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ABSTRACT
We give a computationally efficient semi-agnostic algorithm
for learning univariate probability distributions that are well
approximated by piecewise polynomial density functions.
Let p be an arbitrary distribution over an interval I, and
suppose that p is τ -close (in total variation distance) to an
unknown probability distribution q that is defined by an un-
known partition of I into t intervals and t unknown degree-
d polynomials specifying q over each of the intervals. We
give an algorithm that draws Õ(t(d + 1)/ε2) samples from
p, runs in time poly(t, d + 1, 1/ε), and with high probabil-
ity outputs a piecewise polynomial hypothesis distribution
h that is (14τ + ε)-close to p in total variation distance.
Our algorithm combines tools from real approximation the-
ory, uniform convergence, linear programming, and dynamic
programming. Its sample complexity is simultaneously near-
optimal in all three parameters t, d and ε; we show that even
for τ = 0, any algorithm that learns an unknown t-piecewise
degree-d probability distribution over I to accuracy ε must

use Ω( t(d+1)
poly(log(d+2))

· 1
ε2

) samples from the distribution, re-

gardless of its running time.
We apply this general algorithm to obtain a wide range of
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results for many natural density estimation problems over
both continuous and discrete domains. These include state-
of-the-art results for learning mixtures of log-concave dis-
tributions; mixtures of t-modal distributions; mixtures of
Monotone Hazard Rate distributions; mixtures of Poisson
Binomial Distributions; mixtures of Gaussians; and mix-
tures of k-monotone densities. Our general technique gives
improved results, with provably optimal sample complexi-
ties (up to logarithmic factors) in all parameters in most
cases, for all these problems via a single unified algorithm.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and Statis-
tics—Distribution functions; G.3 [Mathematics of Com-
puting]: Probability and Statistics—Nonparametric statis-
tics; F.2.2 [Analysis of Algorithms and Problem Com-
plexity]: Nonnumerical Algorithms and Problems

General Terms
Theory

Keywords
Computational Learning Theory; Unsupervised Learning;
Learning Distributions

1. INTRODUCTION
Density estimation — the problem of constructing a highly

accurate hypothesis distribution given i.i.d. samples drawn
from an unknown probability distribution — is a well-studied
topic in probability theory and statistics; book-length intro-
ductions to the field can be found in [DG85, Sil86, Sco92,
DL01]. A number of generic techniques for density esti-
mation are known in the mathematical statistics literature,
including histograms, kernels and variants thereof, nearest
neighbor estimators, orthogonal series estimators, maximum
likelihood and variants thereof, and others (see Chapter 2
of [Sil86] for a survey of existing methods). In recent years,
theoretical computer science researchers have also studied
these problems, with an explicit focus on obtaining com-
putationally efficient algorithms; see e.g., [KMR+94, FM99,



FOS05, BS10, KMV10, MV10, DDS12a, DDS12b, DDO+13]
for some representative recent works.

In this paper we propose a new approach to density esti-
mation. Our approach is based on establishing the existence
of piecewise polynomial density functions that approximate
the distribution to be learned. The key tool that enables
this new approach is a computationally efficient general al-
gorithm that we provide for learning univariate probabil-
ity distributions that are well approximated by piecewise
polynomial density functions. Combining our general algo-
rithm with structural results showing that probability distri-
butions of interest can be well approximated using piecewise
polynomial density functions, we obtain learning algorithms
for those distributions.

We demonstrate the effectiveness of this approach by show-
ing that for many natural and well-studied types of distribu-
tions, there do indeed exist piecewise polynomial densities
that approximate the distributions to high accuracy. For all
of these types of distributions our general approach gives a
state-of-the-art computationally efficient learning algorithm
with the best known sample complexity (number of samples
that are required from the distribution) to date. In most
cases the sample complexity of our approach is provably
optimal up to logarithmic factors. We remark that these
questions correspond to fundamental statistical estimation
tasks; hence, we believe it is of substantial interest from
a theoretical standpoint to obtain computationally efficient
and sample-optimal algorithms for these problems. From a
practical perspective, it is critical to use our data efficiently.
In particular, in many natural settings, even modest asymp-
totic differences in the sample size can play a big role.

1.1 Our main general result.
We work in a PAC-type model similar to that of [KMR+94]

and to well-studied statistical frameworks for density esti-
mation. In our model, the learning algorithm has access
to i.i.d. draws from an unknown probability distribution p
supported on a finite interval I ⊂ R.It draws i.i.d. sam-
ples from p, and must output a hypothesis distribution h
such that with high probability the total variation distance
dTV (p, h) between p and h is at most ε. (Recall that the
total variation distance between two distributions p and h
is 1

2

∫
|p(x) − h(x)|dx for continuous distributions, and is

1
2

∑
|p(x) − h(x)| for discrete distributions.) We are con-

cerned with learning algorithms that both (i) use few sam-
ples — ideally, close to the information-theoretic minimum
possible number — and (ii) are computationally efficient.

We say that a distribution q over I is a t-piecewise degree-d
distribution if there is a partition of I into t disjoint inter-
vals I1, . . . , It such that q(x) = qj(x) for all x ∈ Ij , where
each of q1, . . . , qt is a degree-d polynomial.1 Our main re-
sult is a semi-agnostic algorithm for learning piecewise poly-
nomial distributions. Let Pt,d(I) denote the class of all t-
piecewise degree-d distributions over interval I. Our main
result, stated informally, is the following:

Theorem 1. [Informal statement] Let p be any unknown
target distribution over I. Our algorithm, given parame-
ters t, d, ε and Õ(t(d+ 1)/ε2) samples from p, runs in time2

1Here and throughout the paper, whenever we refer to a
“degree-d polynomial,” we mean a polynomial of degree at
most d.
2Here and throughout the paper we work in a standard unit-

poly(t, d+ 1, 1/ε) and with high probability outputs an O(t)-
piecewise degree-d hypothesis distribution h such that dTV (p, h)
≤ 14optt,d + ε, where optt,d := infr∈Pt,d(I) dTV (p, r) is the
error of the best t-piecewise degree-d distribution for p.

(See Theorem 5 for a precise statement.) We view this re-
sult as providing quite a strong guarantee, since (as we will
see through our applications) t-piecewise degree-d distribu-
tions constitute a broad and flexible class that is capable of
accurately approximating many distributions of interest.

One strength of our result is that it is extremely efficient
— in fact, essentially optimal — in terms of the number of
samples it uses. We prove the following lower bound (see
Theorem 7 for a precise statement), which shows that the
number of samples that our algorithm uses is simultaneously
optimal in all three parameters up to logarithmic factors:

Theorem 2. [Informal] Any algorithm that learns an un-
known t-piecewise degree-d distribution over an interval I to

accuracy ε must use Ω( t(d+1)
poly(log(d+2))

· 1
ε2

) samples.

