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Abstract. We give the first non-trivial upper bounds on the Boolean average sensitivity and
noise sensitivity of degree-d polynomial threshold functions (PTFs). Our bound on the Boolean
average sensitivity of PTFs represents the first progress towards the resolution of a conjecture of
Gotsman and Linial [GL94], which states that the symmetric function slicing the middle d layers
of the Boolean hypercube has the highest average sensitivity of all degree-d PTFs. Via the L1

polynomial regression algorithm of Kalai et al. [KKMS08], our bound on Boolean noise sensitivity
yields the first polynomial-time agnostic learning algorithm for the broad class of constant-degree
PTFs under the uniform distribution.

To obtain our bound on the Boolean average sensitivity of PTFs, we generalize the “critical-
index” machinery of [Ser07] (which in that work applies to halfspaces, i.e. degree-1 PTFs) to general
PTFs. Together with the “invariance principle” of [MOO10], this allows us to essentially reduce
the Boolean setting to the Gaussian setting. The main ingredients used to obtain our bound in
the Gaussian setting are tail bounds and anti-concentration bounds on low-degree polynomials in
Gaussian random variables [Jan97, CW01]. Our bound on Boolean noise sensitivity is achieved via a
simple reduction from upper bounds on average sensitivity of Boolean PTFs to corresponding bounds
on noise sensitivity.

1. Introduction. A degree-d polynomial threshold function (PTF) over a do-
main X ⊆ Rn is a Boolean-valued function f : X → {−1,+1},

f(x) = sign(p(x1, . . . , xn))

where p : X → R is a degree-d polynomial with real coefficients. (The function
sign(z) takes value 1 for z ≥ 0 and −1 for z < 0.) When d = 1 polynomial threshold
functions are simply linear threshold functions (also known as halfspaces or LTFs),
which play an important role in complexity theory, learning theory, and other fields
such as voting theory. Low-degree PTFs (where d is greater than 1 but is not too
large) are a natural generalization of LTFs which are also of significant interest in
these fields.

Over more than twenty years much research effort in the study of Boolean func-
tions has been devoted to different notions of the “sensitivity” of a Boolean function to
small perturbations of its input, see e.g. [KKL88, BT96, BK97, Fri98, BKS99, Shi00,
MO03, MOO10, OSSS05, OS07] and many other works. In this work we focus on two
natural and well-studied measures of this sensitivity, the “average sensitivity” and the
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“noise sensitivity.” As our main results, we give the first non-trivial upper bounds
on average sensitivity and noise sensitivity of low-degree PTFs. These bounds have
several applications in learning theory and complexity theory as we describe later in
this introduction.

We now define the notions of average and noise sensitivity in the setting of Boolean
functions f : {−1, 1}n → {−1, 1}.

1.1. Average Sensitivity and Noise Sensitivity. The sensitivity of a Boolean
function f : {−1, 1}n → {−1, 1} on an input x ∈ {−1, 1}n, denoted sf (x), is the num-
ber of Hamming neighbors y ∈ {−1, 1}n of x (i.e. strings which differ from x in
precisely one coordinate) for which f(x) 6= f(y). The average sensitivity of f , de-
noted AS(f), is simply E[sf (x)] (where the expectation is with respect to the uniform
distribution over {−1, 1}n). An alternate definition of average sensitivity can be
given in terms of the influence of individual coordinates on f . For a Boolean function
f : {−1, 1}n → {−1, 1} and a coordinate index i ∈ [n], the influence of coordinate i on
f is the probability that flipping the i-th bit of a uniform random input x ∈ {−1, 1}n
causes the value of f to change, i.e. Infi(f) = Pr[f(x) 6= f(x⊕i)] (where the prob-
ability is with respect to the uniform distribution over {−1, 1}n). The sum of all
n coordinate influences,

∑n
i=1 Infi(f), is called the total influence of f ; it is easily

seen to equal AS(f). Bounds on average sensitivity have been of use in the struc-
tural analysis of Boolean functions (see e.g. [KKL88, Fri98, Shi00]) and in developing
computationally efficient learning algorithms (see e.g. [BT96, OS07]).

