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ABSTRACT

Histograms are among the most popular structures for
the succinct summarization of data in a variety of database
applications. In this work, we provide fast and near-
optimal algorithms for approximating arbitrary one di-
mensional data distributions by histograms.

A k-histogram is a piecewise constant function with
k pieces. We consider the following natural problem,
previously studied by Indyk, Levi, and Rubinfeld [ILR12]
in PODS 2012: Given samples from a distribution p over
{1,...,n}, compute a k-histogram that minimizes the
f>-distance from p, up to an additive e. We design an
algorithm for this problem that uses the information—
theoretically minimal sample size of m = O(1/?), runs
in sample-linear time O(m), and outputs an O(k)— his-
togram whose ¢>-distance from p is at most O(opt,,) +c¢,
where opt,, is the minimum #»>-distance between p and
any k-histogram. Perhaps surprisingly, the sample size
and running time of our algorithm are independent of
the universe size n.

We generalize our approach to obtain fast algo-
rithms for multi-scale histogram construction, as well
as approximation by piecewise polynomial distributions.
We experimentally demonstrate one to two orders of
magnitude improvement in terms of empirical running
times over previous state-of-the-art algorithms.

1. Introduction

In recent years, we have witnessed the proliferation
of massive datasets in a variety of scientific and tech-
nological domains. Moreover, our inferential goals on
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A classical approach to deal with this phenomenon in-
volves constructing succinct synopses of the data. In
most settings, the use of synopses is essential when ex-
ploring massive datasets; see the recent survey [CGHJ12]
for an extensive treatment. As expected, a compact rep-
resentation of a very large dataset may be lossy in gen-
eral. For a given synopsis structure, we are interested
in the space it requires, the error it introduces (quan-
tifying how well it preserves the desired properties of
the data), and the time needed for its construction and
operation. Understanding the precise tradeoff between
these criteria has been an important goal in database
research and beyond for the last two decades.

In this work, we design efficient algorithms for the
compact representation of data distributions by histo-
grams. Formally, a k-histogram over the universe [n] is
a piecewise constant function with k interval pieces. The
parameter k is a natural measure of the space require-
ment, since a k-histogram can be represented with O(k)
numbers. Informally speaking, for a data distribution
p over [n], a k-histogram h is a “good” representation
of p if p(i) — i.e., the relative frequency of item ¢ in
the data — is “close” to h(i). Histograms constitute the
oldest and most widely used method for the succinct ap-
proximation of data. In the context of databases, they
were first proposed in [Koo80], and have since been ex-
tensively studied in a variety of applications [GMP97,
JKMT98, CMN98, TGIK02, GGIT02, GSW04, GKS06,
ILR12].

Our approach can be extended, more generally, to
approximating distributions by piecewise polynomials.
Piecewise polynomial functions are a natural general-
ization of histograms, where the data distribution in
each interval is represented by a degree-d polynomial
(i.e., histograms correspond to the special case d = 0).
A piecewise polynomial with & intervals and degree d
is represented by O(k(d + 1)) numbers, and hence the
product k(d + 1) is a natural measure of its space re-
quirements. Due to their flexibility, piecewise poly-
nomials can provide an even more succinct approxi-
mation to data than histograms and have been previ-
ously considered as a synopsis structure in this context
(see, e.g., [GKS06]). We note that piecewise polyno-



mials have received significant attention in other scien-
tific disciplines, including approximation theory [Che66]
and statistics (see, e.g., [Sil86, WW83, SHKT97, WNO7,
CDSS14a, CDSS14b] and references therein).

A common error metric used for fitting a histogram
to the data is the “sum squared error”, also known as
the V—optimal measure [IP95]. Here, the goal is to con-
struct a synopsis structure that minimizes the ¢2—norm
from the underlying data distribution. Most existing
works in this area assume that the data distribution p
is provided explicitly in the input, and hence the cor-
responding algorithms inherently incur at least a linear
dependence on the universe size n. In an early work
on this topic, Jagadish et al. [JKM'98] provided a dy-
namic programming algorithm that runs in time O(kn?)
and outputs the best V-optimal histogram of a one-
dimensional data distribution over [n]. Subsequent re-
sults [TGIK02, GGI*T02, GKS06] achieved a series of
improvements to the running time by focusing on near-
optimal solutions. The culmination of this research is
the work of Guha et al. [GKS06], who gave a (1 + )
multiplicative approximation to the best V—optimal his-
togram running in time O(n + k® log? n/3%).

When handling massive datasets that range from
petabytes to exabytes in size, the requirement that our
algorithms read the entire input is unrealistic. A stan-
dard way to obtain a small representative subset of the
input involves random sampling from the data (see [CD14]
for a recent tutorial). Ideally, we would like to draw a
small number of samples from our data set and effi-
ciently post—process the samples to obtain an accurate
representation of the underlying data distribution. Ob-
serve that choosing a uniformly random element from
a multi-set D over [n] is equivalent to drawing i.i.d.
samples from the underlying distribution p of relative
frequencies. Hence, the problem of constructing an op-
timal histogram (or piecewise polynomial) representa-
tion under a given metric is essentially equivalent to the
problem of learning (i.e., performing density estimation)
an arbitrary discrete distribution over [n] with respect
to this metric.

In recent work, Indyk et al. [ILR12] studied the his-
togram construction problem in the aforementioned ran-
dom sampling framework. Their main result is an ad-
ditive e-approximation algorithm for this problem with
running time O((k%/&®)-log? n). The sample complexity
of their algorithm is logarithmic in the domain size n,
and quadratic in the number k of histogram pieces. The
authors of [ILR12] posed as an open question whether
the running time of their algorithm can be improved and
whether the logarithmic dependence on n in the sample
complexity is necessary.

In this work, we design simple, highly efficient al-
gorithms for approximating data distributions by histo-
grams (and piecewise polynomials) in the f2-norm us-
ing random samples. Our algorithms have information—
theoretically optimal sample complexity (independent
of the domain size n), run in sample-linear time, and
output a histogram (or piecewise polynomial) whose
number of intervals and accuracy are within a small con-
stant factor of the best possible. In particular, for the

case of histograms, our algorithm runs in time O(1/&?),
independent of both n and k. In the following section we
formally state our results and provide a detailed com-
parison with prior work.

2. Our Results and Techniques

2.1 Basic Definitions.

We consider distributions over [n] := {1,...,n},
which are functions p : [n] — [0, 1] such that ", p(i) =
1, where p(7) is the probability of element ¢ under p.
For convenience, we will use p to denote the distribu-
tion with mass function p(i). The f2-norm of a func-
tion f : [n] = Ris ||f]l2 := 1/ T f(0)2. The £»-
distance between functions f,g : [n] — R is defined
as ||f — gl|l2. Let D, denote the class of all probabil-
ity distributions over [n]. A function (or distribution)
f i [n] = R is s-sparse if f is nonzero for at most s
points, i.e., |{i € [n]| f(i) # 0}] < s. For a function f
and a set I C [n], we define fr as the restriction of f
to I; namely, for ¢ € I, we have f;(i) := f(¢), and for
i I, f1(i) ==

Interval Partitions and k-Histograms. Fix a parti-
tion of [n] into a set of disjoint intervals Z = {I1, ..., Io}.
For such a partition Z we denote the number of intervals
by |Z|, i.e., |Z| = ¢. For an interval J C [n], we denote
its cardinality or length by |J|, i.e., if J = [a,b], with
a < b € [n], then |[J| = b—a+1. A k-histogram is a piece-
wise constant function h : [n] — R with at most k inter-
val pieces, i.e., there exists a partition Z = {I1,..., I}
of [n] into k intervals I;, j € [k], with corresponding
values v; such that h(i) = v; for all ¢ € I;. In addition,
if h is a probability distribution, then it is referred to
as a k-histogram distribution. We use HJ, to denote the
class of all k-histogram distributions over [n].

