the rest of the analysis of
Learn-kmodal-simple we condition on this “good”
event.

Since every atomic interval I ∈ I has p̂(I) ≥ ε/(10k)
(except potentially the rightmost one), it follows that the
number ` of atomic intervals constructed in Step 2 satisfies
` ≤ 10 · (k/ε). By the construction in Steps 2 and 3, every
light interval I ′ ∈ I ′ has p̂(I ′) ≤ ε/(5k), which implies
p(I ′) ≤ ε/(5k) + 2τ . Note also that every heavy point b has
p̂(b) ≥ ε/(10k) and the number of heavy points t is at most
`.

Since the light intervals and heavy points form a parti-
tion of [n], we can write p =

∑`
j=1 p(I

′
j)·pI′j +

∑t
j=1 p(bj)·

1bj
. Therefore, we can bound the variation distance as fol-

lows:

dTV (h, p) ≤
∑̀
j=1

|p̂(I ′j)− p(I ′j)|+
t∑

j=1

|p̂(bj)− p(bj)|

+
∑̀
j=1

p(I ′j) · dTV (p̃I′j , pI′j ).

By the DKW inequality, each term in the first two sums is
bounded from above by 2τ . Hence the contribution of these
terms to the sum is at most 2τ · (`+ t) ≤ 4τ · ` ≤ 2ε/5.

We proceed to bound the contribution of the third term.
Since p is k-modal, at most k of the light intervals I ′j are not
monotone for p. Call these intervals “bad”. Even though we
have not identified the bad intervals, we know that all such
intervals are light. Therefore, their total probability mass
under p is at most k · (ε/(5k) + 2τ). This implies that the
contribution of bad intervals to the third term of the variation
distance is at most ε/4. (Note that this statement holds true
independent of the samples s we draw in Step 4.) It remains
to bound the contribution of monotone intervals to the third
term.

Let `′ ≤ ` be the number of monotone light intervals
and assume after renaming the indices that they are Ĩ :=
{I ′i}`

′

i=1. To bound the variation distance, it suffices to show
that with probability at least 19/20 (over the samples drawn
in Steps 4-5) it holds

(3.1)
`′∑
j=1

p(I ′j) · dTV (p̃I′j , pI′j ) = O(ε)

Note first that we do not have a lower bound on the prob-
ability mass of the intervals in Ĩ. We partition this set
in two subsets: the subset Ĩ ′ containing those intervals
whose probability mass under p is at most ε2/(20k); and
its complement Ĩ ′′. It is clear that the contribution of Ĩ ′
to the above expression can be at most ` · ε/(20k) ≤ ε/2.
We further partition the set Ĩ ′′ of remaining intervals into
b = dlog(5/ε)e groups. For i ∈ [b], the set (Ĩ ′′)i con-
sists of those intervals in Ĩ ′′ that have mass under p in the
range

[
2−i · (ε/5k), 2−i+1 · (ε/5k)

]
. (Note that these inter-

vals collectively cover all intervals in Ĩ ′′, since each such in-
terval has weight between ε2/(20k) and ε/(4k) – recall that
every light interval I ′ ∈ I ′ satisfies p(I ′) ≤ ε/(5k) + 2τ <
ε/(4k).) We have:

CLAIM 1. With probability at least 19/20 (over the sample
s, s′), for each i ∈ [r] and each monotone light interval
I ′j ∈ (Ĩ ′′)i we have dTV (p̃I′j , pI′j ) = O(2i/3 · ε).

Proof. Since in Step 4 we draw m samples, and each inter-
val I ′j ∈ (Ĩ ′′)i has p(I ′j) ∈

[
2−i · (ε/5k), 2−i+1 · (ε/5k)

]
,

a standard coupon collector argument [NS60] tells us that
with probability 99/100, for each (i, j) pair, the interval I ′j
will get at least 2−i · (log(n)/ε3) · Ω̃(log(1/δ′)) many sam-
ples. Let’s rewrite this as (log(n)/(2i/3 · ε)3) · Ω̃(log(1/δ′))
samples. We condition on this event.



Fix an interval I ′j ∈ (Ĩ ′′)i. We first show that with
failure probability at most ε/(500k) after Step 4, either p̃↓I′j
or p̃↑I′j will be (2i/3 · ε)-accurate. Indeed, by Fact 3.1 and
taking into account the number of samples that landed in
I ′j , with probability 1 − ε/(500k) over s, dTV (p̃αi

I′j
, pI′j ) ≤

2i/3ε, where αi =↓ if pI′j is non-increasing and αi =↑
otherwise. By a union bound over all (at most ` many) (i, j)
pairs, it follows that with probability at least 49/50, for each
interval I ′j ∈ (Ĩ ′′)i one of the two candidate hypothesis
distributions is (2i/3ε)-accurate. We condition on this event.

Consider Step 5. For a fixed interval I ′j ∈ (Ĩ ′′)i, Theo-
rem 2.3 implies that the algorithm Choose-Hypothesis
will output a hypothesis that is 6 · (2i/3ε)-close to pI′j with
probality 1 − ε/(500k). By a union bound, it follows that
with probability at least 49/50, the above condition holds
for all monotone light intervals under consideration. There-
fore, except with failure probability 19/20, the statement of
the Claim holds.

Assuming the claim, (3.1) follows by exploiting the fact
that for intervals I ′j such that p(I ′j) is small we can afford
worse error on the variation distance. More precisely, let
wi = |(Ĩ ′′)i|, the number of intervals in (Ĩ ′′)i, and note that∑b
i=1 wi ≤ `. Hence, we can bound the LHS of (3.1) from

above by

b∑
i=1

wi · (ε/5k) · 2−i+1 ·O(2i/3 · ε)

≤ O(1) · (2ε2/5k) ·
b∑
i=1

wi · 2−2i/3.

Since
∑b
i=1 wi ≤ `, the above expression is maximized for

w1 = ` and wi = 0, i > 1, and the maximum value is at
most O(1) · (2ε2/5k) · ` = O(ε). This proves (3.1).

It is clear that the algorithm has the claimed sample
complexity. The running time is also easy to analyze, as it is
easy to see that every step can be performed in polynomial
time (in fact, nearly linear time) in the sample size. This
completes the proof of Theorem 3.1.

To get an O(ε)-accurate hypothesis with probability
1 − δ, we can simply run Learn-kmodal-simple
O(log(1/δ)) times and then perform a tournament using
Theorem 2.3. This increases the sample complexity by a
Õ(log(1/δ)) factor. The running time increases by a factor
of O(log2(1/δ)). We postpone the details for Appendix C.