The average sensitivity is a measure of how f changes when a single coordinate
is perturbed. In contrast, the noise sensitivity of f measures how f changes when
a random collection of coordinates are all perturbed simultaneously. More precisely,
given a noise parameter 0 ≤ ε ≤ 1 and a Boolean function f : {−1, 1}n → {−1, 1},
the noise sensitivity of f at noise rate ε is defined to be

NSε(f) = Prx,y[f(x) 6= f(y)]

where x is uniform from {−1, 1}n and y is obtained from x by flipping each bit inde-
pendently with probability ε. We note that the noise sensitivity can be equivalently
expressed as a function of the Fourier coefficients of f and the noise rate ε as follows:

NSε(f) =
1
2
− 1

2

∑
S⊆[n]

(1− 2ε)|S|f̂(S)2. (1.1)

Noise sensitivity has been studied in a range of contexts including Boolean func-
tion analysis, percolation theory, and computational learning theory [BKS99, KOS04,
MO03, SS, KOS08].

1.2. Main Results: Upper Bounds on Average Sensitivity and Noise
Sensitivity. In 1994 Gotsman and Linial [GL94] conjectured that the symmetric
function slicing the middle d layers of the Boolean hypercube has the highest aver-
age sensitivity among all degree-d PTFs. Since this function has average sensitivity
Θ(d
√
n) for every 1 ≤ d ≤

√
n, this conjecture implies (and for d = O(

√
n) it is equiva-

lent to) the conjecture that every degree-d PTF f over {−1, 1}n has AS(f) = O(d
√
n).

Our first main result is an upper bound on average sensitivity which makes
progress toward this conjecture:

Theorem 1.1. For any degree-d PTF f over {−1, 1}n, we have

AS(f) ≤ 2O(d) · log n · n1−1/(4d+2).

2



Using a completely different set of techniques, we also prove a different bound
which improves on Theorem 1.1 for d ≤ 4:

Theorem 1.2. For any degree-d PTF f over {−1, 1}n, we have

AS(f) ≤ 2n1−1/2d .

We give a simple reduction which translates any upper bound on average sensi-
tivity for degree-d PTFs over Boolean variables into a corresponding upper bound on
noise sensitivity. Combining this reduction with Theorems 1.1 and 1.2, we establish:

Theorem 1.3. For any degree-d PTF f over {−1, 1}n and any 0 ≤ ε ≤ 1, we
have

NSε(f) ≤ 2O(d) · ε1/(4d+2) log(1/ε)

NSε(f) ≤ O(ε1/2
d

).

In Section 7 we point out (Proposition 7.1) that, assuming the Gotsman-Linial
conjecture, any degree-d PTF f : {−1, 1}n → {−1, 1} has noise sensitivity NSε(f) =
O(d
√
ε).

1.3. Application: agnostically learning constant-degree PTFs in poly-
nomial time. Our bounds on noise sensitivity, together with machinery developed
in [KOS04, KKMS08, KOS08], let us obtain the first efficient agnostic learning al-
gorithms for low-degree polynomial threshold functions. In this section we state our
new learning results; details are given in Section 6.

We begin by briefly reviewing the fixed-distribution agnostic learning framework
that has been studied in several recent works, see e.g. [KKMS08, KOS08, BOW08,
GKK08, KMV08, SSS09]. Let DX be a (fixed, known) distribution over an example
space X such as the uniform distribution over {−1, 1}n or the standard multivariate
Gaussian distribution N (0, In) over Rn. Let C denote a class of Boolean functions,
such as the class of all degree-d PTFs. An algorithm A is said to be an agnostic
learning algorithm for C under distribution DX if it has the following property: Let
D be any distribution over X × {−1, 1} such that the marginal of D over X is DX .
Then if A is run on a sample of labeled examples drawn independently from D, with
high probability A outputs a hypothesis h : X → {−1, 1} such that Pr(x,y)∼D[h(x) 6=
y] ≤ opt + ε, where opt = minf∈C Pr(x,y)∼D[f(x) 6= y]. In words, A’s hypothesis is
nearly as accurate as the best hypothesis in C.

Kalai et al. [KKMS08] gave an L1 polynomial regression algorithm and showed
that it can be used for agnostic learning. More precisely, they showed that for a class
C of functions and a distribution D, if every function in C has a low-degree polyno-
mial approximator (in the L2 norm) under the marginal distribution DX , then the L1

polynomial regression algorithm is an efficient agnostic learning algorithm for C under
DX . They used this L1 polynomial regression algorithm together with the existence
of low-degree polynomial approximators for halfspaces (under the uniform distribu-
tion on {−1, 1}n and the standard Gaussian distribution N (0, In) on Rn) to obtain
nO(1/ε4)-time agnostic learning algorithms for halfspaces under these distributions.