Given m independent samples {s;}72; drawn from
a distribution p € D,,, the empirical distribution p,, over
[n] is the discrete distribution defined as follows: for all

i € [n], pm(i) :=[{j € [m] | s = i}[/m.

Agnostic Histogram />—Learning. We cast our his-
togram construction problem within the framework of
distribution estimation. More specifically, we study the
following learning problem: Fix parameters o, > 1.
Given m i.i.d. draws from a distribution p € D,,, and
parameters k € Zy, d,e > 0, our goal is to output a
hypothesis h € H{ with ¢ < « - k such that with proba-
bility at least 1 — § our hypothesis satisfies ||k — p|l2 <
B - opt), + €, where opt, := minpeyn " = pll2. That
is, the algorithm outputs a t-histogram distribution A
whose fo—error from p is almost as small as the mini-
mum error attainable by any k-histogram.

The approximation factors a and [ quantify the
performance of the learning algorithm; the former quan-
tifies the number of interval pieces of the constructed
histogram (space), while the latter quantifies the achieved
accuracy. To measure the complexity, we are interested
in the number of samples drawn from p (sample com-
plexity), and the total running time of the algorithm
(computational complexity). The “gold standard” in



this context is an algorithm achieving an optimal per-
formance guarantee (i.e., « = 1, § = 1) that uses
an information—theoretically minimum sample size and
runs in sample-linear time.

2.2 Main Results.

As our main contribution, we design a fast constant—
factor approximation algorithm for the aforementioned
histogram construction problem. Formally, we obtain:

THEOREM 2.1  (MAIN). There is an algorithm that,
given k, 0 < ¢,0 < 1 draws m = O((1/?) - log(1/))
samples from an arbitrary p € Dy, runs in time O(m),
and with probability at least 1 —6 outputs a 5k-histogram
h such that ||h —p||l2 < 2-opt,, + . Moreover, any algo-
rithm for this problem requires Q((1/€%)-log(1/8)) sam-
ples from p, independent of its running time.

That is, the algorithm uses an information theoretically
minimal sample size (up to a constant), runs in sample—
linear time (independent of n), and outputs a histogram
representation whose number of intervals and accuracy
are within a small constant factor of the best possible.

Our algorithm is simple, easy to implement, and
works well in practice. Our experimental evaluation
(Section 5) shows that it outperforms previous approaches
by at least one order of magnitude. Moreover, our al-
gorithmic approach is quite robust, generalizing effort-
lessly to multi-scale histogram construction, as well as
approximation by piecewise polynomial functions. Be-
fore we elaborate on these extensions, let us provide a
brief explanation of our techniques.

At a high-level, our algorithm can be “decoupled”
into two independent stages. In the first stage, we draw
m = O((1/€?) - log(1/§)) samples from p and construct
the empirical distribution p,,. In the second stage, we
post-process pr, to obtain an O(k)-histogram distribu-
tion h that approximately minimizes the ¢>—distance
from p,,. While this decoupling approach seems intu-
itive, its correctness relies crucially on the structure of
the fo—norm.! The second stage exploits the O(m)-
sparsity of the empirical distribution to remove the de-
pendence on n in the running time. We remark that
a black-box application of previous algorithms to post-
process P, would lead to super-linear running times (see
Section 2.3). We stress that it is by no means obvious
how to perform the second stage in time O(m) - i.e.,
linear in the sparsity of p,, — and this is the main algo-
rithmic contribution of our work.

Our algorithm for implementing the second stage
(Algorithm 1 in Section 3.2) is based on an iterative
greedy approach. Starting from p,, (itself an O(m)-
histogram), in each iteration the algorithm merges pairs
of consecutive intervals according to a natural notion of
error that the merging operation would incur. In par-
ticular, it merges all pairs except the ones with largest
error. The algorithm terminates when the number of
remaining intervals is O(k), and the constructed his-

'Notably, such a decoupling into sampling and op-
timization fails for other metrics, e.g., the ¢;—norm
[CDSS14a, CDSS14b).

togram is obtained by “flattening” the empirical distri-
bution with respect to the final set of intervals.

In most applications, the desired value of k (num-
ber of intervals in the output histogram) is a priori un-
known. Instead, the underlying goal is merely to effi-
ciently compute a succinct representation of the data
with a few pieces (i.e., small enough value of k) and
small error (i.e., small enough value of opt, ). There is
a trade-off between these two criteria and it is impor-
tant to design algorithms that capture this tradeoff. A
straightforward adaptation of Algorithm 1 can be used
to approximately capture the entire Pareto curve be-
tween k and opt,, while still running in linear time. In
particular, we show (see Section 3.4):

THEOREM 2.2  (MULTI-SCALE HISTOGRAM). There is
an algorithm that, given 0 < €,6 < 1 draws m = O((1/?)-
log(1/8)) samples from an arbitrary p € Dy, runs in
time O(m), and has the following performance guaran-
tee: With probability at least 1 — 6, for every k, 1 < k <
m, it outputs a t-histogram h, with t < 8k and an error
estimate e; such that (i) |[ht — plla < 2-opty, + ¢, and
(i6) Ihs — plla — ¢ < €1 < ||he — plla + <.

Note that for all 1 < k < m the above algorithm
gives us an accurate estimate e; of the true error ||h; —
p||2. This is useful for selecting the value of k such that
the desired tradeoff between number of intervals and
accuracy is achieved.

Finally, we remark that our iterative greedy ap-
proach can be generalized to efficiently fit more general
classes of functions to the data, such as piecewise poly-
nomials. A (k,d)-piecewise polynomial is a piecewise
polynomial function f with k interval pieces {I1, ..., Ix}
such that f agrees with a degree-d polynomial within
each I;. The piecewise polynomial approximation algo-
rithm is very similar to Algorithm 1. The new technical
ingredient is an efficient routine to “project” the data (in
a given interval) on the class of degree-d polynomials.
We design a fast iterative routine for this subproblem
by exploiting properties of discrete Chebyshev polyno-
mials. Specifically, we prove the following:

THEOREM 2.3  (PIECEWISE POLYNOMIALS). There is
an algorithm that, given k,d, and 0 < €,0 < 1, draws
m = O((1/%) - log(1/8)) samples from an arbitrary
p € Dn, runs in time O(m - (d + 1)?), and with prob-
ability at least 1 — § outputs a (5k, d)-piecewise polyno-
mial f such that ||f —pll2 < 2-opty, 4 +¢, where opty, 4
is the minimum fa—distance between p and any (k,d)—
piecewise polynomial.

2.3 Comparison with Previous Work.

As mentioned in the introduction, the majority of
prior work on histogram construction assumes that the
data distribution p is explicitly provided as the input.
Jagadish et al. [JKM™98] used dynamic programming to
compute the best V-Optimal k-histogram of a distribu-
tion over [n] in time O(n?k). Regarding approximation
algorithms, the most relevant reference is the work of
Gubha et al. [GKSO06], who gave a (1 + §)-multiplicative
approximation that runs in time O(n + k*log®n/6%).
(See [GKSO06] for references on several other approxima-



tion algorithms based on alternative approaches, such as
wavelet—based techniques.)

