SMALL APPROXIMATE PARETO SETS FOR BI-OBJECTIVE SHORTEST
PATHS AND OTHER PROBLEMS*

ILIAS DIAKONIKOLAST AND MIHALIS YANNAKAKIS?

Abstract. We investigate the problem of computing a minimum set of solutions that approximates within a
specified accuracy e the Pareto curve of a multiobjective optimization problem. We show that for a broad class of
bi-objective problems (containing many important widely studied problems such as shortest paths, spanning tree,
matching and many others), we can compute in polynomial time an e-Pareto set that contains at most twice as many
solutions as the minimum such set. Furthermore we show that the factor of 2 is tight for these problems, i.e., it
is NP-hard to do better. We present upper and lower bounds for three or more objectives, as well as for the dual
problem of computing a specified number k of solutions which provide a good approximation to the Pareto curve.

Key words. multi-objective optimization, approximate Pareto set, bi-objective shortest path

AMS subject classifications. 90C29, 68W25, 90C27, 90C59

1. Introduction. In many decision making situations it is typically the case that more
than one criterion comes into play. For example, when purchasing a product (car, tv, etc.)
we care about its cost, quality, etc. When choosing a route we may care about the time it
takes, the distance traveled, etc. When designing a network we may care about its cost, its
capacity (the load it can carry), its coverage. This type of multicriteria or multiobjective
problems arise across many diverse disciplines, in engineering, in economics and business,
healthcare, and others. The area of multiobjective optimization has been (and continues to
be) extensively investigated in the management science and optimization communities with
many papers, conferences and books (see e.g. [Cli, Ehr, EG, FGE, Mit]).

In multiobjective problems there is typically no uniformly best solution in all objectives,
but rather a trade-off between the different objectives. This is captured by the trade-off or
Pareto curve, the set of all solutions whose vector of objective values is not dominated by
any other solution. The trade-off curve represents the range of reasonable “optimal” choices
in the design space; they are precisely the optimal solutions for all possible global “utility”
functions that depend monotonically on the different objectives. A decision maker, presented
with the trade-off curve, can select a solution that corresponds best to his/her preferences; of
course different users generally may have different preferences and select different solutions.
The problem is that the trade-off curve has typically exponential size (for discrete problems)
or is infinite (for continuous problems), and hence we cannot construct the full curve. Thus,
we have to contend with an approximation of the curve: We want to compute efficiently and
present to the decision makers a small set of solutions (as small as possible) that represents
as well as possible the whole range of choices, i.e. that provides a good approximation to the
Pareto curve. Indeed this is the underlying goal in much of the research in the multiobjective
area, with many heuristics proposed, usually however without any performance guarantees or
complexity analysis as we do in theoretical computer science.

In recent years we initiated a systematic investigation [PY1, VY] to develop the theory
of multiobjective approximation along similar rigorous lines as the approximation of single
objective problems. The approximation to the Pareto curve is captured by the concept of an -
Pareto set, a set P, of solutions that approximately dominates every other solution; that is, for

*A preliminary version of this work appeared in the Proceedings of the 10th International Workshop on Approx-
imation Algorithms for Combinatorial Optimization Problems (APPROX’ 07), 2007, pp. 74-88.

fSupported by NSF grant CCF-04-30946, NSF grant CCF-07-28736 and an Alexander S. Onassis Foundation
Fellowship (i1ias@cs.columbia.edu).

¥Supported by NSF grant CCF-04-30946 and NSF grant CCF-07-28736 (mihalis@cs.columbia.edu).

1



2 1. DIAKONIKOLAS AND M. YANNAKAKIS

every solution s, the set P, contains a solution s’ that is within a factor 1 + € of s, or better,
in all the objectives. (As usual in approximation, it is assumed that all objective functions
take positive values.) Such an approximation was studied before for certain problems, e.g.
multiobjective shortest paths, for which Hansen [Han] and Warburton [Wa] showed how to
construct an e-Pareto set in polynomial time (for fixed number of objectives). Note that
typically in most real-life multiobjective problems the number of objectives is small. In fact,
the great majority of the multiobjective literature concerns the case of two objectives.

Consider a multiobjective problem with d objectives, for example shortest path with cost
and time objectives. For a given instance, and error tolerance €, we would like to compute
a smallest set of solutions that form an e-Pareto set. Can we do it in polynomial time? If
not, how well can we approximate the smallest e-Pareto set? Note that an e-Pareto set is
not unique: in general there are many such sets, some of which can be very small and some
very large. First, to have any hope we must ensure that there exists at least a polynomial
size e-Pareto set. Indeed, in [PY1] it was shown that this is the case for every multiobjective
problem with a fixed number of polynomially computable objectives. Second we must be
able to construct at least one such set in polynomial time. This is not always possible. A
necessary and sufficient condition for polynomial computability for all € > 0 is the existence
of a polynomial algorithm for the following Gap problem: Given a vector of values b, either
compute a solution that dominates b, or determine that no solution dominates b by at least a
factor 1 + € (in all the objectives). Many multiobjective problems were shown to have such a
routine for the Gap problem (and many others have been shown subsequently).

Construction of a polynomial-size approximate Pareto set is useful, but not good enough
in itself: For example, if we plan a trip, we want to examine just a few possible routes, not a
polynomial number in the size of the map. More generally, in typical multicriteria situations,
the selected representative solutions are investigated more thoroughly by the decision maker
(designer, physician, corporation, etc.) to assess the different choices and pick the most
preferable one, based possibly on additional factors that are perhaps not formalized or not
even quantifiable. We thus want to select as small a set as possible that achieves a desired
approximation. In [VY] the problem of constructing a minimum e-Pareto set was raised
formally and investigated in a general framework. It was shown that for all bi-objective
problems with a polynomial-time GAP routine, one can construct an e-Pareto set that contains
at most 3 times the number of points of the smallest such set; furthermore, the factor 3 is best
possible in the sense that for some problems it is NP-hard to do better. Note that although the
factor 3 of [VY] is best possible in general for two objectives, one may be able to do better
for specific problems.

We show in this paper, that for an important class of bi-objective problems (containing
many widely studied natural ones such as shortest paths, spanning tree, matching, knapsack,
scheduling problems and others) we can obtain a 2-approximation, and furthermore the factor
of 2 is tight for them, i.e., it is NP-hard to do better. Our algorithm is a general algorithm that
relies on a routine for a stronger version of the Gap problem, namely a routine that solves
approximately the following Restricted problem: Given a (hard) bound b, for one objective,
compute a solution that optimizes approximately the second objective subject to the bound.
Many problems (e.g. shortest paths, etc.) have a polynomial time approximation scheme for
the Restricted problem. For all such problems, a 2-approximation to the minimum e-Pareto
set can be computed in polynomial time. Furthermore, the number of calls to the Restricted
routine (and an associated equivalent dual routine) is linear in the size OPT. of the optimal
e-Pareto set.

The bi-objective shortest path problem is probably the most well-studied multiobjective
problem. It is the paradigmatic problem for dynamic programming (thus can express a va-



SMALL APPROXIMATE PARETO SETS FOR BI-OBJECTIVE SHORTEST PATHS 3

riety of problems), and arises itself directly in many contexts. One area is network routing
with various QoS criteria (see e.g. [CX2, ESZ, GR+, VV]). For example, an interesting
proposal in a recent paper by Van Mieghen and Vandenberghe [VV] is to have the network
operator advertise a portfolio of offered QoS solutions for their network (a trade-off curve),
and then users can select the solutions that best fit their applications. Obviously, the portfolio
cannot include every single possible route, and it would make sense to select carefully an
“optimal” set of solutions that cover well the whole range. Other applications include the
transportation of hazardous materials (to minimize risk of accident, and population exposure)
[EV], and many others; we refer to the references, e.g. [EG] contains pointers to the ex-
tensive literature on shortest paths, spanning trees, knapsack, and the other problems. Our
algorithm applies not only to the above standard combinatorial problems, but more generally
to any bi-objective problem for which we have available a routine for the Restricted problem;
the objective functions and the routine itself could be complex pieces of software without a
simple mathematical expression.

After giving the basic definitions and background in Section 2, we present in Section 3
our general lower and upper bound results for bi-objective problems, as well as applications to
specific problems. In Section 4 we present some results for d = 3 and more objectives. Here
we assume only a GAP routine; i.e. these results apply to all problems with a polynomial time
constructible e-Pareto set. It was shown in [VY] that for d = 3 it is in general impossible
to get any non-trivial approximation: for any parameter k, there exist instances with O(k)
points in which we cannot efficiently distinguish (given the GAP routine) whether the optimal
e-Pareto set has 1 point or (at least) k points. This means that one has to relax ¢, i.e compute
an €' -Pareto set for some ¢ > € and compare its size to the smallest e-Pareto. Combining
results from [VY] and [KP] we show that for any ¢ > ¢ we can construct an ¢'-Pareto set
of size cOPT,, i.e. within a constant factor ¢ of the size OPT. of the optimal e-Pareto set.
For general d, the problem can be reduced to a Set Cover problem whose VC dimension and
codimension are at most d, and we can construct an €'-Pareto set of size O(dlog OPT,) -
OPT..

We discuss also the Dual problem: For a specified number & of points, find k points that
provide the best approximation to the Pareto curve, i.e. that form an e-Pareto set with the
minimum possible €. In [VY] it was shown that for d = 2 objectives the problem is NP-hard,
but we can approximate arbitrarily well (i.e. there is a PTAS) the minimum approximation
ratio p* = 1 4 €*. We show that for d = 3 this is not possible, in fact one cannot get any
multiplicative approximation (unless P=NP). We exploit a relationship of the Dual problem
to the asymmetric k-center problem and techniques from the latter problem to show that the
Dual problem can be approximated (for d = 3) within a constant power, i.e. we can compute
k points that cover every point on the Pareto curve within a factor p’ = (p*)¢ or better in
all objectives, for some constant c. (It follows from our results that ¢ < 9.) For small p*,
i.e. when there is a set of k points that provides a good approximation to the Pareto curve,
constant factor and constant power are related, but in general of course they are not.

2. Definitions and Background. A multiobjective optimization problem II has a set
In of valid instances, every instance I € Iy has a set of solutions S(I). There are d ob-
jective functions, f1, ..., f4, each of which maps every instance I and solution s € S(I)
to a value f;(I,s). The problem specifies for each objective whether it is to be maximized
or minimized. We assume as usual in approximation that the objective functions have posi-
tive rational values, and that they are polynomial-time computable. We use m to denote the
maximum number of bits in numerator and denominator of the objective function values.

We say that a d-vector u dominates another d-vector v if it is at least as good in all the
objectives, i.e. u; > v; if f; is to be maximized (u; < vj if f; is to be minimized). Similarly,



4 1. DIAKONIKOLAS AND M. YANNAKAKIS

we define domination between any solutions according to the d-vectors of their objective
values. Given an instance I, the Pareto set P(I) is the set of undominated d-vectors of values
of the solutions in S(I). Note that for any instance, the Pareto set is unique. (As usual we are
also interested in solutions that realize these values, but we will often blur the distinction and
refer to the Pareto set also as a set of solutions that achieve these values. If there is more than
one undominated solution with the same objective values, P(I) contains one of them.)

We say that a d-vector u c-covers another d-vector v if u is at least as good as v up to
a factor of ¢ in all the objectives, i.e. u; > v;/cif f; is to be maximized (u; < cv; if f; is
to be minimized). Given an instance I and € > 0, an e-Pareto set P.(I) is a set of d-vectors
of values of solutions that (1 + €)-cover all vectors in P(I). For a given instance, there may
exist many e-Pareto sets, and they may have very different sizes. It is shown in [PY1] that
for every multiobjective optimization problem in the aforementioned framework, for every
instance I and € > 0, there exists an e-Pareto set of size O((4m/¢)?1), i.e. polynomial for
fixed d.

An approximate Pareto set always exists, but it may not be constructible in polynomial
time. We say that a multiobjective problem II has a polynomial time approximation scheme
(respectively a fully polynomial time approximation scheme) if there is an algorithm, which,
given instance I and a rational number € > 0, constructs an e-Pareto set P, ([) in time polyno-
mial in the size || of the instance I (respectively, in time polynomial in ||, the representation
size |¢| of €, and in 1/¢). Let MPTAS (resp. MFPTAS) denote the class of multiobjective prob-
lems that have a polynomial time (respectively fully polynomial time) approximation scheme.
There is a simple necessary and sufficient condition [PY1], which relates the efficient com-
putability of an e-Pareto set for a multi-objective problem II to the following GAP Problem:
given an instance [ of II, a (positive rational) d-vector b, and a rational § > 0, either return
a solution whose vector dominates b or report that there does not exist any solution whose
vector is better than b by at least a (14 ) factor in all of the coordinates. As shown in [PY1],
a problem is in MPTAS (resp. MFPTAS) if and only if there is a subroutine GAP that solves
the GAP problem for IT in time polynomial in |I| and |b| (resp. in ||, |b], |0] and 1/6).

We say that an algorithm that uses a routine as a black box to access the solutions of the
multiobjective problem is generic, as it is not geared to a particular problem, but applies to all
of the problems for which the particular routine is available. All that such an algorithm needs
to know about the input instance is bounds on the minimum and maximum possible values of
the objective functions. (For example, if the objective functions are positive rational numbers
whose numerators and denominators have at most m bits, then an obvious lower bound on the
objective values is 27" and an obvious upper bound is 2™; however, for specific problems
better bounds may be available.) Based on the bounds, the algorithm calls the given routine
for certain values of its parameters, and uses the returned results to compute an approximate
Pareto set.