Using ingredients from [KOS04], one can easily convert upper bounds on Boolean
noise sensitivity (such as Theorem 1.3) into results asserting the existence of low-
degree L2-norm polynomial approximators under the uniform distribution on {−1, 1}n.
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We thus obtain the following agnostic learning result (a more detailed proof is given
in Section 6):

Theorem 1.4. The class of degree-d PTFs is agnostically learnable under the
uniform distribution on {−1, 1}n in time

n2O(d2)(log 1/ε)4d+2/ε8d+4
.

For d ≤ 4, this bound can be improved to nO(1/ε2
d+1

).
For ε constant, this result is the first polynomial-time agnostic learning algorithms

for constant-degree PTFs.

1.4. Other Applications. The results and approaches of this paper have found
other recent applications beyond the agnostic learning results presented above; we
describe two of these below.

Gopalan and Servedio [GS10] have combined the average sensitivity bound given
by Theorem 1.1 with techniques from [LMN93] to give the first sub-exponential time
algorithms for learning AC0 circuits augmented with a small (but super-constant)
number of arbitrary threshold gates, i.e. gates that compute arbitrary LTFs which
may have weights of any magnitude. (Previous work using different techniques [JKS02]
could only handle AC0 circuits augmented with majority gates.)

In other recent work Diakonikolas et al. [DSTW10] have refined the approach
used to prove Theorem 1.1 to establish a “regularity lemma” for low-degree polynomial
threshold functions. Roughly speaking, this lemma says that any degree-d PTF can be
decomposed into a constant number of subfunctions, almost all of which are “regular”
degree-d PTFs. [DSTW10] apply this regularity lemma to extend the positive results
on the existence of low-weight approximators for LTFs, proved in [Ser07], to low-
degree PTFs.

Related work. Simultaneously and independently of this work, Harsha et al.
[HKM09] have obtained very similar results on average sensitivity, noise sensitivity,
and agnostic learning of low-degree PTFs using techniques very similar to ours.

A preliminary version of this paper [DRST09] gave quantitatively similar upper
bounds on the Gaussian average sensitivity and noise sensitivity of degree-d PTFs.
(See Section 2.1 for a definition.) A few months after [DRST09] appeared, Daniel Kane
gave an elegant proof of optimal upper bounds on the Gaussian noise sensitivity of
degree-d PTFs by showing that for any degree-d PTF f it holds GNSε(f) ≤ d

√
2ε/(2π)

[Kan10]. As we point out in Section 7, this is a necessary step towards the resolution
of the Boolean version of the Gotsman-Linial conjecture.

1.5. Techniques. In this section we give a high-level overview of how Theo-
rem 1.1 is proved. (As mentioned earlier, Theorem 1.2 is proved using completely
different techniques; see Section 4.)

An important notion in our proof is that of a “regular” PTF; this is a PTF
f = sign(p) where every variable in the polynomial p has low influence. (See Section 2
for a definition of the influence of a variable on a real-valued function; note that
the definition from Section 1.1 applies only for Boolean-valued functions.) If f is a
regular PTF, then the “invariance principle” of [MOO10] tells us that p(x) (where x
is uniform from {−1, 1}n) behaves much like p(G) (where G is drawn from N (0, In)).

We start by sketching the argument for the regular case. Let f = sign(p) be
a regular PTF, where p : {−1, 1}n → R is a degree-d polynomial. Recall that the
average sensitivity of f is equal to the sum of the individual influences

∑n
i=1 Infi(f).

We proceed by showing that each individual influence is small. It follows by the
4



definition that the influence of the ith coordinate is bounded by the probability that
p is smaller than its partial derivative in the ith direction, Dip. Intuitively, this event
can only take place if either

• x lies close to the boundary of p, i.e. |p(x)| is “small”, or
• Dip is “large”.

We use an anti-concentration result for polynomials in Gaussian random variables,
due to Carbery and Wright [CW01], combined with the invariance principle, to show
that |p(x)| is “small” only with low probability. For the second bullet, note that Dip
is a low-degree polynomial in independent random variables. As a consequence of the
regularity of f , Dip has small 2-norm and thus a tail bound for this setting [AH09]
implies that |Dip(x)| is “large” only with low probability. We can thus argue that
Infi(f) is low, and bound the Boolean average sensitivity of f.