[JKM™T98] also give a greedy algorithm for the dual
version of the histogram construction problem. That is,
given a bound b on the {2-error, output a histogram
whose error is at most b with the minimum number
of pieces k*. Their algorithm runs in O(n) time and
outputs a 3k™-histogram with error at most 3b. We re-
mark that a black-box application of this algorithm to
solve the primal problem will necessarily lead to super-
linear running times, as it requires an appropriate bi-
nary search procedure on the error parameter.

Our sampling stage can be combined with the above
approaches to obtain qualitatively better results. In
particular, by applying the dynamic programming ap-
proach [JKM™98] to the empirical distribution D, we
obtain a k-histogram with error at most opt,, + ¢. This
guarantee corresponds to a« = [ = 1, which is op-
timal. The major disadvantage is the resulting run-
ning time of ©(m?k), which is prohibitively large for
most applications. Moreover, our experiments indicate
that this approach may sometimes result in over-fitting.
Similarly, post-processing the empirical distribution us-
ing the approximation algorithm of [GKSO06] gives a k-
histogram with error at most (1496)-opt, +¢,ie., a =1
and f = 1+ 6. The running time of this approach is
Q(m + k*log? m/6?).2 The second term in this expres-
sion makes this approach sub-optimal; this is reflected
in the experimental comparison in Section 5. Finally, we
point out that an adaptation of the dual greedy algo-
rithm in [JKM 98] for m-sparse signals would also lead
to a running time super-linear in m. In addition, this
approach does not generalize to piecewise polynomial
approximation and our experiments show that it empir-
ically performs worse both in terms of approximation
ratio and in terms of running time.

[ILR12] studied the agnostic histogram f;—learning
problem in the same framework as ours. Their main
result is an algorithm that, given sample access to an
arbitrary data distribution p over [n], computes an

O(klog(1/¢))-histogram whose £2—distance from p is opt,,.

That is, they achieve an (a, 8) approximation guaran-
tee, where @ = O(log(1/¢)) and § = 1. Their algo-
rithm has sample complexity O((k?/e*)logn) and run-
ning time O((k®/e®) - log? n). In comparison, our algo-
rithm in Theorem 2.1 achieves o = 5, 8 = 2, and has
both sample complexity and running time of O(1/€?).

Finally, we mention a different set of histogram ap-
proximation algorithms developed in [GSWO04] that run
in linear time. However, these algorithms provide guar-
antees for so-called relative error measures. As far as
we know, none of these approaches imply results for the
{2-learning problem that we consider.

Paper Structure. In Section 3.1 we provide tight up-
per and lower bounds on the sample complexity of our
histogram learning problem. In Section 3.2 we present
our main histogram construction algorithm establish-
ing Theorems 2.1 and 2.2. In Section 3.4 we present the

2Tt is unclear whether an adaptation of [GKS06] to m-
sparse signals over [n] can lead to running time inde-
pendent of n.

generalization of our algorithm to multi-scale histogram
construction. In Section 4 we present the generalization
of our algorithm to more general functions, including
piecewise polynomials. Finally, in Section 5 we describe
our experimental evaluation and compare with previous
approaches. For the sake of readability, some proofs are
deferred to an appendix.

3. Near-optimal Histogram Approx-
imation
In this section we describe our algorithms for his-
togram approximation establishing Theorems 2.1 and 2.2.

3.1 Tight Bounds on Sample Complexity.

The following simple theorem establishes the sam-
ple upper bound of O((1/¢?) -log(1/8)) and justifies our
two stage learning approach:

THEOREM 3.1. Letp € D,,. For any constants a, 8 >
1 there is an algorithm that, given k and 0 < €,6 < 1,
draws m = O((1/€*) -1og(1/8)) samples from p and with
probability at least 1 — & outputs a hypothesis h € HY
with t < o - k such that ||h — p||2 < B - opt,(p) + Be.

We require the following simple lemma:

LEMMA 3.1. Fizx0<¢,0 <1. Letp € D,, and let pm
be the empirical distribution formed by considering m =
Q ((1/€%) - log(1/5)) samples. Then, with probability at
least 1 — &, we have that ||pm — pll2 < e.

PrROOF. For i € [n], let n; be the number of occur-
rences of element ¢ among the m samples. Note that
n; ~ Binom(m, p(i)), hence Var[n;] = mp(i) (1 — p(7)).
Since pm (1) = ns/m we can write

> E[(Pn()

= (1/m*) ZJE mp(i))*]

= (1))’]

E[|pm — pl3] =

1/m Z\/ar n;)

= (1/m)- ZP p(i))
<1/m.

Consider the random variable Y = ||pm,
inequality implies that

E[Y] < VEY?] < 1/vm < ¢/4.

We can write Y = ¢(s1,...,Sm), where s; ~ p and the
samples s;, 7 € [m], are mutually independent. Note
that the function g satisfies the following Lipschitz prop-
erty:

—p||2. Jensen’s

2
75m)| S -

|g(51,...,sj,...,sm)—g(sl,...,s;,... -

for any j € [m] and s1,...,5m,s; € [n] because chang-
ing a single sample moves only 1/m of the empirical



probability mass. Hence, McDiarmid’s inequality [McD89]
implies that

Pr[Y > E[Y] + 7] < exp(—n°m/2).

The lemma follows from our choice of parameters by
setting n =¢/4. O

ProOF OF THEOREM 3.1. The algorithm proceeds in
two stages:

(i) Construct the empirical distribution py,, and
(i) Compute and output h € H} such that

We now sketch correctness. By Lemma 3.1, with prob-
ability at least 1 — § over the samples, we will have
that ||[p — Pml|l2 < €. We henceforth condition on this
event. Since ||p — pmll2 < €, it follows that |opt,(p) —
opty (Pm)| < €. The proposition follows by an applica-
tion of the triangle inequality. [J

Theorem 3.1 reduces the histogram construction
problem for the distribution p to essentially the same
problem for the empirical p,, with an additive loss in
the error guarantee. The main algorithmic ingredient
lies in efficiently implementing Step (ii). In the following
subsection, we design an algorithm (Algorithm 1) that
implements the second step in time O(m), while achiev-
ing approximation guarantees of @« =5 and § = 2. We
remark that an entirely analogous proposition (with an
identical proof) holds for constructing piecewise poly-
nomial approximations.

We also prove a matching information-theoretic lower
bound of Q((1/¢?) -log(1/8)) for the sample complexity
of our learning problem. Our lower bound applies even
for the very special case of kK = 2 and opt, = 0.

THEOREM 3.2. Fiz 0 < €,6 < 1/2. Any algorithm
with sample access to an arbitrary p € D,, that agnosti-
cally learns p to £2-distance € with probability 1 — & must
use m = ((1/£%) - log(1/8)) samples.

PrOOF. Let p1 and p2 be 2-histogram distributions
on [n], such that p1(1) = 1/24+¢ =p2(2), p1(2) =1/2—
e =p2(1), and for all 4 € {3,...,n}, p1(7) = p2(i) = 0.
Then, ||p1 — p2|2 = 2v/2e. We consider the following
special case of our agnostic learning problem: We are
given sample access to a distribution p over [n] and we
are promised that the underlying distribution is either
p1 or p2. Our goal is to learn the distribution p with
probability at least 1 —§. We will prove a sample lower
bound of Q ((1/”) -log(1/6)) for this problem. Note
that, since both p1 and p, are 2-histograms (i.e., opt, =
0) with effective support the set {1,2}, we can assume
without loss of generality that our hypothesis is a 2-
histogram supported on {1, 2}. Hence, the parameters a
and S in the definition of agnostic learning are irrelevant
for this special case.

