
Disjoint-Path Facility Location: Theory and Practice

Lee Breslau ∗ Ilias Diakonikolas † Nick Duffield ∗ Yu Gu ‡

MohammadTaghi Hajiaghayi ∗ David S. Johnson ∗ Howard Karloff ∗

Mauricio G. C. Resende ∗ Subhabrata Sen ∗

Abstract

This paper is a theoretical and experimental study of
two related facility location problems that emanated
from networking. Suppose we are given a network
modeled as a directed graph G = (V, A), together with
(not-necessarily-disjoint) subsets C and F of V , where
C is a set of customer locations and F is a set of
potential facility locations (and typically C ⊆ F). Our
goal is to find a minimum sized subset F ′ ⊆ F such
that for every customer c ∈ C there are two locations
f1, f2 ∈ F ′ such that traffic from c to f1 and to f2 is
routed on disjoint paths (usually shortest paths) under
the network’s routing protocols.

Although we prove that this problem is impossi-
ble to approximate in the worst case even to within
a factor of 2log1−ǫ n for any ǫ > 0 (assuming no NP-
complete language can be solved in quasipolynomial
time), we show that the situation is much better in
practice. We propose three algorithms that build so-
lutions and determine lower bounds on the optimum
solution, and evaluate them on several large real ISP
topologies and on synthetic networks designed to reflect
real-world LAN/WAN network structure. Our main al-
gorithms are (1) an algorithm that performs multiple
runs of a straightforward randomized greedy heuristic
and returns the best result found, (2) a genetic algo-
rithm that uses the greedy algorithm as a subroutine,
and (3) a new “Double Hitting Set” algorithm. All
three approaches perform surprising well, although, in
practice, the most cost-effective approach is the multi-
run greedy algorithm. This yields results that average

∗AT&T Labs – Research, 180 Park Avenue, Florham Park, NJ
07932.

†Computer Science Department, University of California, Soda
Hall, Berkeley, CA 94720. This work was performed when the
author was a student at Columbia University, and was partially
supported by AT&T.

‡Amazon Web Services, 1200 12th Avenue South, Seattle, WA
98144. This work was performed when the author was a student
at the University of Massachusetts, and was partially supported
by AT&T.

within 0.7% of optimal for our synthetic instances and
within 2.9% for our real-world instances, excluding the
largest (and most realistic) one. For the latter instance,
the other two algorithms come into their own, finding
solutions that are more than three times better than
those of the multi-start greedy approach.

In terms of our motivating monitoring application,
where every customer location can be a facility location,
the results are even better. Here the above Double Hit-
ting Set solution is 90% better than the default solution
which places a monitor at each customer location – such
comparisons help justify the proposed alternative mon-
itoring scheme of [8]. Our results also show that, on
average for our real-world instances, we could save an
additional 18% by choosing the (shortest path) routes
ourselves, rather than taking the simpler approach of
relying on the network to choose them for us.

1 Introduction

This paper studies two new facility location problems
relevant to questions of Internet traffic monitoring and
content distribution. These problems differ from their
more standard predecessors in that each customer must
be served by two facilities rather than one. In addition,
the service routes must be vertex-disjoint.

More specifically, suppose we are given a network
modeled as a directed graph G = (V, A), together with
possibly overlapping vertex subsets C, F ⊆ V , where
C is the set of customer locations and F is the set of
potential facility locations. Suppose in addition that
for each pair (c, f), c ∈ C and f ∈ F , we are given
a set P (c, f) of directed simple paths from c to f in
G. These sets may be defined implicitly (such as the
set of all shortest c-to-f paths), or by an explicit list
of permitted paths. Indeed, the most important special
case for applications is that in which P (c, f) is the set of
all shortest c-to-f paths. By convention, we require that
if c ∈ C ∩ F , then the zero-length path (c) is in P (c, c),
and, since the zero-length path is the only simple path
from c to c, we in fact have P (c, c) = {(c)}, (c) denoting
the length-0 path starting and ending at c.

Suppose c ∈ C is a customer location and (f1, f2)
is a pair of potential facility locations from F , where
either f1 6= f2 or f1 = f2 = c.

Definition 1.1. We say that (f1, f2) covers c in a
pathwise-disjoint fashion if there exist paths p1 ∈
P (c, f1) and p2 ∈ P (c, f2) that have no common ver-
tex except c. Such a pair covers c in a setwise-disjoint
fashion if no path in P (c, f1) shares a vertex (other than
c) with any path in P (c, f2).

Note that if c ∈ C∩F and P (c, c) contains the zero-
length path from c to itself, then by definition the pair
(c, c) will cover c in both fashions.

Definition 1.2. A subset F ′ ⊆ F is called a pathwise-
disjoint (respectively, setwise-disjoint) cover for C if for
every c ∈ C there is a pair (f1, f2), f1, f2 ∈ F ′, f1

and f2 not necessarily distinct, such that (f1, f2) covers
c in a pathwise-disjoint (respectively, setwise-disjoint)
fashion.

The two problems we study are defined as follows:

Definition 1.3. In Pathwise-Disjoint Facility
Location (PDFL), we are given G, C, F , and the
sets P (c, f) and asked to find a pathwise-disjoint cover
of minimum size for C, if such a cover exists. Setwise-
Disjoint Facility Location (SDFL) is the same
problem except that the cover must be setwise-disjoint.

In this paper, we analyze the complexity of PDFL
and SDFL and propose and test algorithms for them.
A first observation is that both problems can be viewed
as special cases of Set Cover By Pairs (SCP), first
described in [9].

Set Cover By Pairs (SCP): Given a ground set U of
elements, a set S of cover objects, and a set T of triples
(u, s, t), where u ∈ U and s, t ∈ S, find a minimum-
cardinality covering subset S′ ⊆ S for U , where S′

covers U if for each u ∈ U , there are s, t ∈ S′, possibly
with s = t, such that (u, s, t) ∈ T .

PDFL and SDFL can be formulated as SCP by
taking U = C, S = F , and (c, f1, f2) ∈ T if and only if
(f1, f2) covers c in a pathwise-disjoint (setwise-disjoint)
fashion.

We prove, subject to a complexity assumption, that
no polynomial-time algorithm can approximate SCP to
within a factor which is 2log1−ǫ n for any ǫ > 0. The
best previous hardness bound for SCP was just Set
Cover-hardness [9]. We will show that our two facility
location problems cases are in the worst case just as
difficult, even if the sets P (c, f) are restricted to shortest
paths. Nevertheless, we shall see that for the types of

problems that arise from real-world networks, a variety
of algorithms perform extraordinarily well in practice.

We tested three main algorithms. Each uses as
a subroutine a standard randomized greedy heuristic
(Greedy) that actually solves the general SCP prob-
lem. The first of our main algorithms, Greedy400, is
the variant of Greedy that performs 400 runs and re-
turns the best solution found. The second is a genetic al-
gorithm (Genetic) that uses Greedy as a subroutine.
The third, Double Hitting Set (HH), exploits the graph
structure and approximately solves Setwise-Disjoint
Facility Location when the sets P (c, f) consist of
all shortest paths—precisely the version of the problem
that arises in our monitoring application. As a valuable
side effect, it also can be used to derive a very good
lower bound on the optimum in this case.

In addition, we formulated the derived SCP in-
stances as mixed integer programs, which CPLEX was
able to solve to optimality for all of our instances with
|F | ≤ 150, although, of course, running times grew dra-
matically with graph size.

A final algorithmic challenge was that of construct-
ing those derived SCP instances. This involves exploit-
ing shortest path graphs to determine the (often quite
large) sets of relevant triples. The triples are required
by all of our algorithms (even HH), and we needed some
significant algorithmic ingenuity to prevent this compu-
tation from being a major bottleneck.

1.1 Outline. The remainder of the paper is orga-
nized as follows: In Section 2 we describe the two appli-
cations motivating our study. In Section 3 we present
our complexity results. In Section 4 we describe the
heuristics we implemented. Our test instances are de-
scribed in Section 5, and our experiments and their re-
sults are summarized in Section 6.

1.2 Related Work. The only previous work on Set
Cover by Pairs is, as far as we know, is that of
Hassin and Segev [9], which is theoretical rather than
experimental. That paper considers two applications
that were significantly different from those introduced
here, and, from a worst-case point of view, much easier
to approximate. The paper also introduces a variant of
the Greedy algorithm studied here for the general SCP
problem and analyzes its worst-case behavior.