For a given instance, there may exist many e-Pareto sets, and they may have very different
sizes. We want to compute one with the smallest possible size, which we’ll denote OPT..
[VY] gives generic algorithms that compute small e-Pareto sets and are applicable to all
multiobjective problems in M(F)PTAS, i.e. all problems possessing a (fully) polynomial
GAP routine. They consider the following “dual” problems: Given an instance and an € > 0,
construct an e-Pareto set of as small size as possible. And dually, given a bound &, compute
an e-Pareto set with at most £ points that has as small an € value as possible. In the case of two
objectives, they give an algorithm that computes an e-Pareto set of size at most 30PT; they
show that no algorithm can be better than 3-approximate in this setting. For the dual problem,
they show that the optimal value of the ratio p = 14-€ can be approximated arbitrarily closely.
For three objectives, they show that no algorithm can be c-approximate for any c, unless it is



SMALL APPROXIMATE PARETO SETS FOR BI-OBJECTIVE SHORTEST PATHS 5

allowed to use a larger € value. They also give an algorithm that constructs an ¢’-Pareto set of
cardinality at most 4OPT,, for any €’ > (1 + €)% — 1.

In a general multiobjective problem we may have both minimization and maximization
objectives. In the remainder, we will assume for convenience that all objectives are minimiza-
tion objectives; this is without loss of generality, since we can simply take the reciprocals of
maximization objectives.

Notation: For a positive integer n € IN*, we will denote by [n] the set {1,2,...,n}.

3. Two Objectives. We use the following notation in this section. Consider the plane
whose coordinates correspond to the two objectives. Every solution is mapped to a point on
this plane. We use x and y as the two coordinates of the plane. If p is a point, we use z(p),
y(p) to denote its coordinates; that is, p = (z(p), y(p)).

We consider the class of bi-objective problems II for which we can approximately min-
imize one objective (say the y-coordinate) subject to a “hard” constraint on the other (the
z-coordinate). Our basic primitive is a polynomial time (or fully polynomial time) routine
for the following Restricted problem (for the y-objective): Given an instance I € Zp, a
(positive rational) bound C' and a parameter 6 > 0, either return a solution point s satisfying
z(8) < Candy(8) < (14 6) -min{y over all solutions s € S(I) having z(s) < C'} or cor-
rectly report that there does not exist any solution s such that = (s) < C. For simplicity, we
will drop the instance from the notation and use Restricts (y, x < C') to denote the solution
returned by the corresponding routine. If the routine does not return a solution, we will say
that it returns NO. We say that a routine Restricts (y, z < C) runs in polynomial time (resp.
fully polynomial time) if its running time is polynomial in |I| and |C| (resp. |I|, |C]|, || and
1/6). The Restricted problem for the z-objective is defined analogously. We will also use the
Restricted routine with strict inequality bounds; it is easy to see that they are polynomially
equivalent.

Note that in general the two objectives could be nonlinear and completely unrelated.
Moreover, it is possible that a bi-objective problem possesses a (fully) polynomial Restricted
routine for the one objective, but not for the other. The considered class of bi-objective
problems is quite broad and contains many well-studied natural ones, most notably the bi-
objective shortest path and spanning tree problems (see Section 3.3 for a more detailed list of
applications).

The structure of this section is as follows: In Section 3.1, we show that, even if the given
bi-objective problem possesses a fully polynomial Restricted routine for both objectives, no
generic algorithm can guarantee an approximation ratio better than 2. (This lower bound
applies a fortiori if the Restricted routine is available for one objective only.) Furthermore, we
show that for two such natural problems, namely, the bi-objective shortest path and spanning
tree problems, it is NP-hard to do better than 2. In Section 3.2 we give a matching upper
bound: we present an efficient 2-approximation algorithm that applies to all of the problems
that possess a polynomial Restricted routine for one of the two objectives. In Section 3.3 we
discuss some applications.

3.1. Lower Bound. To prove a lower bound for a generic procedure, we present two
Pareto sets which are indistinguishable in polynomial time from each other using the Re-
stricted routine as a black box, yet whose smallest e-Pareto sets are of different sizes.

PROPOSITION 3.1. Consider the class of bi-objective problems that possess a fully poly-
nomial Restricted routine for both objectives. Then, for any € > 0, there is no polynomial
time generic algorithm that approximates the size of the smallest e-Pareto set PX to a factor
better than 2.



6 1. DIAKONIKOLAS AND M. YANNAKAKIS

Proof. Fix a rational ¢ > 0 and consider the following set of points: p = (x(p), y(p)),
q = (252, 42), r = (32, y() 522 ), py = (2(p) + Ly(p)(1 - 5;)) and p, =

(x(p)(l - ﬁ),y(p) + 1), where z(p), y(p) > 1+% (Figure 3.1). Let P = {p, q, 7, pq, Pr }
and P’ = {q,, py,pr} be the feasible (solution) sets corresponding to two input instances.
Note that p (1 + €)-covers all the points, p, does not (1 + €)-cover 7 (due to the = coordinate)
and p,- does not (1 + ¢)-cover ¢ (due to the y coordinate). It is easy to see that the smallest € -
Pareto set for P consists of only one point (namely point p), while the smallest € - Pareto set
for P’ must include two points.

We can show that a generic algorithm is guaranteed to tell the difference between P and
P’ only if 1/ is exponential in the size of the input. The argument is very similar to the proof
of Theorem 1 in [VY]. Let z(p) = y(p) = M, where M is an integer value exponential in
the size of the input and 1/e. By exploiting the fact that, in some cases, our primitive is not
uniquely defined, we can argue that a polynomial time generic algorithm cannot distinguish
between instances P and P’. More specifically, a generic algorithm is guaranteed to tell the
difference between P and P’ only if the tolerance § is inverse exponential in the size of the
input.

First, note that both points ¢ and r can be efficiently computed by appropriately using
the given routine; these two points suffice to (1 4 €)-cover the feasible set in both cases.
Distinguishing between the two instances means determining whether p is part of the solution.
Assume that we use the operation Restricts(x,y < C), where C € [y(p), y(p,)). Itis easy to
see that this is the only “meaningful” operation using this routine as a black box. Then, even if
p is part of the solution, by definition, Restrict; can return py as long as z(pg) < (1+9)x(p) or
equivalently § > ﬁ But since we want a polynomial time algorithm, % has to be polynomial
in lg M ; hence, the latter constraint must hold. By symmetry, the same property holds for the
Restricts(y, -) routine. Therefore, using each of these routines as a black box, a polynomial
time algorithm cannot determine if p is part of the solution, and it is thus forced to take at
least two points, even when it is presented with the set P. Note that the above configuration
can be replicated to show that it is impossible for a generic algorithm to determine whether
the smallest e-Pareto set has k points or 2k points are needed. [

A
r
[ ]
R
[ ]
p
o]
>
*
o4
- >

F1G. 3.1. A polynomial time generic algorithm cannot determine if p is a solution of the given instance.



SMALL APPROXIMATE PARETO SETS FOR BI-OBJECTIVE SHORTEST PATHS 7

In fact, we can prove something stronger (assuming P # NP) for the bi-objective shortest
path (BSP) and spanning tree (BST) problems. In the BSP problem, we are given a (directed
or undirected) graph, positive rational “costs” and “delays” for each edge and two specified
nodes s and t. The set of feasible solutions is the set of s — ¢ paths. The objectives (to be
minimized) are linear, i.e. the “total weight” of a path equals the sum of the weights of its
edges. The BST problem is defined analogously. These problems are well-known to possess
polynomial Restricted routines for both objectives [LR, GR]. We show the following:

THEOREM 3.2. a. For the BSP problem, for any k from k = 1 to a polynomial, it is
NP-hard to distinguish the case that the minimum size OP'T . of the optimal e-Pareto set is k
from the case that it is 2k — 1.

b. The same holds for the BST problem for any fixed k.

Proof. The reductions are from the Partition problem [GJ]; we are given a set A of n
positive integers A = {ay,aq,...,a,}, and we wish to determine whether it is possible to
partition A into two subsets with equal sum.

a. For simplicity, we first prove the theorem for £ = 1 and then generalize the con-
struction. Given an instance of the Partition problem, we construct an instance of the BSP
problem as follows: Let G be a graph with n+ 1 nodes v;, i € [n+ 1] and 2n edges {e;, €’;},
j € [n]. We attach the pair of (parallel) edges {e;,e’;} from v; to v; 41, ¢ € [n] and set
s = vy and t = v,41. We now specify the two cost functions ¢(-) and d(-) on the edges:
c(e;) = d(e}) = S + 2ea;n and d(e;) = c(e}) = S, where S = Y"1 | a;.

Clearly, this simple transformation defines a bijection between subsets of [n] and s — ¢
paths in G the set J C [n] is mapped to the s — ¢ path Py = [, ;{e:} U U, {€;}. Since
c(Ps) = nS+2en(3 ,c; a;) and d(Py) = nS +2en(} ;4 a;), each s — ¢ path P, satisfies
the equation ¢(P) + d(P) = 2(1 + €)nS; hence, all feasible solutions are undominated.

Now observe that two solution points suffice to (1 + €)-cover the feasible set; just pick
the (“extreme”) points r = ((1 4 2¢)Sn, Sn), | = (Sn, (1 + 2¢)Sn), corresponding to the
s — t paths Pp,; = Ui, {e;} and Py = |J;"_,{€s} respectively. Indeed, r (1 + €)-covers all
the points having cost (z-coordinate) at least (1 + €)Sn (since (1 + 2¢)/(1 +¢€) < 1 + e).
Equivalently, it (1 + €)-covers all the solution points having delay (y-coordinate) up to (1 +
€)Sn (since all the solutions lie on the line segment x + y = 2(1 + €)n.S). Moreover, the
point [ (1 + €)-covers all the solution points having y-coordinate at least (1 + €)Sn.

Since for each feasible solution P it holds min{c(P),d(P)} > nS (and the “extreme”
paths have cost or delay equal to n.5), it follows that there exists an e-Pareto set containing
(exactly) one point if and only if there exists a path in G with coordinates ((1 + €)Sn, (1 + €)Sn).
It is immediate to verify that such a path exists if and only if there is a solution to the original
instance of the Partition problem.

G \%) /‘\Vz vl Vierh Vin /\Vn'rl
\% \ Vis1 o ® .-@

G g
Vo : Vl/\Vz Vi Vis1 Vo vm .\J. : ..\ééj/. ° \—/.7'
a o..¢4 o..0 o /
<> --O -VJ

Ok V\+1 Vi Vn+1

0
. . . G! . .
N e B an le\t

F1G. 3.2. Graphs in the reduction of Theorem 3.2.



8 1. DIAKONIKOLAS AND M. YANNAKAKIS

Note that the above part of the proof does not rule out the possibility of an efficient ad-
ditive approximation algorithm, i.e. an algorithm that outputs an e-Pareto set of cardinality at
most OPT. + «, where « is an absolute constant. We can rule this out as follows: Intuitively,
we can think of the Pareto set of GG as a “cluster”. To prove the theorem for £ > 1, the goal
is to construct an instance of the problem such that the corresponding Pareto set consists of &
such clusters that are “(1 + €)-far” from each other, i.e. no point in a cluster (1 + ¢)-covers
any point in a different cluster.

For the BSP problem, we can generalize the proof to hold for any k = poly(n, ., log(a;))
and for all ¢ > 0. This can be achieved by exploiting the combinatorial structure of the
problem; we essentially replicate the graph G k times and appropriately scale the weights.

Formally, consider k (disjoint) copies of the graph G, G = (V7 E7), j € [k], with
Vi = vl } and B9 = U, {e], ¢’ }. Add a (source) node s, a (sink) node ¢; for each j
add an edge from s to v{ and one from vfl 41 tot. Thatis, construct the graph H = (Vy, Er)
(see Figure 3.2) with

k k
Vi = {s,t} U J V7 and By = | J{(s,v]) UE/ U (v] 4, 1)}

j=1 j=1
Assign zero cost and delay to each edge incident to s or ¢! and set:

(1+ 260 De(ed)

= d(e’g)/(l + 26)2071) = S+ 2ea;n
(1426207 Ve(e) = d(el) /(1 + 2207 =8

From the above equations, it follows that for each s — ¢ path P7 “using” graph G7, j € [k], it
holds:

(1426)20=De(P7) + d(P7) /(1 + 2¢)2U7Y = 2(1 + €)nS

This implies that all feasible solutions are undominated. In particular, it is easy to see that
the Pareto set for this instance is the union of £ disjoint “clusters” with endpoints [; =

((Mf)%,sna +2€)2<J‘*1>+1) and r; = (M%)ﬁ%,sn(l +26)2<J'*1>),j e [k].
The solution points in each cluster lie on the line segment ;7;. (The objective space for this

instance is illustrated in Figure 3.3.)

Now notice that no solution point corresponding to an s — ¢ path using graph G” is
(1+ €)-covered by any point corresponding to an s — ¢ path using graph G for j # I. Indeed,
due to the structure of the Pareto set, it suffices to check that, for each j € [k — 1], the points
l; and 7,41 do not (1 + €)-cover each other. This holds by construction: r;41 is a factor of
(1 + 2€) to the left and (1 + 2¢) above [;. Therefore, any two clusters are “(1 + ¢)-far” from
each other. Thus, any e-Pareto set for this instance must contain at least k points.