3.2 Main Result: Learning k-modal distributions using
testing. Here is some intuition to motivate our k-modal
distribution learning algorithm and give a high-level idea
of why the dominant term in its sample complexity is
O(k log(n/k)/ε3).

Let p denote the target k-modal distribution to be
learned. As discussed above, optimal (in terms of time
and sample complexity) algorithms are known for learning
a monotone distribution over [n], so if the locations of the
k modes of p were known then it would be straightforward
to learn p very efficiently by running the monotone distribu-
tion learner over k + 1 separate intervals. But it is clear
that in general we cannot hope to efficiently identify the
modes of p exactly (for instance it could be the case that
p(a) = p(a + 2) = 1/n while p(a + 1) = 1/n + 1/2n).
Still, it is natural to try to decompose the k-modal distribu-
tion into a collection of (nearly) monotone distributions and
learn those. At a high level that is what our algorithm does,
using a novel property testing algorithm.

More precisely, we give a distribution testing algorithm
with the following performance guarantee: Let q be a k-
modal distribution over [n]. Given an accuracy parameter
τ , our tester takes poly(k/τ) samples from q and outputs
“yes” with high probability if q is monotone and “no”
with high probability if q is τ -far from every monotone
distribution. (We stress that the assumption that q is k-modal
is essential here, since an easy argument given in [BKR04]
shows that Ω(n1/2) samples are required to test whether a
general distribution over [n] is monotone versus Θ(1)-far
from monotone.)

With some care, by running the above-described tester
O(k/ε) times with accuracy parameter τ , we can decom-
pose the domain [n] into

• at most k+1 “superintervals,” which have the property
that the conditional distribution of p over each superin-
terval is almost monotone (τ -close to monotone);

• at most k + 1 “negligible intervals”, which have the
property that each one has probability mass at most
O(ε/k) under p (so ignoring all of them incurs at most
O(ε) total error); and

• at most k + 1 “heavy” points, each of which has mass
at least Ω(ε/k) under p.

We can ignore the negligible intervals, and the heavy points
are easy to handle; however some care must be taken to learn
the “almost monotone” restrictions of p over each superin-
terval. A naive approach, using a generic log(n)/ε3-sample
monotone distribution learner that has no performance guar-
antees if the target distribution is not monotone, leads to an
inefficient overall algorithm. Such an approach would re-
quire that τ (the closeness parameter used by the tester) be at
most 1/(the sample complexity of the monotone distribution
learner), i.e. τ < ε3/ log(n). Since the sample complexity
of the tester is poly(k/τ) and the tester is run k/ε times, this



approach would lead to an overall sample complexity that is
unacceptably high.

Fortunately, instead of using a generic monotone dis-
tribution learner, we can use the semi-agnostic monotone
distribution learner of Birgé (Theorem 2.2) that can han-
dle deviations from monotonicity far more efficiently than
the above naive approach. Recall that given draws from a
distribution q over [n] that is τ -close to monotone, this al-
gorithm uses O(log(n)/ε3) samples and outputs a hypoth-
esis distribution that is (2τ + ε)-close to monotone. By
using this algorithm we can take the accuracy parameter τ
for our tester to be Θ(ε) and learn the conditional distribu-
tion of p over a given superinterval to accuracy O(ε) using
O(log(n)/ε3) samples from that superinterval. Since there
are k+1 superintervals overall, a careful analysis shows that
O(k log(n)/ε3) samples suffice to handle all the superinter-
vals.

We note that the algorithm also requires an additional
additive poly(k/ε) samples (independent of n) besides this
dominant term (for example, to run the tester and to estimate
accurate weights with which to combine the various sub-
hypotheses). The overall sample complexity we achieve is
stated in Theorem 3.2 below.

THEOREM 3.2. (Main) The algorithm Learn-kmodal

usesO
(
k log(n/k)/ε3 + (k3/ε3) · log(k/ε) · log log(k/ε)

)
samples, performs poly(k, log n, 1/ε) bit-operations, and
learns any k-modal distribution to accuracy ε and confi-
dence 9/10.

Theorem 1.1 follows from Theorem 3.2 by running
Learn-kmodal O(log(1/δ)) times and using hypothesis
testing to boost the confidence to 1 − δ. We give details in
Appendix C.

Algorithm Learn-kmodal makes essential use of
an algorithm T↑ for testing whether a k-modal distribu-
tion over [n] is non-decreasing. Algorithm T↑(ε, δ) uses
O(log(1/δ)) · (k/ε)2 samples from a k-modal distribution
p over [n], and behaves as follows:

• (Completeness) If p is non-decreasing, then T↑ outputs
“yes” with probability at least 1− δ;

• (Soundness) If p is ε-far from non-decreasing, then T↑

outputs “yes” with probability at most δ.

Let T↓ denote the analogous algorithm for testing whether
a k-modal distribution over [n] is non-increasing (we will
need both algorithms). The description and proof of correct-
ness for T↑ is postponed to the following subsection (Sec-
tion 3.4).

3.3 Algorithm Learn-kmodal and its analysis. Algo-
rithm Learn-kmodal is given below with its analysis fol-
lowing.

Learn-kmodal

Inputs: ε > 0; sample access to k-modal distribution p
over [n]

1. Fix τ := ε/(100k). Draw r = Θ(1/τ2) samples
from p and let p̂ denote the empirical distribution.

2. Greedily partition the domain [n] into ` atomic
intervals I := {Ii}`i=1 as follows: I1 := [1, j1],
where j1 := min{j ∈ [n] | p̂([1, j]) ≥ ε/(10k)}.
For i ≥ 1, if ∪ij=1Ij = [1, ji], then Ii+1 :=
[ji + 1, ji+1], where ji+1 is defined as follows: If
p̂([ji + 1, n]) ≥ ε/(10k), then ji+1 := min{j ∈
[n] | p̂([ji + 1, j]) ≥ ε/(10k)}, otherwise, ji+1 :=
n.

3. Set τ ′ := ε/(2000k). Draw r′ = Θ((k3/ε3) ·
log(1/τ ′) log log(1/τ ′)) samples s from p to use in
Steps 4-5.

4. Run both T↑(ε, τ ′) and T↓(ε, τ ′) over p∪j
i=1Ii

for
j = 1, 2, . . ., to find the leftmost atomic interval Ij1
such that both T↑ and T↓ return “no” over p∪j1

i=1Ii
.

Let Ij1 = [aj1 , bj1 ]. We consider two cases:

Case 1: If p̂[aj1 , bj1 ] ≥ 2ε/(10k), define I ′j1 :=
[aj1 , bj1 − 1] and bj1 is a heavy point.