To prove our result, we consider the following (es-
sentially equivalent) hypothesis testing problem. Given
m independent samples from p € {p1, p2} decide whether

the underlying distribution is p1 or p2 with error prob-
ability at most §. We call this the problem of distin-
guishing between p1 and pa.

Formally, we use this hypothesis testing problem to
prove our lower bound. We show:

(a) If p1 and ps cannot be distinguished with m sam-
ples with probability at least 1 — J, then the /2
error of any learning algorithm that succeeds with
probability 1 — ¢ is at least .

(b) p1 and p2 cannot be distinguished with probability
1— 6§ with fewer than Q((1/¢?) -log(1/§)) samples.

Proof of (a): We show the contrapositive. Suppose
there is an algorithm A that with probability at least
1 — § outputs a hypothesis g with ¢3 error at most ¢.
We claim that the following tester distinguishes p; and
p2 with probability at least 1 — d:

p1, if [lp1 —qllz < [lp2 —ql|2
p2, otherwise.

Indeed, by the triangle inequality we have that
max{|[p1 — qll2, [lp2 — qll2} > V2.

Therefore, if the underlying distribution is p; and ¢ sat-
isfies ||ps — ¢l|2 < €, the tester correctly distinguishes p;
and pa.

Proof of (b): It is a well-known lemma in hypothesis
testing (see, e.g., Theorem 4.7, Chapter 4 of [BY02])
that any hypothesis tester that distinguishes between
p1 and p2 with probability of error § must use at least

1
Q ——— -log(1/6
(hQ(plvpz) {1/ )>
samples, where h(p1,p2) denotes the Hellinger distance
between p; and p2. Recall that the Hellinger distance
between distributions p and g over a finite set X’ is de-
fined as [LCY00]

hwa) =[5 S (Vi) - va@)

reX

Therefore, for p1 and p2, we have

1 2
R =5 > (Vre) - V@)
1<z<n
=1—14/1—4¢e2
_ 4e?
141 —4e2
<2e?,

which completes the proof. []

3.2 Near-optimal Histograms in Input Sparsity
Time.

In this subsection, we describe our main algorithm
for approximating an arbitrary discrete function with a
histogram under the f2-norm. Our algorithm runs in
input sparsity time and achieves approximation error
and number of pieces (of the output histogram) that



are both optimal up to constant factors. Formally, we
study the following problem: Given an s-sparse function
q : [n] = R and a parameter k, compute a k-histogram
R’ such that ||g — h'||2 = opt,. To achieve O(s) running
time, we allow the output to consist of up to O(k) pieces
and are willing to accept an approximation guarantee of
O(opty). Our algorithm will offer a trade-off between
the constants hidden in the O(:)-notation.

Before introducing the algorithm, let us concern
ourselves with the following simple problem: for a sin-
gle fixed interval I and a function ¢ supported on I,
find the value ¢ which minimizes 3, ;(c — ¢(i))*. This
corresponds to finding the best 1-histogram approxi-
mation to ¢ over I. An easy calculation shows that
c = ﬁ > e 4(i) is the minimizing value. This moti-
vates the following definition.

DEFINITION 3.1  (FLATTENING). For any interval I,
let pq(I) = ﬁziel q(i) be the wvalue of the best 1-
histogram approximation to q on I. Furthermore, let
errg(I) = 32,01 (q(i) — pq(I))? denote the la-squared er-
ror incurred by this approzimation. If T = {I1,...,Is}
is a partition of [n], we let gz : [n] = R be the function
given by gz(z) = pqe(Li) if © € I;. We call this func-
tion the flattening of q over Z. By the discussion above,
gz(x) is the best fit to q among all functions that are
constant on each of the intervals I1, ..., Is.

Our algorithm works as follows: We start by rep-
resenting the s-sparse input function g as an O(s) his-
togram (by assigning a separate interval to each nonzero
and each contiguous block of zeros). We call the corre-
sponding set of O(s) intervals Z°. Note that this rep-
resentation is exact, i.e., gzo = q. Then, we repeatedly
perform the following steps: given the current set of
intervals 79 = {I,..., Is; }, we pair up consecutive in-
tervals and form I, = Iz, 1 U Iy, for all 1 < u < 2
For each such pair of intervals, we compute the error
incurred by I, with respect to the input function, i.e.,
errq(I;,). Using these error values, we find the new inter-
vals I, with the O(k) largest errq(I,). For each interval
with large error, we include its two components Il2,—1
and Iy, in Z9%1 ie., we do not merge these two inter-
vals in the current iteration. For the remaining intervals
(i.e., the ones with smaller error), we include I/, in Z9
i.e., we merge the two subintervals. We repeat this pro-
cess as long as Z7 has more than O(k) intervals. Our
final O(k)-histogram is the flattening of ¢ over the final
set of intervals produced.

At a high level, our algorithm succeeds for the fol-
lowing reason: Let ¢* be the optimal k-histogram ap-
proximation to ¢. Intuitively, we accumulate error be-
yond opt, when we flatten an interval where ¢* has a
jump, since on these intervals we diverge from the opti-
mal solution. However, while we may accidentally flat-
ten an interval containing a jump of ¢*, this mistake
cannot contribute a large error because we only flatten
intervals when the resulting error is small compared to
the other merging candidates.

For a formal description of our algorithm, see the
pseudocode given in Algorithm 1. In addition to the pa-
rameter k, our algorithm has two additional parameters

that quantify trade-offs between the different objectives:
(i) The parameter § controls the trade-off between the
approximation ratio achieved by our algorithm and the
number of pieces in the output histogram. (ii) The pa-
rameter  controls the trade-off between the running
time and the number of pieces in the output histogram.
For details regarding the parameters, see the analysis in
the following subsection.

3.3 Analysis of Algorithm 1.
We begin our analysis by establishing the desired
approximation guarantee.

THEOREM 3.3. Let q : [n] — R be an s-sparse func-
tion. Moreover, let T be the partition of [n] returned by
CONSTRUCTHISTOGRAM(q, k, §,7). Then

2
o< (243) bty and gl < VIFTopt,.

where opt, = min|q¢’ — qll2 and ¢ ranges over all k-
histograms.

PRrOOF. Let Z = {I1,..., Iy} be the partition of [n]
returned by CONSTRUCTHISTOGRAM. By construction,
we have that k&' < (2+ 2)k +~. Furthermore, let ¢* be
a k-histogram with optimal error, i.e., ||¢* —q¢||2 = opty.
We denote the corresponding partition of [n] with 7% =
(i, I},

Note that we can decompose the error incurred by
gz into the error on the individual intervals:

K K
laz —all3 = > l(@)rn —anlls = Y errq(L) -
i=1 i=1

This enables us to analyze the error ||gz — ¢||2 in two
parts: (i) the intervals I; which are fully contained in
an interval of the optimal k-histogram I, and (ii) the
intervals I; that intersect at least two intervals I and
I7;;. The intervals in case (i) do not contain a “jump” of
the optimal histogram ¢* and hence our approximation
on those intervals is at least as good as ¢*. On the other
hand, the intervals in case (ii) contain a jump of ¢*, but
we can bound the error from these intervals because our
algorithm does not merge the intervals with large errors.
We separately analyze the two cases.