As in the case of £k = 1, for all j € [k], the solution points [; and r; (1 + €)-cover
the (solution points in the) jth cluster. Thus, 2k solution points suffice to (1 + €)-cover the
feasible set. Also, the jth cluster is (1 + €)-covered by one point if and only if there exists an

s — t path in H with coordinates m; = ((l(jj)% (1+€)Sn(1+ 26)20’—1)). Similarly,
this holds if and only if the original Partition instance is a Yes instance. So, if there exists
a partition of the set A, the smallest e-Pareto set contains exactly &k points. Otherwise, the

smallest such set must contain 2k points.

TFor simplicity, we allow zero weights on the edges, since there does not exist any s — ¢ path with zero total
cost or delay. This can be easily removed by appropriate perturbation of the weights.



SMALL APPROXIMATE PARETO SETS FOR BI-OBJECTIVE SHORTEST PATHS 9

To finish the proof, we observe that there exists an e-Pareto set with (at most) 2k — 1
points if and only if there exists an e-Pareto set with exactly k points. Indeed, the former
statement holds if and only if some cluster is (1 + €)-covered by one point, i.e. if and only if
there exists an s — ¢ path in H with coordinates m; for some j € [k], which in turn holds if
and only if the original Partition instance is a Yes instance. The latter holds if and only if the
smallest e-Pareto set contains exactly k points.

A
detai l

] Ik
: Partition
K Pat hs

k-th
cluster

m ¢

m,

d(s-tpath)

y:

2" cluster

st .
1% cluster °

X=c(s-tpath)
FIG. 3.3. Pareto set for graph H of Theorem 3.2.

b. In the BST problem, we are given an undirected graph with positive rational “costs”
and “delays” on each edge. The set of feasible solutions is the set of spanning trees; the goal
is to minimize cost and delay. For £ = 1, the NP-hardness proof for the BST problem is
identical to the k = 1 proof for the BSP problem (since any s — ¢ path in the “basic” graph G
is also a spanning tree of GG and vice-versa).

For £ > 1, we again use GG as a basic building block to construct an instance of BST
whose Pareto set consists of & clusters that are “(1 + ¢)-far” from each other. We give a
construction that works for any fixed k and for sufficiently small €; in fact ¢ = O(1/k)
suffices. Consider the graph G’ obtained from G by adding one node vy connected to vy
with k parallel edges g;, ¢ € [k]. Subtract the value S from all the weights of G and set:



10 1. DIAKONIKOLAS AND M. YANNAKAKIS

c(gi) = {2 — (1+2€)*}Sn, d(g;) = (1 4 2¢)*'Sn. Intuitively, these edges play the role of
offsets. Clearly, as long as (1 + 2¢)?* < 2, all the weights are in the interval (0,25n).

A spanning tree 7 of G’ consists of an edge g; for some ¢ € [k] and a path P from v,
to v,+1. Every edge g; satisfies ¢(g;) + d(g;) = 2S5n, and every path P from v; to v, 41
satisfies ¢(P) 4 d(P) = 2eSn. Thus, all the solution points (spanning trees) 7 lie on the line
(T)+d(T)=2(1+¢)Sn.

The Pareto set of G’ consists of k clusters, where the i-th cluster, i € [k], contains all
the spanning trees that consist of the edge g; and a path from v; to v, 41. We claim that the
k clusters are “(1 + €)-far” from each other, i.e. no point of any cluster (1 4 €)-covers any
point of another cluster. The leftmost point of the i-th cluster is [; = (c(g;),d(g;) + 2eSn)
and the rightmost point is r; = (c(g;) + 2eSn,d(g;)). To show the claim, it suffices to
show that z(l;) > (1 + €)x(r;+1) and that y(r;11) > (1 + €)y(l;). The first inequality
is equivalent to [2 — (1 + 2€)%|Sn > (1 + €)[2 — (1 + 2€)?**2 + 2¢]Sn, which can be
rewritten as [(1 + €)(1 + 2€)? — 1](1 + 2€)?* > 4e + 2€%; the inequality is clearly true since
(1+€)(1+2€)% —1 > 4e+ 2¢2. The second statement, y(r;+1) > (1+¢€)y(l;), follows from
the valid inequality (1 + 2€)? > (1 + €)(1 + 2¢).

We now claim that the solution points I; and r; suffice to (1 + €)-cover the i-th cluster.
To show this, it suffices to see that the (solution) point with y-coordinate y(I;)/(1 + €) lies
to the right of the (solution) point with z-coordinate x(r;)/(1 + €). Indeed, since all feasible
points ¢ satisfy z(q) + y(q) = 2(1 + €)Sn, the previous statement amounts to verifying that
2(1 4 2€)Sn = z(r;) + y(I;) < 2(1 + €)2Sn. Hence, two points suffice for each cluster and
therefore there always exists an e-Pareto set with 2k points.

Now, suppose that there is one point ¢ that covers all the points in the ¢-th cluster. Then
q must have 2(q) < (1+ €)z(l;) = (1 + €)c(g:) and y(q) < (1 + €)y(ri) = (1 + €)d(gs).
Since z(q) + y(q) = 2(1 +€)Sn = (1 +€)[c(g;) + d(g;)], the point ¢ must have coordinates
exactly ((1 + €)c(g:), (1 + €)d(g;)). Such a point exists if and only if there exists a subset of
A with sum (1 + 2¢)?S/2. Hence, there exists an e-Pareto set with & points if and only if
there exist k subsets of A with sums (1 + 2¢)%'S/2,i € [k].

To complete the proof, we use the fact that the following variant of the Subset Sum
problem is NP-hard: Given A = {a1, aq, ..., a,} with the property that (i) either there exist
k subsets A; C A, i € [k], such that ) __ 2T = +*S/2 or (ii) no such subset exists, decide
which one of the two cases holds (for any fixed integer k and rational v > 1 such that v¥ < 2).
(This can be shown by a reduction from the Partition problem.) Therefore, it is NP-hard to
decide if the smallest e-Pareto set for the instance has k points or 2k points are needed and
the proof is complete. [0

REMARK 3.1. For k = 1 the theorem says that it is NP-hard to decide if one point
suffices or we need at least 2 points for an e-approximation. We proved that the theorem
holds also for more general k to rule out additive and asymptotic approximations. We can
easily modify the proof so that the graphs in the reductions are simple. For the BSP problem,
this can be achieved by inserting a new (“dummy’’) node in the “middle” of each parallel edge
(subdividing the weights arbitrarily). For the BST problem, this does not suffice, because all
the additional nodes must be covered (by a spanning tree). Let w; be the node inserted in the
middle of e; = (v;,v;11). The problem is solved by setting ¢((v;, w;)) = d((vs, w;)) = 0,
c((wi,viq1)) = c(e;) and d((w;,v;41)) = d(e;). By scaling the weights of the Partition
instance we can see that the NP-hardness holds even in the case where all the edge weights
are restricted to be positive integers. Similar hardness results can be shown for several other
related problems (see Section 3.3).



SMALL APPROXIMATE PARETO SETS FOR BI-OBJECTIVE SHORTEST PATHS 11

3.2. Two Objectives Algorithm. We have a bi-objective problem with an associated
Restricted routine for the y-objective that runs in polynomial (or fully polynomial) time. We
are given an instance and an ¢, and we wish to construct an e-Pareto set of as small size as
possible. In this subsection, we present a generic algorithm that guarantees ratio 2. By the
result of the previous subsection, this factor is optimal. Recall that the algorithm in [VY]
works for all problems in MPTAS and is a factor 3 approximation. (The analysis of the latter
algorithm is tight for the class of problems considered here.) In Section 3.2.1, we show that a
straightforward greedy approach cannot guarantee a ratio better than 3 in our setting. We next
make a crucial observation that is exploited in Section 3.2.2 to achieve the optimal factor.

3.2.1. The Greedy Approach Fails. We remark that if the underlying problem has
polynomial time exact Restricted routines for both objectives (i.e. Restricts for § = 0),
then we can efficiently compute the optimal e-Pareto set by a simple greedy algorithm. The
algorithm is similar to the one given in [KP, VY] for the (special) case where all the solution
points are given explicitly in the input. We denote by Z i, Ymin the minimum values of the
objectives in each dimension. The greedy algorithm proceeds by iteratively selecting points
q1,-- -, qx in decreasing x (increasing y) as follows: We start by computing a point ¢} having
minimum y coordinate among all feasible solutions (i.e. ¥(¢}) = Ymin); ¢1 is then selected
to be the leftmost solution point satisfying y(q1) < (1 + €)y(q7). During the jth iteration
(7 > 2) we initially compute the point q} with minimum y-coordinate among all solution
points s having z(s) < x(g;—1)/(1 + €) and select as ¢; the leftmost point which satisfies
y(g;) < (1 + €)y(q}). The algorithm terminates when the last point selected (1 + ¢)-covers
the leftmost solution point(s) (i.e. the point(s) ¢ having x(q) = xmin). It follows by an easy
induction that the set {q1, g2, ..., qx} is an e-Pareto set of minimum cardinality. (This ex-
act algorithm is applicable to bi-objective linear programming and all problems reducible to
it, for example bi-objective flows, the bi-objective global min-cut problem [AZ] and several
scheduling problems [CJK]. For these problems we can compute an e-Pareto set of minimum
cardinality.)

If we have approximate Restricted routines, one may try to modify the greedy algorithm
in a straightforward way to take into account the fact that the routines are not exact. How-
ever, as shown below, this modified greedy algorithm is suboptimal, in particular it does not
improve on the factor 3 that can be obtained from the general GAP routine. More care is
required to achieve a factor 2, matching the lower bound.

Suppose that we have a (fully) polynomial Restricts routine (even for both objectives).
Consider the following scheme, where § is the “uncertainty parameter” - § < ¢, but 1/§ must
be polynomially bounded in the size of the input and 1/e, so that the overall algorithm runs
in polynomial time:

Algorithm Greedy

Compute Ymin and Tmin-

Y1 = ymin(1 + 6);

g1 = Restricts(z,y < 71);

Q={a}i=1

While (zmin < 2(g;)/(1 + €)) do

{ ¢i41 = Restricts(y, z < 2(q:)/(1 + €));
Gt = (14 €) - max{gi, y(g,) /(1 +6);
¢i+1 = Restricts(z,y < giq1);
Q=0QU{gin}
i=i+1;}

Return ().

Since the Restricted routines are now approximate, in order to guarantee that the output



12 1. DIAKONIKOLAS AND M. YANNAKAKIS

set of points is an e-Pareto set, we had to appropriately modify the algorithm based on the
parameter 6. More specifically, note that the point ¢;  ; can have y-coordinate up to (1 + )
times the minimum y over all points s satisfying z(s) < x(g;)/(1 + €). In other words, there
may exist a solution point 3 satisfying 2(5) < x(¢;)/(1 + €) and y(5) = y(qj4,)/(1 + 9).
(The algorithm has “no way of knowing this” unless it uses a value of § with 1/6 exponential
in the size of the input.) This “uncertainty” forces the algorithm to select as point g; ;1 the
leftmost point that satisfies y(q;+1) < (1 + €)y(g;,,)/(1 + 6). Due to this “weakness”, we
have the following:

CLAIM 3.1. For any § > 0, with 1/6 polynomial in the size of the input and 1/e, there
exist instances on which the greedy algorithm above outputs a set Q) such that |Q| = 3k — 1,
where k = OPT..

Proof. Denote by P* = {p},...,p}} the optimal set, where its points p, ¢ € [k] are
ordered in decreasing order of their x-coordinate, and Q@ = {qi,...,q,} the set selected
by the greedy algorithm. By exploiting the uncertainty introduced by the parameter 6, we
describe an adversarial scenario such that r = 3k — 1.

The idea is the following: Consider the call ¢; , ; = Restricts(y, z < x(¢;)/(1+¢€)). By
definition, we have 3 < y(qj, ;) < (1 + )7, where § = min{y(s) | 2(s) < z(g:)/(1 + €)}.
Suppose that the routine returns a point ¢;_ , satisfying § = y(g;,,). Call this condition
(f). If gj, satisfies this condition, the optimal point p} (1 + €)-covering ¢;,, can have y-
coordinate up to (1 4 €)y(q; ), while the algorithm is forced to select a point g;;1 with
y-value at most (1 + €)y(q;,,)/(1+0).

FI1G. 3.4. Illustration of the worst-case performance of the greedy approach. There are no solution points in
the shaded region.

We refer the reader to Figure 3.4 for an illustration. In the instance presented there, the
rightmost optimal point pj (1 + €)-covers all the solution points that are (1 + €)-covered by
the set {q1, g2}, while, for j > 2, the optimal point p¥ (1 + ¢)-covers all the solution points
that are (1 + €)-covered by the set {gs;, ¢3j41,¢3j+2}. This proves the desired claim. In the
following, we explain the situation in detail.