Note that this lower bound holds even when the unknown
distribution is exactly a t-piecewise degree-d distribution,
i.e., optt,d = 0. In fact, the lower bound still applies even if
the t − 1 breakpoints defining the t interval boundaries are
guaranteed to be evenly spaced across I.

1.2 Applications of Theorem 1.
Using Theorem 1 we obtain highly efficient estimators for

a wide range of specific distribution learning problems over
both continuous and discrete domains. Note that we do not
aim to exhaustively cover all possible applications of The-
orem 1, but rather to give some selected applications that
are indicative of the generality and power of our methods.

In the continuous setting we focus chiefly on distributions
that are defined by various kinds of “shape restrictions” on
the pdf. Nonparametric density estimation for shape re-
stricted classes has been a subject of study in statistics
since the 1950’s (see [BBBB72] for an early book on the
topic), and has applications to a range of areas including
reliability theory (see [Reb05] and references therein). The
shape restrictions that have been studied in this area in-
clude monotonicity and concavity of pdfs [Gre56, Bru58,
Rao69, Weg70, HP76, Gro85, Bir87a, Bir87b]. More re-
cently, motivated by various applications (see e.g., Walther’s
recent survey [Wal09]), researchers in this area have consid-
ered other types of shape restrictions including log-concavity
and k-monotonicity [BW07, DR09, BRW09, GW09, BW10,
KM10]. Our general method provides a single unified ap-
proach that yields a a highly efficient algorithm (both in
terms of sample complexity and computational complexity)
for all the aforementioned shape restricted densities (and
mixtures thereof). In most cases the sample complexities of
our efficient algorithms are optimal up to logarithmic fac-
tors. Our approach also yields efficient and sample optimal
estimators for various parametric classes, such as mixtures
of univariate Gaussians. Next, turning to discrete distribu-
tions, using our methods, we improve prior results to ob-
tain sample-optimal estimators for various nonparametric

cost model of computation, in which a sample from distribu-
tion p is obtained in one time step (and is assumed to fit into
one register) and basic arithmetic operations are assumed to
take unit time. Our algorithms only performs basic arith-
metic operations on “reasonable” inputs.



classes, including mixtures of discrete t-modal distributions
and mixtures of discrete monotone hazard rate (MHR) dis-
tributions.

See Table 1 for a concise summary of these results and
a comparison with previous results. All of our algorithms
run in polynomial time in all of the relevant parameters,
and for all of the mixture learning problems listed in Ta-
ble 1, our results improve on previous state-of-the-art re-
sults by a polynomial factor. In some cases, such as t-
piecewise degree-d polynomial distributions and mixtures
of t bounded k-monotone distributions, we believe that we
give the first nontrivial learning results for the distribution
classes in question. In most cases the sample complexities
of our algorithms are provably optimal, up to logarithmic
factors in the optimal sample complexity. Detailed descrip-
tions of all of the classes of distributions in the table, and of
our results for learning them, are given in the full paper.

We note that all the learning results indicated with the-
orem numbers in Table 1, i.e., all the results proved in this
paper, are in fact semi-agnostic learning results for the given
classes as described in the previous subsection. Hence all of
these results are highly robust even if the target distribution
does not exactly belong to the specified class of distributions.
More precisely, if the target distribution is τ -close to some
member of the specified class of distributions, then the al-
gorithm uses the stated number of samples and outputs a
hypothesis that is (14τ + ε)-close to the target distribution.

1.3 Our Approach and Techniques.
As stated in [Sil86], “the oldest and most widely used den-

sity estimator is the histogram”: Given samples from a den-
sity f , the method partitions the domain into a number of
intervals (bins) B1, . . . , Bk, and outputs the empirical den-
sity which is constant within each bin. Note that the number
k of bins and the width of each bin are parameters and may
depend on the particular class of distributions being learned.
Our technique may be viewed as a very broad generalization
of the histogram method, where instead of approximating
the distribution by a constant within each bin, we approx-
imate it by a low-degree polynomial. We believe that such
a generalization is very natural, and note that the recent
paper [PA13] also proposes using splines for density estima-
tion. (However, this is not the main focus of that paper,
and indeed [PA13] does not provide or analyze algorithms
for density estimation.)

Our general algorithm. At a high level, our algorithm
uses a rather subtle dynamic program (roughly, to discover
the “correct” intervals in each of which the underlying distri-
bution is close to a degree-d polynomial) and linear program-
ming (roughly, to learn a single degree-d subdistribution on
a given interval). However, many challenges arise in going
from this high-level intuition to a working algorithm.

Consider first the special case in which there is only a sin-
gle known interval (see Section 3.3). In this special case our
problem is somewhat reminiscent of the problem of learning
a “noisy polynomial” that was studied by Arora and Khot
[AK03]. We stress, though, that our setting is considerably
more challenging in the following sense: in the [AK03] frame-
work, each data point is a pair (x, y) where y is assumed to
be close to the value p(x) of the target polynomial at x. In
our setting the input data is unlabeled – we only get points
x drawn from a distribution that is τ -close to some polyno-
mial pdf. However, we are able to leverage some ingredients

from [AK03] in our context. We define a linear program and
carry out a careful error analysis using probabilistic inequal-
ities (the VC inequality and tail bounds) and ingredients

from basic approximation theory to show that Õ(d/ε2) sam-
ples suffice for our LP to achieve an O(opt1,d + ε)-accurate
hypothesis with high probability.

Additional challenges arise when we go from a single in-
terval to the general case of t-piecewise polynomial densities
(see Section 3.5). The “correct” intervals can of course only
be approximated rather than exactly identified, introduc-
ing an additional source of error that needs to be carefully
managed. We formulate a dynamic program that uses the
algorithm from Section 3.3 as a “black box” to achieve our
most general learning result.

The applications. Given our general approach, in order
to obtain efficient estimators for specific classes of distri-
butions, it is sufficient to establish the existence of piece-
wise polynomial approximations to the distributions that
are to be learned. In some cases, results establishing the
existence of piecewise constant or piecewise linear approxi-
mations were already known; for example, [Bir87b] provides
the necessary existence result that we require for discrete t-
modal distributions, and classical results in approximation
theory [Dud74, Nov88] give the necessary existence results
for concave distributions over continuous domains. For log-
concave densities over continuous domains, we prove a new
structural result on approximation by piecewise linear den-
sities (Lemma 17) which, combined with our general algo-
rithm, leads to an optimal learning algorithm for (mixtures
of) such densities. In particular, we show that any log-
concave density can be ε-approximated by a piecewise linear
distribution with Õ(ε−1/2) pieces. The proof of Lemma 17
is quite elaborate and significantly different from the afore-
mentioned known arguments establishing the existence of
piecewise linear approximations for concave functions. Fi-
nally, for k-monotone distributions we are able to leverage a
recent (and quite sophisticated) result from the approxima-
tion theory literature [KL04, KL07] to obtain the required
approximation result.