Case (i). Let F be the set of intervals output by
our algorithm that do not contain a “jump” of the best
k-histogram ¢*, i.e., F = {i € [k']| I; C I} for some j €
[k]}. For each i € F, we have defined the value of
gz on I; so that ||(Gz)r, — qr,||2 is minimized among
1-histograms on I;. Since ¢* is also a 1-histogram on I;,
we have [(qz)1; — q1,|l2 < lla7, — qz;]]2. Summing over
all ¢ € F gives

> @) —anlls <> llar, — an 3
1€EF iEF
< llg" —qli5
< opty, . (1)

Case (#). We now consider the set of intervals con-
taining a jump of the k-histogram ¢*, ie., J = {i €
(]| I; € I} for all j € [k]}. Since ¢ is a k-histogram,



Algorithm 1 Approximating with histograms by merging.

1: function CONSTRUCTHISTOGRAM(q, k, 8, )

2: > We assume that q is given as the sorted set of nonzeros {(i1,y1), ..., (is,ys)} such that y; = qi;.

Jj<s

J +— U {ij — 1,ij,ij + 1}
=1

> Set of relevant indices.

> Precompute partial sums for fast mean and error computation.

i D<) ya for j € J
> Initial histogram.
: Let Z° « {I,...
10: > Iterative greedy merging (we start with j =0).
11:  while |Z/| > 2+ 2)k+v do

3
4
5:
6: Ti 4 D, < Yuforje g
7.
8
9

, Iso } be the initial partition of [n] defined by the set J.

12: Let s; be the current number of intervals.
13: > Compute the errors for merging neighboring pairs of intervals.
14: forue {1,2,...,%} do
15: ey  errg(loy—1 U lay)
16: Let L be the set of u with the (1 + %)k largest e, and M be the set of the remaining .
17: T — U {I2u-1, I2u}
uel
18: > Keep the intervals with large merging errors.
19: I TP U {Iay—1 U oy |u € M}
20: > Merge the remaining intervals.
21: j—J+1
22: return 7’

we have |J| < k. For each I; with ¢ € J, there are two
sub-cases: (a) I; is one of the initial intervals in Z°, (b)
I; was created in some iteration of the algorithm. In
case (a), we clearly have ||(gz)1; —q1,||2 = 0, so we focus
our attention on case (b).

Consider the iteration in which I; was created. Since
I; is the result of merging two smaller intervals, the
error errq(I;) was not among the (1 + §)k largest er-
rors. Let L be the set of indices with the largest er-
rors, so errq(I;) < errq(l;) for all j € L (see line 16 of
Alg. 1). At most k of the intervals in L can contain a
jump of ¢*, so at least % intervals in L are contained
in an interval in Z*. Let L’ be this set of intervals, i.e.,
L'={jeL|I; CI for some u € [k]}. Using a similar
optimality argument as in Case (i), we have that

> errg(Iy) = > (@)1, —anll; < opty -
jeL’ jeL’

Since |L'| > %, this implies that

min err, (I;) < —opt; .

jJeEL’

>

Therefore, we have that erry(I;) < Soptj, because erry(I;)
was not among the largest errors. Hence we have:

) 5
> @) —anlls < 1] popty < §-opti.  (2)
ied

Since F U J = [k'], we can now combine Eq. (1) and
Eq. (2) to get our final approximation guarantee:

laz —al3 = > @), — a3 + > @) — arll3
i€k icd
< opt; +d-opt; = (1+446)-opt; .

O

Next, we consider the running time of our algo-
rithm. Intuitively, each iteration of the merging algo-
rithm takes time linear in the current number of inter-
vals by using the precomputed partial sums (see line 7 of
Alg. 1) and a linear-time selection algorithm [CSRLO1,
p. 189]. Moreover, every iteration of the merging al-
gorithm reduces the number of intervals by a constant
factor as long as the number of intervals is larger than
(14 §)k. Therefore, the total running time of our al-
gorithm is bounded by the time complexity of the first
iteration, which is O(s). We show this more formally
below.

THEOREM 3.4. Let q : [n] = R be an s-sparse func-
tion. Then CONSTRUCTHISTOGRAM(q, k,d,7) runs in

time
(s + k(1 ) tog (LK)

ProOF. Consider J, r;, and t; as defined in CON-
STRUCTHISTOGRAM. Clearly, all three quantities can
be computed in O(s) time. Moreover, precomputing
the partial sums allows us to compute errq(I) in con-
stant time if the endpoints of I are contained in J. In
particular, let I = {a,a + 1,...,b} with a,b € J. Then

> ai) - i (Zq@))

i€l i€l

errg(I) =

:tbfta‘i’yg* (rbfra+ya)27

b—a+1
which we can evaluate in constant time. Since our al-
gorithm only constructs intervals with endpoints in the



set J, this allows us to quickly evaluate all instances of
errq over the course of the algorithm.

Next, we show that for all j, the (j 4 1)-th iteration
of the loop in CONSTRUCTHISTOGRAM can be performed
in time O(s;) (recall s; = |Z7| is the number of intervals
active in the j-th iteration). As outlined above, the e,
can be computed in O(s;) total time. Moreover, we can
find the set L containing the (14 1/6)k-th largest e, in
linear time: first, we find the (1+1/0)k-th largest single
e, using a linear time selection algorithm [CSRLO1, p.
189]. Then, we can find all elements in L in one fur-
ther pass over the e,, checking whether the current e,
is larger than the threshold value of the (1 + 1/§)k-th
largest single e,,. After this, we can easily create the set
Z9%1 in linear time and hence the entire iteration can
be performed in time O(s;).

Moreover, for all j > 1 until we terminate, we have
that

s; — (2+2/6)k
A R 2

3)
The first equality follows by construction, since in each
iteration of the loop, we keep (2 + 2)k intervals from
the previous iteration and merge the remaining pairs
into one new interval per pair. Starting with so = s,
and applying Equation 3 j times, we obtain that for all
7 until the algorithm terminates,

s;=2"7s4+(1-279) <2+§)k. (4)

In particular, this implies that the algorithm termi-
nates after at most A = log(s/v) iterations. Let \' =
log((242/0)k+s)—log((2+2/6)k). By a straightforward
manipulation, we see that for all j < X, we have 2775 >
(1 —279)(242/8)k, and for all j > X, the opposite di-
rection holds. By the arguments above, it follows that
the total runtime of CONSTRUCTHISTOGRAM(q, k, 0, 7)
is O(Z;Zl sj). The proof follows from the following
sequence of inequalities:

A
D8

J=N+1

A

A/
dosio= D s+
=0

j=0
N A 9
<2y 277 —277 2
< Zz s+2‘2(1 2 )<2+6>k
j=0 J=A+1

<ds+(A—X) (2+§>k

g4s+1og(%) (2+%)k, (5)

where the last line is obtained by expanding the expres-
sion for A — )\’ and using the fact (2+2/8)k > 0. O

Thus, we have:

COROLLARY 3.1. For any constant ¢ > 0,
CONSTRUCTHISTOGRAM(q, k, 8, c(2+2/8)k) runs in time
O(s) and returns a (1 + ¢)(2 + 2/6)k-histogram.