It remains to handle the case where f is not a regular PTF, i.e. some variable has
high influence in p. To accomplish this, we generalize the notion of the “critical-index”
of a halfspace (see [Ser07, DGJ+09]) to apply to PTFs. We show that a carefully
chosen random restriction (one which fixes only the variables up to the critical index
– very roughly speaking, only the highest-influence variables – and leaves the other
ones free) has non-negligible probability of causing f to collapse down to a regular
PTF. This lets us give a recursive bound on average sensitivity which ends up being not
much worse than the bound that can be obtained for the regular case; see Section 3.1
for a detailed explanation of the recursive argument.

1.6. Organization. Formal definitions of average sensitivity and noise sensitiv-
ity, and tail bounds and anti-concentration results for low degree polynomials are
presented in Section 2. The main result of the paper – a bound on the Boolean av-
erage sensitivity (Theorem 1.1) – is proved in Section 3. In Section 4, an alternate
bound for Boolean average sensitivity that is better for degrees d ≤ 4 (Theorem 1.2)
is shown. This is followed by a reduction from Boolean average sensitivity bounds
to corresponding noise sensitivity bounds (Theorem 5.1) in Section 5. We present
the applications of these upper bounds to agnostic learning of PTFs in Section 6.
Section 7 concludes by proposing directions for future work towards the resolution of
the Gotsman–Linial conjecture.

2. Definitions and Background.

2.1. Basic Definitions. In this subsection we record the basic notation and def-
initions used throughout the paper. For n ∈ Z+, we denote by [n] the set {1, 2, . . . , n}.
For i ≤ j ∈ Z+, we denote by [i, j] the set {i, i+ 1, . . . , j}. We write N to denote the
standard univariate Gaussian distribution N (0, 1).

For a degree-d polynomial p : Rn → R and q ≥ 1, we denote by ‖p‖q its lq norm,
‖p‖q = Ex[|p(x)|q]1/q, where the intended distribution over x ∈ Rn (which will always
be either uniform over {−1, 1}n, or the Nn distribution) will always be clear from
context. We note that for multilinear p the two notions are always equal (see e.g.
Proposition 3.5 of [MOO10]).

We now proceed to define the notion of influence for real-valued functions in a
product probability space. Throughout this paper we consider either the uniform
distribution on the hypercube {±1}n or the standard n-dimensional Gaussian distri-
bution in Rn. However, for the sake of generality, we adopt this more general setting.

Let (Ω1, µ1), . . . , (Ωn, µn) be probability spaces and let (Ω = ⊗ni=1Ωi, µ = ⊗ni=1µi)
denote the corresponding product space. Let f : Ω → R be any square integrable
function on (Ω, µ), i.e. f ∈ L2(Ω, µ). The influence of the ith coordinate on f
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[MOO10] is

Infµi (f) def= Eµ[Varµi [f ]]

and the total influence of f is Infµ(f) def=
∑n
i=1 Infµi (f).

For a function f : {−1, 1}n → R over the Boolean hypercube endowed with the
uniform distribution, the influence of variable i on f can be expressed in terms of the
Fourier coefficients of f as,

Infi(f) =
∑
S3i

f̂(S)2,

and as mentioned in the introduction it is easily seen that AS(f) = Inf(f) for Boolean-
valued functions f : {−1, 1}n → {−1, 1}. For i ∈ [n] the i-th partial derivative of
f : {−1, 1}n → R is (Dif)(x) =

∑
S3i f̂(S)χS−{i} and so Infi(f) = ‖Dif‖22 by

Parseval’s identity.
We proceed to define the notion of noise sensitivity for Boolean-valued functions

in (Rn,Nn). For the domain {−1, 1}n, the notion has been defined already in the
introduction. (We remark that “noise sensitivity” can be defined in a much more
general setting and also for real-valued functions, but such generalizations are not
needed here.)