Case 2: If p̂[aj1 , bj1 ] < 2ε/(10k) then define I ′j1 :=
Ij1 .

Call I ′j1 a negligible interval. If j1 > 1 then define
the first superinterval S1 to be ∪j1−1

i=1 Ii, and set
a1 ∈ {↑, ↓} to be a1 =↑ if T↑ returned “yes” on
p∪j1−1

i=1 Ii
and to be a1 =↓ if T↓ returned “yes” on

p∪j1−1
i=1 Ii

.

5. Repeat Step 3 starting with the next interval Ij1+1,
i.e. find the leftmost atomic interval Ij2 such that
both T↑ and T↓ return “no” over p∪j2

i=j1+1Ii
. Con-

tinue doing this until all intervals through I` have
been used.

Let S1, . . . , St be the superintervals obtained
through the above process and (a1, . . . , at) ∈ {↑, ↓
}t be the corresponding string of bits.

6. Draw m = Θ(k · log(n/k)/ε3) samples s′ from p.
For each superinterval Si, i ∈ [t], run Aai on the
conditional distribution pSi of p using the samples
in s′ ∩ Si. Let p̃Si

be the hypothesis thus obtained.

7. Output the hypothesis h =
∑t
i=1 p̂(Si) · p̃Si

+∑
j p̂({bj}) · 1bj

.

We are now ready to prove Theorem 3.2.

Proof. [of Theorem 3.2] Before entering into the proof we



record two observations; we state them explicitly here for
the sake of the exposition.

FACT 3.2. Let R ⊆ [n]. If pR is neither non-increasing nor
non-decreasing, then R contains at least one left extreme
point.

FACT 3.3. Suppose that R ⊆ [n] does not contain a left
extreme point. For any ε, τ , if T↑(ε, τ) and T↓(ε, τ) are
both run on pR, then the probability that both calls return
“no” is at most τ.

Proof. By Fact 3.2 pR is either non-decreasing or non-
increasing. If pR is non-decreasing then T↑ will output
“no” with probability at most τ , and similarly, if pR is non-
increasing then T↓ will output “no” with probability at most
τ.

Since r = Θ(1/τ2) samples are drawn in the first step,
the DKW inequality implies that with probability of failure
at most 1/100 each interval I ⊆ [n] has |p̂(I)− p(I)| ≤ 2τ .
For the rest of the proof we condition on this good event.

Since every atomic interval I ∈ I has p̂(I) ≥ ε/(10k)
(except potentially the rightmost one), it follows that the
number ` of atomic intervals constructed in Step 2 satisfies
` ≤ 10 · (k/ε). Moreover, by the DKW inequality, each
atomic interval Ii has p(Ii) ≥ 8ε/(100k).

Note that in Case (1) of Step 4, if p̂[aj1 , bj1 ] ≥
2ε/(10k) then it must be the case that p̂(bj1) ≥ ε/(10k)
(and thus p(bj1) ≥ 8ε/(100k)). In this case, by defini-
tion of how the interval Ij1 was formed, we must have that
I ′j1 = [aj1 , bj1 − 1] satisfies p̂(I ′j1) < ε/(10k). So both in
Case 1 and Case 2, we now have that p̂(I ′j1) ≤ 2ε/(10k),
and thus p(I ′j1) ≤ 22ε/(100k). Entirely similar reasoning
shows that every negligible interval constructed in Steps 4
and 5 has mass at most 22ε/(100k) under p.

In Steps 4–5 we invoke the testers T↓ and T↑ on the
conditional distributions of (unions of contiguous) atomic
intervals. Note that we need enough samples in every
atomic interval, since otherwise the testers provide no guar-
antees. We claim that with probability at least 99/100
over the sample s of Step 3, each atomic interval gets
b = Ω

(
(k/ε)2 · log(1/τ ′)

)
samples. This follows by a

standard coupon collector’s argument, which we now pro-
vide. As argued above, each atomic interval has proba-
bility mass Ω(ε/k) under p. So, we have ` = O(k/ε)
bins (atomic intervals), and we want each bin to contain b
balls (samples). It is well-known [NS60] that after taking
Θ(` · log `+ ` · b · log log `) samples from p, with probability
99/100 each bin will contain the desired number of balls.
The claim now follows by our choice of parameters. Condi-
tioning on this event, any execution of the testers T↑(ε, τ ′)
and T↓(ε, τ ′) in Steps 4 and 5 will have the guaranteed com-
pleteness and soundness properties.

In the execution of Steps 4 and 5, there are a total
of at most ` occasions when T↑(ε, τ ′) and T↓(ε, τ ′) are

both run over some union of contiguous atomic intervals.
By Fact 3.3 and a union bound, the probability that (in
any of these instances the interval does not contain a left
extreme point and yet both calls return “no”) is at most
(10k/ε)τ ′ ≤ 1/200. So with failure probability at most
1/200 for this step, each time Step 4 identifies a group of
consecutive intervals Ij , . . . , Ij+r such that both T↑ and T↓

output “no”, there is a left extreme point in ∪j+ri=j Ii. Since
p is k-modal, it follows that with failure probability at most
1/200 there are at most k + 1 total repetitions of Step 4,
and hence the number t of superintervals obtained is at most
k + 1.

We moreover claim that with very high probability each
of the t superintervals Si is very close to non-increasing or
non-decreasing (with its correct orientation given by ai):

CLAIM 2. With failure probability at most 1/100, each i ∈
[t] satisfies the following: if ai =↑ then pSi

is ε-close to a
non-decreasing distribution and if ai =↓ then pSi

is ε-close
to a non-increasing distribution.

Proof. There are at most 2` ≤ 20k/ε instances when either
T↓ or T↑ is run on a union of contiguous intervals. For any
fixed execution of T↓ over an interval I , the probability that
T↓ outputs “yes” while pI is ε-far from every non-increasing
distribution over I is at most τ ′, and similarly for T↑. A
union bound and the choice of τ ′ conclude the proof of the
claim.

Thus we have established that with overall failure prob-
ability at most 5/100, after Step 5 the interval [n] has been
partitioned into:

1. A set {Si}ti=1 of t ≤ k + 1 superintervals, with
p(Si) ≥ 8ε/(100k) and pSi

being ε-close to either non-
increasing or non-decreasing according to the value of
bit ai.

2. A set {I ′i}t
′

i=1 of t′ ≤ k + 1 negligible intervals, such
that p(I ′i) ≤ 22ε/(100k).