2 Applications

2.1 A First Application: Content Distribution.
The Setwise- and Pathwise-Disjoint Facility Lo-
cation problems arise in a variety of networking con-
texts. Our primary motivation for studying them comes
from a scheme proposed in [8] for active monitoring of

end-to-end network performance. However, both vari-
ants have a simple alternative motivation in terms of an
idealized content distribution problem, which we shall
use to help illustrate the definitions. Suppose we wish to
distribute real-time data, such as television broadcasts,
over a network that does not provide a rapid method for
recovering from link or vertex failures. Suppose further
that the service interruptions caused by such failures
would be costly to us, and that we want our distribu-
tion process to be relatively robust against them. A
common standard of robustness is immunity to any sin-
gle vertex or link failure (as for instance might result
from an accidental cable cut). To guarantee such re-
silience, we would need to place multiple copies of our
data source in the network, but because of the costs
of hosting such copies, we would like to minimize the
number of such hosting sites that we deploy.

Pathwise-Disjoint Facility Location models
this application as follows. The network G = (V, A)
is the underlying fiber network linking various sites.
The set C of customer locations is the set of sites that
are to receive the data stream. The set F of facility
locations is the set of potential sites where the content
can be hosted. The sets P (c, f) correspond to the paths
over which we can route the content from facility f to
customer c, where considerations such as presence of
optical switches, desire for low latency, etc., may restrict
the set of paths allowed. Note that here we are talking
about paths from the facilities to the customers rather
than from customers to facilities, as was the case in
our definitions. However, it is easy to see that the two
versions of the problem are equivalent – simply reverse
the arcs.

If we assume that link capacity is not an issue,
then the pathwise-disjoint cover of minimum size for C
represents the minimum-cost choice of hosting locations
for our data, subject to the constraint that no single
vertex or link failure can disconnect a (non-failed)
customer from all the data sources.

Setwise-Disjoint Facility Location models
the variant of this application in which we do not have
control over the routing, but instead must rely on the
network to do our routing for us. Many Internet Service
Providers (ISP’s) route packets within their networks
using a shortest-path protocol such as OSPF or IS-IS.
In such protocols, packets must be routed along shortest
paths, where the weight (length) of an arc is set by the
network managers so as to balance traffic and optimize
other performance metrics. If there is more than one
shortest path leaving a given router, then the traffic is
split evenly between the alternatives. This can be of
further help in balancing traffic, and so traffic engineers
may specifically set weights that yield multiple shortest

paths between key routers. The actual splitting is
performed based on computing hash functions of entries
in a packet’s header (typically simply the destination
IP address). These functions are themselves randomly
chosen, are subject to change at short notice, and
are typically not available to us. Thus when there
are multiple shortest paths, although contemporaneous
packets from a given router to the same destination are
likely to follow the same path, the actual route chosen
may not be readily predictable. All we know is that it
must be a member of the set P (c, f) of all shortest paths
from c to f . This means that the only way to guarantee
vertex-disjoint paths from a customer c to two facility
locations f and f ′ is to restrict attention to pairs (f, f ′)
such that the corresponding shortest path sets intersect
only in c, and consequently our problem becomes a
Setwise-Disjoint Facility Location problem for
such shortest path sets.

2.2 A Second Application: Host Placement
for End-to-End Monitoring. This is the application
that motivated this paper. It is more realistic than
our first, but also more complicated, and readers more
interested in the algorithmic results can safely skip this
section on a first reading.

Suppose we are an Internet Service Provider (ISP)
and provide “virtual private network” (VPN) service to
some of our customers. In such a service, we agree to
send traffic between various locations specified by the
customer, promising to provide a certain level of service
on the connections, but not specifying the actual route
the packets will take. (The actual routing will be done
so as to optimize the utilization of our network, subject
to the promised levels of service.) Our network is a
digraph G = (V, A), in which the vertices correspond to
routers and the arcs to the links between routers. A key
service quality metric is packet loss rate (the fraction of
packets on a path that fail to reach their destination).
Let p(r1, r2) denote the probability that a packet sent
from router r1 to router r2 will successfully arrive. Our
goal is to obtain estimates for p(ri, rj) for a collection
of customer paths Pri,rj

. Note that, in contrast to our
content distribution application, we here do not worry
about links’ failing (which would cause re-routing), but
merely about their underperforming.

One way to measure the loss rate on the path in
our network from router r1 to router r2 is to attach
extra equipment to the routers, use the equipment at
r1 to send special measurement packets to r2, and
use the equipment at r2 to count how many of the
packets arrive. If N packets are sent and N ′ arrive,
then N ′/N should be a good estimate for p(r1, r2),
assuming N is sufficiently large. Unfortunately, the

process of authorizing, installing, and maintaining the
extra equipment can be time-consuming and expensive.
Thus, this scheme may not be practical in a large
network with hundreds or thousands of distinct path
endpoints. Moreover, it may be impossible to install
the needed equipment at some of the endpoints due
to lack of space or other concerns. For these reasons,
the authors of [8] proposed an alternative scheme that
can adapt to the fact that certain vertices cannot house
the needed equipment, and also may yield a substantial
reduction in the total amount of monitoring equipment
needed.

Figure 1: The centralized monitoring scheme of [8].

In this new scheme, all the monitoring is initiated
from a single special measurement vertex M , as origi-
nally proposed in [2, 4]. See Figure 1. To measure loss
on the path from vertex r1 to vertex r2, the equipment
at M sends a packet on a circular path that first goes
from M to r1 (the hop-on path), then traverses the path
from r1 to r2, and finally returns from r2 to M (the hop-
off path). Let us make the following assumptions:

1. Packets are only dropped by arcs, not by vertices.
(This is a close approximation to reality in modern-
day networks, where an arc models the system
consisting of the physical wire/fiber connecting its
endpoints, together with the line card at each of its
ends.)

2. The three paths PM,r1 , Pr1,r2 , and Pr2,M are
pairwise arc-disjoint. (As we shall show below, this
will typically be true shortest-path routing.)

3. Loss rates on different arcs are independent of each
other. (This is somewhat less realistic, but is
approximately true except in heavily-loaded net-
works.)

Figure 2: Scheme of [8] for measuring loss rate of hop-on
and hop-off paths.

Then if N packets are sent on the circular path
PM,r1,r2,M , the expected number N ′ of packets
successfully making the roundtrip will be N ′ =
Np(M, r1)p(r1, r2)p(r2, M). Thus if we measure N ′ and
have good estimates for p(M, r1) and p(r2, M), we will
have the estimate

p(r1, r2) =
N ′/N

p(M, r1)p(r2, M)
.

Thus we have reduced the problem of measuring the loss
rates for a collection of paths between arbitrary vertices
to that of estimating the loss rates for the collection of
hop-on and hop-off paths, all of which either begin or
end at M .

In [2] it was proposed that these loss rates for a
given path endpoint r be estimated by sending packets
along an (M, r, M) circuit and, if, here, N packets
were sent and N ′ received, concluding that p(M, r) =
p(r, M) =

√

N ′/N . Unfortunately, this assumes that
Internet performance is symmetric, which it definitely
is not. A quite accurate way to measure the loss rates
would of course be to put equipment at both ends of
each of the hop-on and hop-off paths, but this method
would require installing equipment at just as many
routers as in the original scheme for measuring the Pr1,r2

paths directly – indeed at one more vertex, since now
we need equipment at M . Setwise- and Pathwise-
Disjoint Facility Location arise in the context of a
tomographic method proposed by [8] for estimating loss
rates in a potentially much more efficient fashion.

In terms of the facility location problems, the set
C of “customer” vertices will consist of the endpoints
of the original paths whose loss rates we wish to esti-
mate. The set F of “facility locations” will be those ver-
tices that are capable of hosting monitoring equipment,

which in this context we will call the (potential) moni-
toring vertices. Given a path endpoint r and a monitor-
ing vertex m, the set P (r, m) consists of all paths along
which we may legally route packets from r to m in our
network, as currently configured. (If r is itself a moni-
toring vertex, then P (r, r) is the singleton set consisting
only of the zero-length path from r to itself.)

Suppose r is a path endpoint and (m1, m2) is a pair
of monitoring vertices that cover r in a pathwise-disjoint
fashion. Then we claim (as justified below) that, by
installing monitoring equipment at m1 and m2, we can
estimate the loss rates p(M, r) (for the hop-on path to
r) and p(r, M) (for the hop-off path from r). If r is
itself a monitoring vertex, and m1 = m2 = r, then it is
straightforward to measure both loss rates by sending
packets between M and r and counting the number of
them that successfully arrive at their destinations.

The key case is when m1 and m2 differ from r
(and hence from each other). See Figure 2. Assuming
we are allowed to specify the routing paths from r
to m1 and m2, the fact that m1 and m2 cover r in
a pathwise-disjoint fashion means that we can pick
legal routing paths P1 and P2 from r to m1 and
m2, respectively, that are vertex-disjoint except for
r (and hence arc-disjoint). Moreover, assuming also
that we have restricted ourselves to shortest paths, as
are guaranteed by the most common routing protocols
(OSPF and IS-IS), we also have that, under additional
standard assumptions, the two paths P1 and P2 are arc-
disjoint from the path P from M to r, which itself is
arc-disjoint from the path P ′ from r to M .