1.4 Related work.
As noted above, our work may be viewed as a broad gen-

eralization of the “histogram method.” To the best of our
knowledge, the state of the art for histogram-type algorithms
was given in [CDSS13]. (That paper dealt with distributions
over the discrete domain [N ] = {1, . . . , N}, but for simplicity
we translate the [CDSS13] results to the continuous domain.
This translation is straightforward.) Recall that given dis-
tributions p1, . . . , pk and non-negative values µ1, . . . , µk that
sum to 1, the distribution p =

∑k
i=1 µipi is a k-mixture of

components p1, . . . , pk with mixing weights µ1, . . . , µk if a
draw from p is obtained by choosing i ∈ [k] with probability
µi and then making a draw from pi. A distribution q over
an interval I is said to be (ε, t)-piecewise constant if there is
a partition of I into t disjoint intervals I1, . . . , It such that
p is ε-close (in total variation distance) to a distribution q
such that q(x) = cj for all x ∈ Ij .

[CDSS13] gave an algorithm that learns any k-mixture
of (ε, t)-piecewise constant distributions over an interval I
to accuracy O(ε), using O(kt/ε3) samples and running in

Õ(kt/ε3) time. Our main result gives both a quantitative
and qualitative improvement over this [CDSS13] result. Quan-
titatively, we improve the ε-dependence from 1/ε3 to a near-



Class of Distributions Number of samples Reference

Continuous distributions over an interval I

t-piecewise constant O(t/ε3) [CDSS13]

t-piecewise constant Õ(t/ε2) (†) Theorem 5

t-piecewise degree-d polynomial Õ(td/ε2) (†) Theorem 5, Theorem 7

log-concave O(1/ε5/2) (†) folklore [DL01]

mixture of k log-concave distributions Õ(k/ε5/2) (†) Theorem 16

mixture of t bounded 1-monotone distributions Õ(t/ε3) (†) full version

mixture of t bounded 2-monotone distributions Õ(t/ε5/2) (†) full version

mixture of t bounded k-monotone distributions Õ(tk/ε2+1/k) full version

mixture of k Gaussians Õ(k/ε2) (†) full version

Discrete distributions over {1, 2, . . . , N}
t-modal Õ(t log(N)/ε3) + Õ(t3/ε3) [DDS12a]

mixture of k t-modal distributions O(kt log(N)/ε4) [CDSS13]

mixture of k t-modal distributions Õ(kt log(N)/ε3) (†) full version

mixture of k monotone hazard rate distributions Õ(k log(N)/ε4) [CDSS13]

mixture of k monotone hazard rate distributions Õ(k log(N)/ε3) (†) full version

Table 1: Known algorithmic results for learning various classes of probability distributions. “Number of
samples” indicates the number of samples that the algorithm uses to learn to total variation distance ε.
Results given in this paper are indicated with a reference to the corresponding theorem. A (†) indicates that

the given upper bound on sample complexity is optimal up to at most logarithmic factors (i.e., “Õ(m) (†)”
means that there is a known lower bound of Ω(m)).

optimal Õ(1/ε2). Qualitatively, we extend the [CDSS13] re-
sult from piecewise constant distributions to piecewise poly-
nomial distributions. The applications of our main result
crucially use both the quantitative and qualitative aspects
in which it strengthens the [CDSS13] result.

Structure of this paper: In Section 2 we include some
basic preliminaries. In Section 3 we present our main learn-
ing result and in Section 4 we describe our applications.
Because of space constraints many proofs are omitted from
this extended abstract, and can be found in the full version.

2. PRELIMINARIES
Throughout the paper for simplicity we consider distri-

butions over the interval [−1, 1). It is easy to see that the
general results given in Section 3 go through for distributions
over an arbitrary interval.

Given a function p : I → R on an interval I ⊆ [−1, 1) and
a subinterval J ⊆ I, we write p(J) to denote

∫
J
p(x)dx. Thus

if p is the pdf of a probability distribution over [−1, 1), the
value p(J) is the probability that distribution p assigns to
the subinterval J . We sometimes refer to a nonnegative func-
tion p over an interval (which need not necessarily integrate
to one over the interval) as a “subdistribution.” Given m
independent samples s1, . . . , sm, drawn from a distribution
p over [−1, 1), the empirical distribution p̂m over [−1, 1) is
the discrete distribution supported on {s1, . . . , sm} defined
as follows: for all z ∈ [−1, 1), Prx∼p̂m [x = z] = |{j ∈ [m] |
sj = z}|/m.

Given a value κ > 0, a distribution or subdistribution p
over [−1, 1) is κ-well-behaved if supx∈[−1,1) Prx∼p[x] ≤ κ,
i.e., no individual real value is assigned more than κ proba-
bility under p. Any probability distribution with no atoms
(and hence any piecewise polynomial distribution) is κ-well-
behaved for all κ > 0, but for example the distribution which
outputs the value 0.3 with probability 1/100 and otherwise
outputs a uniform value in [−1, 1) is only κ-well-behaved

for κ ≥ 1/100. Our results apply for general distributions
over [−1, 1) which may have an atomic part as well as a
non-atomic part. Throughout the paper we assume that the
density p is Lebesgue measurable. Note that we only ever
work with the probabilities Prx∼p[x = z] of single points and
probabilities Prx∼p[x ∈ S] of sets S that are finite unions of
intervals and single points.

Optimal piecewise polynomial approximators. Fix a
distribution p over [−1, 1). We write optt,d to denote the
value optt,d := infr∈Pt,d([−1,1)) dTV (p, r). Standard closure
arguments can be used to show that the above infimum is
attained by some r∗ ∈ Pt,d([−1, 1)); however this is not
actually required for our purposes. It is straightforward
to verify that any distribution r̃ ∈ Pt,d([−1, 1)) such that
dTV (p, r̃) is at most (say) optt,d + ε/100 is sufficient for all
our arguments. We will sometimes say that a distribution
p is (τ, t)-piecewise degree-d to indicate that p is τ -close in
variation distance to a t-piecewise degree-d distribution.

Refinements. Let I = {I1, . . . , Is} be a partition of [−1, 1)
into s disjoint intervals, and J = {J1, . . . , Jt} be a partition
of [−1, 1) into t disjoint intervals. We say that J is a re-
finement of I if each interval in I is a union of intervals in
J , i.e., for every a ∈ [s] there is a subset Sa ⊆ [t] such that
Ia = ∪b∈SaJb.