SMALL APPROXIMATE PARETO SETS FOR BI-OBJECTIVE SHORTEST PATHS 13

Consider the first point ¢; € @ selected by the algorithm. By the definition of the
Restricted routine and the fact that ¢} must be (1 + €)-covered by p3, it follows that x(p3) >
x(q1)/(1 4+ &). Now suppose that the following scenario occurs: z(p}) = z(q1)/(1 + ),
2(q1)/[(1+€)(1+0)] < x(g2) < 2(q1)/(1+ €) and there are no solutions with z-coordinate
in the interval [z(g2)/(1 + €),2(gz2)). Then, the point pj (1 + €)-covers all solutions that
are (1 + €)-covered by the set {q1, g2 }. Notice that the algorithm only “loses” one additional
point here; we have that z(g2) < x(p}). This is due to the fact that we can exactly compute
the minimum y-coordinate. However, since this does not hold for the next iterations, the
algorithm can “lose” two additional points for each optimal point.

Now suppose that the points {p3, g3, g5, g4, ¢4 } satisfy the following scenario: ¢4 satisfies
condition (1), y(g3) = [(1+€)/(1+0)]y(q3), y(q4) = (1+0)y(g3), x(qa) = (1+0)x(p3) and
y(p5) = y(qy). Ttis easy to see that these conditions are simultaneously realizable. (Observe
that p3 (1 + €)-covers ¢5.) Finally, if z(q4)/[(1 4+ €)(1 + 9)] < 2(g5) < 2(q4)/(1 + €) and
there are no solutions with z-coordinates in the interval [z(g5)/(1 + €), z(gs)), the point p}
(1 + €)-covers all the solutions (1 4 €)-covered by the set {¢s, g4, g5 }-

By replicating the above described configuration, it follows inductively that p;, ; (14-¢)-
covers all the solutions (1 + €)-covered by {¢s;, g3i+1,¢3i+2}. This completes the proof.
|

In fact, one can show that the greedy algorithm guarantees a factor 3, i.e. the above
described adversarial scenario represents a worst-case instance for the algorithm. Let us now
try to understand why the greedy approach fails to guarantee a factor 2 in the aforementioned
scenario. The problem is that, due to the uncertainty introduced by d, the point p} can lie
arbitrarily to the left of g3. Thus, the only invariant that the greedy algorithm can guarantee
is 2(gs) < (1+ 0)(ph).

We can overcome this obstacle by exploiting an additional structural property of the
considered class of bi-objective problems. In particular, our generic algorithm will also use
a polynomial routine for the following Dual Restricted problem (for the x-objective): Given
an instance, a (rational) bound D and 6 > 0, either return a solution § satisfying y (§) <
(14 6) D and « (8) < min {x(s) over all solutions s having y(s) < D} or correctly report
that there does not exist any solution s such that y (s) < D. Similarly, we drop the instance
from the notation and use DualRestricts (z,y < D) to denote the solution returned by the
corresponding routine. If the routine does not return a solution, we will say that it returns
NO. We say that the corresponding routine runs in polynomial time (resp. fully polynomial
time) if its running time is polynomial in |I| and |D| (resp. ||, |D|, |§] and 1/6).

The following lemma establishes the fact that any bi-objective problem that possesses a
(fully) polynomial Restricted routine for the one objective, also possesses a (fully) polynomial
Dual Restricted routine for the other.

LEMMA 3.3. For any bi-objective optimization problem, the problems Restricts (y, )
and DualRestricts (x, -) are polynomially equivalent.

Proof. The proof of (both directions of) this equivalence uses binary search on the range
of values of one objective with an application of the polynomial routine (for the other ob-
jective) at each step of the search. Let m be an upper bound on the number of bits in the
objectives; recall that m is polynomially bounded in the size of the instance. Observe that
(the absolute value of) the minimum possible difference between the objective values of any
two solutions is at least 272,

First, we argue that a polynomial time algorithm for Restricts(y, z < C') can be used as
a black box to obtain a polynomial time algorithm for DualRestricts(z,y < D).

Given an upper bound D and a (rational) error tolerance § > 0, the following algorithm
computes the function DualRestricts(z,y < D):



14 1. DIAKONIKOLAS AND M. YANNAKAKIS

1. If Restricts(y, z < 2™) returns a solution s¢ having y(sg) > (1 + 9)D or returns
“NO”, then output “NO”".
2. Otherwise, do a binary search on the parameter C' in the range [27™,2™] calling
Restricts(y, z < C) in each step, until you find a value C' such that:
(a) Restricts(y,z < C) returns a solution 3 satisfying z(5) < C and y(3) <
(1+0)D.
(b) Restricts(y, z < C' — 272™) either returns a solution s’ having z(s') < C —
272" and y(s') > (1 + 6)D or returns “NO”.
Output the solution s.

The number of calls to the routine Restricts(y,z < C) is ©(m), so the overall al-
gorithm runs in polynomial time. It remains to argue about the correctness. In case 1, ei-
ther there are no feasible solutions or all solutions have y coordinate strictly greater than
D. 1In case 2, all solutions s having z(s) < C — 272" also satisfy y(s) > D. Since
there are no solutions with z coordinate strictly between z(5) and C —272™ it follows that
C < min{z over all solution points s having y(s) < D}.

Conversely, given an upper bound C' and a (rational) error tolerance § > 0, the following
algorithm computes the function Restricts(y, 2 < C) using as a black box an algorithm for
DualRestricts (z,y < D):

1. If DualRestricts(z,y < 2™) returns a solution so having x(sg) > C or returns
“NO”, then output “NO”.
2. Otherwise, do a binary search on the parameter D in the range [27™,2™] calling
DualRestricts(z, y < D) in each step, until you find a value D such that:
(a) DualRestricts(z,y < D) returns a solution 3 satisfying z(5) < C'and y(3) <
(1+6)D.
(b) DualRestricts(x,y < D — 272™) either returns a solution s’ having z(s) >
C (and y(s') < (14 0)(D — 272™) or returns “NO”.
Output the solution s.

The justification is similar. The number of calls to the routine DualRestricts(z,y < D)
is ©(m), so the overall running time is polynomial. For the correctness, in case 1, either
there are no feasible solutions or all solutions have = coordinate strictly greater than C. In
case 2, all solutions s having y(s) < D — 272™ also satisfy z(s) > C. Since there are
no solutions with y coordinate strictly between y(§) and D — 2-2m it follows that D <
min{z over all solution points s having z(s) < D}. 0

3.2.2. Algorithm Description. We first give a high-level overview of the 2-approximation
algorithm. The algorithm iteratively selects a set of solution points {q1, ..., ¢, } (in decreas-
ing ) by judiciously combining the two routines. The idea is, in addition to the Restricted
routine (for the y-coordinate), to use the Dual Restricted routine (for the z-coordinate) in
a way that circumvents the problems previously identified for the greedy algorithm. More
specifically, after computing the point ¢} in essentially the same way as the greedy algo-
rithm, we proceed as follows. We select as ¢; a point that: (i) has y-coordinate at most
(1 + €e)y(q})/(1 + ¢) and (ii) has x-coordinate at most the minimum z over all solutions s
with y(s) < (1 + €)y(q})/(1 + §)? for a suitable §. This can be done by a call to the Dual
Restricted routine for the x-objective. Intuitively this selection means that we give some
“slack” in the y-coordinate to “gain” some slack in the z-coordinate. Also notice that, by
selecting the point g; in this manner, there may exist solution points with y-values in the in-
terval ((1+€)y(q})/(1+8)%, (1+€)y(q})/(1+ )] whose z-coordinate is arbitrarily smaller
than x(g;). In fact, the optimal point (1 + €)-covering g; can be such a point. However, it
turns out that this is sufficient for our purposes and, if J is chosen appropriately, this scheme



SMALL APPROXIMATE PARETO SETS FOR BI-OBJECTIVE SHORTEST PATHS 15

can guarantee that the point go; lies to the left (or has the same x-value) of the i-th rightmost
point of the optimal solution. We now proceed with the formal description of the algorithm.
In what follows, the error tolerance is set to § = /1 + € — 1 (= ¢/3 for small €). (For the
case that the Restricted routine is available for both objectives, we have a variant of this al-
gorithm that achieves a ratio of 2 and is slightly more efficient in the sense that it uses error
tolerance &' = /1 + € — 1.) If /1 + ¢ is not rational, we let § be a rational that approximates
/1 + e—1 frombelow, i.e. (1+6)® < (1+¢€), and which has representation size || = O (|¢|)
(i.e. number of bits in the numerator and denominator). The set of points computed by the
algorithm is shown in Figure 3.5.

Algorithm 2—-Approximation
If Restricts,—1(y, z < 2™) = NO then halt.
qi = Restricts(y,x < 2™);
qieic = DualRestricts,—1 (2,4 < 2™);  Tmin = 2(qert)s
51 = y(@)(1 +0);
¢1 = DualRestricts(z,y < 71);
1 =z(q1)/(1+€);
Q={a}hi=1
While (Z; > xnin) do
{ ¢j41 = Restricts(y, x < Z;);
Gt = [(1+ /(1 + 0)] - max{gi, y(al1) /(1 + 8)
@i+1 = DualRestricts(z,y < Fit1);
Zit1 = 2(gi+1)/(1 +€);
Q=QU{g};
i=i+1;}
Return ().

X

FIG. 3.5. Schematic performance of the algorithm. The scale is logarithmic in both dimensions. There are no
solutions in the shaded region.



16 1. DIAKONIKOLAS AND M. YANNAKAKIS

3.2.3. Algorithm Analysis. Recall that 2 is an upper bound on the values of the ob-
jectives. Thus, if Restricts,—1 (y, 2 < 2™) = NO, there are no feasible solutions, in which
case we can just terminate the algorithm. So, we can assume that the solution set is nonempty.
In this case, the subroutine calls of lines 2 and 3 indeed return a solution; moreover, (i) the
solution point g has minimum z-value among all feasible solutions and (if) ¢; has y-value
at most (1 + 6)Ymin. Now observe that ymin < §; < §i11 and T; > Ty for all the values of
1 for which the body of the while loop is executed. It is thus easy to see that each subroutine
call returns a point; so, all the points are well-defined.

Let Q = {q1,q2,...,q} be the set of solution points produced by the algorithm. We
will prove that the set () is an e-Pareto set whose size is at most twice the optimum. We note
the following simple properties.

FACT 3.1. We have the following:

1. For each i € [r — 1] it holds (i) x(q;, 1) < x(q:)/(1 + €) and (ii) for each solution point t
with x(t) < x(q;)/(1 + €), we have y(t) > y(q; 1)/ (1 +9).

2. For each i € [r] it holds (i) y(q;) < (1 + 6)y; and (ii) for each solution point t with
y(t) < g; we have x(t) > x(q;).

Proof. The properties are just restatements of the definition of the two subroutines. 0
We can now prove the following lemmata (all properties used below refer to the above fact).

LEMMA 3.4. The x coordinates of the points q1,qa, - - . , g of Q form a strictly decreas-
ing sequence.

Proof. Consider two successive elements ¢;, ¢;+1 of Q. For their = coordinates we will
argue that 2(g;11) < x(q;)/(1 + €). First observe that y(q; ;) < Zi+1. So, property 2-(ii)
implies that 2(gi+1) < 2(qj,,). Now from property 1-(i) we get x(q;,,) < 2(g:)/(1 + €)

and the argument is complete. 0

The following lemma shows that () is indeed an e-Pareto set.

LEMMA 3.5. 1. The point g1 (1 + €)-covers all of the solution points that have x-
coordinate at least x(q1)/(1 + ¢€).

2. Foreachi € [r] \ {1} the point q; (1 + €)-covers all of the solution points that have their
z-coordinate in the interval [x(q;)/(1+ €),z(gi—1)/(1 + €)).
3. There are no solution points with x-coordinate smaller than x(q,)/(1 + ¢).

Proof. 1. Let t be a solution point with () > x(q1)/(1 + €). We need to show that ¢
is (1 + €)-covered by ¢;. It clearly suffices to argue that y(t) > y(q1)/(1 + €). Indeed, by
property 2-(ii) we have y(q1) < (1+ 6)y1 = (1 + §)?y(q}) and the definition of ¢} implies
that y(¢) > y(q1)/(1 + ), for any solution point t. By combining these facts we get that for
any solution point ¢ it holds y(¢) > y(q1)/(1 + 8)% > y(q1)/(1 + €).

2. Let t be a solution point satisfying z(q;)/(1 + €) < z(t) < x(qi—1)/(1 + €); we will
show that ¢ is (1 4 €)-covered by ¢; or equivalently that y(t) > y(q;)/(1 + €). The proof
is by contradiction. Suppose that there exists such a point ¢ with y(¢) < y(q;)/(1 + €). By
property 2-(i) and the definition of g; this implies y(t) < max{g;—1,vy(q})/(1 + J)}. Now
since z(t) < x(g;—1)/(1 + ¢€), property 1-(ii) gives y(t) > y(q})/(1 + 6). Furthermore, since
x(t) < x(qi—1), by property 2-(ii) it follows that y(¢) > ¢;_1. This provides the desired
contradiction.

3. The termination condition of the algorithm is z(q,.) /(1 + €) < Zpin. O

REMARK 3.2. We show in Lemma 3.6 below that the set @ is of cardinality |Q| <
20PT.. So, the algorithm could output this set of points. However, we observe that the set )
may contain “redundant” points: The y-coordinates of the points ¢y, . . . , ¢, do not necessarily
form an increasing sequence. In fact, if y(¢;+1) < (1 + )7, it may happen that y(g;+1) <
y(g;) (in which case the point y; is redundant). (Note however that if y(g;+1) > (1 + 9)7;,
then by property 2-(i) we get y(gi+1) > y(¢;).) This observation can be further exploited



SMALL APPROXIMATE PARETO SETS FOR BI-OBJECTIVE SHORTEST PATHS 17

for a post-processing step. For example, if y(g2;) < (1 + §)g2;—1, we can safely discard the
point go; 1 as implied by (the proof of) Lemma 3.5.