Definition 2.1 (Gaussian Noise Sensitivity). Given f : Rn → {−1, 1}, the
“Gaussian noise sensitivity of f at noise rate ε ∈ [0, 1]” is

GNSε(f)
def
= Prx,z[f(x) 6= f(y)];

where x ∼ Nn and y
def
= (1 − ε)x +

√
2ε− ε2 z for an independent Gaussian noise

vector z ∼ Nn.
Fourier Analysis. We assume familiarity with the basics of Fourier analysis over the
Boolean hypercube {−1, 1}n. Here we consider functions f : {−1, 1}n → R, and we
think of the inputs x to f as being distributed according to the uniform probability
distribution. The set of such functions forms a 2n-dimensional inner product space
with inner product given by 〈f, g〉 = Ex[f(x)g(x)]. The set of functions (χS)S⊆[n]

defined by χS(x) =
∏
i∈S xi forms a complete orthonormal basis for this space. We will

also often write simply xS for
∏
i∈S xi. Given a function f : {−1, 1}n → R we define

its Fourier coefficients by f̂(S) = Ex[f(x)xS ], and we have that f(x) =
∑
S f̂(S)xS .

Finally, we have Plancherel’s identity 〈f, g〉 =
∑
S f̂(S)ĝ(S), which has as a special

case Parseval’s identity, Ex[f(x)2] =
∑
S f̂(S)2. From this it follows that for every

f : {−1, 1}n → {−1, 1} we have
∑
S f̂(S)2 = 1.

2.2. Probabilistic Facts. In this subsection, we record the basic probabilistic
tools we use in our proofs.

We first recall the following well-known consequence of hypercontractivity [Bon70,
Bec75]:

Theorem 2.2. Let p : {−1, 1}n → R be a degree-d polynomial, where {−1, 1}n
is endowed with the uniform distribution, and fix q > 2. Then

||p||2q ≤ (q − 1)d||p||22.
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We will need a concentration bound for low-degree polynomials over indepen-
dent random signs It can be proved (in both cases) using Markov’s inequality and
hypercontractivity, see e.g. [AH09].

Theorem 2.3 (“degree-d Chernoff bound”). Let p(x) be a degree-d polynomial.
Let x be drawn either from the uniform distribution over {−1, 1}n or from Nn. For
any t > ed, we have

Prx[|p(x)| ≥ t‖p‖2] ≤ exp(−Ω(t2/d)).

The second fact is a powerful anti-concentration bound for low-degree polynomials
over Gaussian random variables. (We note that this result does not hold in the
Boolean setting.)

Theorem 2.4 ([CW01]). Let p : Rn → R be a degree-d polynomial. Then for all
ε > 0, we have

Prx∼Nn [|p(x)| ≤ ε‖p‖2] ≤ O(dε1/d).

We also make essential use of a (weak) anti-concentration property of low-degree
polynomials over the hypercube {−1, 1}n:

Theorem 2.5 ([DFKO06, AH09]). Let p : {−1, 1}n → R be a degree-d polynomial
with Var[p] ≡

∑
0<|S|≤d p̂(S)2 = 1 and E[p] = p̂(∅) = 0. Then we have

Pr[p(x) > 1/2O(d)] > 1/2O(d) and hence Pr[|p(x)| ≥ 1/2O(d)] > 1/2O(d).

The following is a restatement of the invariance principle, specifically Theorem
3.19 under hypothesis H4 in [MOO10].

Theorem 2.6 ([MOO10]). Let p(x) =
∑
|S|≤d p̂(S)xS be a degree-d multilinear

polynomial with
∑

0<|S|≤d p̂(S)2 = 1. Suppose each variable i ∈ [n] has low influence
Infi(p) ≤ τ , i.e.

∑
S3i p̂(S)2 ≤ τ . Let x be drawn uniformly from {−1, 1}n and

G ∼ Nn. Then,

sup
t∈R
|Pr[p(x) ≤ t]−Pr[p(G) ≤ t]| ≤ O(dτ1/(4d+1)).

3. Boolean Average Sensitivity. Let AS(n, d) denote the maximum possible
average sensitivity of any degree-d PTF over n Boolean variables. In this section we
prove the claimed bound in Theorem 1.1:

AS(n, d) ≤ 2O(d) · log n · n1−1/(4d+2). (3.1)

For d = 1 (linear threshold functions) it is well known (see e.g. [GL94]) that
AS(n, 1) ≤ n2−n+1

(
n
n/2

)
= Θ(

√
n). Also, notice that the RHS of (3.1) is larger than

n for d = ω(
√

log n), yielding a trivial bound of AS(n, d) ≤ n. Therefore throughout
this section we shall assume d satisfies 2 ≤ d ≤ O(

√
log n).