For I = {Ii}ri=1 and I′ = {I ′i}si=1 two partitions of [−1, 1)
into r and s intervals respectively, we say that the common
refinement of I and I′ is the partition J of [−1, 1) into inter-
vals obtained from I and I′ by taking all possible nonempty
intervals of the form Ii ∩ I ′j . It is clear that J is both a re-
finement of I and of I′ and that J contains at most r + s
intervals.

The VC inequality. Let p : [−1, 1) → R be a Lebesgue
measurable function. Given a family of subsetsA over [−1, 1),
define ‖p‖A = supA∈A |p(A)|. The VC dimension of A is the
maximum size of a subset X ⊆ [−1, 1) that is shattered by A



(a set X is shattered by A if for every Y ⊆ X, some A ∈ A
satisfies A ∩X = Y ). If there is a shattered subset of size s
for all s ∈ Z+, then we say that the VC dimension of A is
∞. The well-known Vapnik-Chervonenkis (VC) inequality
states the following:

Theorem 3 (VC inequality, [DL01, p.31]). Let p :
I → R+ be a probability density function over I ⊆ R and
p̂m be the empirical distribution obtained after drawing m
samples from p. Let A ⊆ 2I be a family of subsets with VC
dimension d. Then E[‖p− p̂m‖A] ≤ O(

√
d/m).

Partitioning into intervals of approximately equal
mass. As a basic primitive, we will often need to decompose
a κ-well-behaved distribution p into Θ(1/κ) intervals each of
which has probability Θ(κ) under p. The following lemma

lets us achieve this using Õ(1/κ) samples.

Lemma 4. Given κ ∈ (0, 1) and access to samples from
a κ/64-well-behaved distribution p over [−1, 1), the procedure

Approximately-Equal-Partition uses Õ(1/κ) samples from

p, runs in time Õ(1/κ), and with probability at least 99/100
outputs a partition of [−1, 1) into ` = Θ(1/κ) intervals such
that p(Ij) ∈ [κ/2, 3κ] for all 1 ≤ j ≤ `.

3. MAIN RESULT: LEARNING PIECEWISE
POLYNOMIAL DISTRIBUTIONS WITH
NEAR-OPTIMAL SAMPLE COMPLEX-
ITY

In this section we present and analyze our main algorithm
for learning (τ, t)-piecewise degree-d distributions. The struc-
ture of this section is as follows: We start by giving a simple
information-theoretic argument (Proposition 6, Section 3.1)
showing that there is a (computationally inefficient) algo-
rithm to learn any distribution p to accuracy 3optt,d+ε using

O(t(d+1)/ε2) samples, where optt,d is the smallest variation
distance between p and any t-piecewise degree-d distribu-
tion. Next, we prove an information-theoretic lower bound
(Theorem 7, Section 3.2) showing that the aforementioned
sample complexity is essentially optimal: Any algorithm, re-
gardless of its running time, for learning a t-piecewise degree-
d distribution to accuracy ε must use t · Ω̃(d+1)/ε2 samples.

We then proceed to build up to our main result in stages
by giving efficient algorithms for successively more chal-
lenging learning problems. In Section 3.3 we give an effi-
cient“semi-agnostic”algorithm for learning a single degree-d
pdf. More precisely, the algorithm draws Õ((d+1)/ε2) sam-
ples from any well-behaved distribution p, and with high
probability outputs a degree-d pdf h such that dTV (p, h) ≤
7opt1,d + ε. This algorithm is based on linear programming
and its analysis uses ingredients from real approximation
theory and uniform convergence results in probability the-
ory. In Section 3.4 we generalize this algorithm so that it can
be used to learn a sub-distribution over an arbitrary interval.
In Section 3.5 we use the result of Section 3.4 to obtain an
efficient “semi-agnostic” algorithm for t-piecewise degree-d
pdfs. The approach of this section uses a subtle dynamic
program on top of the linear programming approach men-
tioned above. The extended algorithm draws Õ(t(d+ 1)/ε2)
samples from any well-behaved distribution p, and with high
probability outputs a (2t− 1)-piecewise degree-d pdf h such
that dTV (p, h) ≤ 13optt,d + ε. In the full version we point

out that this result can be straightforwardly extended to
k-mixtures of well-behaved distributions, and we show how
we may get rid of the “well-behaved” requirement (at the
cost of another additive optt,d factor), and thereby prove
the following generalization of Theorem 1:

Theorem 5. Let p be any k-mixture of (τ, t)-piecewise
degree-d distributions over [−1, 1). There is an algorithm

that runs in poly(k, t, d+ 1, 1/ε) time, uses Õ((d+ 1)kt/ε2)
samples from p, and with probability at least 9/10 outputs a
(2kt−1)-piecewise degree-d hypothesis h such that dTV (p, h) ≤
14optt,d +O(ε).

3.1 An information-theoretic sample complex-
ity upper bound.

Proposition 6. There is a (computationally inefficient)
algorithm that draws O(t(d + 1)/ε2) samples from any dis-
tribution p over [−1, 1), and with probability 9/10 outputs a
hypothesis distribution h such that dTV (p, h) ≤ 3optt,d + ε.

Proof. The main idea is to use Theorem 3, the VC in-
equality. Let p be the target distribution and let q be a t-
piecewise degree-d distribution such that dTV (p, q) = optt,d.

The algorithm draws m = O(t(d + 1)/ε2) samples from p;
let p̂m be the resulting empirical distribution of these m
samples.

We define the familyA of subsets of [−1, 1) to consist of all
unions of up to 2t(d+ 1) intervals. Since dTV (p, q) ≤ optt,d
we have that ‖p−q‖A ≤ optt,d. Since the VC dimension ofA
is 4t(d+1), Theorem 3 implies that E[‖p−p̂m‖A] ≤ ε/40, and
hence by Markov’s inequality, with probability at least 19/20
we have that ‖p − p̂m‖A ≤ ε/2. By the triangle inequality
for ‖·‖A-distance, this means that ‖q− p̂m‖A ≤ optt,d+ε/2.

The algorithm outputs a t-piecewise degree-d distribution
h that minimizes ‖h− p̂m‖A. Since q is a t-piecewise degree-
d distribution that satisfies ‖q − p̂m‖A ≤ optt,d + ε/2, the
distribution h satisfies ‖h− p̂m‖A ≤ optt,d+ ε/2. Hence, the
triangle inequality gives ‖h− q‖A ≤ 2optt,d + ε.