We now bound the size of the set of points () in terms of the size of the optimal e-Pareto set.

LEMMA 3.6. Let P} = {p},p5,...,p}.} be the optimal e-Pareto set, where its points p;,
i € [k], are ordered in (strictly) increasing order of their y- and (strictly) decreasing order of
their x-coordinate. Then, |Q| = r < 2k.

Proof. We prove the following:

CLAIM 3.2. Ifthe algorithm selects a solution point q2;_1 (i.e. if 20 — 1 < r), then there
must exist a point p; in PF (i.e. it holds i < k) and if the algorithm selects a point ga;, then
z(p;) > z(q2:)-

The desired result follows directly from this. The claim is proved by induction on .

Basis (¢ = 1). The first statement of the claim trivially holds. To show the validity
of the second statement observe that for the rightmost point of P, we must have y (p) <
y(@)(1+¢) = 51(1 +¢€)/(1 +8) < Fa. The first inequality holds since the solution point
gy must be (1 + €)-covered by P* and in particular by the point of P* having the minimum
y-coordinate. The two other inequalities follow from the definitions of %; and y>. Now an
application of property 2-(ii) gives x(p}) > x(g2) and the base case is proved.

Induction step. Suppose that the claim holds for index ¢ — 1 (more specifically that
x(pf_1) > z(g2i—2)); we will prove it for 7. We will prove each statement in turn.

Assume first that the algorithm selects a point go;—1 (i.e. that 26 — 1 < 7). We will show
that P’ contains a point p; (i.e. that ¢ < k). By the termination condition of the algorithm,
our assumption implies that 2(go;—2) > (1 4 €)@ min. Therefore, by the induction hypothesis
it follows that z(p}_;) > (1 + €)Zmin; that is, point p;_; does not (1 + €)-cover the leftmost
solution point, which means there must exist a point p; in the optimal set.

Now assume that the algorithm selects a point g2;. We will show that 2(p}) > x(ga;).
First note that by property 1-(/) and the induction hypothesis (¢4, ;) < x(pj_,)/(1+¢€). So,
the point p;_; does not (1 + €)-cover the point g;_; in the z-coordinate. Clearly, the latter
point must be (1 + €)-covered by a point in P*. Since the p;’s are sorted in decreasing order
of their x-coordinates, we conclude that p} is the only eligible point for that purpose, i.e.
¢h;_, must be must (1 + €)-covered by p}. To complete the argument, we need the following
fact:

FACT 3.2. There does not exist any solution point t with x(t) < x(qa;) such that t
(1 + €)-covers point ¢h; ;.

Proof. We want to prove that for all solutions ¢ having z(t) < x(qg;) it holds y(t) >
(1 + €)y(qh;_)- For such a solution point ¢ we have y(t) > g2; > Fo;i—1(1 +€)/(1 + ) >
(1+€)y(gh;—,)- The latter inequalities, in the order they appear, follow by applying property
2-(ii) and the definition of g; (for j = 2¢ — 1,27). O
The above fact implies directly that z(p}) > x(g2;) and the proof is complete. O

Thus far, we have proved that the set @ is an e-Pareto set of size |Q| < 20PT.. We
now analyze the running time of the algorithm. Let & be the number of points in the smallest
e-Pareto set, k = OPT.. The algorithm involves r < 2k iterations of the while loop; each
iteration involves two calls to the subroutines. Therefore, the total running time is bounded
by 4k subroutine calls. In summary, we proved the following theorem.

THEOREM 3.7. The above described algorithm computes a 2-approximation to the
smallest e-Pareto set in time O(OPT,) subroutine calls, where 1/6 = O(1/e¢).



18 1. DIAKONIKOLAS AND M. YANNAKAKIS

3.3. Applications. Our result can be applied to all of the problems which have a poly-
nomial (or fully polynomial) time Restricted routine for one of the two objectives. It should
be stressed that our algorithm is quite general; it does not assume for example linearity of
the objectives. Applications include the shortest path problem [Han, Wa, ESZ, LR] and gen-
eralizations [EV, GR+, CX2, VV], cost-time trade-offs in query evaluation [PY2], matching
[BBGS], spanning trees (and more generally matroid problems, see below) [GR, HL] and re-
lated problems [CX]. The aforementioned problems possess a polynomial Restricted routine
for both objectives. In essence, for most of the aforementioned problems (with [PY2] being
a notable exception), the two objectives are “the same” and we can efficiently optimize each
of them separately. For several other problems [ABK1, ABK2, CJK, DJSS], the Restricted
routine is available for one objective only (because it is NP-hard to separately optimize this
objective). An example is the following classical scheduling problem: We are given a set of
n jobs and a fixed number m of machines. Executing job j on machine i requires time p;;
and incurs cost c;;. We are interested in the trade-off between makespan and cost. Minimiz-
ing the makespan is NP-hard, even for m = 2; hence, the Dual Restricted problem for this
objective (equivalently, the Restricted problem for the cost objective) does not have a PTAS.
If m is fixed, a fully polynomial time Dual Restricted routine for the cost objective is given in
[ABK1]. (By Lemma 3.3 this implies an FPTAS for the Restricted problem for the makespan
objective.)

For the bi-objective shortest path problem, a polynomial (resp. fully polynomial) Re-
stricted routine corresponds to a polynomial (resp. fully polynomial) time approximation
scheme for the Restricted Shortest Path problem: given a bound on the cost of the path, min-
imize the delay of the path subject to the bound on the cost. This problem has been studied
in a number of papers [Has, Wa, LR, ESZ]. The problem is NP-hard and has a fully poly-
nomial time approximation scheme. The best current algorithms approximate the optimal
restricted path within factor 1 + € in time O(en/¢) for acyclic (directed) graphs [ESZ], and
time O(en(log log n+1/¢) for general (directed) graphs [LR], where n is the number of nodes
and e is the number of edges. Moreover, the Dual Restricted problem also admits an FPTAS
with the same time complexity. Thus, our algorithm runs in O(en(loglogn + 1/¢)OPT,)
time for general graphs and O(enOPT. /¢) for acyclic graphs. The time complexity is com-
parable or better than previous algorithms [Han, Wa, TZ], which furthermore do not provide
any guarantees on the size.

For the bi-objective spanning tree problem a polynomial Restricted routine corresponds
to a polynomial time approximation scheme for the Constrained Spanning Tree (CST) prob-
lem [GR]: given a bound on the cost of the tree, minimize the delay of the tree subject to the
bound on the cost. This problem is also NP-hard and is known to have a polynomial time
approximation scheme [GR, HL]. (In fact, the aforementioned papers provide a PTAS for the
more general problem of finding a minimum cost base of a matroid subject to a bound on the
total length, as long as there is a polynomial time independence oracle for the matroid.) The
best current algorithm for the problem [HL] has running time O((1/¢)'/“n3). As a corollary,
our generic algorithm can compute a 2-approximation to the smallest e-Pareto set in time
O((1/€)'/<n3>OPT.). Whether such a 2-approximation can be computed in fully polynomial
time is conditional on the existence of an FPTAS for the CST problem (which is an interesting
open question). In contrast, by the results of [PY1, VY], a 3-approximation can be computed
in fully polynomial time.

4. d Objectives. The results in this section use the GAP routine and thus apply to all
problems in MPTAS.



SMALL APPROXIMATE PARETO SETS FOR BI-OBJECTIVE SHORTEST PATHS 19

4.1. Approximation of the optimal ¢-Pareto set. Recall that for d > 3 objectives we
are forced to compute an ¢’-Pareto set, where ¢ > ¢, if we are to have a guarantee on its size
[VY]. For any ¢ > ¢, a logarithmic approximation for the problem is given in [VY], by a
straightforward reduction to the Set Cover problem. We can sharpen this result, by exploiting
additional properties of the corresponding set system.

THEOREM 4.1. 1. For any € > ¢ there exists a polynomial time generic algorithm that
computes an €'-Pareto set Q) such that |Q| < O(dlog OPTG)OPTE. The algorithm uses
O((m/5)?) GAP; calls, where 1/6 = O(1/(€' —¢)).

2. For d = 3, the algorithm outputs an €' -Pareto set Q satisfying |Q| < cOPT,, where cis a
constant.

Consider the following problem Q(P,¢): Given a set of n points P C R‘i as input and
€ > 0, compute the smallest e-Pareto set of P. It should be stressed that, by definition, the set
of points P is given explicitly in the input. (Note the major difference with our setting: for a
typical multiobjective problem there are exponentially many solution points and they are not
given explicitly.) This problem can be solved in linear time for d = 2 by a simple greedy
algorithm. For d = 3 it is NP-hard and can be approximated within some (large) constant
factor ¢ [KP]. If d is arbitrary (i.e. part of the input, e.g. d = n), the problem is hard to
approximate better than within a Q(log n) factor (unless P = NP) [VY].

The following fact, implicit in [VY], relates the approximability of Q with the problem
of computing a small €-Pareto set for a multiobjective problem II, given the GAP primitive.
Let € > 0 be a given rational number. For any ¢ > ¢, we can find a § > 0 such that
1/6 = O(1/(€¢' —¢)) satisfying 1 + €' > (1 +¢€)(1 + §)%.

LEMMA 4.2. Suppose that there exists an r-factor approximation algorithm for Q. Then,
forany € > ¢, we can compute an ¢ -Pareto set Q, such that |Q| < rOPT using O((m/35)?)
GAP;s calls.

Proof. The algorithm proceeds in two phases; in the first phase, we compute a §-Pareto
set, by using the original algorithm of [PY1] and in the second phase we post-process the
points produced by the latter algorithm by using the r-approximation algorithm for Q as a
black box.

For the given instance I € Zyy, let X(I) be the set of d-vectors of values of solutions
in the objective space and fix an optimal e-Pareto set P* = P*(I). Let R be the §-Pareto
set produced in the first stage. We apply the r-approximation algorithm for Q on input R to
produce a set R’ C R that (1 + €)(1 + &)-covers R. (Since |R| < (m/§)?~1, it follows that
the overall algorithm runs in polynomial time.) R’ is clearly an €’-Pareto set for the feasible
set X(I). We will argue that |R’| < rOPT,. Let R* denote the smallest (1 + €)(1 + §)-cover
for R using only points from R; we have |R’| < r|R*|. The following simple claim completes
the argument:

CLAIM 4.1. |R*| < OPT..

Proof. Tt suffices to show that there exists an (1 + €)(1 + &)-cover C for R of cardinality
at most OPT,. Since R is a §-Pareto set, for any solution point s € X(I), there exists a
solution point r € R that (1 4 §)-covers s. C'is constructed as follows: For each s € P*
pick an r € R that (1 + d)-covers it. Then, |C| < |P*| = OPT.. Every point r € R
is (1 + €)-covered by a point s € P, which in turn is (1 + J)-covered by a point ¢ € C.
Therefore, C' (1 + €)(1 + §)-covers all points of R. 00

Part 2 of Theorem 4.1 follows immediately from the fact that Q is constant factor approx-
imable for d = 3 [KP] and Lemma 4.2. We consider the case of general d in the remainder.

To proceed, we need the following definition.



20 1. DIAKONIKOLAS AND M. YANNAKAKIS

DEFINITION 4.3. A set system is a pair (U, R), where U is a set and R is a collection
of subsets of U. For a set system (U, R), we say that X C U is shattered by R if for any
Y C X, there exists a set R € R with X "R =Y. The VC-dimension [VC] of the set system
is the maximum size of any set shattered by R. Let T C U be a finite set and r € (1,00) be a
parameter. A set N C T is called an 1/r-net for (T,R) [HW], if NN S # O forall S € R
having |S| > |T|/r.

The problem Q(P,¢€) can be formulated as a set cover problem as follows: For each
point ¢ € P and € > 0, define S, = {z € RY | ¢ < (1 +¢) - x}. S, is the subset
of R that is (1 + ¢)-covered by g; it is a closed convex cone in R? (a translation of the
nonnegative orthant by the vector ¢/(1 + ¢)). For each point r € P, r is (1 4 €)-covered
by ¢ if and only if r € S, .. Now consider the set system F(P,e) = (P,S(P,¢)), where
S(P,e) = {P;c = PN Sy | g € P}. Clearly, there is a bijection between set covers of
F (P, ¢) and e-Pareto sets of P. We now establish the following:

LEMMA 4.4. a. For any finite set of points P C R and € > 0, it holds VC-dim(F (P, ¢€)) <
d.

b. There exists a set of points P such that VC-dim(F (P, €)) = d.