3.1. Overview of proof. The high-level approach to proving Theorem 1.1 is a
combination of a case analysis and a recursive bound.
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For certain types of PTFs (“τ -regular” PTFs; see Section 3.2 for a precise defini-
tion) we argue directly that the average sensitivity is small. In particular, we show:

Claim 3.1. Suppose f = sign(p) is a τ -regular degree-d PTF where τ
def
=

n−(4d+1)/(4d+2). Then,

AS(f) ≤ O(d · n1−1/(4d+2))

Claim 3.1 follows directly from Lemma 3.10, which we prove in Section 3.4.
For PTFs that are not τ -regular, we show that there is a not-too-large value of k

(at mostK def= 2d log n/τ), and a collection of k variables (the variables whose influence
in p are largest), such that the following holds: if we consider all 2k subfunctions of
f obtained by fixing the variables in all possible ways, a “large” (at least 1/2O(d))
fraction of the restricted functions have low average sensitivity. Let ρ be an assignment
to a subset of the variables. In the following, we will denote by fρ the function obtained
from f after fixing these variables. More precisely, we show:

Claim 3.2. Let K
def
= 2d log n/τ where τ

def
= n−(4d+1)/(4d+2). Suppose f = sign(p)

is a degree-d PTF that is not τ -regular. Then for some 1 ≤ k ≤ K, there is a set
of k variables with the following property: for at least a 1/2O(d) fraction of all 2k

assignments ρ to those k variables, we have

AS(fρ) ≤ O(d · (log n)1/4 · n1−1/(4d+2))

The proof of Claim 3.2 is given in Section 3.7. We do this by generalizing the
“critical index” case analysis from [Ser07]. We define a notion of the τ -critical index
of a degree-d polynomial; a τ -regular polynomial p is one for which the τ -critical index
is 0. If the τ -critical index of p is some value k ≤ 2d log n/τ , we restrict the k largest-
influence variables (see Section 3.5). If the τ -critical index is larger than 2d log n/τ ,
we restrict the k = 2d log n/τ largest-influence variables in p (see Section 3.6).

3.1.1. Proof of main result (Theorem 1.1) assuming Claim 3.1 and
Claim 3.2. Given these two claims it is not difficult to obtain the final result. In
Claim 3.2, we note that the k restricted variables may each contribute at most 1
to the average sensitivity of f (recall that average sensitivity is equal to the sum of
influences of each variable), and that the total influence of the remaining variables on
f is equal to the expected average sensitivity of fρ, where the expectation is taken
over all 2k restrictions ρ. Since each function fρ is itself a degree-d PTF over at most
n variables, we have the following recursive constraint on AS(n, d):

AS(n, d) ≤ max{O(d · n1−1/(4d+2)),
max

1≤k≤K, 1/2O(d)≤α≤1
{k + α ·O(d · (log n)1/4 · n1−1/(4d+2)) + (1− α)AS(n, d)}},

where K is a function of n and d as defined in the statement of Claim 3.2. It is easy
to see that the maximum possible value of AS(n, d) subject to the above constraint is
at most the maximum possible value of AS′(n, d) that satisfies the following weaker
constraint:

AS′(n, d) ≤ K +
(

1− 1
2O(d)

)
AS′(n, d)

which is satisfied by AS′(n, d) ≤ 2O(d) · log n · n1−1/(4d+2).
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3.2. Regularity and the critical index of polynomials. In [Ser07] a no-
tion of the “critical index” of a linear form was defined and subsequently used in
[OS08, DS09, DGJ+09]. We now give a generalization of the critical index notion for
polynomials.

Definition 3.3. Let p : {−1, 1}n → R and τ > 0. Assume the variables are
ordered such that Infi(f) ≥ Infi+1(f) for all i ∈ [n − 1]. The τ -critical index of f is
the least i such that:

Infi+1(p)∑n
j=i+1 Infj(p)

≤ τ. (3.2)

If (3.2) does not hold for any i we say that the τ -critical index of p is +∞. If p is has
τ -critical index 0, we say that p is τ -regular.

Definition 3.4. Let τ > 0. A sequence a1 ≥ . . . ≥ an ≥ 0 of non-negative
numbers is τ -regular if ai/(

∑n
j=i+1 ai) ≤ τ for all i ∈ [n].

The following simple lemma will be useful for us. It says that the total influence∑n
i=j+1 Infi(p) goes down exponentially as a function of j prior to the critical index:
Lemma 3.5. Let p : {−1, 1}n → R and τ > 0. Let k be the τ -critical index of p.

For 0 ≤ j ≤ k we have

n∑
i=j+1

Infi(p) ≤ (1− τ)j · Inf(p).