Now since h and q are both t-piecewise degree-d distri-
butions, they must have at most 2t(d + 1) crossings. (Tak-
ing the common refinement of the intervals for p and the
intervals for q, we get at most 2t intervals. Within each
such interval both h and q are degree-d polynomials, so
there are at most 2t(d + 1) crossings in total (where the
extra +1 comes from the endpoints of each of the 2t inter-
vals).) Consequently we have that dTV (h, q) = ‖h − q‖A ≤
2optt,d + ε. The triangle inequality for variation distance
gives that dTV (h, p) ≤ 3optt,d + ε, as desired.

Note that the algorithm described above is not efficient be-
cause it is by no means clear how to construct a t-piecewise
degree-d distribution h that minimizes ‖h− p̂m‖A in a com-
putationally efficient way. Indeed, several natural approaches
to solve this problem yield running times that grow exponen-
tially in t, d. Starting in Section 3.3, we give an algorithm
that achieves nearly the same sample complexity and runs
in time poly(t, d+ 1, 1/ε). The main idea is that minimizing
‖·‖A – which involves infinitely many inequalities – can be
approximately achieved by minimizing a “small” number of
inequalities (Theorems 10 and 13), and that the correspond-
ing optimization problem can be expressed as an appropriate
linear program.



3.2 An information-theoretic sample complex-
ity lower bound.

To complement the information-theoretic upper bound
from the previous subsection, in this subsection we record
an information-theoretic lower bound showing that even if
optt,d = 0 (i.e., the target distribution p is exactly a t-

piecewise degree-d distribution), Ω̃(t(d+ 1)/ε2) samples are
required for any algorithm to learn to accuracy ε:

Theorem 7. Let p be an unknown t-piecewise degree-d
distribution over [−1, 1) where t ≥ 1, d ≥ 0 satisfy t+d > 1.
3 Let L be any algorithm which, given as input t, d, ε and ac-
cess to independent samples from p, outputs a hypothesis dis-
tribution h such that E[dTV (p, h)] ≤ ε, where the expectation
is over the random samples drawn from p and any internal

randomness of L. Then L must use at least Ω( t(d+1)

(log(d+2))2
· 1
ε2

)

samples.

To prove Theorem 7 we use a well-known information-
theoretic tool, known as Assouad’s lemma [Ass83]. To apply
this lemma in our context we make essential use of recent
nontrivial constructions of certain low-degree polynomial ap-
proximations to the sign function [DGJ+10]. At a high-level,
we leverage the existence of such polynomials to construct
a set of polynomial probability density functions that meet
the conditions of Assouad’s lemma.

3.3 Semi-agnostically learning a degree-d poly-
nomial density with near-optimal sample
complexity.

Throughout this subsection p will be a probability dis-
tribution with support contained in [−1, 1). Hence for this
subsection we define dTV (p, q), where p is a Lebesgue mea-

surable density and q is a polynomial, to be 1
2

∫ 1

−1
|p(x) −

q(x)|dx.
In this subsection we prove the following:

Theorem 8. Let p be an ε
64(d+1)

-well-behaved pdf over

[−1, 1). There is an algorithm Learn-WB-Single-Poly(d, ε)

which runs in poly(d+1, 1/ε) time, uses Õ((d+1)/ε2) sam-
ples from p, and with probability at least 9/10 outputs a
degree-d polynomial q which defines a pdf over [−1, 1) such
that dTV (p, q) ≤ 7 · opt1,d + ε.

We start by providing a sketch of our computationally
efficient algorithm. For the sake of this intuitive explanation,
let us assume that the unknown distribution p is exactly
a degree-d pdf – as opposed to close to one. Given ε >
0 and sample access to p : [−1, 1) → R+ we proceed as
follows: We start by partitioning the domain [−1, 1) into
intervals I1, I2, . . . , Iz each of probability mass η = Θ(ε/(d+
1)), where z = Θ(1/η). Note that this step can be achieved

with Õ((d+ 1)/ε) samples from p (Lemma 4).
To compute a hypothesis degree-d polynomial f , we draw

m = Õ((d + 1)/ε2) samples from p and consider the corre-
sponding empirical distribution p̂m. We then formulate and
solve an appropriate linear program, of size polynomial in d
and 1/ε, based on these samples. Ideally, one would like to
impose the constraint that f agrees with p everywhere on
[−1, 1). However, this is not possible, since (i) we only have

3Note that t = 1 and d = 0 is a degenerate case where the
only possible distribution p is uniform over [−1, 1).

approximate information about p, via the empirical distri-
bution p̂m, and (ii) we are allowed to use at most a finite
number of constraints. As our main result of this section, we
show that a polynomial number of linear constraints suffices
to approximate the unknown pdf p up to an additive ε in
total variation distance, as explained below.

Let F be the hypothesis “cumulative distribution func-
tion” (cdf) corresponding to f , i.e., F : [−1, 1) → R with
F (x) =

∫ x
−1
f(u)du. (We used quotation marks above be-

cause F will end up satisfying the properties of a bona-fide
cdf only approximately.) First, we require that F (−1) = 0
and F (1) = 1. Moreover, we impose the following crucial
set of constraints: the probability mass that the hypoth-
esis f assigns to unions of consecutive intervals from our
decomposition, i.e., f(∪k`=jI`) is “approximately” the same

as p̂m(∪k`=jI`), i.e., the mass that the empirical distribution
assigns to the same set. The “closeness” of this approxima-
tion is selected carefully so as to guarantee that (i) these
constraints are satisfied (w.h.p.), and (ii) the quantitative
bounds are sufficient for our error analysis. In addition, we
would ideally like to guarantee that F ([−1, 1)) ⊆ [0, 1] and
f([−1, 1)) ⊆ [0,∞]. Similarly, this is not possible to achieve
with a finite number of inequalities. Exploiting the fact that
f is a degree-d polynomial, we show that it is essentially suf-
ficient for our purposes to impose these constraints on a suf-
ficiently dense discrete “grid” of the domain. For technical
reasons related to these aforementioned “grid” constraints,
we express our hypothesis distribution in the basis of the
Chebychev polynomials.

We are now ready to formally describe the algorithm and
prove its correctness. Some preliminary definitions will help:

Definition 9 (Uniform partition). Let p be a sub-
distribution on an interval I⊆[−1, 1). A partition I = {I1,
. . . , Iz} of I is (p, η)-uniform if p(I`) ≤ η for all 1 ≤ ` ≤ z.

Definition 10. Let I = {I1 = [x0, x1), . . . , Iz = [xz−1, xz)}
be a partition of an interval I⊆[−1, 1). Let p, q : I → R be
two functions on I. We say that p and q satisfy the (I, η, ε)-
inequalities over I if

|p(∪k−1
`=j I`)− q(∪

k−1
`=j I`)| ≤

√
ε(k − j) · η (1)

for all 1 ≤ j < k ≤ z + 1.