3. A set {bi}t
′′

i=1 of t′′ ≤ k + 1 heavy points, each with
p(bi) ≥ 8ε/(100k).

We condition on the above good events, and bound from
above the expected total variation distance (over the sample
s′). In particular, we have the following lemma:

LEMMA 3.1. We have that Es′ [dTV (h, p)] ≤ O(ε).

Proof. (of Lemma 3.1) By the discussion preceding the
lemma statement, the domain [n] has been partitioned into a
set of superintervals, a set of negligible intervals and a set of
heavy points. As a consequence, we can write

p =
t∑

j=1

p(Sj) · pSj +
t′′∑
j=1

p({bj}) · 1bj +
t′∑
j=1

p(I ′j) · pI′j .



Therefore, we can bound the total variation distance as
follows:

dTV (h, p) ≤
t∑

j=1

|p̂(Sj)− p(Sj)|+
t′′∑
j=1

|p̂(bj)− p(bj)|

+
t′∑
j=1

p(I ′j) +
t∑

j=1

p(Sj) · dTV (p̃Sj
, pSj

).

Recall that each term in the first two sums is bounded from
above by 2τ . Hence, the contribution of these terms to the
RHS is at most 2τ · (2k + 2) ≤ ε/10. Since each negligible
interval I ′j has p(I ′j) ≤ 22ε/(100k), the contribution of the
third sum is at most t′ · 22ε/(100k) ≤ ε/4. It thus remains
to bound the contribution of the last sum.

We will show that

Es′

[
t∑

j=1

p(Sj) · dTV (p̃Sj
, pSj

)

]
≤ O(ε).

Denote ni = |Si|. Clearly,
∑t
i=1 ni ≤ n. Since we are

conditioning on the good events (1)-(3), each superinterval
is ε-close to monotone with a known orientation (non-
increasing or non-decreasing) given by ai. Hence we may
apply Theorem 2.2 for each superinterval.

Recall that in Step 5 we draw a total of m samples.
Let mi, i ∈ [t] be the number of samples that land in Si;
observe that mi is a binomially distributed random variable
with mi ∼ Bin(m, p(Si)). We apply Theorem 2.2 for each
ε-monotone interval, conditioning on the value of mi, and
get

dTV (p̃Si
, pSi

) ≤ 2ε+O
(

(log ni/(mi + 1))1/3
)
.

Hence, we can bound from above the desired expectation as
follows

t∑
j=1

p(Sj) ·Es′
[
dTV (p̃Sj

, pSj
)
]
≤

(
t∑

j=1

2ε · p(Sj)

)
+

O

(
t∑

j=1

p(Sj) · (log nj)1/3 ·Es′ [(mj + 1)−1/3]

)
.

Since
∑
j p(Sj) ≤ 1, to prove the lemma, it suffices to show

that the second term is bounded, i.e. that

t∑
j=1

p(Sj) · (log nj)1/3 ·Es′ [(mj + 1)−1/3] = O(ε).

To do this, we will first need the following claim:

CLAIM 3. For a binomial random variableX ∼ Bin(m, q)
it holds E[(X + 1)−1/3] < (mq)−1/3.

Proof. Jensen’s inequality implies that

E[(X + 1)−1/3] ≤ (E[1/(X + 1)])1/3.

We claim that E[1/(X + 1)] < 1/E[X]. This can be shown
as follows: We first recall that E[X] = m · q. For the
expectation of the inverse, we can write:

E [1/(X + 1)] =

=
m∑
j=0

1
j + 1

(
m

j

)
qj(1− q)m−j

=
1

m+ 1
·
m∑
j=0

(
m+ 1
j + 1

)
qj(1− q)m−j

=
1

q · (m+ 1)
·
m+1∑
i=1

(
m+ 1
i

)
qi(1− q)m+1−i

=
1− (1− q)m+1

q · (m+ 1)
<

1
m · q

.

The claim now follows by the monotonicity of the mapping
x→ x1/3.

By Claim 3, applied to mi ∼ Bin(m, p(Si)), we have
that Es′ [(mi + 1)−1/3] < m−1/3 · (p(Si))−1/3. Therefore,
our desired quantity can be bounded from above by

t∑
j=1

p(Sj) · (log nj)1/3

m1/3 · (p(Sj))1/3
=

O(ε) ·
t∑

j=1

(p(Sj))2/3 ·
(

log nj
k · log(n/k)

)1/3

.

We now claim that the second term in the RHS above is
upper bounded by 2. Indeed, this follows by an application
of Hölder’s inequality for the vectors (p(Sj)2/3)tj=1 and
(( lognj

k·log(n/k) )1/3)tj=1, with Hölder conjugates 3/2 and 3.
That is,

t∑
j=1

(p(Sj))
2/3 ·

(
log nj

k · log(n/k)

)1/3

≤

≤

(
t∑

j=1

p(Sj)

)2/3

·

(
t∑

j=1

log nj
k · log(n/k)

)1/3

≤ 2.

The first inequality is Hölder and the second uses the fact
that

∑t
j=1 p(Sj) ≤ 1 and

∑t
j=1 log(nj) ≤ t · log(n/t) ≤

(k + 1) · log(n/k). This last inequality is a consequence of
the concavity of the logarithm and the fact that

∑
j nj ≤ n.

This completes the proof of the Lemma.

By applying Markov’s inequality and a union
bound, we get that with probability 9/10 the algo-
rithm Learn-kmodal outputs a hypothesis h that has
dTV (h, p) ≤ O(ε) as required.

It is clear that the algorithm has the claimed sample
complexity. The running time is also easy to analyze, as it is
easy to see that every step can be performed in polynomial
time (in fact, nearly linear time) in the sample size. This
completes the proof of Theorem 3.2.



3.4 Testing whether a k-modal distribution is mono-
tone. In this section we describe and analyze the testing al-
gorithm T↑. Given sample access to a k-modal distribution
q over [n] and τ > 0, our tester T↑ uses O(k2/τ2) many
samples from q and has the following properties:

• If q is non-decreasing, T↑ outputs “yes” with probabil-
ity at least 2/3.

• If q is τ -far from non-decreasing, T↑ outputs “no” with
probability at least 2/3.

(The algorithm T↑(τ, δ) is obtained by repeating T↑

O(log(1/δ)) times and taking the majority vote.)