+<2+§)kzw_

PROOF. Following the analysis of Theorem 3.4, when
we plug in v = ¢(2+2/§)k into Equation 5, we get that

A
Zs]- < 4s+log (1) (2+2) k.
c )

J=0

We can assume that (2 + 2/§)k < s since otherwise
the input Z° is already (2 4 2/8)k-flat. Hence, we have
Z;‘:O s; = O(s) which completes the proof. [

With the parameterization in Corollary 3.1, the al-
gorithm runs in linear time for all values of k. The rea-
son for this parameterization is that the merging algo-
rithm makes increasingly slower progress as the number
of intervals decreases (and hence the fraction of intervals
which are not merged increases). In fact, for the regime
k = O(g555), the algorithm runs in time O(s) for any
v =1

3.4 Multi-scale Histogram Construction.

Our previously described algorithm (Algorithm 1)
requires a priori knowledge of the parameter k, i.e., the
desired number of intervals in the output histogram ap-
proximation. We show that a variant of Algorithm 1,
which we call CONSTRUCTHIERARCHICALHISTOGRAM,
works without knowledge of k and produces good his-
togram approximations for all values of £k > 1. The
guarantees for the running time, number of histogram
intervals, and approximation error are similar to those
of Algorithm 1.

As before, our algorithm works for arbitrary s-sparse
functions. We start with a histogram consisting of O(s)
intervals and reduce the number of intervals by a fourth
in each iteration of the algorithm. At any stage, sup-
pose the intervals are I,...,Is. As before, we pair
the intervals as I2;4+1, [2; and compute the approxima-
tion errors of the merged intervals. We keep half of the
pairs corresponding to the largest errors and merge the
remaining 52—/ pairs of intervals. This reduces the num-
ber of intervals from s’ to STSI. A detailed pseudocode
for this variant of the merging algorithm is given in Alg.
2. We have:

THEOREM 3.5. Let q : [n] = R be an s-sparse func-
tion. Moreover, let Z°,T",... T* be the partitions of [n)
returned by CONSTRUCTHIERARCHICALHISTOGRAM(q).
Then given any 1 < k < s, there is an T? with |Z%| < 8k
and

lgzs —qllz < 2-opty,

where opt, = min||¢’ — ¢||2 and ¢’ ranges over all k-
histograms. Moreover, the algorithm runs in O(s) time.

We remark that a single run of Algorithm 2 pro-
duces a hierarchical histogram that achieves a constant-
factor approximation guarantee for any target number
of histogram pieces.

PrOOF OF THEOREM 3.5. We first prove the claimed
running time of our algorithm. In each iteration, the
number of intervals reduces by a fourth, and the number
of initial intervals is O(m). Moreover, we can output Z7



Algorithm 2 Learning histograms by hierarchical merging.

1: function CONSTRUCTHIERARCHICALHISTOGRAM(q)

2: > We assume that q is given as the sorted set of nonzeros {(i1,y1), ..., (is,ys)} such that y; = qi; .

3: > Set of relevant indices.
J<s

4: J— U{i; — 1,45, + 1}
j=1

> Initial histogram.

5
6 Let Z° < {I1,...,Is,} be the initial partition of [n] defined by the set J.
7 > Iterative greedy merging.
8: j<0
9: while |Z7| > 8 do
10: Let s; be the current number of intervals.
11: > Compute the errors for merging neighboring pairs of intervals.
12: forue {1,2,...,%} do
13: ey  errg(lay—1 U I2y)
14: Let L be the set of u with the % largest e, and M be the set of the remaining wu.
15: > Keep the intervals with the large merging errors.
16: T U {Tau-1, T2u}
uel
17: > Merge the remaining intervals.
18: T TP U{Tpu—1 U Loy |u € M}
19: j—j+1

20: return 7°, 7', ... T/

in each iteration in time linear in the current number of
intervals. Therefore, the total running time satisfies,

T(s)=T (%) +0(s).

We start with m steps, and therefore the algorithm runs
in time O(m).

We now turn our attention to the approximation
guarantee. Suppose we want to match the approxima-
tion error of a k-histogram. Consider the iteration of
our algorithm in which the number of intervals drops
below 8k for the first time. We output the correspond-
ing partition Z7, which by definition satisifies |I;| < 8k.
For the approximation error, we follow the proof of The-
orem 3.3: we consider the set of intervals that contain
a “jump” of an optimal k-histogram approximation ¢*.
Since there were at least 8k intervals before this iter-
ation, we form 4k pairs of intervals and do not merge
at least 2k pairs of intervals with the largest errors. At
least k of those intervals do not contain a jump and thus
contribute an error of at most opt,. This also holds for
any previous iteration of the algorithm. Therefore, each
interval containing a jump contributes at most 22~ er-
ror, and the total contribution of all intervals containing
a jump is at most opt,. Combined with the contribution
from intervals containing no jump (also at most opt,, in
total), the final approximation error is 2 - opt,. [

4. A Generalized Merging Algorithm
and Fitting Piecewise Polynomials

In this section we adapt Algorithm 1 to work for
more general classes of functions, in particular, piece-
wise polynomials. These results establish Theorem 2.3.

4.1 An Oracle Version of Algorithm 1.

Note that Algorithm 1 relies only on the following
property of piecewise constant functions: given an in-
terval I and a function f, we can efficiently find the
constant function with minimal ¢ error to f on I. We
can extend this idea to fit more general types of func-
tions (for example, the class of piecewise polynomials.)
We formalize this intuition in the following definitions.

DEFINITION 4.1  (PROJECTION ORACLE). Let F be
any set of functions from [n] to R. O is a projection
oracle for F if it takes as input an interval I and a
function f: I — R, and outputs a function g* € F and
a value v such that

v=llgi = fllo < inf flgr = f1l

DEFINITION 4.2. A function f : [n] — R is a k-
piecewise F-function if there exists a partition of [n]
into k disjoint intervals {I1,...,Ir} so that for each 1,
fr. = (9i)1,, for some g; € F.

For example, suppose F is the set of all constant
functions on [n]. Then there is a trivial projection oracle
O for F: for any function f : I — R, the optimal flat
approximator to f is the function which is constantly
wy(I) (as we argued in Section 3.2). The error of this
approximation is erry(I) and is also easy to calculate.
Thus, one way of describing Algorithm 1 is as follows:



given input function g, in each iteration, we compute the
best estimator for ¢ from F using O on each merged in-
terval and its associated error. Subsequently, we merge
all intervals except those with top O(k) errors, and re-
peat the process.

The idea of the generalized merging algorithm is the
following. For general classes of functions F, at each it-
eration, we first call the corresponding projection oracle
O over consecutive pairs of intervals to find the best fit
in F over this larger interval. We also calculate the ¢»-
error of the approximation using O. As in Algorithm 1,
we merge all intervals except those with large errors.
This general algorithm, which we call
CONSTRUCTGENERALHISTOGRAM(q, k, §, 7, O), is concep-
tually similar to Algorithm 1 except that we use a pro-
jection oracle instead of a flattening step. Assuming
the existence of such an oracle, we can formally state
our main result for approximation with k-piecewise F-
functions.

THEOREM 4.1. Let g : [n] — R be s-sparse. Let F be
any set of functions on [n] to R as above, and let O be a
projection oracle for F which, given any s’'-sparse func-
tion ¢’ on a subinterval of I, runs in time O(as’). Then

CONSTRUCTGENERALHISTOGRAM(q, k, 6, v, O) runs in time

(o1 (22

and outputs a k'-piecewise F-function f : [n] — R where
, 2
k< (2 + 5) k+~

and which satisfies ||f — qll2 < (14 8) - ||f’ — qll2 where
f ranges over all k-piecewise F-functions.

The proof of Theorem 4.1 is a simple adaptation of the
proof of Theorem 3.3.

4.2 Finding the best fit polynomial on a sub-
interval.

We now specialize Theorem 4.1 to piecewise poly-
nomial approximation. Let us first restate this problem
in the terminology introduced above. Fix an interval
I = [a,b] C [n]. It will be convenient to represent func-
tions w : I — R as vectors v = (v1,...,Vp—a+1), Where
v; = w(a 4+ ¢ —1). For a fixed interval I, the vector
representation of a function is uniquely defined. Hence,
throughout this section we will blur the distinction be-
tween a function and its vector representation.