This is a consequence of the following lemma,
whose additional assumptions have to do with the arc
weights used by OSPF and IS-IS in their shortest path
computations. These weights are set by traffic engineers
to help balance traffic loads and normally obey certain
restrictions. First, they are positive integers. Second,
in practice networks are typically symmetric directed
graphs, in that the digraph contains an arc (a, b), then
it must also contain arc (b, a). The weights w for such a
digraph are themselves symmetric if for every arc (a, b),
we have w(a, b) = w(b, a). Typically, but not always,
the weights are indeed symmetric.

Lemma 2.1. Suppose we are given a symmetric directed
graph G = (V, A), a weight function w on the arcs that
is symmetric and positive, and three vertices a, b, c. If
Pa,b and Pb,c are shortest-weight paths in this digraph
from a to b and b to c, respectively, then they are arc-
disjoint. [Proof omitted.]

The basic idea of the technique of [8] for estimating
the loss rate p(M, r) using these paths is to send
multicast packets from M to r along path P , replicate

them at r, and then send the copies along paths P1 and
P2 to m1 and m2, respectively. After this, m1 and m2

report back to M (using a guaranteed-delivery service
such as TCP) as to which packets arrived. Based on this
information, M estimates p(M, r). The loss rate p(r, M)
can be estimated by sending packets along the (M, r, M)
loop and counting the number that arrive back at M ,
using the fact that the loss rate for the loop should be
p(M, r)p(r, M). (We note that a result like Lemma 2.1 is
needed if this method is to provide reliable estimates, a
fact not observed in [8], which contained no such result.)

This scheme may require two monitoring hosts
to measure the hop-on and hop-off rates for a path
endpoint r, rather than the single one that would
be required if we placed the monitoring equipment at
vertex r itself. However, the scheme has the potential
advantage that a given monitoring vertex can be re-
used to handle many different path endpoints. Thus
there could be a substantial net overall savings in the
total number of monitoring vertices used, and hence in
equipment and operational cost.

As stated, the problem of finding a minimum sized
set of monitoring vertices at which to place equipment
so that we can estimate loss rates for all hop-on and hop-
off paths is simply our original Pathwise-Disjoint
Facility Location problem. In practice, however,
we will most-likely have to rely on the ISP’s routing
protocol (OSPF or IS-IS) to deliver our packets, and so,
as with our the first application, will face the Setwise-
Disjoint Facility Location problem.

It should be noted that, in contrast to that first
application, the necessity for vertex-disjoint paths from
r to m1 and m2, rather than simply arc-disjoint paths,
is less clear, since by the previous lemma we can only
guarantee that these paths are arc-disjoint from the
path from M to r. This is a meaningless distinction
in the Setwise-Disjoint case, however, in light of the
following lemma.

Lemma 2.2. Suppose P (c, f) and P (c, f ′) are the sets
of all shortest paths from vertex c to vertices f and f ′,
respectively, in a given digraph G. Then no path in
P (c, f) shares an arc with any path in P (c, f ′) if and
only if no path in P (c, f) shares a vertex other than c
with any path in P (c, f ′). [Proof omitted.]

A detailed description of the implementation of this
scheme and the formulas used for estimating p(M, r)
and p(r, M) is presented in [8].

3 Complexity

In this section we investigate the computational com-
plexity of Pathwise- and Setwise-Disjoint Facility
Location.

SCP is in general not only NP-hard, but also
strongly inapproximable in the worst-case. Let n =
|U |. In [9] it was observed that SCP is at least as
hard to approximate as Set Cover, but we can prove
much stronger inapproximability (albeit with a slightly
stronger complexity assumption).

Theorem 3.1. If NP 6⊆ DTIME(nO(polylog(n))), no
polynomial-time algorithm can be guaranteed to find a
solution to SCP that is within a factor of 2log1−ǫ n of
optimal for any ǫ > 0.

Proof of Theorem 3.1. The theorem follows via
an approximation-preserving transformation from the
MinRep problem of Kortsarz, who showed the above
inapproximability bound to hold for MinRep [11].

In MinRep, we are given a bipartite graph G =
(V, E) with n = 2kq vertices and partitions of the vertex
sets on each side of the bipartite graph into k groups of
q vertices, A1 through Ak on the left and B1 through Bk

on the right. We are also given an integer K. We ask
whether there is a subset V ′ ⊆ V with |V ′| ≤ K such
that for every pair (Ai, Bj), 1 ≤ i, j ≤ k, if G contains
an edge between a vertex in Ai and one in Bj , then so
does the subgraph induced by V ′.

We transform MinRep to SCP by letting the items
to be covered be the pairs (Ai, Bj) where G contains
an edge between a member of Ai and a member of
Bj . The set of covering objects is V , with the item
(Ai, Bj) covered by all pairs {u, v} ⊆ V in which u ∈ Ai,
v ∈ Bj , and (u, v) ∈ E. There is then a one-to-one
correspondence between SCP cover sets and subsets
V ′ meeting the MinRep requirements, with the two
sets having the same size. Hence any approximation
guarantee for SCP implies an equally good guarantee
for MinRep, and so SCP must be at least as hard to
approximate.

In fact, the special cases PDFL and SDFL of SCP
are in the worst case as hard to approximate as SCP
itself, as a consequence of the following theorem. (The
proofs of this and the next theorem will appear in the
full version [3]):

Theorem 3.2. Even when restricted to instances in
which C ⊆ F ,

1. SDFL is at least as hard to approximate as SCP,
even if each set P (w, u) is the set of all shortest
paths from w to u.

2. PDFL is at least as hard to approximate as SCP,
even if each set P (w, u) is an explicitly given subset
of the set of all shortest paths from w to u.

Theorem 3.2 leaves open the case of PDFL where
the allowed paths include all shortest paths, not simply
a selection of them, which we cannot yet prove is as
hard as SCP in general. It is still Ω(log n)-hard to
approximate, however, as a consequence of the following
theorem:

Theorem 3.3. No polynomial-time approximation al-
gorithm for PDFL can guarantee a solution that is
c log n times optimum for any c < 1 unless P = NP,
even if each set P (w, u) is the set of all shortest paths
from w to u and C ⊆ F .

4 Algorithms

In this section we describe our algorithms for Setwise-
and Pathwise-Disjoint Facility Location and our
algorithms for constructing the required SCP triple sets
for both problems.

4.1 Greedy Heuristics. The basic Greedy heuris-
tic that underlies all our algorithms has two phases. The
first begins by initializing our cover S′ ⊆ S to the empty
set. Then, as long as S′ does not cover all u ∈ U , we
find an s ∈ S−S′ such that S′∪{s} covers a maximum
number of additional elements. If that maximum num-
ber is positive, then add s to S′. Otherwise, choose a
pair {s, s′} ⊆ S − S′ that yields a maximum increase in
the number of elements covered. If no pair yields an in-
crease, then the instance is infeasible. The second phase
minimalizes the cover: Test each object in the cover in
turn to see if its removal would still leave a valid cover,
and if so remove it. (The “Greedy” algorithm of [9] does
not include a minimalization phase, and in its growth
phase it considers pairs at every step, not just those in
which no singleton helps. It is hence likely to be signif-
icantly slower and less effective in practice.)

Our implementation of Greedy uses randomized
tie-breaking in the growth phase. We allow two options
for the minimalization phase: either consider facilities
in the reverse of the order in which they were added to
the cover, or consider them in random order. We also
allow two options for starting the growth phase: either
take the best pair, or take the best singleton. None
of these options (or combinations of options) seems to
dominate any of the others.

Here we test a multiple-run variant on Greedy
(Greedy400), which performs 400 runs and returns the
best solution found. In those 400 runs, we cycle through
the four option combinations, using each for 100 runs.
Multiple runs are feasible because we can implement the
basic algorithm to run in linear time. (Technically the
time is O(|T | + |F |(|F | + |C|)), where T is the set of
triples, but for our instance classes |T | tends to be the

dominant term.) The details of the implementation will
be presented in the full paper.

4.2 Genetic Genetic algorithms are variants on local
search that mimic the evolutionary process of survival
of the fittest. Our genetic algorithm for SCP, called Ge-
netic in what follows, uses the “random key” evolution-
ary strategy proposed by Bean [1, 7]. In this approach,
the “chromosomes” that do the evolving are not solu-
tions themselves, but “random-key” vectors from which
solutions can be derived.