Tester T↑(τ)
Inputs: τ > 0; sample access to k-modal distribution q
over [n]

1. Fix δ := τ/(100k). Draw r = Θ(1/δ2) samples s
from q and let q̂ be the resulting empirical distribu-
tion.

2. If there exist a ≤ b < c ∈ s ∪ {1, n} such that

Ê(a, b, c) :=
q̂([a, b])

(b− a+ 1)
− q̂([b+ 1, c])

(c− b)
(3.2)

≥ (τ/4k)
(b− a+ 1)

+
(τ/4k)
(c− b)

then output “no”, otherwise output “yes”.

The idea behind tester T↑ is simple. It is based on the
observation that if q is a non-decreasing distribution, then
for any two consecutive intervals [a, b] and [b+ 1, c] the av-
erage of q over [b + 1, c] must be at least as large as the
average of q over [a, b]. Thus any non-decreasing distribu-
tion will pass a test that checks “all” pairs of consecutive
intervals looking for a violation. Our analysis shows that in
fact such a test is complete as well as sound if the distribu-
tion q is guaranteed to be k-modal. The key ingredient is the
structural Lemma 9 below, which is proved using a proce-
dure (reminiscent of Myerson ironing [Mye81]) to convert a
k-modal distribution to a non-decreasing distribution.

The following theorem establishes correctness of the
tester.

THEOREM 3.3. The algorithm T↑ uses O(k2/τ2) samples
from q, performs poly(k/τ) · log n bit operations and
satisfies the desired completeness and soundness properties.

Proof. The upper bound on the sample complexity is
straightforward, since only Step 1 uses samples. It is also
easy to see that a straightforward implementation of the al-
gorithm runs in time poly(k/τ) · log n. Below we prove that
the algorithm has the claimed soundness and completeness
properties.

Let us say that the sample s is good if every interval
I ⊆ [n] has |q̂(I) − q(I)| ≤ 2δ. By the DKW inequality,
with probability at least 2/3 the sample s is good. Assuming
that s is good, we have that for any a ≤ b < c ∈ [n] the
quantity

E(a, b, c) :=
q([a, b])

(b− a+ 1)
− q([b+ 1, c])

(c− b)

differs from its empirical value Ê(a, b, c) (i.e. the LHS of
(3.2)) by at most γ(a, b, c) := 2δ

(b−a+1) + 2δ
(c−b) . That is,

(3.3) |E(a, b, c)− Ê(a, b, c)| ≤ γ(a, b, c).

We first show completeness. If q is non-decreasing
the average probability value in any interval [a, b] is a non-
decreasing function of a. That is, for all a ≤ b < c ∈ [n]
it holds E(a, b, c) ≤ 0. Therefore, with probability at least
2/3, it holds Ê(a, b, c) ≤ γ(a, b, c) and the tester says “yes”.

For soundness, we need the following lemma:

LEMMA 3.2. Let q be a k-modal distribution over [n] that is
τ -far from being non-decreasing. Then there exists a triple
of points a ≤ b < c ∈ [n] such that

(3.4) E(a, b, c) ≥ (τ/2k)
(b− a+ 1)

+
(τ/2k)
(c− b)

.

We first show how the soundness follows from the
lemma. For a k-modal distribution q that is τ -far from non-
decreasing, we will argue that if the sample is good then
there exists a triple sa ≤ sb < sc ∈ s ∪ {1, n} such that
Ê(sa, sb, sc) satifsies (3.2).

By Lemma 3.2, there exists a triple a ≤ b < c ∈ [n]
satisfying (3.4).

We first note that at least one sample must have landed
in [a, b], for otherwise the DKW inequality would give that
q([a, b]) ≤ 2δ; this in turn would imply that E(a, b, c) ≤
2δ/(b− a+ 1), a contradiction, as it violates (3.4). We now
define the points sa, sb, sc as follows: (i) sa is the leftmost
point of the sample in [a, b], (ii) sb is the rightmost point of
the sample in [a, b]; and (iii) sc is either the leftmost point
of the sample in [c + 1, n], or the rightmost point n of the
interval, if q̂([c + 1, n]) = 0. We will now argue that these
points satisfy (3.2). Consider the interval [sa, sb]. Then, we
have that

q̂([sa, sb])
sb − sa + 1

≥ q̂([sa, sb])
b− a+ 1

(3.5)

=
q̂([a, b])
b− a+ 1

≥ q([a, b])
b− a+ 1

− 2δ
b− a+ 1

where the first inequality uses the fact that [sa, sb] ⊆ [a, b],
the equality uses the definition of a and b, and the final
inequality follows by an application of the DKW inequality



for the interval [a, b].An analogous argument can be applied
for the interval [sb, sc]. Indeed, we have that

q̂([sb + 1, sc])
sc − sb + 1

≤ q̂([sb + 1, sc])
c− b

(3.6)

=
q̂([b+ 1, c])

c− b

≤ q([b+ 1, c])
c− b

+
2δ
c− b

where the first inequality follows from the fact that [sb, sc] ⊇
[b + 1, c], the equality uses the definition of b and c, and
the final inequality follows by an application of the DKW
inequality for the interval [b+ 1, c].

A combination of (3.4), (3.5), (3.6) yields the desired
result. It thus remains to prove Lemma 3.2.

Proof. [Lemma 3.2] We prove the contrapositive. Let q be
a k-modal distribution such that for all a ≤ b < c ∈ [n]

(3.7) E(a, b, c) ≤ (τ/2k)
(b− a+ 1)

+
(τ/2k)
(c− b)

.

We will show that q is τ -close to being non-decreasing by
constructing a non-decreasing distribution q̃ that is τ -close
to q. The construction of q̃ proceeds in k stages where in
each stage, we reduce the number of modes by at least one
and incur error in variation distance at most τ/k. That is, we
iteratively construct a sequence of distributions {q(i)}ki=0,
q(0) = q and q(k) = q̃, such that for all i ∈ [k] we have that
q(i) is (k − i)-modal and dTV (q(i−1), q(i)) ≤ τ/k.

Consider the graph (histogram) of the discrete density
q. The x-axis represents the n points of the domain and
the y-axis the corresponding probabilities. We first infor-
mally describe how to obtain q(1) from q. The construc-
tion of q(i+1) from q(i) is identical. Let j be the leftmost
left-extreme point (mode) of q, and assume that it is a local
maximum with height (probability mass) q(j). (A symmet-
ric argument works for the case that it is a local minimum.)
The idea of the proof is based on the following simple pro-
cess (reminiscent of Myerson’s ironing process [Mye81]):
We start with the horizontal line y = q(j) and move it
downwards until we reach a height h0 < q(j) so that the
total mass “cut-off” equals the mass “missing” to the right ;
then make the distribution “flat” in the corresponding inter-
val (hence, reducing the number of modes by at least one).
The resulting distribution is q(1) and equation (3.7) implies
that dTV (q(1), q) ≤ τ/k.