Proof. a. Let P be a set of points in R? and € > 0. We must argue that no subset P’ C P
of cardinality d+ 1 can be shattered by S(P, €). Note that any such set P/ C P (of cardinality
d + 1) contains a point 7 none of whose coordinates is minimal, that is, a point r such that
for all i € [d] there exists some point ¢* € P’ (different from ) with the property (¢°); < r;.
We claim that we cannot “separate” r from the remaining points of P’ by any convex cone
(as defined above). Indeed, a point that (1 + €)-covers the ¢*’s is guaranteed to (1 + €)-cover
7 (or equivalently, the “dichotomy” {q’,i € [d]} cannot be realized).

b. Consider aset P = AU C, where |A| = d and |C| = 2. Let A = {ay,...,aq}. We
select the a;” s in A as follows: For each ¢ € [d], the ith coordinate of a; is equal to 1 and all
the rest are equal to 1 + 2¢. The set A has two properties: (i) no two of its points (1 + €)-
cover each other and (ii) for any two points p,q € A, we have argmin,p; # argmin,g;.
The set C'is selected such that each subset of A is (1 + €)-covered by some point in C. In
particular, let X' = (J;cz(x){a;} be a subset of A. We add the point cx in C having each
coordinate indexed by Z(X) equal to 1 + € and all the rest equal to 1 + 2¢. Clearly, the point
cx (14 €)-covers exactly the elements of X. 00

For g € P and e > 0, define SP. = {x € R? | 2 < (1 4 ¢€) - ¢}; the cone S, is the
subset of R that (1 + €)-covers g. A point r (1 + €)-covers ¢ if and only if € SP . The
“dual” set system of F(P,¢) is defined as FP (P, e) = (P,SP(P,¢)), where SP(P,¢) =
{Pq?€ =PnN S(fe | ¢ € P}. In words, the elements are the points of P and for each point
g € P we have a set consisting of the points » € P that (1 + €)-cover gq. An e-Pareto set of
P is equivalent to a hitting set of 2 (i.e. a subset H C P that has non-empty intersection
with every element of SP (P, €)).

It is well-known [As] that, if a set system has VC-dimension at most d, the VC-dimension
of the dual set system is upper bounded by 2¢+1 — 1. However, in our setting, essentially the
same proof as in the previous lemma establishes the following:

LEMMA 4.5. For any finite set of points P C R% and € > 0, it holds VC-dim(FP (P, ¢)) <
d. This bound is tight.

Proof. Let P be a set of points in R? and € > 0. We must argue that no subset P’ C P
of cardinality d + 1 can be shattered by S” (P, ¢). Similarly to the previous lemma, any set
P’ C P of cardinality d + 1 contains a point r such that for all i € [d] there exists some
point ¢* € P’ (¢ # r) satisfying (¢*); > 7;. We claim that we cannot “separate” r from
the remaining points. Indeed, if some point is (1 + €)-covered by all the ¢'’s, then is also
(1 + €)-covered by r. The tightness is similar. 0



SMALL APPROXIMATE PARETO SETS FOR BI-OBJECTIVE SHORTEST PATHS 21

It is well-known that, for a set system of VC-dimension at most d, we can efficiently
construct an 1/r-net of size s(r) = O(drlogr) [KPW]; this bound is tight in general
[PW, KPW]. As shown in [BG, ERS], for such a set system, there exists a polynomial
time s(OPT)/OPT-factor approximation algorithm for the minimum #hizting set problem,
where OPT is the cost of the optimal solution. If we apply this result to the dual set system
FP (P, €) we conclude:

PROPOSITION 4.6. Problem Q can be approximated within a factor of O(dlog OPT.,).
Part 1 of Theorem 4.1 follows by combining Lemma 4.2 and Proposition 4.6.

REMARK 4.1. If s(r) = O(r), the reduction in [BG, ERS] implies a polynomial time
constant factor approximation algorithm for the corresponding hitting set problem. This is
exactly the approach in [KP]: they show that, for d = 3, FP (P, ¢) admits an 1/r-net of size
s(r) = O(r) and that such a net can be efficiently constructed. Note that the constant approx-
imation ratio ¢ implied for set cover using this approach is identified with the constant hidden
in the big-Oh of the net-size s(r). The corresponding constant in the construction of [KP],
itself based on a result of [CV], is quite large and no good bounds have been calculated for
it. A recent result [PR] implies that the dual set system induced by a finite set of points and
translates of an orthant in R? (a generalization of F7 (P, ¢)) admits a 1/7-net of size at most
25r (that is efficiently constructible). Hence, for d = 3, problem Q can be efficiently approx-
imated within a factor of 25 and the constant ¢ in (the second statement of) Theorem 4.1 is at
most 25. Improving the value of this constant is an interesting open problem.

4.2. The Dual Problem. For a d-objective problem II with an associated GAP routine,
given a parameter k, we want to find k solution points that provide the best approximation
to the Pareto curve, i.e. such that every Pareto point is p*-covered by one of the k selected
points for the minimum possible ratio p* = 1 + €*. It was shown in [VY] that for d = 2
the problem is NP-hard but has a PTAS. We show below (Section 4.2.1) that for d = 3 any
multiplicative factor for the dual problem is impossible, even for explicitly given points; we
can only hope for a constant power, and only above a certain constant.

In [VY] the dual problem was related to the asymmetric k-center problem, and this was
used to show that (i) for any d, a set of &k points can be computed that approximates the Pareto
curve with ratio (p*)©(°8" %) and (ii) for unbounded d and explicitly given points, it is hard
to do much better. Since the metric p for the dual problem is a ratio (multiplicative coverage)
versus distance (additive coverage) in the k-center problem, in some sense the analogue of
constant factor approximation for the Dual problem is constant power. Can we achieve a
constant power (p*)¢ for all problems in MPTAS with a fixed number d of objectives? We
show (Section 4.2.2) that the answer is Yes for d = 3 and provide a conjecture that implies it
for general d.

4.2.1. Lower Bound. Consider the problem D (P, k) (dual problem with explicitly given
points): We are given explicitly a set P of n points in ]Ri and a positive integer k£ and we
want to compute a subset of P of cardinality (at most) k that p-covers P with minimum ratio
p. Let p* = 1 + €* denote the optimal value of the ratio. Note that problems Q and D are
polynomially equivalent with respect to exact optimization - as opposed to approximation.
As shown in [KP], Q is NP-hard for d > 3; hence, for d > 3, problem D is also NP-hard.

By further exploiting the properties of the aforementioned reduction in [KP], we can
show that problem D is NP-hard to approximate. Before we proceed with the formal state-
ment and proof of this fact, it will be helpful to give some remarks regarding the notion of
“approximate coverage” in the definition of the approximate Pareto set. Throughout this pa-
per, our notion of coverage is multiplicative: for p > 1, a point u € ]Ri p-covers a point
v E Ri iff u < p - v (coordinate-wise). Alternatively, one could define the notion of cover-



22 1. DIAKONIKOLAS AND M. YANNAKAKIS

age additively: for ¢ > 0, the point u € Ri additively c-covers v € ]Rff_ iff u; < v; + ¢ for
all . A notion of additive c-Pareto set can be naturally defined using the additive coverage.
(Note that with the additive definition of coverage Pareto sets and approximate Pareto sets are
invariant under translation of the input set, while with our multiplicative definition they are
invariant under scaling.)

On the one hand, the selection of multiplicative metric is standard and more natural in
the context of approximation algorithms. On the other hand, it is essential in our setting in
the following sense: For a (implicitly represented) multiobjective combinatorial optimization
problem, the basic existence theorem of [PY1] (i.e. the fact that there always exists an e-
Pareto set of polynomial size) is based crucially on the multiplicative coverage. (In fact, it
clearly does not hold under the additive coverage. This, of course, rules out the possibility
of efficient algorithms for computing (any) approximate Pareto set in this context.) However,
for the case that the set of points is given explicitly in the input (i.e. for problems Q and D)
the aforementioned obstacle does not occur and one can select the definition of coverage that
is more appropriate for the specific application.

We will denote by log Q and log D the primal and dual problems respectively under
additive coverage. We now try to relate the problem pairs (Q,log Q) and (D, log D) with
respect to their approximability. To this end, we need a couple of more definitions. For
two points p,q € ]Ri the ratio distance between p and ¢ is defined by: RD(p,q) =
max{max;(p;/q;), 1}. (The ratio distance between p and ¢ is the minimum value p* = 1+¢*
of the ratio p such that p p-covers q.) The additive distance between p and ¢ is defined by:
AD(p,q) = max{max;(p; — ¢;),0}. (Analogously, the additive distance between p and ¢
is the minimum value ¢* of the distance ¢ such that p additively c-covers q.) It is easy to see
that AD(-, -) is a directed pseudo-metric.

We claim that the problems Q and log Q are in some sense “equivalent” with respect
to approximability. Indeed, it is easy to see that an r-approximation algorithm for problem
Q implies an r-approximation for problem log Q and vice-versa (by taking logarithms and
exponentials of the coordinates respectively). Suppose for example that there exists a factor
r approximation for log Q. We argue that it can be used as a black box to obtain an 7-
approximation for Q. Given an instance (P, ¢) of Q, we construct the following instance of
log Q: We take the set of points P’, where P’ contains a point p’ for every point p € P
whose coordinates are the logarithms of the corresponding coordinates of p. We also take
¢ = log(1 + €). That is, we ask for the smallest additive c-Pareto set of P'. If p’, ¢’ € P’
are the images of p,q € P respectively, we have that RD(p,q) = 2AD(#.4) | Hence,
there exists a bijection between e-Pareto sets of P and additive c-Pareto sets of P’, i.e. this
simple transformation is an approximation factor preserving reduction of Q to log Q. There is
however a subtle point regarding the bit complexity of the produced instance: the coordinates
of the points in P’ (and the desired additive coverage ¢) may be irrational, thus not computable
exactly. We argue that this is not a significant problem below.

Consider an instance (P’ ¢) of log Q. (The following remarks also hold for Q and the
dual problems.) Clearly, the feasible solutions to the problem, i.e. the (additive) c-Pareto sets
of P’, do not depend on the actual coordinates of the points in P’, but only on the additive
distance between every pair of points. Hence, the only information an (exact or approximate)
algorithm for log Q needs to know about the input instance is the set of pairwise distances. In
fact, such an algorithm does not need an explicit representation of these distances as rational
numbers. It is sufficient to have a succinct representation that allows: (i) efficiently computing
a succinct representation of the sum of two (or more) distances (ii) efficiently comparing any
two (sums of) distances and (iii) efficiently comparing (sums of) distances with c. Now
the aforementioned transformation produces instances (P’, ¢) of problem log Q that clearly



SMALL APPROXIMATE PARETO SETS FOR BI-OBJECTIVE SHORTEST PATHS 23

satisfy these properties (since we have an explicit representation of the starting instance (P, €)
of Q and we take logarithms). Hence, an r-approximation algorithm for log O can be used as
a black box to obtain an r-approximation for Q. Similar arguments may be used for the other
direction.

For the dual problem, the choice of coverage (multiplicative versus additive) changes
the objective function, which affects the approximability. Roughly speaking, a factor r-
approximation algorithm for log D is “equivalent” to a (p*)"-approximation algorithm for
D, where p* is the value of the optimal ratio for the latter problem. For example, it is easy to
see (by taking logarithms as above) that a factor » approximation for log D implies a (p*)"-
approximation for D.

We have the following:

THEOREM 4.7. Consider the problem D(P, k) for d = 3 objectives.

1. It is NP-hard to approximate the minimum ratio p* within any polynomial multiplicative
factor.

2. It is NP-hard to compute k points that approximate the Pareto curve with ratio better than
( p*)?) / 2'

Proof. To prove both parts we take advantage of the properties in the NP-hardness reduc-
tion of [KP]. It is shown there that problem log Q is NP-hard for d = 3 via a reduction from
3-SAT. Given an instance of 3-SAT, the reduction produces an instance (P, c¢) of log Q such
that the smallest additive c-Pareto set of P reveals whether the 3-SAT formula is satisfiable.
We will not repeat the reduction here, but we will just give the properties of the construction
below needed for our purposes. We prove each part separately.

1. The crucial property we need here is that the reduction in [KP] is strongly polynomial:
Given an instance (formula) ¢ of 3-SAT with n clauses, the reduction constructs an instance
of log Q (or log D), consisting of a set P of points in 3 dimensions and an additive error
bound c such that, if the formula ¢ is satisfiable then P has a (additive) c-cover with g points
(for some parameter g of the construction), whereas if ¢ is not satisfiable then every c-cover
must contain at least g + 1 points. The construction has the property that all the points of
P have rational coordinates with O(log n) bits and the error bound ¢ ~ 1/n? (to be precise,
¢ = 1/4n?). This property implies that in the (additive) dual problem log D with a bound
k = g for the number of points in the cover, the additive “gap” in the value of the optimal
covering distance between the Yes case (satisfiable 3-SAT instance () and the No case (non-
satisfiable 3-SAT instance) is at least inverse polynomial in n, i.e. atleast § = 1/n", for a
(small) constant r: If the 3-SAT instance ¢ is satisfiable, the optimal value of the covering
distance for the log D instance P with k = g is ¢; if  is not satisfiable, the optimal distance is
atleast ¢’ = c+4. By multiplying all the coordinates of the constructed instance by a factor of
2n"*!, where [ > 0 is a constant, and rounding to the nearest integer, we get a new instance of
log D where all the points have integer coordinates and the value of the additive gap between
the satisfiable and the unsatisfiable case is at least n'. We then exponentiate each coordinate
(z — 2%). The number of bits remains polynomial in the size of the original 3-SAT instance
(thus the overall reduction takes polynomial time) and the value of the multiplicative gap is
now 2",

2. To prove this part, it suffices to show that problem log D does not have an approxima-
tion ratio better than 3/2. The reduction in [KP] uses a number g of gadgets. The construction
has gadgets for the variables and for the clauses, which are connected by paths of flip-flop
gadgets that cross using crossover gadgets. If the formula is satisfiable, then we can cover
the points with additive distance ¢ with g points, one from each gadget. Otherwise, this is not
possible. We thus select k = g and ask for the “best k points” and the corresponding optimal
covering distance c*. As previously mentioned, if the formula is satisfiable, we have c¢* = c.