Let the set of cover objects be S = {s1, s2, . . . , sk}.
In Genetic, each chromosome is a 0-1 vector
(gene1, . . . , genek) of length k. We derive a solution
(cover) S′ from such a chromosome as follows: Start
with S′ = {si : genei = 1, 1 ≤ i ≤ k}. If S′ is already
a cover, halt. Otherwise, complete S′ to a cover using
our basic Greedy algorithm (without randomization
or minimalization). The “fitness” of the chromosome is
then the size of the resulting cover S′.

The overall genetic algorithm starts by creating
a population of p randomly generated chromosomes,
where each gene has an equal probability of being 0
or 1. (For our experiments, we set p = min{300, |V |}.)
The population then evolves in a sequence of genera-
tions. In each generation we start by computing the
solution for each member of the population, yielding its
fitness. The top 15% of the population by fitness (the
“elite” members) automatically pass on to the next gen-
eration’s population. In addition, to provide diversity,
10% of the next generation consists of randomly gen-
erated chromosomes, like those generated initially. For
the remaining 75%, we repeat the following “crossover”
construction: Pick a random member (x1, x2, . . . , xk) of
the top 15% of the current generation’s population and
a random member (y1, y2, . . . , yk) of the remaining 85%.
The “child” (z1, z2, . . . , zk) of this pairing is determined
as follows: For each i, independently, set zi = xi with
probability 70%, and otherwise set zi = yi.

This scheme insures that the best solution always
survives into the next generation, where it may continue
as champion or be dethroned by a better solution.
Generations are continued until max{p, 50} have gone
by without any improvement in the fitness (cardinality)
of the best solution. We then take this final champion S′

and “minimalize” it as in Phase 2 of Greedy (although,
in practice, this rarely helped for the final champion).

The parameter settings for this algorithm (p =
min{300, |V |}, max{p, 50} generations, top 15%, etc.)
were based on preliminary experimentation and on
intuition derived from applications of this approach to
other problems. They appear to yield a good tradeoff
between running time and quality of solution for our
application, but we make no claim as to their optimality.

4.3 The Double Hitting Set Heuristic (HH)
This section describes our Double Hitting Set Heuristic
(HH). HH is the only one of our algorithms to explicitly
exploit the structure of the digraph G, and the only
one to come with an O(log n) performance “guarantee,”
“guarantee” in quotes because it only refers to covering
the “t-good” customer nodes, “t-good” to be defined in
a moment. (The key fact is that in many of our test
instances, almost all customer nodes were t-good.) HH
applies to the case in which the sets P (c, f) of paths
consist of all the shortest paths from c to f , as would
be the case if they were generated by OSPF (as they
are in our test instances and our main applications).

While OSPF can split traffic in the case of multiple
shortest c → f paths, the amount of splitting that
occurs in practice seems to be limited. To quantify this
point, we need a definition.

Definition 4.1. We say a potential facility location f
is good for customer vertex c if f 6= c and all shortest
c → f paths leave c via the same arc. Equivalently,
if wt(a, b) denotes the weight of arc (a, b) and dist(a, b)
denotes the distance from a to b, then a potential facility
location f is good for customer vertex c if f 6= c and
wt(c, v) + dist(v, f) > dist(c, f) for all out-neighbors v
of c but one.

If there is just one shortest c → f path, clearly f is
good for c, but f may be good for c even when there
are many c → f paths. Note that if f is good for c,
then, under OSPF, there can be no splitting at c of the
traffic from c to f , although splitting at later vertices in
the path would be possible.

Algorithm HH attempts to construct a cover in
which many of the customer vertices are covered by
potential facility locations that are good for them.

Definition 4.2. Say that a customer vertex c is t-good
if there are t or more good potential facility locations f
for c (and t-bad otherwise), where t is a parameter of
the algorithm.

For our experiments, we ran the algorithm with both
t = ⌊|F |/2⌋ and t = 1, and output the better result.

HH is designed to nearly optimally cover the t-
good customers via a union X ∪ Y , leaving the t-
bad customers, if any, to be covered via the Greedy
algorithm.

The first step of the algorithm is to choose one
good potential facility location for each t-good customer
vertex c, without choosing too many vertices in total.
For each such c, let Sc be the set of good potential
facility locations for c, except that we add c to Sc if c
is a potential facility location (which, by the definition
of “good,” is not good for itself). By the definition

of t-good we must have |Sc| ≥ t. We want to choose
a small set X of potential facility locations such that
X ∩ Sc 6= ∅ for all t-good customer vertices c. In other
words, we want an X that hits (intersects) all such sets
Sc. Finding a minimum-cardinality such X is the classic
Hitting Set problem for the family {Sc|c is a t-good
customer vertex}.

The greedy algorithm for Hitting Set produces
a feasible solution of size at most 1 + lnn times the
optimal, n being the number of sets in the instance
[10, 12], which for our application is at most |C|. In
practice, however, the greedy Hitting Set heuristic
typically returns a set of size much closer than this
to the optimal, often only a single-digit percent above
optimal. So our first step is to construct a set X by
applying this greedy hitting set algorithm to {Sc|c is a
t-good customer vertex}. In fact, the situation is even
better here. We will see shortly that if t = ⌊|F |/2⌋, then
a greedy hitting set has size O(log |C|).

Next, for each t-good customer vertex c, choose a
potential facility location sc which is in X ∩ Sc, but if
c ∈ (X ∩ Sc) ∩ F , definitely set sc = c. It is easy to see
that sc = c ⇔ c ∈ X .

If sc 6= c, then all shortest c → sc paths leave c
via the same arc; call this arc ec = (c, xc), defining xc

implicitly. If, on the other hand, sc = c, then c ∈ X
and c is therefore already covered by X ; since we are
going to cover the t-good nodes by X ∪ Y for some Y ,
we needn’t worry further about covering such c’s.

We now have, for each t-good c which is not in X ,
at least one chosen potential facility location sc 6= c,
but we need two. We find a second as follows. For each
such customer vertex c, let Fc be the set of potential
facility locations f 6= c for which all shortest c → f
paths avoid ec, together with c if c is itself a potential
facility node. (A vertex u ∈ F −{c} is in Fc if and only
if wt(c, xc) + dist(xc, u) > dist(c, u).) If any set Fc is
empty, then the instance is infeasible – clearly c 6∈ F in
this case, and for all potential facility locations f , there
will be a shortest path from c to f that contains ec and
so no two such facilities can cover c in setwise-disjoint
fashion. So suppose that for all c, Fc is not empty.
The surprising fact is that for any f ∈ Fc, the pair
{sc, f} covers c, an immediate consequence of Lemma
4.2 below.

Recall that for a t-good c ∈ C, sc 6= c ⇔ c 6∈ X ,
so we may assume that sc 6= c. The following lemma,
proved below, will allow us to compute an extremely
useful lower bound on the optimal cost.

Lemma 4.1. Any solution W that covers all t-good
nodes must contain at least one facility node u in Fc

for each t-good c with sc 6= c.

Thus any solution W must contain a hitting set
Y for the family {Fc|c is t-good and sc 6= c}. So the
next thing HH does is find one, again using the greedy
Hitting Set heuristic. Fortunately, not only is the size
of the optimal hitting set a lower bound on OPT, the set
X∪Y is a feasible solution, for any feasible hitting set, as
we show in Lemma 4.2 below. When t = ⌊|F |/2⌋, the
resulting union X ∪ Y is a particularly good solution
to the restricted problem, at least in comparison to
the complexity results we saw in the last section for
solutions to the complete SDFL problem.

Algorithm HH finishes by using the Greedy algo-
rithm to extend the solution X∪Y for the t-good nodes
to a solution for the full SDFL instance. Since there are
typically few t-bad nodes, this step typically adds few
nodes. Finally, we minimalize the resulting solution (as
in Greedy).

This completes the description of HH.

Proof of Lemma 4.1. If not, choose t-good c such
that sc 6= c and a feasible W with W ∩ Fc = ∅. Choose
any u ∈ W ; u 6∈ Fc. Hence u 6= c (u ∈ W implies that
u is a facility node; were u equal to c, then c would
be a facility node, c would be in Fc, and hence u = c
would be, too). Hence some shortest c → u path uses
arc (c, xc). Now xc is in Q(c, u), where Q(a, b) denotes
the set of vertices on any shortest a → b path. But this
is true for all the u in W , and hence for any i 6= j in
W , xc is in Q(c, i) and Q(c, j), so {i, j} doesn’t cover c
(and c 6∈ W , so {c} doesn’t cover c, either). So W is
infeasible, a contradiction.