Our learning algorithm Learn-WB-Single-Poly is described
in detailed pseudocode below. The key step of Learn-WB-

Single-Poly is Step 3 where the Find-Single-Polynomial

procedure is called. In this procedure Ti(x) denotes the
degree-i Chebychev polynomial of the first kind. The func-
tion F computed by the procedure Find-Single-Polynomial
may be thought of as the CDF of a degree-d“quasi-distribution”
f ; we say that f = F ′ is a “quasi-distribution” and not
a bona fide probability distribution because it is not guar-
anteed to be non-negative everywhere on [−1, 1). Step 4 of
Learn-WB-Single-Poly processes the degree-d polynomial f
slightly to obtain a polynomial q which is an actual distri-
bution over [−1, 1).

Algorithm Learn-WB-Single-Poly

Input: parameters d, ε
Output: with probability at least 9/10, a degree-d dis-
tribution q over [−1, 1) such that dTV (p, q) ≤ 7 ·opt1,d+
O(ε)



1. Run Algorithm Approximately-Equal-Partition

on input parameter ε/(d+ 1) to partition [−1, 1)
into z = Θ((d + 1)/ε) intervals I1 = [x0, x1), . . . ,
Iz = [xz−1, xz), where x0 = −1 and xz = 1, such
that for each ` ∈ [z] we have p(I`) = Θ(ε/(d +
1)). Let I denote this partition of [−1, 1) into
I1, . . . , Iz, i.e., I = {I`}z`=1.

2. Draw m = Õ((d+1)/ε2) samples and let p̂m be the
empirical distribution defined by these samples.
Set η := Θ(ε/(d+ 1)).

3. Call Find-Single-Polynomial(d, ε, η, I, p̂m) and
let f∗ be the degree-d polynomial that it returns.

4. Define q(x) = ε′/2 + (1− ε′)f∗(x), where ε′ is de-
fined to be ε′ = η/10 as in Step 1(f) of Find-

Single-Polynomial, and output q as the hypoth-
esis pdf.

Subroutine Find-Single-Polynomial

Input: degree parameter d; error parameter ε; parame-
ter η; (p, η)-uniform partition I = {I1, . . . , Iz} of inter-
val [−1, 1) into z intervals I` = [x`−1, x`); a distribution
p̂m on [−1, 1) such that p̂m and p satisfy the (I, η, ε)-
inequalities over [−1, 1)
Output: a number τ∗ such that 0 ≤ τ∗ ≤ opt1,d
and a degree-d polynomial f∗ on [−1, 1) such that
f∗([−1, 1)) = 1 and

dTV (p, f∗) ≤ 7 · opt1,d +
√
εz(d+ 1) · η + error,

where error = O((d+ 1)η).

1. Let τ∗ be the optimal value of the following LP:

minimize τ subject to the following constraints:

(Below F (x) =
∑d+1
i=0 ciTi(x) where Ti(x) is the

degree-i Chebychev polynomial of the first kind,
the ci’s are variables of the LP, and f(x) =

F ′(x) =
∑d+1
i=0 ciT

′
i (x).)

(a) F (−1) = 0 and F (1) = 1;

(b) For each 1 ≤ j < k ≤ z + 1,∣∣p̂m(∪k−1
`=j I`) +

∑
j≤`<k

w` − f(∪k−1
`=j I`)

∣∣
≤
√
ε · (k − j) · η;

(c)

−y` ≤ w` ≤ y` for all 1 ≤ ` ≤ z, (2)∑
1≤`≤z

y` ≤ 2τ ; (3)

(d) The constraints |ci| ≤
√

2 for i = 0, . . . , d+1;

(e) The constraints 0 ≤ F (x) ≤ 1 for all x ∈ J,
where J is a set of O((d+1)3) equally spaced
points across [−1, 1);

(f) The constraints
∑d+1
i=0 ciT

′
i (x) ≥ 0 for all x ∈

K, whereK is a set ofO(d2(d+1)2/ε′) equally

spaced points across [−1, 1) and ε′
def
= η/10.

2. Define the degree-d polynomial f∗(x) =∑d+1
i=0 c

∗
i T
′
i (x) where the c∗i ’s correspond to

an optimal solution to the LP, and output τ∗ and
f∗.

In the rest of this subsection we sketch the proof of The-
orem 8. The claimed sample complexity bound is obvious
(observe that Steps 1 and 2 of Learn-WB-Single-Poly are
the only steps that draw samples), as is the claimed run-
ning time bound (the computation is dominated by solving
the poly(d, 1/ε)-size LP in Find-Single-Polynomial), so it
suffices to prove correctness.

Before launching into the proof we give some additional
intuition for the linear program. Intuitively F (x) repre-
sents the cdf of a degree-d polynomial distribution f where
f = F ′. Constraint 1(a) captures the endpoint constraints
that any cdf must obey. Constraint 1(b)(1) ensures that for
each interval ∪k−1

`=j I` = [xj−1, xk−1), the value F (xk−1) −
F (xj−1) = f([xj−1, xk−1)) is close to the mass p̂m([xj−1,
xk−1)) that the empirical distribution puts on the same in-
terval. Recall that by assumption p is opt1,d-close in to-
tal variation distance to some degree-d polynomial r. Intu-
itively the variable w` represents

∫
I`

(r−p). The variable y`

represents the absolute value of w`, see constraint 1(c)(3).
The value τ , which by constraint 1(c)(4) is at least the sum
of the y`’s, represents a lower bound on opt1,d. (The fac-
tor 2 on the RHS of constraint 1(c)(4) is present because
‖p− r‖1 = 2dTV (p, r).)

The constraints in 1(d) and 1(e) reflect the fact that as a
cdf, F should be bounded between 0 and 1, and the 1(f) con-
straints reflect the fact that the pdf f = F ′ should be every-
where nonnegative. Since we are imposing these constraints
on discrete sets of points, we will not be able to guaran-
tee that the desired inequalities hold for all x ∈ [−1, 1). In
particular, it will not necessarily be the case that a feasible
solution f to the LP satisfies f(x) ≥ 0 everywhere. However,
we will be able to show that f is “essentially” nonnegative
everywhere, and this turns out to be good enough for our
purposes.

We begin by showing that with high probability Learn-

WB-Single-Poly calls Find-Single-Polynomial with input
parameters that satisfy Find-Single-Polynomial’s input re-
quirements:

(I) the intervals I1, . . . , Iz are (p, η)-uniform; and

(II) p̂m and p satisfy the (I, η, ε)-inequalities over [−1, 1).

Lemma 11. Suppose p is an ε
64(d+1)

-well-behaved pdf over

[−1, 1). Then with probability at least 19/20 over the random
draws performed in Steps 1 and 2 of Learn-WB-Single-Poly,
conditions (I) and (II) above hold.