We now proceed with the formal argument, assuming
as above that the leftmost left-extreme point j of q is a local
maximum. We say that the line y = h intersects a point
i ∈ [n] in the domain of q if q(i) ≥ h. The line y = h,
h ∈ [0, q(j)], intersects the graph of q at a unique interval
I(h) ⊆ [n] that contains j. Suppose I(h) = [a(h), b(h)],
where a(h), b(h) ∈ [n] depend on h. By definition this

means that q(a(h)) ≥ h and q(a(h) − 1) < h. Recall that
the distribution q is non-decreasing in the interval [1, j] and
that j ≥ a(h). The term “the mass cut-off by the line y = h”
means the quantity A(h) = q (I(h))−h · (b(h)−a(h)+1),
i.e. the “mass of the interval I(h) above the line”.

The height h of the line y = h defines the points
a(h), b(h) ∈ [n] as described above. We consider values
of h such that q is unimodal (increasing then decreasing)
over I(h). In particular, let j′ be the leftmost mode of q
to the right of j, i.e. j′ > j and j′ is a local minimum.
We consider values of h ∈ (q(j′), q(j)). For such values,
the interval I(h) is indeed unimodal (as b(h) < j′). For
h ∈ (q(j′), q(j)) we define the point c(h) ≥ j′ as follows:
It is the rightmost point of the largest interval containing
j′ whose probability mass does not exceed h. That is, all
points in [j′, c(h)] have probability mass at most h and
q(c(h) + 1) > h (or c(h) = n).

Consider the interval J(h) = [b(h) + 1, c(h)]. This
interval is non-empty, since b(h) < j′ ≤ c(h). (Note that
J(h) is not necessarily a unimodal interval; it contains at
least one mode j′, but it may also contain more modes.) The
term “the mass missing to the right of the line y = h” means
the quantity B(h) = h · (c(h)− b(h))− q (J(h)).

Consider the function C(h) = A(h) − B(h) over
[q(j′), q(j)]. This function is continuous in its domain;
moreover, we have thatC (q(j)) = A (q(j))−B (q(j)) < 0,
asA (q(j)) = 0, andC (q(j′)) = A (q(j′))−B (q(j′)) > 0,
as B (q(j′)) = 0. Therefore, by the intermediate value
theorem, there exists a value h0 ∈ (q(j′), q(j)) such that
A(h0) = B(h0).

The distribution q(1) is constructed as follows: We
move the mass τ ′ = A(h0) from I(h0) to J(h0). Hence,
it follows that dTV (q(1), q) ≤ 2τ ′. We also claim that
q(1) has at least one mode less than q. Indeed, q(1) is
non-decreasing in [1, a(h)− 1] and constant in [a(h), c(h)].
(All the points in the latter interval have probability mass
exactly h0.) Recalling that q(1)(a(h)) = h0 ≥ q(1)(a(h) −
1) = q(a(h) − 1), we deduce that q(1) is non-decreasing in
[1, c(h)].

We will now argue that τ ′ ≤ τ/(2k) which completes
the proof of the lemma. To this end we use our starting
assumption, equation (3.7). Recall that we have A(h0) =
B(h0) = τ ′, which can be written as

q([a(h), b(h)])− h0 · (b(h)− a(h) + 1)
= h0 · (c(h)− b(h))− q([b(h) + 1, c(h)])
= τ ′.

From this, we get

q([a(h), b(h)])
(b(h)− a(h) + 1)

− q([b(h) + 1, c(h)])
(c(h)− b(h))

=
τ ′

(b(h)− a(h) + 1)
+

τ ′

(c(h)− b(h))
.

Combining with (3.7) proves Lemma 3.2.



This completes the proof of Theorem 3.3.

4 Conclusions and future work
At the level of techniques, this work illustrates the viability
of a new general strategy for developing efficient learning
algorithms, namely by using “inexpensive” property testers
to decompose a complex object (for us these objects are k-
modal distributions) into simpler objects (for us these are
monotone distributions) that can be more easily learned. It
would be interesting to apply this paradigm in other contexts
such as learning Boolean functions.

At the level of the specific problem we consider – learn-
ing k-modal distributions – our results show that k-modality
is a useful type of structure which can be strongly exploited
by sample-efficient and computationally efficient learning
algorithms. Our results motivate the study of computation-
ally efficient learning algorithms for distributions that sat-
isfy other kinds of “shape restrictions.” Possible directions
here include multivariate k-modal distributions, log-concave
distributions, monotone hazard rate distributions and more.

Finally, at a technical level, any improvement in the
sample complexity of our property testing algorithm of Sec-
tion 3.4 would directly improve the “extraneous” additive
Õ((k/ε)3) term in the sample complexity of our algorithm.
We suspect that it may be possible to improve our testing
algorithm (although we note that it is easy to give an Ω(

√
k)

lower bound using standard constructions).
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A Birgé’s algorithm as a semi-agnostic learner
In this section we briefly explain why Birgé’s algo-
rithm [Bir87b] also works in the semi-agnostic setting. To
do this, we need to explain his approach. For this, we will
need the following theorem, which gives a tight bound on
the number of samples required to learn an arbitrary distri-
bution with respect to total variation distance.

THEOREM A.1. (FOLKLORE) Let p be any distribution
over [n]. We have: E[dTV (p, p̂m)] ≤ 2

√
n/m.

Let p be a non-increasing distribution over [n]. (The
analysis for the non-decreasing case is identical.) Concep-
tually, we view algorithm L↓ as working in three steps:

• In the first step, it partitions the set [n] into a care-
fully chosen set I1, . . . , I` of consecutive intervals,
with ` = O(m1/3 · (log n)2/3). Consider the flat-
tened distribution pf over [n] obtained from p by
averaging the weight that p assigns to each interval
over the entire interval. That is, for j ∈ [`] and
i ∈ Ij , pf (i) =

∑
t∈Ij

p(t)/|Ij |. Then a simple
argument given in [Bir87b] gives that dTV (pf , p) =
O
(
(log n/(m+ 1))1/3

)
.

• Let pr be the reduced distribution corresponding to
p and the partition I1, . . . , I`. That is, pr is a dis-
tribution over [`] with pr(i) = p(Ii) for i ∈ [`].
In the second step, the algorithm uses the m sam-
ples to learn pr. (Note that pr is not necessarily
monotone.) After m samples, one obtains a hypoth-
esis p̂r such that E[dTV (pr, p̂r)] = O

(√
`/m

)
=

O
(
(log n/(m+ 1))1/3

)
. The first equality follows

from Theorem A.1 (since pr is distribution over ` el-
ements) and the second inequality follows from the
choice of `.