Hence the size of any solution covering all t-good
nodes is greater than or equal to the size of the smallest
hitting set of the family {Fc|c is t-good and sc 6= c} =
{Fc|c is t-good and c 6∈ X}. Based on Lemma 4.1,
we know that the size Hmin of the smallest hitting set
is a lower bound on the optimal solution size for an
instance of SDFL. It is easy to set up an integer program
for determining Hmin, and it turns out that CPLEX
finds such problems much easier to solve than the full
SDFL problem. Thus we have our code HH save this
Hitting Set instance to a file, which in turn is fed
to AMPL/CPLEX, which (quickly) solves it optimally.
The LowerBound figures in the Results section of this
paper were computed in this way, taking the maximum
for t = 1 and t = ⌊|F |/2⌋. (One could have used
optimal AMPL/CPLEX-solved Hitting Set solutions
instead of greedy solutions in implementing HH, but
this would have made running the algorithm a more
complex process and one that no longer had a worst-case
polynomial-time bound. Moreover, given how good the
HH solutions already were, it would probably not have
been worth the effort.) Note that since the lower bound
does not take t-bad customer vertices into account, it is

probably weak in cases that have many such nodes.

Lemma 4.2. Given X as above, any hitting set Y of
{Fc|c is t-good and sc 6= c} is such that X∪Y is a cover
of all the t-good customer nodes c.

Proof. Choose any t-good c. If c ∈ X ∪ Y , then c is
a facility node and hence {c} ⊆ X ∪ Y covers c. So
we may assume that c 6∈ X, c 6∈ Y . Hence sc 6= c.
Since sc 6= c, all of the c → sc shortest paths use arc
(c, xc). The hitting set Y contains a vertex fc ∈ Fc.
Because c 6∈ Y and fc ∈ Y , fc 6= c. Hence, because
fc ∈ Fc−{c}, by definition of Fc no shortest c → fc path
uses arc (c, xc). We claim that all the c → fc shortest
paths actually avoid all the vertices (except c) on all
the c → sc shortest paths, and hence {sc, fc} ⊆ X ∪ Y
covers c. (By the definitions of Sc and Fc, fc 6= sc.)
This is true because if a c → sc shortest path P1 and a
c → fc shortest path P2 shared a vertex other than c,
let v be the first vertex (after c) on P2 which is in P1.
Then the prefix from c to v of P1 would have to have the
same length as the prefix from c to v of P2—this is the
key point—and hence there would be a shortest c → fc

path which uses arc (c, xc), a contradiction. Hence X∪Y
covers all the t-good customer nodes.

Let OPT′ denote the optimal solution to the SDFL
problem restricted to the t-good customer vertices.
Lemma 4.3 is the performance “guarantee” of which we
spoke.

Lemma 4.3. If t = ⌊|F |/2⌋, then |X∪Y | is O((log |C|)·
OPT′).

Proof. Assume there is at least one t-good customer,
as otherwise |X ∪ Y | = 0 and the claim holds trivially.
By Lemma 4.1, an optimal solution to the restricted
problem must contain a hitting set for the sets Fc where
c is a t-good customer vertex with sc 6= c. Thus, by the
results of [10, 12] we have |Y | ≤ (1 + ln |C|)OPT′.

We cannot use the same argument for |X |, since in
constructing X we restricted attention to good potential
facility locations, and OPT′ need not be so restricted.
However, a different argument applies. By our choice
of t, we know that for each t-good vertex c, |Sc| ≥
⌊|F |/2⌋ ≥ |F |/3. Therefore,

∑

c is t-good |Fc| ≥ |C| ·

|F |/3, and so some potential facility location f must be
in at least |C|/3 of the sets. Consequently, the greedy
choice must hit at least that many sets. By essentially
the same argument, it must hit at least 1/3 of the
remaining unhit sets each time it makes a choice, and
so must have completed constructing its hitting set X
after at most 2 + log3 |C| steps. Since there is at least
one t-good vertex, we must have OPT′ ≥ 1, and the
Lemma follows.

4.4 Optimal Solutions Using Mixed Integer
Programming. Set Cover By Pairs can be mod-
eled as a simple mixed integer linear program (MIP),
which allows us to leverage general purpose commercial
software for solving such problems. Our MIP formula-
tion has a Boolean variable xs for each s ∈ S, where
xs = 1 if s is chosen for our cover. In addition, we have
a real nonnegative variable ys,s′ for each pair {s, s′} of
(not-necessarily distinct) elements of S, subject to the
constraints that ys,s′ ≤ xs and ys,s′ ≤ xs′ . Note that
these together imply that ys,s′ can be positive only if
both xs and xs′ equal 1 (i.e., are in the chosen cover).
In addition we have the following constraints, one for
each u ∈ U , in order to guarantee that the chosen set is
a cover:

∑

s,s′:(u,s,s′)∈T ys,s′ ≥ 1.

The goal of our MIP is to minimize
∑

s∈S xs. Each
feasible solution to the given MIP corresponds to a
feasible solution S′ ⊆ S to the SCP and vice versa, with
S′ being the set of cover objects s for which xs = 1.

We used AMPLTM to turn our SCP instances into
MIP instances and called version 11.0 of CPLEXTM to
solve them. This MIP approach proved practical for
surprisingly large instances, enabling us to find optimal
solutions to all but two of the instances in our test set
with |F | ≤ 150. Our detailed experimental results will
be summarized in Section 6.

4.5 Triple Generation. In what follows, let n and
m be the numbers of vertices and arcs in our graph
G. For our applications, we may assume that m ≤ an
for some relatively small constant a, given the structure
of real-world data networks. We can also expect that
the sizes of the sets C of customers and F of potential
facility locations to be proportional to n.

A triple (c, f1, f2) is in the SCP instance corre-
sponding to a given instance of Setwise-Disjoint Fa-
cility Location if c ∈ C, f1, f2 ∈ F , and no shortest
path from c to f1 shares any vertex other than c with
any shortest path from c to f2. The naive way to test
this would be to construct, for each fi, the set Si of
vertices on shortest paths from c to fi, and then testing
whether Si ∩Sj = {c}. These sets could conceivably be
of size proportional to n, yielding a running time that
could be proportional to |C||F |2n, so the best we can
say about the running time of such an algorithm is that
it is O(n4).

Fortunately, it is an easy observation that if Si ∩Sj

contains some vertex other than c, then it contains a
vertex that is a neighbor of c. Thus we may restrict
attention to the sets Ni of vertices adjacent to c that
are on shortest paths to fi. To compute these sets
we first construct a shortest path graph from c to all
other vertices in time O(m log n), and then for each

neighbor v of c identify the sets Ni that contain it
by an O(m)-time search of the tree. For each pair
fi, fj , the intersection test can then be performed in
time O(outdegree(c)), yielding an overall running time
that is O(|C|m log n + m2 + m|F |2) = O(n3) under our
assumptions about the underlying graphs.

For the pathwise-disjoint problem, the naive algo-
rithm is even worse, since for a given triple c, f1, f2,
there may be exponentially many paths of potential
length Ω(n) to compare. Here we must be more clever.
We first observe that we can actually reduce the test
to a simple network flow problem, obtained by adding
new arcs from f1 and f2 to a new vertex t, giving all
vertices capacity one, and asking whether there is a flow
of value 2 from c to t. Next, we observe that this is a
particularly easy flow problem, which can be solved in
linear time by starting with a shortest path from c to
t via f1 and then looking for an augmenting path. Fi-
nally, we observe that, having fixed the shortest path
to f1 and constructed the residual graph, we can actu-
ally solve the network flow problems for all pairs (f1, fi)
in parallel with a single breadth-first search. The over-
all running time thus becomes O(|C|m log n+ |C||F |m),
once again O(n3) under our assumptions.

5 Network Test Instances

We tested our algorithms on both synthetic and real-
world instances. The two classes modeled different
types of data networks and had distinctly different
characteristics, enabling us to test the generality of our
methods. In this section we will discuss each type of
instance, and compare the structural properties of the
resulting testbeds.

5.1 Synthetic LAN/WAN Instances The syn-
thetic instances were designed to reflect the structure of
large real-world local- and wide-area networks (LAN’s
and WAN’s) and were sized so that we could study the
scalability of our algorithms and the solutions they pro-
duce. They were generated via the following four-step
process.

1. A transit-stub skeleton graph is generated using
the Georgia Tech Internetwork Topology Models
(GT-ITM) package [6]. We generated 10 graphs
each for parameter settings that yielded |V | =
26, 50, 100, 190, 220, 250, 300, 558. (The value of |V |
is an indirect result of one’s choice of the allowed
input parameters.)

2. Traffic demand is generated between all pairs of
vertices in the skeleton graph using a gravitational
model (described below) with the shortest path
metric.

Figure 3: A transit stub network with three transit
domains and ten stub domains. One stub domain homes
in on transit domains 1 and 2. Two stub domains are
linked by a stub to stub edge.

3. We determine link capacities and OSPF link
weights such that all traffic can be routed on the
resulting network using the OSPF routing protocol
[5].