We define Py(I) to be the set of v € RI! such that
there exists a degree-d polynomial p : R — R such that
for all i € I, vi = pla+1i— 1), and Pg = Pa([n]).
We construct an efficient procedure FITPOLY4(, q) (see
Algorithm 3 in the appendix) that takes as input an
interval I C [n] and a function ¢ : [ — R, and finds the
best approximation of the function within the interval
with a degree-d polynomial. In particular, we will prove:

THEOREM 4.2. There exists a projection oracle FITPOLY4

for Pq, which, given an interval I and an s-sparse func-
tion ¢ : I — R, runs in time O(d*s).

Theorems 4.1 and 4.2 give our desired result, which
we now state for completeness:

COROLLARY 4.1. Let q : [n] — R be s-sparse. Then,

CONSTRUCTGENERALHISTOGRAM(q, k, §, v, FITPOLY4) runs

mn time

o(e(c (- ()

and outputs a t-piecewise degree-d polynomial function
f:I— R, suchthatt < (24 2)k+~ and || f — qll2 <
(L+68) - ||f" — qll2 where f' ranges over all k-piecewise
degree-d polynomials.

Note that, as in Corollary 3.1, for a natural choice of pa-
rameters § and v, the running time becomes O(d?s). Tt
remains to prove Theorem 4.2, which we defer to the ap-
pendix. The core of algorithm is a fast projection onto
the space of degree-d polynomials via the orthonormal
basis of discrete Chebyshev polynomials [Sze89]. The
key technical ingredient is a subroutine which evaluates
these basis polynomials at s points in time O(d?s). This
compares favorably to the O(d“s) time algorithm given
in [GKS06] (where w is the matrix multiplication con-
stant).

5. Experimental Evaluation

In order to evaluate the empirical performance of
our algorithm, we conduct several experiments on real
and synthetic data. As with our analysis, we split the
empirical evaluation into two parts: “offline” histogram
approximation (where we assume that the full data dis-
tribution is explicitly present), and histogram approxi-
mation from sampled data. All experiments in this sec-
tion were conducted on a laptop computer from 2010,
using an Intel Core i7 CPU with 2.66 GHz clock fre-
quency, 4 MB of cache, and 8 GB of RAM. We used the
Debian GNU /Linux distribution and g++ 4.8 as compiler
with the -03 flag (all algorithms were implemented in
C++4). All reported running times are averaged over at
least 10 trials (and up to 10* trials for algorithms with
a fast running time).

5.1 Histogram approximation.

Due to the large amount of prior work on histogram
approximation, we focus on the most relevant algorithms
in our comparison. Moreover, we study the performance
in the case of dense input, i.e., we make no assumptions
about the number of nonzeros, since most prior algo-
rithms work in this setting. We denote the size of the
dense input with n. Note that our merging algorithm
(Alg. 1) is directly applicable to dense inputs, which
can be represented as an n-sparse function. We run the
following histogram approximation schemes:

exactdp An exact dynamic program with running time
O(n*k) [JKMT93].

dual A variant of the linear time algorithm for the dual
problem given in [JKM'98]. Since the target error
is not known in the primal version of the problem,
this variant incurs an extra logarithmic factor due
to a binary search over opt.



merging Our algorithm as outlined in Alg. 1. We use
parameters 6 = 1,000 and v = 1.0 so that our
algorithm produces a histogram with 2k+1 pieces.

merging2 The same algorithm as merging, but using
kK = g as input. Hence the resulting histogram
has k + 1 pieces.

fastmerging A variant of Alg. 1 with a more aggres-
sive merging scheme that merges larger groups of
intervals in the early iterations.®> We also use § =
1,000 and v = 1.0 for fastmerging.

fastmerging2 The same algorithm as fastmerging, but

using k' = g as input. Similar to merging2, the

resulting histogram has k + 1 pieces.

We run the algorithms on two synthetic and one
real-world data set with input sizes ranging from n =
1,000 to 16,384 (see Fig. 1). We have chosen the same
real-world data set as in [GKS06] so that our results are
comparable to the results given there. For the hist and
poly data sets, we run the algorithms with £ = 10. For
the dow’ dataset, we use k = 50.

Table 1 contains detailed results for our experi-
ments. Our algorithms are several orders of magnitude
faster than the exact dynamic program. Interestingly,
our algorithms also achieve a very good approximation
ratio. Note that for merging and fastmerging, the ap-
proximation ratio is better than 1.0 on the poly and dow
data sets. The reason is that the algorithms produce
histograms with 2k + 1 pieces, which makes a better ap-
proximation than that achieved by exactdp possible. In
particular, the empirical results are significantly better
than those predicted by our theoretical analysis, which
only guarantees a very large constant factor for § =
1,000. Further, both the merging2 and fastmerging?2
variants still achieve a good approximation ratio while
using only k + 1 pieces in the output histogram.

Compared to dual, all variants of our algorithm
achieve a better approximation ratio (by a factor close
to 1.75 on the dow data set). Moreover, the fastmerg-
ing variants are roughly ten times faster than the dual
algorithm on the two larger data sets.

The fastest algorithm in [GKSO06] is AHIST-L-A,
which achieves an approximation ratio of about 1.003
for the dow data set with n = 16,384 and k£ = 50. This
approximation ratio is better than merging2 and fast-
merging2, but worse than merging and fastmerging
(note however that AHIST-L-A uses exactly k pieces in
the output histogram). All of our algorithms are signifi-
cantly faster: the reported running time of AHIST-L-A
on dow is larger than one second, which is more than
1,000 times larger than the running time of our algo-
rithms. While the running times are not directly com-
parable due to different CPUs and compilers, a com-
parison of running times of exactdp in our experiments

30ne can show that with a more aggressive merging,
the fastmerging algorithm performs only O(loglogn)
rounds of merging, as opposed to O(logn) as in the
“binary” merging algorithm given in Alg. 1. However,
the total running time is determined by the first round
of merging and remains O(n).

with those in [GKS06] shows that our speedup due to
CPU and compiler is around 3x. Even assuming a
generous 10x, our algorithms are still more than two
orders of magnitude faster than AHIST-L-A.

5.2 Histogram approximation from samples.

In addition to offline histogram approximation, we
also study the performance of our algorithms for the his-
togram learning problem. We use the same data sets as
in Figure 1, but normalize them to form a probability
distribution. Due to the slow running time of exactdp,
we also subsample the poly and dow data sets by a factor
of 4 and 16 respectively (using uniformly spaced sam-
ples) so that all data sets have a support of size roughly
1,000. We call the resulting data sets hist’, poly’,
and dow’, and use the same values of k as in the offline
histogram approximation experiments.

Figure 2 shows the results of the histogram learn-
ing experiments. In order to reduce clutter in the pre-
sentation of our results, we only perform sampling ex-
periments with the exactdp, merging, and merging?2
algorithms. Our histogram approximation algorithms
demonstrate very good empirical performance and of-
ten achieve a better approximation error than exactdp.
The results indicate that the additional time spent on
constructing an exact histogram fit to the empirical dis-
tribution does not lead to a better approximation to the
true underlying distribution.
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Figure 1: Data sets for the offline histogram approximation experiments. (left) hist is a histogram

consisting of 10 pieces contaminated with Gaussian noise (n = 1000).