• Finally, the algorithm outputs the flattened hypothesis
(p̂r)f over [n] corresponding to p̂r, i.e. obtained by
p̂r by subdividing the mass of each interval uniformly
within the interval. It follows from the above two steps
that E[dTV ((p̂r)f , pf )] = O

(
(log n/(m+ 1))1/3

)
.

• The combination of the first and third steps yields that
E[dTV ((p̂r)f , p)] = O

(
(log n/(m+ 1))1/3

)
.

The above arguments are entirely due to Birgé [Bir87b].
We now explain how his analysis can be extended to show
that his algorithm is in fact a semi-agnostic learner as
claimed in Theorem 2.2. To avoid clutter in the expressions
below let us fix δ := O

(
(log n/(m+ 1))1/3

)
.

The second and third steps in the algorithm description
above are used to learn the distribution pf to variation dis-
tance δ. Note that these steps do not use the assumption that
p is non-increasing. The following claim, which generalizes
Step 1 above, says that if p is τ -close to non-increasing, the

flattened distribution pf (defined as above) is (2τ + δ)-close
to p. Therefore, it follows that, for such a distribution p, al-
gorithm L↓ succeeds with expected (total variation distance)
error (2τ + δ) + δ.
We have:

CLAIM 4. Let p be a distribution over [n] that is τ -close
to non-increasing. Then, the flattened distribution pf (ob-
tained from p by averaging its weight on every interval Ij)
satisfies dTV (pf , p) ≤ (2τ + δ).

Proof. Let p↓ be the non-increasing distribution that is τ -
close to p. Let τj denote the L1-distance between p and p↓

in the interval Ij . Then, we have that

(A.1)
∑̀
j=1

τj ≤ τ.

By Birgé’s arguments, it follows that the flattened dis-
tribution (p↓)f corresponding to p↓ is δ-close to p↓, hence
(τ + δ)-close to p. That is,

(A.2) dTV

(
(p↓)f , p

)
≤ τ + δ.

We want to show that

(A.3) dTV

(
(p↓)f , pf

)
≤ τ.

Assuming (A.3) holds, we can conclude by the triangle
inequality that

dTV (p, pf ) ≤ 2τ + δ

as desired.
Observe that, by assumption, p and p↓ have L1-distance

at most τj in each Ij interval. In particular, this implies that,
for all j ∈ [`], it holds∣∣p(Ij)− p↓(Ij)∣∣ ≤ τj .
Now note that, within each interval Ij , pf and (p↓)f are
both uniform. Hence, the contribution of Ij to the variation
distance between pf and (p↓)f is at most |p(Ij)− p↓(Ij)|.

Therefore, by (A.1) we deduce

dTV (pf , (p↓)f ) ≤ τ

which completes the proof of the claim.

B Hypothesis Testing
Our hypothesis testing routine Choose-Hypothesisp

runs a simple “competition” to choose a winner between two
candidate hypothesis distributions h1 and h2 over [n] that it
is given in the input either explicitly, or in some succinct
way. We show that if at least one of the two candidate hy-
potheses is close to the target distribution p, then with high
probability over the samples drawn from p the routine se-
lects as winner a candidate that is close to p. This basic



approach of running a competition between candidate hy-
potheses is quite similar to the “Scheffé estimate” proposed
by Devroye and Lugosi (see [DL96b, DL96a] and Chap-
ter 6 of [DL01]), which in turn built closely on the work
of [Yat85], but there are some small differences between
our approach and theirs; the [DL01] approach uses a notion
of the “competition” between two hypotheses which is not
symmetric under swapping the two competing hypotheses,
whereas our competition is symmetric.

We now prove Theorem 2.3.

Proof. [of Theorem 2.3] Let W be the support of p. To
set up the competition between h1 and h2, we define the
following subset ofW:

W1 =W1(h1, h2) := {w ∈ W h1(w) > h2(w)} .(B.4)

Let then p1 = h1(W1) and q1 = h2(W1). Clearly, p1 > q1

and dTV (h1, h2) = p1 − q1.
The competition between h1 and h2 is carried out as

follows:

1. If p1 − q1 ≤ 5ε′, declare a draw and return either hi.
Otherwise:

2. Draw m = O
(

log(1/δ′)
ε′2

)
samples s1, . . . , sm from

p, and let τ = 1
m |{i | si ∈ W1}| be the fraction of

samples that fall insideW1.

3. If τ > p1 − 3
2ε
′, declare h1 as winner and return h1;

otherwise,

4. if τ < q1 + 3
2ε
′, declare h2 as winner and return h2;

otherwise,

5. declare a draw and return either hi.

It is not hard to check that the outcome of the compe-
tition does not depend on the ordering of the pair of distri-
butions provided in the input; that is, on inputs (h1, h2) and
(h2, h1) the competition outputs the same result for a fixed
sequence of samples s1, . . . , sm drawn from p.

The correctness of Choose-Hypothesis is an im-
mediate consequence of the following lemma.

LEMMA B.1. Suppose that dTV (p, h1) ≤ ε′. Then:

(i) If dTV (p, h2) > 6ε′, then the probability that the
competition between h1 and h2 does not declare h1 as
the winner is at most e−mε

′2/2. (Intuitively, if h2 is
very bad then it is very likely that h1 will be declared
winner.)

(ii) If dTV (p, h2) > 4ε′, the probability that the competi-
tion between h1 and h2 declares h2 as the winner is
at most e−mε

′2/2. (Intuitively, if h2 is only moderately
bad then a draw is possible but it is very unlikely that
h2 will be declared winner.)

Proof. Let r = p(W1). The definition of the total variation
distance implies that |r − p1| ≤ ε′. Let us define the
0/1 (indicator) random variables {Zj}mj=1 as Zj = 1 iff
sj ∈ W1. Clearly, τ = 1

m

∑m
j=1 Zj and E[τ ] = E[Zj ] = r.

Since the Zj’s are mutually independent, it follows from the
Chernoff bound that Pr[τ ≤ r − ε′/2] ≤ e−mε

′2/2. Using
|r − p1| ≤ ε′ we get that Pr[τ ≤ p1 − 3ε′/2] ≤ e−mε′2/2.