4. Given the desired numbers of customer and facil-
ity location vertices, the sets C and F are ran-
domly generated, with C ⊆ F to insure feasi-
bility. Let (Cx,Fy) denote the set of instances
with |C| = ⌈|V |/x⌉ and |F | = ⌈|V |/y⌉. For each
graph we generated seven instances, one each of
type (C1,F1), (C2,F2), (C4,F4), (C8,F8), (C2,F1),
(C4,F1), and (C8,F1).

5.1.1 Transit-Stub Skeleton Graphs Transit-
stub graphs [6] are hierarchical graphs made up of tran-
sit vertex components and stub vertex components. The
stub node components can be thought of as access net-
works while the transit node components make up the
backbone of the network. See Figure 3.

The GT-ITM package provides a parameterized
method for generating such graphs randomly. It con-
structs undirected graphs, which we then view as di-
rected graphs with arcs (u, v) and (v, u) in place of every
edge {u, v}. The constructed graphs consist of T tran-
sit domains, each containing an average of NT transit
vertices and an average of ET internal edges connect-
ing them, with an average ETT edges joining vertices of
the domain to vertices in other domains. In addition,
there are an average of S stub domains per transit ver-
tex, each containing an average of NS stub vertices and

|V | |A| T NT S NS ET ETT EST ES

26 69.4 1 3 2 8 2.3 0.0 2.0 7.5
50 182.2 1 2 3 8 1.0 0.0 4.0 41.0

100 354.4 1 4 3 8 4.2 0.0 3.0 41.2
190 569.2 2 5 3 6 6.6 2.0 3.0 23.6
220 720.4 2 5 3 7 5.4 2.0 3.0 30.9
250 870.0 2 5 3 8 6.6 2.0 3.0 39.1
300 1063.2 2 6 3 8 8.8 2.0 3.0 39.8
558 2344.4 3 6 3 10 8.4 4.0 3.0 60.1

Table 1: Measured parameters of generated transit-stub
graphs.

ES internal edges, along with an average of EST edges
connecting vertices of the stub domain to transit ver-
tices. In addition, the program adds additional edges if
necessary to insure that the graph is connected, and on
its own occasionally adds edges between different stub
domains (this only happened once, for one of our 50-
vertex graphs). See [6] for a description of the random
process that produced networks of this form and guar-
antees that they are connected.

We generated 10 graphs each for eight different sets
of parameters yielding increasing values for |V |. Note
that the number of vertices is not an explicit parameter
of the graph generation process, but rather is a function
of the values of the other parameters, which helps
explain the fact that the values of |V | do not increase
uniformly. The package also does not allow for direct
input of ET and ES , but instead asks for the probability
that any pair of vertices in a transit domain/stub is an
edge. For all our graphs we set these probabilities to
0.6 and 0.42, respectively. In Table 1 we present the
measured averages for the parameters for each value of
|V |. Note that each edge {u, v} in the generated graph
is represented by the two directed arcs (u, v) and (v, u)
in the derived network.

5.1.2 Traffic Demands The traffic demands are
created via a randomized “gravitational” method. We
first generate random numbers o(v), d(v) ∈ [0, 1] for
each vertex v, and, for each pair of vertices (u, v),
compute dist(u, v), the shortest length (in edges) of a
path from u to v. Let Dmax be the largest of these
distances. Then, for any ordered pair (u, v) of distinct
vertices, we choose a random number r ∈ [0, 1] and set
the traffic demand from u to v to be

r · e−(dist(u,v)
2Dmax) · o(u) · d(v) .

5.1.3 OSPF Routes Given the skeleton graph and
the traffic demands, we apply the algorithm of [5]
that computes link capacities and corresponding OSPF
weights under which the traffic can be efficiently routed.
The OSPF weights then become the basis for determin-

ing the shortest (i.e., lowest-weight) paths between all
pairs of vertices, with the set of paths for the pair (u, v)
being represented implicitly by the graph consisting of
the union of all the edges contained in the paths.

5.1.4 Customers and Potential Facility Loca-
tions For each of our skeleton graphs, we generated
seven networks, differing in their choices of the sets F
and C of potential facility locations and of customer
vertices. Our synthetic instance testbed thus contains
70 different networks for each value of |V |, for a total of
560 networks.

5.2 Real-World ISP Instances The real-world in-
stances in our testbed were derived from five propri-
etary Tier-1 Internet Service Provider (ISP) backbone
networks and used actual OSPF weights. The networks
ranged in size from a little more than 100 routers to
nearly 1,000, each with between 3.5|V | and 4.3|V | edges
(similar to the range for our synthetic instances). We
shall denote them by R100a, R100b, R200, R500, and
R1000, where the number following the R is the number
of routers, rounded to the nearest multiple of 100.

We constructed 16 instances from each of the four
smaller topologies, starting with the case in which F =
C = V . The other instances also had F = V , but C
was a random sample of roughly 1/2, 1/4, or 1/8 of the
vertices. For each combination of a topology from the
set R100a, R100b, R200, and R500 and a sample size,
we generated five distinct instances, based on different
random choices for C.

For the largest network, R1000, where we have
more detailed information about the roles played by the
routers, we constructed an instance which took those
roles into account: access routers served as the customer
vertices and the potential facility locations consisted
of the access and aggregation routers (modeling the
situation in which measurement hosts could not be
connected directly to backbone routers).

5.3 Instance Properties Our synthetic instances
reflect the structure of real-world LANs and WANs, and
consist of many, relatively small 2-connected compo-
nents, the largest averaging only 18% of the vertices
(12% when |V | > 50). In contrast, the Tier-1 ISP
instances consist of one very large 2-connected com-
ponent, containing over 90% of the vertices on aver-
age, with small 2-connected components hanging off of
it. This results in the ISP instances yielding substan-
tially more triples than the synthetic ones of the same
size. For example, R500 has roughly four times as many
triples as the (C1,F1) instances with |V | = 558.

The choice of arc weights also has an effect on
our instances. The optimized weights of our syn-

thetic instances lead to relatively few shortest-path ties,
and so the pathwise-disjoint instances average only 5%
more triples than the corresponding setwise-disjoint in-
stances. The weights in the ISP instances were con-
strained by a variety of factors in addition to traffic
balancing, and yield far more ties. As a result, the
pathwise-disjoint instances on average have roughly 50%
more triples. If, in our synthetic instances, we set all the
edge weights equal, rather than optimizing them, we get
even more ties and more extreme results. The number
of setwise-disjoint triples drops by about 10% on aver-
age, but the number of pathwise-disjoint triples averages
80% above that (and 45% above the number of such
triples when weights are optimized). We also observe
that the number of triples grows worse than quadrati-
cally with the number of vertices for each synthetic class
(Cx,Fy), and there is at least a quadratic blow-up for
our ISP instances, with the number of triples for R1000
approaching 50 million.

6 Summary of Experimental Results

This section evaluates our algorithms in three areas.

• Accuracy: How accurate were the approximations
provided by each of the algorithms Greedy, Ge-
netic and HH? When OPT is known, we compare
to OPT, and otherwise to the HH-derived Lower-
Bound.

• Execution Time: How fast are the algorithms? The
times we report were for runs on an SGI shared
multiprocessor machine with 32 1.5 Ghz Itanium
(IA-65) processors and 256 gigabytes of memory.
(Each algorithm run used only a single processor.)

• Solution Quality (Cost Reduction): The first two
measures address the quality of the algorithms.
This one addresses what they tell us about the
applications. Even an optimal solution will not be
enough to justify the proposed monitoring scheme
of [8] if it does not provide a significant savings
over the default solution that simply takes all
customers (which for our instances are themselves
facility locations) and is likely to yield more reliable
measurements. We also consider how much further
improvement is obtainable when going from the
setwise-disjoint to the pathwise-disjoint versions of
the problem.