24 1. DIAKONIKOLAS AND M. YANNAKAKIS

Now, if the formula is not satisfiable, we argue below that the optimal covering distance is
¢* > 3c¢/2. The proof follows directly from this.

Suppose that the 3-SAT formula is not satisfiable and we want to select the best g points.
First, we note that we still need one point from each gadget because otherwise all the points
of a gadget must be covered by points in other gadgets that are “far away” (much further
than c), since the gadgets are well-separated; that is, if some gadget contains no point of the
solution then the covering distance is much larger than c. Since the formula is not satisfiable,
after selecting g points, at least one gadget will remain “badly covered”, i.e. the point we
selected must cover more points of its gadget than its c-neighborhood. An examination of the
three types of gadgets used in the construction shows that this gives covering distance 2¢ for
both the flip-flop and clause gadgets and at least 3¢/2 for the crossover gadgets. Hence, if the
formula is not satisfiable, the optimal covering distance is ¢* > 3¢/2. 0

4.2.2. Upper Bound. Consider the following generalization Q' (A, P, 1+¢€) of problem
Q: Given a set of n points P C Ri, asubset A C P and € > 0, compute the smallest subset
P*(A) C P that (1 + €)-covers A. It is easy to see that for d = 3 the arguments of [KP, PR]
for Q can be applied to Q' as well showing that it admits a constant factor approximation
(see Remark 4.1). We believe that in fact for all fixed d there may well be a constant factor
approximation. Proving (or disproving) this for d > 3 seems quite challenging. The following
weaker statement seems more manageable:

CONJECTURE 4.1. For any fixed d, there exists a polynomial time ((1 + €)*@ 3(d))-
bicriterion approximation algorithm for Q'(A, P,1 + €), i.e. an algorithm that outputs an
(14 €)@ -cover C C P of A, satisfying |C| < B(d) - |P*(A)|, for some functions o, 3 :
N — IN.

For d = 3, Conjecture 4.1 holds with «(3) < 2, and 3(3) < 4. This can be shown by a
technical adaptation of the 3-objectives algorithm in [VY].

For general implicitly represented multiobjective problems with a polynomial GAP;
routine, we formulate the following conjecture:

CONJECTURE 4.2. For any fixed d, there exists a polynomial time generic algorithm,
that outputs an (1 + €)@ -cover C, whose cardinality is |C| < B(d) - OPT,, for some
Sfunctions o, 5 : IN — IN.

The case of d = 3 is proved in [VY] with «(3) = any constant greater than 2 and
B(3) = 4. Note that, by (a variant of) Lemma 4.2, Conjecture 4.1 implies Conjecture 4.2.
The converse is also partially true: Conjecture 4.2 implies Conjecture 4.1, if in the statement
of the latter, problem Q’ is substituted with problem Q.

In the following theorem, we show that a constant factor bicriterion approximation for
Q' implies a constant power approximation for the dual problem, given the GAP routine.

THEOREM 4.8. Consider a (implicitly represented) d-objective problem in MPTAS and
suppose that the minimum achievable ratio with k points is p*.

1. For d = 3 objectives we can compute k points which approximate the Pareto set with ratio
O((p*)?), using O((m/8)?) GAPj calls, where 1/5 = O(1/(€' — ¢€)).

2. If Conjecture 4.1 holds, then for any fixed d we can compute k points which approximate
the Pareto set with ratio O((p*)¢), using O((m/8)?) GAP; calls, where 1/ = O(1/(€' —¢))
and ¢ = ¢(d).

Proof. Part 1 follows from 2 since Conjecture 4.1 holds for d = 3. (It will follow from
the proof that ¢(3) < 9.) To show Part 2, we exploit the relation of problem D(P, k) with
the asymmetric k-center problem. As observed in [VY], the problem log D is an instance of
the asymmetric k-center problem, which we now define for the sake of completeness. In the
asymmetric k-center problem we are given a set of n vertices V' with distances, dist(u,v)



SMALL APPROXIMATE PARETO SETS FOR BI-OBJECTIVE SHORTEST PATHS 25

that must satisfy the triangle inequality, but may be asymmetric, i.e. dist(u,v) # dist(v, u).

We are asked to find a subset U C V, |U| = k, that minimizes dist™ = ma‘ic mi(r} dist(u, v).
ve ue

(Note that log D(P, k) is an instance of this problem, where there exists a bijection between
vertices of V' and points of P and the distance between points (vertices) p, g € P is defined
as d(p, q) = AD(p, q).)

We claim that, if problem Q'(A, P,1 + ¢) admits a ((1 + €)*(4) 3(d))-bicriterion ap-
proximation, then problem D(P, k) admits a (p*)*() approximation for some function ¢ (that
depends on « and ). This is implied by the aforementioned reduction and the following more
general fact: If we have an instance of the asymmetric k-center problem (problem log D(P, k)
in our setting) such that a certain collection of associated set cover subproblems (which are
instances of problem log Q'(A, P, 1+¢) here) admits a constant factor bicriterion approxima-
tion (an algorithm that blows up both criteria by a constant factor), then this instance admits a
constant factor unicriterion approximation (an algorithm that outputs a set of no more than %
centers). This implication is not stated in [PV, Arl1], but is implicit in their work. One way to
prove it is to apply Lemma 5 of [PV] in a recursive manner. We will describe an alternative
method [Ar2] that yields better constants. We prove this implication, appropriately translated
to our setting, in Lemma 4.9.

For a general multiobjective problem where the solution points are not given explicitly,
we impose a geometric v/1 + § grid for a suitable J, call GAP; at the grid points, and then
apply the above algorithm to the set of points returned. Then the set of & points computed by
the algorithm provides a (1+¢')*(9)-cover of the Pareto curve, where 1+¢’ = (1+¢€)(1+06)>.
0

REMARK 4.2. Even though the O(log™ k)-approximation ratio is best possible for the
(general) asymmetric k-center problem [CG+], the corresponding hardness result does not
apply for log D as long as the dimension d is fixed.

Let H(«) denote the harmonic number extended to fractional arguments by linear inter-
polation (i.e. H(a) = EZLZ{ 1/i + (a — |a])/a]). For a function g, let g(*) denote the
function iterated 4 times. Finally, for b > 1 define H; (o) = min{i : H®(a) < b}. The
following lemma completes the proof of Theorem 4.8.

LEMMA 4.9. Suppose that there exists an ((1 + €)®, 3)-bicriterion approximation for
Q'(A, P,1+¢). Then, problem D(P, k) admits a (p*)° approximation, where c = HJ ,,(8) +
a + 4. In particular, for o« = 2 and 3 = 4, we can get ¢ = 9.

Proof. The desired result can be shown by a careful application of the techniques intro-
duced in [PV, Arl]. We describe an algorithm — that we denote D(P, k), as the corresponding
problem — which, given a (p®, 3)-bicriterion approximation algorithm, denoted B(A, P, p),
for problem Q’(A, P, p) as a black box, computes a set @ C P of (at most) k points that
(p*)c-cover the set P, where p* is the minimum ratio achievable with k points. We will
denote by B(A, P, p) the set of points output by the algorithm 5 on input (4, P, p).

We first note the simple (and well-known) fact that it is no loss of generality to assume
that the algorithm D(P, k) “knows” the optimal ratio p*; this is because p* will be one of the
O(|P|?) pairwise ratio distances, hence we can try the algorithm for all of them and pick the
best solution (or do an appropriate binary search, see e.g. [Arl]).

To describe the algorithm, we appropriately translate the notions from [PV, Arl] to the
current setting. For the sake of completeness, we also provide a mostly complete proof of
correctness. We begin with a basic definition.

DEFINITION 4.10. For a point ¢ € P and a parameter p > 1, we denote TV (q, p) =
{p € P | q < p-p} the set of points in P p-covered by qand T~ (q,p) ={p € P|p<p-q}
the set of points in P that p-cover q. We naturally extend this notation to sets S C P:



26 1. DIAKONIKOLAS AND M. YANNAKAKIS

I'%(S,p) = {p € P | p e T*(s,p)forsomes € S}. We say that the point ¢ € P is a
p-center capturing vertex (denoted p-CCV) if it satisfies T~ (q, p) € T (q, p).

Consider an instance of the problem D(P, k) as defined above. Suppose that p > p*. In
this case, if the point q is a p-CCV, it p-covers at least one point of the optimal solution — in
particular, the point ¢* that p*-covers ¢. Indeed, ¢* € '~ (¢, p*) C I (q,p) C T (q, p).
Hence, g p?-covers every point in P p-covered by the point ¢*. This simple property is crucial
for the algorithm.

The algorithm in [PV] has two phases. In the first phase, roughly, it preprocesses the
input set by iteratively finding CCV’s and in the second phase it uses a recursive set cover
procedure to cover the points not covered in the first stage. (The algorithm in [Arl] replaces
the second phase by an LP-based method.)

The algorithm D(P, k) works in three phases. The first phase is identical to the first
phase in [PV, Arl]: We preprocess the input set P by iteratively finding p*-CCVs. In the
second phase, D calls the bicriterion approximation algorithm B (with appropriately selected
values of its parameters) to cover the subset of P that is not covered in the first phase. The
remaining phase involves a careful application of the recursive greedy set cover procedure of
[PV] followed by an application of the greedy set cover algorithm. To show correctness of
the last step, we use the structural lemma of [Arl] (itself a variant of a similar lemma in [PV],
albeit with improved constants). The algorithm is presented in detail below.

Algorithm D(P, k) Routine Rec-Cover (Input: S, A, P, p,1)
(The optimal radius p* is known (There exist [ vertices in P that
to the algorithm.) p-cover S, where S C AC P.)
(Phase 1) SV =S;i=0;
A=P K =k C=0 While | 57| > 41/3 do
While 3 p*-CCV g € Aand k&' > 0 do
{¢=Cu {(i J% . Run Greedy Set Cover to p-cover S*
A/ = A/\ I (q, (p*)%); using points of P and let
K=k -1} Sit1 C P be the produced set.
(Phase 2) Sitl — §itl ) A;
SU:B(A7P\P+(07P*)>p*); 1=141;
(Phase 3) }
So = So \TT(C, (p*)?); Return S°.

S1 = Rec-Cover (§0, A, P, p* K');
Si=Si\TH(C, (p")");

Sy = Greedy-Set-Cover (S1, P, (p*)3);
Return @ := C U S,.

We now proceed with an intuitive explanation of the different steps in tandem with a
proof of correctness. We explain first what happens during the first phase. We have as input
the set P, the parameter k and the optimal ratio p*. (Recall that the algorithm can “guess”
the optimal ratio.) We iteratively select p*-CCV’s as follows: For each p*-CCV we find, we
remove from the “active” set A (initialized to P) all the points (p*)2-covered by it, until no
more CCV’s exist in A. Let C be the set of CCV’s thus discovered (|C| < k) and A =
P\TH(C, (p*)?) be the set of points in P not (p*)?-covered by any point in C.. At this point,
we note the following simple fact:



SMALL APPROXIMATE PARETO SETS FOR BI-OBJECTIVE SHORTEST PATHS 27

FACT 4.1. The set A := P\ T'H(C, (p*)?) can be p*-covered by k' = k — |C| points in
P\TT*(C,p*).

If |C| = k (K = 0, A = 0), we have selected a set of k points that (p*)2-cover the set
P and we can just terminate the algorithm. Otherwise, we proceed with the next phase. In
the second phase, we call the algorithm B to p*-cover the set A. By Fact 4.1, there exists a
p*-cover of A with k¥’ points. Moreover, it is clear that such a cover lies in P\ T (C, p*).
Hence, we get a set So C P\ T'H(C, p*) of cardinality |Sy| < 3 - k' that (p*)“-covers A. To
motivate the next step, we note the following immediate implication of Fact 4.1:

FACT 4.2. Let S C A. Then S can be p*-covered by k' points in P\ T (C, p*).

We also recall the following well-known fact [Chv, Joh, Lov] about the performance
guarantee of the greedy set cover algorithm:

FACT 4.3. For a set system (U, R) suppose that there exists a set cover of cardinality p.
Then the greedy algorithm outputs a cover of size at most p - H(|U|/p).