(middle) poly is a degree 5

polynomial, also contaminated with Gaussian noise (n = 4000). (right) dow is a time series of Dow-
Jones Industrial Average (DJIA) daily closing values (n = 16384).

exactdp merging merging2 fastmerging fastmerging2 dual

hist Error (¢2) 16.1 16.4 16.6 17.0 21.5 25.8
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Table 1: Results of the algorithms on the three data sets in Fig. 1. The relative errors are reported
as ratios compared to the error achieved by exactdp. For the relative running times, the baseline is
fastmerging?2.
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APPENDIX
A. Proofs and Description of FitPoly,

‘We now describe FITPOLY4, and prove Theorem 4.2.
In particular, we show how to perform the projection of
q onto Py(I) in time O(d?s), where s is the sparsity of
q.

Fix an interval [a,b] = I C [n]. Then, Pu(I),
the class of all polynomials of degree at most d, is a
(d+ 1)-dimensional linear subspace spanned by the vec-
tors xo, . . ., xq where x; is the vector associated with the
function f;(x) = z?, that is, z; = (a’, (a + 1)7,...,b%).
By the linear transform x — x — a, each z; can be
written as a linear combination of the vectors y; =
(07,179,279 ... (J]I] — 1)?). We henceforth assume that
the interval of interest is I = [0,b — 1].

Now the problem of finding the best-fit polynomial
to ¢ becomes equivalent to finding v € Pg(I) that min-
imizes ||v — ¢||3. This is exactly the problem of finding
the projection of ¢ onto the vector space Py(I). We
do so by appealing to the theory of discrete orthogonal
polynomials.

DEFINITION A.l. The discrete Chebyshev, or Gram
polynomial of degree r for the interval [0,...,b — 1] is
the polynomial given by

g (6

where A is the forward difference operator on functions

given by Af(x) d:eff(erl) —f(x), (%) is the generalized

T
binomial coefficient, and

2 1\
b0
(2r+1)
where y*- dzefy(y—l) ...(y—r—+1) denotes the rth falling
power.

It is well known [Sze89] that {t,}%_, forms an or-
thonormal basis for P. Thus, for any function g, the pro-
jection of g onto Py(I) is given by q(z) = 27_ art,(z)
where

b—1

ar = Zq(i) “tr(2), (7)

and by Parseval’s theorem, the error of the projection is
given by ||q||3 — Zf«l:o a?. FIrPoLy, computes a, and
the error using these formulas. The formal pseudocode
is given in Algorithm 3.

The crucial subroutine is EVALUATEGRAM(z, d, b),
which compute the values t,(z) for r = 0,...,d, for
any fixed x € [0,b — 1], in time O(d?®). The formal
pseudocode for EVALUATEGRAM(z, d,b) is given in Al-
gorithm 4.

LEMMA A.1. EVALUATEGRAM(z, d,b) computes
to(x), ..., ta(z) in time O(d?).

PROOF. EVALUATEGRAM(z, d,b) computes the quan-
tities to(x),...,ta(x) as follows. For fixed r, we can
evaluate (Y) for y = z,2 + 1,...,z + r in time O(d)
since (Y) = y"/r!l. We can evaluate 7! and z”, for all
r < d, in time O(d). Moreover, given y™, in constant
time we can compute (y+1)" = (y+ 1) -y~/(y —r+1).



Algorithm 3 Projecting an s-sparse vector on to Pq([0,b — 1]).

1: function FrrPoLyq(g, b)

2: > We assume that q is given as the sorted set of nonzeros {(i1,y1),..., (is,ys)} such that y; = qi;.
3: > Set of relevant indices.

4: > Compute values of t,(i) for i =41,...,1s

5: v; < EVALUATEGRAM(%, d, b) for i =i1,...,4s

6: > Compute inner product of ¢ with t, for allT =0,...,d

7 for r=0,...,d do

8: ar <= 2251 Yivi, (1)

9: > Compute the error of the projection

10: err = ijl y?- — Zfzo a?

11: return ([ao,...,ar],err)

Thus we can evaluate r! and y~ in time O(d) for y =
z,x+1,...,¢z 4+ r, and (i’) fory=z,z+1,...,0+7r
and for all 7 in time O(d?). Similarly, we can find (y:b)
fory=x,xz+1,...,z+r and for all r in time O(dz). It

2

is straightforward to compute all the (b> — 1)™ in time
O(d?) from the formula, and thus we can compute all
the W, in time O(d?) as well.

Therefore, we can compute the values of v,(y) =
(@T’) (y:b) aty =x,...,x+r, rl, and W, for all r simulta-

neously in total time O(d?). Through similar methods
as those described above, we can also compute (;) for
all 0 < r < dand for all 0 < j < r in time O(d?).
Given that we know these values, we conclude that we
can evaluate t.(x) in time O(d?), since for any z, we
have

t(x) = ml/ Pl AT (1 (2)

_ Ml/rr! j;)(fw (;) ve(z+ 1 — ).

This concludes the proof. [J

We are now in a position to prove Theorem 4.2.

THEOREM 4.2. There exists a projection oracle FITPOLY4
for Pa, which, given an interval I and an s-sparse func-
tion q : I — R, runs in time O(d?s).

PROOF. We first run EVALUATE-GRAM(%5,d, b) for j =
1,...,s. We now have access to the values t,(i;) for all
r=20,...,d and all j = 1,...,d. Given these values,
computing the a, for the original function ¢ is simple:
if ¢ is supported on points i1, ..., is, we evaluate t.(i;),
for all 0 < r < d and for all j = 1,...,s. We then
apply Equation 7, a, = >7°_, q(i;)t,(i;), and compute
the error using Parseval’s theorem as described above.
This procedure takes time O(d%s). O



Algorithm 4 EVALUATEGRAM(z, d, b) returns v, a function on 0, ..., d so that vy(r) = t-(x), where t, is the Gram
polynomial of degree r on the interval [0, b— 1] as defined in Equation 6. Throughout the description of the algorithm,
since we have to evaluate certain mathematical expressions that depend on b and r, we will denote by a any value a
which we have computed.
function EVALUATEGRAM(z, d, b)

> Fvaluate W, forr =0,...,d

B —-1)02+«1

forr=1,...,d do

1:
2
3
4:
5: (2 —1)7% « (b2 — 1)UL " b2 —1—3)
6
7
8

J=(r—1)2+1
for r=0,...,d do
W ‘b.((bzzrfl))ﬁ
: > Bvaluate r! forr =0,...,d
9: 0«1
10: forr=1,...,ddo
11: rlr-(r—1)!
12: > Evaluate (;) forr=0,....,dand j <r
13: for r=0,...,d do

14: (§) <1
15: ()« 1
16: forj=1,...,r—1do
17: () < (50 +G2)

18: > Fvaluate vy (i) forr =0,...,d and for alli=0,...,r
19: for r=0,...,d do

20: > Fvaluate (f) forally=z,...,x+r

21: @ — at/r!

22: fori=1,...,r do L

23: (Y (@+i+1)- () (@+i—r+1)

24: > Fvaluate (”:b) forally=x,...,x+r

25: (‘T:b) +— (z=b)~/r!

26: fori=1,...,r do

27: (Y (@ —b+i+ 1) (") (e —b+i—r+1)
28: fori=1,...,r do

20: RO GON G

30: > Evaluate vy (r) = t,(z) forr =0,...,d
31: forr=0,...,d do .

32: Ve (1) Wirr! Z;zo(fl)j (;) te(z+ 1T —1)
33: return v,
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