As our first main lemma for this section, we show that
given that conditions (I) and (II) are satisfied, Find-Single-
Polynomial’s LP is feasible and has a high-quality optimal
solution.

Lemma 12. Suppose that conditions (I) and (II) above
hold. Then the LP defined in Step 1 of the routine Find-

Single-Polynomial is feasible, and its optimal value τ∗ is
at most opt1,d.



Having established that with high probability the LP is in-
deed feasible, henceforth we let τ∗ denote the optimal value
of the LP and F ∗, f∗, w∗` , c∗i , y

∗
` denote the values of the

variables in an optimal solution. From this point, using basic
approximation theory it can be shown that for all x ∈ [−1, 1)
we have

f∗(x) ≥ 0− ‖(f
∗)′‖∞
|K| ≥ −ε′/2 (4)

(recall that F ∗(x) =
∑d+1
i=0 c

∗
i Ti(x) and f∗, the derivative of

F ∗, is f∗(x) =
∑d+1
i=0 c

∗
i T
′
i (x)).

Error Analysis. To prove Theorem 8 it remains to show
that

dTV (q, p) ≤ 7 · opt1,d +O(ε). (5)

We sketch the argument that we use to prove (5). A key
step in achieving this is to bound from above the ‖ · ‖Ad+1

distance between f∗ and p̂m+w∗, where w∗ : [−1, 1)→ R is
a piecewise constant function defined based on the w∗` values.
Similar to Section 3.1, the VC theorem gives us that ‖p −
p̂m‖Ad+1 ≤ ε with probability at least 39/40. Conditioning
on this event, our main claim is that

‖(p̂m + w∗)− f∗‖Ad+1 ≤ 4 · opt1,d +O(ε). (6)

Recall that r denotes a degree-d polynomial pdf such that
opt1,d = dTV (p, r). Given (6), it will not be difficult to show
that ‖r−f∗‖Ad+1 ≤ 6·opt1,d+O(ε). Since r and f∗ are both
degree-d polynomials we have dTV (r, f∗) = ‖r − f∗‖Ad+1 ≤
6 · opt1,d + O(ε), so recalling that dTV (p, r) = opt1,d, the
triangle inequality gives dTV (p, f∗) ≤ 7 ·opt1,d+O(ε). From
this point a straightforward argument using Equation (4)
gives that dTV (p, q) ≤ dTV (p, f∗) + O(ε), which concludes
the proof.

To prove (6), we make essential use of the following lemma
that translates (I, η, ε)-inequalities into a bound on Ak dis-
tance. (While we will only use the lemma with k = d + 1
in this subsection, the fact that the lemma holds for all k
will prove crucial in the analysis of our final dynamic pro-
gramming based algorithm, which uses a generalization of
this lemma that we establish in the next subsection.)

Lemma 13. Let I = {I1 = [x0, x1), . . . , Iz = [xz−1, xz)}
be a (p, η)-uniform partition of [−1, 1). Let s be a distribu-
tion on [−1, 1) such that s and p satisfy (I, η, ε)-inequalities
on [−1, 1). Let h : [−1, 1) → R be such that h(x) ≥ −ε′ for
all x ∈ [−1, 1) and g : [−1, 1) → R. If h + g and s satisfy
the (I, η, ε)-inequalities, then for all k ≥ 0 we have that

‖s− (h+ g)‖Ak ≤ 2‖g‖1 +
√
εzk · η +O(kη).

3.4 Generalized Find-Single-Polynomial Routine.
In this subsection we generalize the routine from the pre-

vious section to work for an arbitrary subdistribution with
unknown total mass over a given input interval [a, b). Note
that the results we give in this subsection provide guaran-
tees of a somewhat different form (in terms of Ak-distance)
from Theorem 8; this form is convenient for the dynamic
programming algorithm that we give in Section 3.5.

We define õpt1,d;[a,b) to be the infimum of dTV (p, g) (where
both p, g are viewed as having domain [a, b)) between p and
any degree-d subdistribution g over [a, b).

Theorem 14. Let p be an ε
64(d+1)

-well-behaved subdistri-

bution over [a, b), where [a, b) is a subinterval of [−1, 1).
Then there is an algorithm Gen-Find-Single-Polynomial-

Arbitrary-Interval with the following properties. It takes
as input a degree parameter d; error parameter ε; param-
eter η; a (p, η)-uniform partition I of [a, b) into z inter-
vals {I`}1≤`≤z; and a non-negative function p̂m on [a, b)
such that p̂m and p satisfy the (I, η, ε)-inequalities. It out-

puts a number τ∗ with 0 ≤ τ∗ ≤ õpt1,d;[a,b) and a degree-d
polynomial f∗ on [a, b) satisfying f∗([a, b)) = p̂m([a, b)) and
f∗(x) ≥ −η/(10(b− a)) for x ∈ [a, b) such that for all k ≥ 1
we have

‖(p̂m + w∗)− f∗‖Ak ≤ 4τ∗ +
√
εzk · η +O(kη),

where w∗ is a piecewise constant function on [a, b) which is
constant on each I` and satisfies ‖w∗‖1 ≤ 2τ∗.

3.5 Efficiently learning (ε, t)-piecewise degree-
d distributions.

In this section we extend the previous result to semi-
agnostically learn t-piecewise degree-d distributions. We
prove the following:

Theorem 15. Let p be an ε
64t(d+1)

-well-behaved pdf over

[−1, 1). The algorithm Learn-WB-Piecewise-Poly(t, d, ε) runs

in poly(t, d+1, 1/ε) time, uses Õ(t(d+1)/ε2) samples from p,
and with probability at least 9/10 outputs a (2t−1)-piecewise
degree-d distribution q such that dTV (p, q) ≤ 13optt,d+O(ε).

At a high level, Learn-WB-Piecewise-Poly(t, d, ε) breaks
down [−1, 1) into t(d+1)/ε subintervals (denoted as the par-
tition I = {I0, . . . , Iz} in subsequent discussion; this parti-
tion is constructed in Step 1) and calls the subroutine Gen-

Find-Single-Polynomial-Arbitrary-Interval(d, ε, η,{Ia,
. . . , Ib}, p̂m) on blocks of consecutive intervals from I. As
shown in the previous subsection, the subroutine Gen-Find-

Single-Polynomial-Arbitrary-Interval returns a degree-
d polynomial h that satisfies the guarantee of Theorem 14.
An exhaustive search over all ways of breaking [−1, 1) up
into t intervals would require running time exponential in t;
to improve efficiency, dynamic programming is used to com-
bine the different h’s obtained as described above and effi-
ciently construct an overall high-accuracy piecewise degree-d
hypothesis.