6.0.1 Accuracy for Synthetic Instances In Table
2, we present the average values of the lower bounds
computed by our HH heuristic for our 56 classes of
synthetic instances. This provides an idea of how

Class 26 50 100 190 220 250 300 558

Average Values of LowerBound

(C1,F1) 8.7 10.7 24.0 53.8 59.2 60.7 71.1 87.5
(C2,F1) 5.8 7.5 17.1 38.2 39.5 42.8 50.0 67.7
(C4,F1) 4.0 6.1 11.7 26.8 28.2 29.5 36.3 52.2
(C8,F1) 3.1 3.9 7.9 16.1 19.1 20.5 24.5 38.7
(C2,F2) 5.9 7.8 17.7 39.2 43.5 45.9 53.6 70.4
(C4,F4) 3.8 5.6 11.9 26.0 30.7 32.2 37.4 57.8
(C8,F8) 2.6 3.9 7.8 16.4 19.9 20.2 25.2 40.6

Number of Instances Solved by MIP

(C1,F1) 10 10 10 - - - - -
(C2,F1) 10 10 10 - - - - -
(C4,F1) 10 10 10 7 - - - -
(C8,F1) 10 10 10 9 - - - -
(C2,F2) 10 10 10 10 10 10 10 -
(C4,F4) 10 10 10 10 10 10 10 10
(C8,F8) 10 10 10 10 10 10 10 10

Average Value of Opt−LowerBound

(C1,F1) 0.0 0.0 0.1 - - - - -
(C2,F1) 0.0 0.0 0.0 - - - - -
(C4,F1) 0.0 0.0 0.0 0.0 - - - -
(C8,F1) 0.0 0.2 0.1 0.0 - - - -
(C2,F2) 0.2 0.1 0.0 0.4 0.4 0.5 0.5 -
(C4,F4) 0.4 0.5 0.4 0.6 0.6 0.2 0.7 2.1
(C8,F8) 0.5 0.7 0.5 0.6 0.2 0.8 0.8 1.4

Number of instances, of 10, for which
LowerBound is known to equal OPT

(C1,F1) 10 10 10 2 8 4 2 0
(C2,F1) 10 9 10 9 9 6 5 1
(C4,F1) 10 10 10 10 10 6 6 1
(C8,F1) 10 10 10 10 9 8 10 3
(C2,F2) 10 10 10 10 10 10 10 1
(C4,F4) 10 10 10 10 10 10 10 10
(C8,F8) 10 10 10 10 10 10 10 10

Table 2: LowerBound versus Opt for synthetic in-
stances.

solution values vary depending on class and value for
|V |. The table also reports how many of the 10 instances
of each type that our MIP code was able to solve within
a 24-hour time bound. For |V | = 190, we eventually
solved the four missing (C4,F1) and (C8,F1) instances,
although the longest (C4,F1) took slightly more than
a week. Note, however, that 341 of the 370 solved
instances took less than 10 minutes. For those class/size
combinations in which MIP solved all 10 instances, we
also present the average amount by which the optimal
solution exceeded LowerBound.

The HH lower bounds are very good. As shown in
the table, the average values of Opt − LowerBound
never exceed 0.8 in any of the cases with |V | < 558.
This can still result in fairly large percentage differences
in those cases where OPT is small (16% for (C8,F8)
when |V | = 26), but for all cases in which |C| > 15,
the percentage gap is less than 3.8%. Also, as shown
in the table, the lower bound is often optimal even

for the larger values of |V | where MIP fails. We are
able to conclude this whenever one of our heuristics
finds a solution that matches the lower bound, which
happened for 110 of our instances for which MIP
failed, bringing the total number of instances for which
optima are known to 480 of 560. The gap between
LowerBound and the best solution known begins to
widen for |V | = 558, although we do not at this point
know how to apportion the blame between the quality
of LowerBound or of our heuristics. In what follows,
our standard of comparison for accuracy will be the true
optimum when it is known, and LowerBound only if
the true optimum is not known. We shall call this our
“lower bound” as opposed to LowerBound.

The strength of LowerBound might seem surpris-
ing, given that it corresponds to the size of just one of
the two disjoint hitting sets that are put together by
the HH heuristic. However, the first hitting set tends
to be quite small, and recall that the HH solution can
be significantly smaller than the sum of the sizes of the
two hitting sets, given the final minimalization pass that
deletes redundant vertices from the cover. However, the
quality of the bound does depend on there being a high
proportion of t-good customer vertices, and the aver-
age percentage of such customers that are t-good when
t = ⌊|F |/2⌋ is dropping as |V | increases for these in-
stances (from 97.7% to 96.0% as we go from |V | = 300
to 558).

For instances of the type studied here, all of our
heuristics come very close to our lower bounds. This is
in contrast to our complexity results that suggest that
no polynomial-time heuristic can do well against a mali-
cious instance designer. Leading the pack, Greedy400
found the optimal solution for all the instances where it
is known, and found the best solutions we know on all
of the other instances, averaging 0.76% above the lower
bound for all instances with |V | ≥ 100, with no individ-
ual class average excess exceeding 2.41%. (We ignore
results for our instances with |V | < 100, as those seem
too easy. Each is solved by MIP in 15 seconds or less,
and Greedy400 takes a fraction of a second and always
found that optimal.) The corresponding percentages for
basic Greedy, based on taking the median result from
the 400 runs of Greedy400, were 0.90% and 2.97%.
For Genetic, based on just one run, they were 0.86%
and 2.74% and for HH, they were 1.36% and 4.00%. In
all three cases, the worst results were for class (C1,F1)
with |V | = 558. None of these three latter algorithms
dominate any of the others, although Genetic can be
viewed as marginally the best, while HH is the worst –
Genetic finds solutions better than those of Greedy
17 times, and is only beaten 9 times. In comparison to
HH, its score is 68 to 7. Greedy beats HH 65 to 7.

A similarly mixed story holds for the corre-
sponding pathwise-disjoint instances, where once again
Greedy400 finds the optimal solution whenever it is
known, and is never beaten by any of the other heuris-
tics. Note that although the theory justifying HH only
applies to the setwise-disjoint case, it still can be run on
pathwise-disjoint instances, and still produces reason-
able solutions. It no longer produces valid lower bounds,
however, so for these instances we cannot evaluate our
heuristics’ excess over optimal except on those instances
where MIP succeeded in a feasible amount of time.

The results for Greedy400, although they poten-
tially measure the tail of a distribution, are actually
quite repeatable here. For none of the 560 synthetic
instances did the value of the “best-of-400” runs oc-
cur in fewer than 19 of the runs. If we assume this
distribution mirrors the actual distribution, then the
probability of failing to find that best is no more than
(381/400)400 < 10−8. We cannot be as confident in our
results for Genetic, since there, because of the running
times involved, we rely on the value of a single run. We
shall, however, investigate this issue in the full paper.

6.0.2 Execution Times When we began this study,
our main concern was to evaluate the proposed moni-
toring scheme, and hence our emphasis was on measur-
ing solution quality, with less concern for running time.
Consequently, none of our implementations (which at
that time did not include Greedy400)) was particu-
larly efficient. This remains the case for HH and, in
part, for Genetic. We have, however, reimplemented
Greedy. Each of our heuristics was originally imple-
mented by a different co-author, and involved slightly
different tie-breaking rules in the implementation of the
underlying greedy heuristic. The three implementations
consequently did not yield entirely consistent results
when their code was adapted to just run the greedy
heuristic. The current version of Greedy was imple-
mented to explore these differences, and consequently
was designed with efficiency more in mind. Moreover,
typically 95% or more of its running time is spent in
reading the input and setting up its initial data struc-
tures, making the performance of multiple runs on the
same instance quite cost effective and leading us to add
Greedy400 to our algorithmic mix.

See Table 3, which lists our algorithms’ average
running times for our largest synthetic instances, those
with |V | = 300 and |V | = 558, and all our seven
instance classes. In the full paper, we will report on
re-implemented versions Genetic and HH using the
new Greedy implementation. We expect HH to have
a time competitive with single-run-Greedy. Based
on preliminary experiments, re-implementing Genetic

Triple Greedy
Class Gen 1 400 HH Genetic

|V | = 300

(C1,F1) 1.38 .74 15.80 12.86 6281.6
(C2,F1) 0.68 .35 2.79 7.00 2159.3
(C4,F1) 0.36 .17 .94 4.49 800.7
(C8,F1) 0.19 .09 .13 3.64 303.8

(C2,F2) 0.22 .10 .12 4.97 233.0
(C4,F4) 0.05 .02 .02 3.22 7.9
(C8,F8) 0.02 .00 .00 3.11 0.4

|V | = 558

(C1,F1) 7.47 4.07 70.96 65.18 77528.6
(C2,F1) 3.69 2.14 32.13 30.54 34866.0
(C4,F1) 1.92 1.10 17.46 15.48 6422.0
(C8,F1) 0.93 .46 6.17 8.06 1612.6
(C2,F2) 1.14 .54 10.08 11.00 4445.8
(C4,F4) 0.22 .08 2.01 4.32 173.2
(C8,F8) 0.06 .02 .89 3.71 5.5

Table 3: Average running times in seconds on a 1.5
Ghz Itanium processor for Setwise-Disjoint instances.
Triple generation for the Pathwise-Disjoint instances
takes roughly twice as long as for Setwise-Disjoint ones,
with the ratio growing slightly with |V |.

should also speed it up significantly, although the
improvement may not be so dramatic. Note, however,
that even with the current implementations, our results
suggest that Greedy400 and HH are both fast enough
to be practical even for much larger instances than
studied here, and our triple generation code will not
add a substantial overhead.