At this point, we apply the recursive greedy set cover procedure from [PV] to cover
§0 = Sy N A using points from A. (The points in S \ §0 are (p*)2-covered by C.) Note that
in each round of the recursive cover, we attempt to cover only those points from the last round
that do not lie in T (C, (p*)?), since C will cover those ones. We thus get a set S; C P of
cardinality |S1| < 4k’ /3 with the property that Sy covers Sy \ T'H(C, (p*)+H4/2(8)) with
ratio (p*)H‘I/B(ﬁ ). The latter statement can be shown by induction, using Fact 4.2 as an
invariant. Since this essentially appears in [PV, Arl] (see e.g. Lemma 13 in [Ar1]), we do not
repeat it here. To motivate the next step, we need the following combinatorial lemma from
[Arl]:

LEMMA 4.11 (Theorem 17 in [Arl], rephrased). Let C C P and A = P\I'"(C, (p*)?).
Suppose A has no p*-CCV’s and that there exist k' centers (points in P) that p*-cover
A. Then there exists a set of 2k'/3 centers in P\ TT(C, p*) that (p*)3-covers A’ =
P\TH(C, (p")")

As a final step of the algorithm, we apply the greedy set cover algorithm — that may
be viewed as one iteration of the recursive procedure — with parameter (p*)? to cover S. 1=
S1\ T+ (C, (p*)*) using points from P (so that the optimum has cardinality at most 2k’ /3,
according to Lemma 4.11). (Note that the points in S \ S, are (p*)*-covered by C.) We thus
getaset So C P of cardinality at most (2k'/3)- H ((4k'/3)/(2k'/3)) = (2K'/3)-H(2) = K
with the property that S, covers S, within (p*)3. We output the set ) := C U So; this set has
cardinality at most k and it remains to argue that it covers P with ratio (p*)4+a+HI/3(5 ),

Indeed, every point p € P falls in one of the following categories:

e The point p is (p*)%-covered by a point in C, i.e. p € TH(C, (p*)?). (Note that if
this is not the case, i.e. if p € A, then it is (p*)*-covered by Sy.)

e The point p is (p*)*-covered by a point py € Sy that is not (p*)™1/2(%) - cov-
ered by S;. In this case, pg € I'T(C, (p*)HHZ/S(ﬁ)), so C covers p within ratio
(p*)1+H;/3(B)+a'

e The point p is (p*)*-covered by a point py € S that is (p*)H‘T/B(ﬁ) - covered by a
point p; € S that is not (p*)3-covered by S,. In this case, p; € I'F(C, (p*)*), so
C covers p within ratio (p*)*i/s(A+e

e The point p is (p*)®-covered by a point py € S that is (p*)74/3%) - covered by a
point p; € S that is in turn (p*)3-covered by p2 € S,. In this case, the point ps
covers p within ratio (p*)3THi/s(0)+e

Hence the overall covering ratio is (p*)4+HZ/3(’8 )+ which completes the proof. 0



28 1. DIAKONIKOLAS AND M. YANNAKAKIS

REMARK 4.3. We note here that the recursive set cover procedure (used in the above
lemma) was useful merely to improve the constants in the reduction. One can alternatively
prove a (quantitatively inferior) version of the lemma by the following two-phase algorithm:
In the first phase, preprocess the input set P by iteratively finding p-CCVs for appropriately
chosen values of the parameter p. In the second phase, call the algorithm B to “cover” the
subset of P that is not covered in the first phase. The analysis of this alternative algorithm is
based on repeated applications of Lemma 4.11.

REMARK 4.4. We should remark that the algorithms of this section are less satisfactory
than the bi-objective algorithm of the previous section (and the 2-d and 3-d algorithms of
[VY]) in several respects. One weakness is that the constants ¢ obtained (for d = 3) are
quite large: in the case of Theorem 4.1, the best constant ¢ we can get follows from the net
construction of [PR] (and is about 25). In the case of Theorem 4.8 there is still a large gap
between the upper bound (of 9) and the lower bound (of 3/2) in the exponent.

A second weakness of the algorithms is that they start by applying the general method
of [PY1] calling the GAP routine on a grid, and thus incur always the worst-case time com-
plexity even if there is a very small e-Pareto set. Thus, we view our algorithms in this section
mainly as theoretical proofs of principle, i.e. that certain (constant) approximations can be
computed in polynomial time, but it would be very desirable and important to improve both
the constants and the time.

5. Conclusion. We investigated the problem of computing a minimum set of solutions
for a multiobjective optimization problem that represents approximately the whole Pareto
curve within a desired accuracy e. We developed tight approximation algorithms for the bi-
objective shortest path problem, spanning tree, and a host of other bi-objective problems.
Our algorithms compute efficiently an approximate Pareto set that contains at most twice as
many solutions as the minimum one; furthermore improving on the factor 2 for these specific
problems is NP-Hard. The algorithm works in general for all bi-objective problems for which
we have a routine for the Restricted problem of approximating one objective subject to a
(hard) bound on the other. The algorithm calls this Restricted routine and a dual one as black
boxes and makes quite effective use of them: for every instance, the number of calls is linear
(at most 4 times) in the number of points in the optimal solution for that instance.

We presented also results for three and more objectives, both for the problem of com-
puting an optimal e-Pareto set and for the dual problem of selecting a specified number % of
points that provide the best approximation of the full Pareto curve. As we indicated at the end
of the last section, there is still a lot of room for improvement both in the time complexity
and the constants of the approximations achieved. We would like especially to resolve Con-
jecture 4.2, hopefully positively. It would be great to have a general efficient method for any
(small) fixed number d of objectives that computes for every instance a succinct approximate
Pareto set with small constant loss in accuracy and in the number of points, and do it in time
proportional to the number of computed points, i.e., the optimal approximate Pareto set for
the instance in hand.

Acknowledgements. We would like to thank Aaron Archer for useful discussions related to
the asymmetric k-center problem.

REFERENCES

[ABK1] E. Angel, E. Bampis, A. Kononov. An FPTAS for Approximating the Unrelated Parallel Machines
Scheduling Problem with Costs. In Proc. ESA, pp. 194-205, 2001.



[ABK2]
[ABVI]
[ABV2]
[AN+]
[Arl]
[Ar2]
[As]
[AZ]
[BBGS]
[BG]

[Chv]
[CG+]

[CIK]
[CX]
[CX2]

[Cli]
[CV]

[DISS]

[Ehr]
[EG]

[ERS]
[ESZ]
[EV]

[Fei]
[FGE]

[GI]
[GR]

[GR+]
[Han]
[Has]
[HL]
[HW]
[Joh]
[KP]

[KPW]

SMALL APPROXIMATE PARETO SETS FOR BI-OBJECTIVE SHORTEST PATHS 29

E. Angel, E. Bampis, A. Kononov. On the approximate trade-off for bicriteria batching and parallel
machine scheduling problems. Theoretical Computer Science, 306(1-3), pp. 319-338 (2003).

H. Aissi, C. Bazgan, D. Vanderpooten. Approximation Complexity of Min-Max (Regret) Versions of
Shortest Path, Spanning Tree and Knapsack. In Proc. ESA, pp. 862-873, 2005.

H. Aissi, C. Bazgan, D. Vanderpooten. Complexity of Min-Max (Regret) Versions of Cut problems. In
Proc. ISAAC, pp. 789-798, 2005.

H. Ackermann, A. Newman, H. Roglin, and B. Vocking. Decision Making Based on Approximate and
Smoothed Pareto Curves. Theoretical Computer Science, 378(3), p. 253-270 (2007).

A.F. Archer. Two O(log* k)-approximation algorithms for the asymmetric k-center problem. In Proc.
IPCO, pp. 1-14,2001.

A. F. Archer. Personal communication, 2007.

P. Assouad. Densité et Dimension. Ann. Institut Fourier, Grenoble, 3:232-282, 1983.

A. Armon, U. Zwick. Multicriteria Global Minimum Cuts. Algorithmica, 46, pp. 15-26, 2006.

A. Berger, V. Bonifaci, F. Grandoni, G. Schifer. Budgeted Matching and Budgeted Matroid Intersection
via the Gasoline Puzzle. In Proc IPCO, pp. 273-287, 2008.

H. Bronnimann, M.T. Goodrich. Almost Optimal Set Covers in Finite VC-Dimension. Discrete and
Computational Geometry, 14(4): 463-479 (1995).

V. Chvital. A greedy heuristic for the set covering problem. Math. Oper. Res., 4: 233-235 (1979).

J. Chuzhoy, S. Guha, E. Halperin, S. Khanna, G. Kortsartz, R. Krauthgamer, S. Naor. Asymmetric
k-center is log™ n-hard to Approximate. J. ACM, 52(4): 538-551 (2005).

T. C. E. Cheng, A. Janiak, M. Y. Kovalyov. Bicriterion Single Machine Scheduling with Resource
Dependent Processing Times. SIAM J. Optimization, 8(2), pp. 617-630, 1998.

G. Chen, G. Xue. A PTAS for weight constrained Steiner trees in series-parallel graphs. Theoretical
Computer Science, 1-3(304), pp. 237-247, 2003.

G. Chen, G. Xue. k-pair delay constrained minimum cost routing in undirected networks. In Proc.
SODA, pp. 230-231, 2001.

J. Climacao, Ed. Multicriteria Analysis. Springer—Verlag, 1997.

K. L. Clarkson, K. Varadarajan. Improved approximation algorithms for geometric set cover. Discrete
& Computational Geometry, 37(1):43-58, 2007.

J. Dongarra, E. Jeannot, E. Saule, Z. Shi. Bi-objective Scheduling Algorithms for Optimizing Makespan
and Reliability on Heterogeneous Systems. In Proc. SPAA, pp. 280-288, 2007.

M. Ehrgott. Multicriteria optimization, 2nd edition, Springer—Verlag, 2005.

M. Ehrgott, X. Gandibleux. An annotated bibliography of multiobjective combinatorial optimization
problems. OR Spectrum 42, pp. 425-460, 2000.

G. Even, D. Rawitz, S. Shahar. Hitting sets when the VC-dimension is small. Information Processing
Letters, 95(2):358-362, 2005.

F. Ergun, R. Sinha, L. Zhang. An improved FPTAS for Restricted Shortest Path. Information Processing
Letters, 83(5):237-239, 2002.

E. Erkut, V. Verter. Modeling of transport risk for hazardous materials. Operations Research, 46, pp.
625-642, 1998.

U. Feige. A threshold of In n for approximating set cover. JACM, 45(4), pp. 634-652, 1998.

J. Figueira, S. Greco, M. Ehrgott, eds. Multiple Criteria Decision Analysis: State of the Art Surveys,
Springer, 2005.

M. R. Garey, D. S. Johnson. Computers and Intractability. W. H. Freeman, 1979.

M.X. Goemans, R. Ravi. The Constrained Minimum Spanning Tree Problem. In Proc. SWAT, 1996, pp.
66-75.

A. Goel, K. G. Ramakrishnan, D. Kataria, and D. Logothetis. Efficient computation of delay—sensitive
routes from one source to all destinations. In Proc. IEEE INFOCOM, 2001.

P. Hansen. Bicriterion Path Problems. In Proc. 3rd Conf. Multiple Criteria Decision Making Theory and
Application, pp. 109-127, Springer Verlag LNEMS 177, 1979.

R. Hassin. Approximation schemes for the restricted shortest path problem. Mathematics of Operations
Research, 17(1), pp. 3642, 1992.

R. Hassin, A. Levin. An efficient polynomial time approximation scheme for the constrained minimum
spanning tree problem. SIAM J. Comput., 33(2): 261-268 (2004).

D. Haussler, E. Welzl. Epsilon-nets and simplex range queries. Discrete Computational Geometry,
2:127-151, 1987.

D. S. Johnson. Approximation algorithms for combinatorial problems. J. Comput. System Sci., 9: 256—
278 (1978).

V. Koltun, C.H. Papadimitirou. Approximately dominating representatives. Theoretical Computer Sci-
ence, 371, pp. 148-154, 2007.

J. Komlos, J. Pach, W. Woeginger. Almost tight bounds for Epsilon-Nets. Discrete and Computational
Geometry, 7, pp. 10-15, 1992.



30

[Lov]
[LR]

[LY]
[Mit]
[PR]
[PV]
[PW]
[PY1]
[PY2]
[TZ]

[VV]
[vcl

[VY]

[Wa]

1. DIAKONIKOLAS AND M. YANNAKAKIS

L. Lovasz. On the ratio of optimal integral and fractional covers. Discrete Math., 13: 383-390 (1975).

D. H. Lorenz, D. Raz. A simple efficient approximation scheme for the restricted shortest path problem.
Operations Research Letters, 28(5), pp. 213-219, 2001.

C. Lund, M. Yannakakis. On the hardness of approximating minimization problems. JACM, 41(5), pp.
960-981, 1994.

K. M. Miettinen. Nonlinear Multiobjective Optimization, Kluwer, 1999.

E. Pyrga, S. Ray. New Existence Proofs for e-Nets. In Proc. SoCG, 2008.

R. Panigrahy, S. Vishwanathan. An O(log* n) approximation algorithm for the asymmetric p-center
problem. J. of Algorithms, 27(2), pp. 259-268, 1998.

J. Pach, W. Woeginger. Some new bounds for Epsilon-Nets. In Proc. 6th ACM Symposium on Compu-
tational Geometry, pages 10-15, 1990.

C.H. Papadimitriou, M. Yannakakis. On the Approximability of Trade-offs and Optimal Access of Web
Sources. In Proc. FOCS, pp. 86-92, 2000.

C.H. Papadimitriou, M. Yannakakis. Multiobjective Query Optimization. In Proc PODS, pp. 52-59,
2001.

G. Tsaggouris, C.D. Zaroliagis. Multiobjective Optimization: Improved FPTAS for Shortest Paths and
Non-linear Objectives with Applications. In Proc. ISAAC, pp. 389-398, 2006.

P. Van Mieghen, L. Vandenberghe. Trade-off Curves for QoS Routing. In Proc. INFOCOM, 2006.

V. N. Vapnik, A. Ya. Chervonenkis. On the uniform convergence of relative frequencies to their proba-
bilities. Theory Probab. Appl., 16(2): 264-280, 1971.

S. Vassilvitskii, M. Yannakakis. Efficiently computing succinct trade-off curves. Theoretical Computer
Science 348, pp. 334-356, 2005.

A. Warburton. Approximation of Pareto Optima in Multiple-Objective Shortest Path Problems. Opera-
tions Research, 35, pp. 70-79, 1987.