Algorithm Learn-WB-Piecewise-Poly:

Input: parameters t, d, ε
Output: with probability at least 9/10, a (2t − 1)-
piecewise degree-d distribution q such that dTV (p, q) ≤
3 · optt,d +O(ε)

1. Run Algorithm Approximately-Equal-Partition

on input parameter ε/(t(d+1)) to partition [−1, 1)
into z = Θ(t(d+ 1)/ε) intervals I0 = [x0, x1), . . . ,
Iz = [xz−1, xz), where x0 = −1 and xz = 1, such
that for each j ∈ {1, . . . , t} we have p([xj−1, xj)) =
Θ(ε/(t(d + 1))). Let I denote this partition of
[−1, 1) into I0, . . . , Iz.

2. Let s = z/(d+ 1) = Θ(t/ε). Set x′j = x(d+1)j and
define interval I ′j = [x′j , x

′
j+1) for 0 ≤ j < s. Let

I′ denote this partition of [−1, 1) into I ′0, . . . , I
′
s−1.



3. Draw m = Õ(t(d + 1)/ε2) samples to define an
empirical distribution p̂m over [−1, 1).

4. Initialize T (i, j) = ∞ for i ∈ {0, . . . , 2t− 1}, j ∈
{0, . . . , s}, except that T (0, 0) = 0.

5. For i ∈ {1, . . . , 2t − 1}, j ∈ {1, . . . , s}, ` ∈
{0, . . . , j − 1}:

(a) Call subroutine Gen-Find-Single-

Polynomial-Arbitrary-Interval (d, ε,
η = Θ(ε/(t(d + 1))), {Ia, . . . , Ib}, p̂m) where
Ia, . . . , Ib are consecutive intervals from I
whose union is I ′` ∪ · · · ∪ I ′j−1.

(b) Let τ be the solution to the LP found by
Gen-Find-Single-Polynomial-Arbitrary-

Interval and h be the degree-d hypothesis
subdistribution that it returns.

(c) If T (i, j) > T (i− 1, `) + τ , then

i. Update T (i, j) to T (i− 1, `) + τ

ii. Store the polynomial h in a table H(i, j).

6. Recover a piecewise degree-d distribution h from
the table H(·, ·).

In Step 2 of Learn-WB-Piecewise-Poly, the algorithm ef-
fectively constructs a coarsening P ′ of P by merging every
d + 1 consecutive intervals from P. These super-intervals
are used in the dynamic programming in Step 5. The ta-
ble entry T (i, j) stores the minimum sum of errors τ (re-
turned by the subroutine Gen-Find-Single-Polynomial-
Arbitrary-Interval) when the interval [x′0, x

′
j) is parti-

tioned into i pieces. The dynamic program above computes
an estimate of optt,d; one can use standard techniques to also
recover a t-piecewise degree-d polynomial q close to p. The
analysis of the dynamic program, given in the full version,
crucially uses the fact that Theorem 14 provides a guarantee
for all k ≥ 1.

4. APPLICATIONS
We use Theorem 5 to obtain a wide range of concrete

learning results for natural and well-studied classes of dis-
tributions over both continuous and discrete domains. Be-
cause of space constraints in this version we only present an
application of Theorem 5 to learn mixtures of log-concave
distributions over [−1, 1).

Let I ⊆ R be a (not necessarily finite) interval. Recall
that a function g : I → R is called concave if for any x, y ∈ I
and λ ∈ [0, 1] it holds g (λx+ (1− λ)y) ≥ λg(x) + (1 −
λ)g(y). A function h : I → R+ is called log-concave if h(x) =
exp (g(x)), where g : I → R is concave.

In this section we show that our general technique yields
nearly-optimal efficient algorithms to learn (mixtures of)
concave and (more generally) log-concave densities. (Be-
cause of the concavity of the log function it is easy to see
that every positive and concave function is log-concave.) In
particular, we show the following:

Theorem 16. Let f : I → R+ be any k-mixture of log-
concave densities, where I = [a, b] is an arbitrary (not nec-
essarily finite) interval. There is an algorithm that runs in

poly(k/ε) time, draws Õ(k/ε5/2) samples from f , and with
probability at least 9/10 outputs a hypothesis distribution h
such that dTV (f, h) ≤ ε.

We note that the above sample complexity is information-
theoretically optimal (up to logarithmic factors). In partic-
ular, it is known (see e.g., Chapter 15 of [DL01]) that learn-
ing a single concave density (recall that a concave density

is necessarily log-concave) over [0, 1] requires Ω(ε−5/2) sam-
ples. This lower bound can be easily generalized to show
that learning a k-mixture of log-concave distributions over
[0, 1] requires Ω(k/ε5/2) samples. As far as we know, ours is
the first computationally efficient algorithm with essentially
optimal sample complexity for this problem.

To prove our result we proceed as follows: We show that
any log-concave density f : I → R+ has an (ε, t)-piecewise

linear (degree-1) decomposition for t = Õ(1/
√
ε). A continu-

ous version of the argument in Theorem 4.1 of [CDSS13] can
be used to show the existence of an (ε, t)-piecewise constant

(degree-0) decomposition with t = Õ(1/ε). Unfortunately,
the latter bound is essentially tight, hence cannot lead to an
algorithm with sample complexity better than Ω(ε−3).

Classical approximation results (see e.g., [Dud74, Nov88])
provide optimal piecewise linear decompositions of concave
functions. While these results have a dependence on the do-
main size of the function, they can rather easily be adapted
to establish the existence of (ε, t)-piecewise linear decompo-
sitions for concave densities with t = O(1/

√
ε). However,

we are not aware of prior work establishing the existence
of piecewise linear decompositions for log-concave densities.
We give such a result by proving the following structural
lemma:

Lemma 17. Let f : I → R+ be any log-concave density,
where I = [a, b] is an arbitrary (not necessarily finite) inter-
val. There exists an (ε, t)-piecewise linear decomposition of

f for t = Õ(1/
√
ε).

We note that our proof of Lemma 17 is significantly differ-
ent from the aforementioned known arguments establishing
the existence of piecewise linear approximations for concave
functions. In particular, these proofs critically exploit con-
cavity, namely the fact that for a concave function f , the
line segment (x, f(x)), (y, f(y)) lies below the graph of the

function. We note that the Õ(1/
√
ε) bound is best possible

(up to log factors) even for concave densities. This can be
verified by considering the concave density over [0, 1] whose
graph is given by the upper half of a circle. We further note
that the [DL01] Ω(1/ε5/2) lower bound implies that no sig-
nificant strengthening can be achieved by using our general
results for learning piecewise degree-d polynomials for d > 1.

Theorem 16 follows as a direct corollary of Lemma 17 and
Theorem 5.
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