• For part (i): If dTV (p, h2) > 6ε′, from the triangle
inequality we get that p1 − q1 = dTV (h1, h2) > 5ε′.
Hence, the algorithm will go beyond Step 1, and with
probability at least 1− e−mε′2/2, it will stop at Step 3,
declaring h1 as the winner of the competition between
h1 and h2.

• For part (ii): If p1 − q1 ≤ 5ε′ then the competition
declares a draw, hence h2 is not the winner. Otherwise
we have p1 − q1 > 5ε′ and the above arguments imply
that the competition between h1 and h2 will declare h2

as the winner with probability at most e−mε
′2/2.

This concludes the proof of Lemma B.1.

The proof of the theorem is now complete.

C Using the Hypothesis Tester
In this section, we explain in detail how we use
the hypothesis testing algorithm Choose-Hypothesis
throughout this paper. In particular, the algorithm
Choose-Hypothesis is used in the following places:

• In Step 4 of algorithm Learn-kmodal-simple we
need an algorithm L↓δ′ (resp. L↑δ′ ) that learns a non-
increasing (resp. non-increasing) distribution within
total variation distance ε and confidence δ′. Note
that the corresponding algorithms L↓ and L↑ provided
by Theorem 2.2 have confidence 9/10. To boost the
confidence of L↓ (resp. L↑) we run the algorithm
O(log(1/δ′)) times and use Choose-Hypothesis
in an appropriate tournament procedure to select
among the candidate hypothesis distributions.

• In Step 5 of algorithm Learn-kmodal-simple
we need to select among two candidate hypothesis
distributions (with the promise that at least one of them
is close to the true conditional distribution). In this
case, we run Choose-Hypothesis once to select
between the two candidates.

• Also note that both algorithms
Learn-kmodal-simple and Learn-kmodal
generate an ε-accurate hypothesis with probability
9/10. We would like to boost the probability of
success to 1 − δ. To achieve this we again run the
corresponding algorithm O(log(1/δ)) times and use
Choose-Hypothesis in an appropriate tournament
to select among the candidate hypothesis distributions.



We now formally describe the “tournament” algorithm
to boost the confidence to 1− δ.

LEMMA C.1. Let p be any distribution over a finite setW .
Suppose that Dε is a collection of N distributions over W
such that there exists q ∈ Dε with dTV (p, q) ≤ ε. Then there
is an algorithm that uses O(ε−2 logN log(1/δ)) samples
from p and with probability 1 − δ outputs a distribution
p′ ∈ Dε that satisfies dTV (p, p′) ≤ 6ε.

Devroye and Lugosi (Chapter 7 of [DL01]) prove a
similar result by having all pairs of distributions in the
cover compete against each other using their notion of a
competition, but again there are some small differences:
their approach chooses a distribution in the cover which
wins the maximum number of competitions, whereas our
algorithm chooses a distribution that is never defeated (i.e.
won or achieved a draw against all other distributions in the
cover). Instead we follow the approach from [DDS11].

Proof. The algorithm performs a tournament by running the
competition Choose-Hypothesisp(hi, hj , ε, δ/(2N))
for every pair of distinct distributions hi, hj in the collection
Dε. It outputs a distribution q? ∈ Dε that was never a loser
(i.e. won or achieved a draw in all its competitions). If
no such distribution exists in Dε then the algorithm outputs
“failure.”

By definition, there exists some q ∈ Dε such that
dTV (p, q) ≤ ε. We first argue that with high probability this
distribution q never loses a competition against any other
q′ ∈ Dε (so the algorithm does not output “failure”). Con-
sider any q′ ∈ Dε. If dTV (p, q′) > 4ε, by Lemma B.1(ii) the
probability that q loses to q′ is at most 2e−mε

2/2 = O(1/N).
On the other hand, if dTV (p, q′) ≤ 4δ, the triangle inequal-
ity gives that dTV (q, q′) ≤ 5ε and thus q draws against q′. A
union bound over all N distributions in Dε shows that with
probability 1− δ/2, the distribution q never loses a compe-
tition.

We next argue that with probability at least 1 − δ/2,
every distribution q′ ∈ Dε that never loses has small
variation distance from p. Fix a distribution q′ such that
dTV (q′, p) > 6ε; Lemma B.1(i) implies that q′ loses to q
with probability 1 − 2e−mε

2/2 ≥ 1 − δ/(2N). A union
bound gives that with probability 1− δ/2, every distribution
q′ that has dTV (q′, p) > 6ε loses some competition.

Thus, with overall probability at least 1 − δ, the tour-
nament does not output “failure” and outputs some distribu-
tion q? such that dTV (p, q?) is at most 6ε. This proves the
lemma.

We now explain how the above lemma is used in
our context: Suppose we perform O(log(1/δ)) runs of a
learning algorithm that constructs an ε-accurate hypothe-
sis with probability at least 9/10. Then, with failure prob-
ability at most δ/2, at least one of the hypotheses gen-

erated is ε-close to the true distribution in variation dis-
tance. Conditioning on this good event, we have a col-
lection of distributions with cardinality O(log(1/δ)) that
satisfies the assumption of the lemma. Hence, using
O
(
(1/ε2) · log log(1/δ) · log(1/δ)

)
samples we can learn

to accuracy 6ε and confidence 1 − δ/2. The overall sam-
ple complexity is O(log(1/δ)) times the sample complexity
of the (learning algorithm with confidence 9/10) plus this
additional O

(
(1/ε2) · log log(1/δ) · log(1/δ)

)
term.

In terms of running time,we make the following easily
verifiable remarks: When the hypothesis testing algorithm
Choose-Hypothesis is run on a pair of distributions
that are produced by Birgé’s algorithm, its running time is
polynomial in the succinct description of these distributions,
i.e. in log2(n)/ε. Similarly, when Choose-Hypothesis
is run on a pair of outputs of Learn-kmodal-simple
or Learn-kmodal, its running time is polynomial in the
succinct description of these distributions. More specifi-
cally, in the former case, the succinct description has bit
complexity O

(
k · log2(n)/ε2

)
(since the output consists of

O(k/ε) monotone intervals, and the conditional distribu-
tion on each interval is the output of Birgé’s algorithm for
that interval). In the latter case, the succinct description
has bit complexity O

(
k · log2(n)/ε

)
, since the algorithm

Learn-kmodal constructs only k monotone intervals.
Hence, in both cases, each executation of the testing algo-
rithm performs poly(k, log n, 1/ε) bit operations. Since the
tournament invokes the algorithm Choose-Hypothesis
O(log2(1/δ)) times (for every pair of distributions in our
pool ofO(log(1/δ)) candidates) the upper bound on the run-
ning time follows.