6.0.3 Cost Reduction. In this section we consider
the savings our heuristics can provide over simply
choosing the cover consisting of the set C of all customer
vertices (always a feasible solution since our instances all
have C ⊆ F , and the default solution for network path
monitoring if we do not use our proposed monitoring
scheme). For a given class these savings do not appear
to vary strongly with |V |. Therefore, we can simplify
things and report only a single average improvement
for each class, as shown in Table 4. Here we present
the average percentage reduction in cover size produced
by Greedy400, as well as the reduction that could be
obtained if we could find covers matching our best lower
bounds for all instances. As can be seen, the savings are
substantial. The smallest average savings generated by
(setwise-disjoint) Greedy400 is roughly 32% and the
largest is 75%. In addition, the table shows the further
reduction we could obtain if, instead of considering the
setwise-disjoint version of the problem, we used the
pathwise-disjoint solutions. The improvements are more
moderate, but the latter does improve on the former

Set-Disjoint Path-Disjoint
Class Greedy400 UB Greedy400 ∆

(C1,F1) 75.1 75.3 76.1 4.9
(C2,F1) 65.3 65.4 66.2 3.4
(C4,F1) 50.9 51.5 51.7 1.8
(C8,F1) 35.2 35.4 35.6 0.7
(C2,F2) 63.2 63.3 64.4 3.9
(C4,F4) 48.3 48.3 49.4 2.3
(C8,F8) 32.1 32.1 32.9 1.1

Table 4: Percentage reduction in cover size compared
to |C|. “UB” means the best possible improvement
in the setwise-disjoint case, given our lower bound on
the optimal solution for that case. “∆” means the
percentage by which Greedy400’s pathwise-disjoint
solution improves on its setwise-disjoint solution.

for 241 of our 560 instances, and for each class the
average beats that for the setwise-disjoint upper bound.
The overall average improvement is 3.2%, which works
out to almost saving a full facility. A further .07%
improvement can be obtained if we are willing to settle
for arc- rather than vertex-disjoint paths, which might
make sense in our monitoring application, where all
the relevant lemmas would still apply. Arc-disjointness
provided an improvement on 10 of our 560 instances.

6.1 Results for Real-World ISP Topologies.
The results for our 65 instances based on actual ISP
backbone topologies were similar to those for our syn-
thetic instances, although, as we shall see, there were
a few significant differences. Our MIP code once again
was able to solve all our instances with |F | < 150, in
this case the ones based on R100a and R100b, with a
median running time of 16 seconds and a maximum of
10 minutes. We were also able to solve all the (C4,F1)
instances based on R200, although the maximum here
was 7 hours, and we solved four of the five (C2,F1) R200
instances, in times ranging form 2 hours to 2.5 days.

For the instances MIP solved, the gap between the
optimal and the HH-based LowerBound was larger
than for our synthetic instances. It averaged 5.0%
versus 1.7% for our synthetic instances with |V | ≥ 100
(10.6% for the solved R200 instances). For none of the
27 real-world instances left unsolved by MIP did we find
a solution that matched LowerBound, as opposed to
110 out of 190 for our synthetic instances. This decline
in the quality of LowerBound is possibly because
there were significantly fewer ⌊|F |/2⌋-good customers
than there were for our synthetic instances, presumably
because the real OSPF weights generated more shortest
path ties. Overall the average was 93.0% versus 97.7%
for our synthetic instances, and, for the instances with
approximately 500 vertices, 89.9% versus 96.0%. For
R1000 it was just 42.2%.

As with our synthetic instances, Greedy400 found
the optimal solution for all instances that MIP solved.
It also continued to be robust, never finding its best so-
lution value fewer than 7 times. However, it no longer
found the best solution on all instances, being beaten
by Genetic on one R500 instance and by HH on the
R1000 instance, which was too large for our initial Ge-
netic implementation to handle. In addition, it av-
eraged 2.97% above our best lower bound, as opposed
to 0.76% for our synthetic instances, although, as sug-
gested above, this may be more the fault of Lower-
Bound. And it did beat Genetic on 9 instances and
HH on 12. (Genetic outclassed HH 12 to 7.)

One can, however, surmise that Greedy400 may
be running out of gas as |V | increases. For the one R500
instance where it was beaten by Genetic, we can find
that better solution with high probability if we replace
Greedy400 by Greedy10,000. This would increase
the running time from 3 to 69 minutes, as compared to
16.5 hours taken by the original Genetic implementa-
tion. A re-implemented Genetic may be much more
competitive, however, since the number of calls it makes
to Greedy will probably be significantly smaller than
10,000. And for R1000, our most realistic real-world in-
stance, Greedy400 is totally outclassed. HH finds a
solution of size 90 in 33 minutes, whereas Greedy400,
which takes roughly the same time, finds only a solu-
tion of size 318. Indeed, all Greedy solutions we have
ever found, over more than 10,000 runs, are bigger than
300. (In preliminary experiments, a re-implemented
Genetic algorithm also finds solutions of size 90. This
takes 27 hours, a time which should be substantially
reduced once we optimize the implementation’s param-
eters, but the resulting running time is unlikely to be
competitive with a similarly re-implemented HH, which
would likely take less than a minute.)

As to cost reduction, our heuristics provided even
greater savings in the numbers of facilities used than
we saw for our synthetic instances. For the cases in
which all vertices are customers (C = V), Greedy400
produces average savings of 89% over the naive solution
of using all customer vertices, versus 75% for the
analogous synthetic instances. (The savings is 93% for
the HH solution of R1000.) For the cases in which half
the vertices were customers, the savings averaged 84%
versus 65%. Even in the cases in which only about 1/8 of
the vertices were customer vertices, the savings averaged
73% as compared to 35% for our synthetic instances.

Also in contrast to our synthetic instances, here
we obtain substantial improvements if we switch to the
pathwise-disjoint version of the problem. Whereas the
average improvement we saw for such a switch in the
synthetic case was about 3.2%, it was 18.0% for our

real-world instances, excluding R1000. For R1000, the
improvement is 61%, from 90 facilities to 35, obtained
using both Greedy400 and HH. Here settling for arc-
disjoint paths only yielded an improvement on one of
our 65 instances, and that by just a single facility.

References

[1] J. Bean. Genetics and random keys for sequencing and
optimization. ORSA Journal on Computing, 6:154–
160, 1994.

[2] L. Breslau, C. Chase, N. Duffield, B. Fenner, Y. Mao,
and S. Sen. Vmscope – a virtual multicast VPN
performance monitor. ACM SIGCOMM Workshop on
Internet Network Management (INM), 2006.

[3] L. Breslau, I. Diakonikolas, N. Duffield, Y. Gu,
M. Hajiaghayi, D. S. Johnson, H. Karloff,
M. G. C. Resende, and S. Sen. Disjoint-path
facility location: Theory and practice, 2010. Pre-
liminary draft of journal version, available at
http://www.research.att.com/∼dsj/papers/full-

monitor.pdf.
[4] H. Burch and C. Chase. Monitoring link delays with

one measurement host. SIGMETRICS Performance
Evaluation Review, 33(3):10–17, 2005.

[5] L. Buriol, M. Resende, and M. Thorup. Survivable
IP network design with OSPF routing. Networks,
49(1):51–64, 2007.

[6] K. Calvert, M. Doar, and E. Zegura. Modeling Internet
Topology. IEEE Communications Magazine, 35(6),
1997.

[7] J. F. Gonçalves and M. G. Resende. Biased random-
key genetic algorithms for combinatorial optimization.
Journal of Heuristics, 2010. Published online 27
August 2010. DOI: 10.1007/s10732-010-9143-1.

[8] Y. Gu, L. Breslau, N. Duffield, and S. Sen. GRE
encapsulated multicast probing: A scalable technique
for measuring one-way loss. In IEEE Infocom 2008:
The 27th Conf. on Comput. Comm., pages 1651–1659.
IEEE Communications Society, New York, NY, 2008.
A slightly earlier version of this paper is available at
http://www.research.att.com/∼duffield/papers/

GBDS-vmscope.pdf.

[9] R. Hassin and D. Segev. The set cover with pairs
problem. In FSTTCS 2005: Proceedings of the 25th
International Conference on Foundations of Software
Technology and Theoretical Computer Science, volume
3821 of Lecture Notes in Computer Science, pages 164–
176, Berlin, 2005. Springer-Verlag.

[10] D. S. Johnson. Approximation algorithms for combi-
natorial problems. J. Comput. Syst. Sci., 9:256–278,
1974.

[11] G. Kortsarz. On the hardness of approximating span-
ners. Algorithmica, 30:432–450, 2001.

[12] L. Lovász. On the ratio of optimal integral and
fractional covers. Disc. Math., 13:383–s 390, 1975.