Proof. The lemma trivially holds for j = 0. In general, since j is at most k, we
have that

Infj(p) ≥ τ ·
n∑
i=j

Infi(p),

or equivalently

n∑
i=j+1

Infi(p) ≤ (1− τ) ·
n∑
i=j

Infi(p)

which yields the claimed bound.
Let p : {−1, 1}n → R be a degree-d polynomial. We note here that the total influ-

ence of p is within a factor of d of the sum of squares of the non-constant coefficients
of p: ∑

S 6=∅

p̂(S)2 ≤
n∑
i=1

∑
S3i

p̂(S)2 =
n∑
i=1

Infi(p) =
∑
S⊆[n]

|S| · p̂(S)2 ≤ d
∑
S 6=∅

p̂(S)2,

where the final inequality holds since p̂(S) 6= 0 only for sets |S| ≤ d.

3.3. Restrictions and the influences of variables in polynomials. Let
p : {−1, 1}n → R be a degree-d polynomial. The goal of this section is to understand
what happens to the influences of a variable x`, ` > k, when we apply a random
restriction to variables x1, . . . , xk.

We start with the following elementary claim:
Claim 3.6. Let ρ be a randomly chosen assignment to the variables x1, . . . , xk.

Fix any S ⊆ {k + 1, . . . , n}. Then for any polynomial p : {−1, 1}n → R we have
9



p̂ρ(S) =
∑
T⊆[k]

p̂(S ∪ T )ρT ,

where ρT denotes the product of the values ρ assigns to the variables in T . Therefore,
we have

Eρ[p̂ρ(S)2] =
∑
T⊆[k]

p̂(S ∪ T )2. (3.3)

In words, all the Fourier weight on sets of the form S ∪ {some restricted variables}
“collapses” down onto S in expectation. A corollary of this is that in expectation, the
influence of an unrestricted variable x` does not change when we do a restriction:

Corollary 3.7. Let ρ be a randomly chosen assignment to the variables x1, . . . , xk.
Fix any ` ∈ {k + 1, . . . , n}. Then for any polynomial p : {−1, 1}n → R we have

Eρ[Inf`(pρ)] = Inf`(p).

Proof.

Eρ[Inf`(pρ)] = Eρ

 ∑
`∈S⊆{k+1,...,n}

p̂ρ(S)2


=
∑
T⊆[k]

∑
`∈S⊆{k+1,...,n}

p̂(S ∪ T )2

=
∑
U3`

p̂(U)2 = Inf`(p).

3.3.1. Influences of low-degree polynomials behave nicely under restric-
tions. In this subsection we prove the following lemma: For a low-degree polynomial,
a random restriction with very high probability does not cause any variable’s influence
to increase by more than a polylog(n) factor.

Lemma 3.8. Let p(x1, . . . , xn) be a degree-d polynomial. Let ρ be a randomly
chosen assignment to the variables x1, . . . , xk, and let ` ∈ [k+ 1, n]. Then Inf`(pρ) is
a degree-2d polynomial in variables ρ1, . . . , ρk, and

||Inf`(pρ)||2 ≤ 3d · Inf`(p).

Proof. The triangle inequality tells us that we may bound the 2-norm of each
squared-coefficient separately:

||Inf`(pρ)||2 ≤
∑

`∈S⊆[k+1,n]

||p̂ρ(S)2||2.

Since p̂ρ(S) is a degree-d polynomial, the Bonami-Beckner inequality (Theorem 2.2)
applied for q = 4 tells us that

||p̂ρ(S)2||2 = ||p̂ρ(S)||24 ≤ 3d||p̂ρ(S)||22,
10



hence

||Inf`(pρ)||2 ≤ 3d
∑

`∈S⊆[k+1,n]

||p̂ρ(S)||22 = 3d · Inf`(p)

where the last equality is by Corollary 3.7.
Lemma 3.9. Let p(x1, . . . , xn) be a degree-d polynomial. Let ρ be a randomly

chosen assignment to the variables x1, . . . , xk. Fix any t > e2d and any ` ∈ [k+ 1, n].
With probability at least 1− exp(−Ω(t1/d)) over the choice of ρ, we have

Inf`(pρ) ≤ t · 3dInf`(p).

In particular, for t = logd n, we have that with probability at least 1 − n−Ω(1), every
variable ` ∈ [k + 1, n] has Inf`(pρ) ≤ (3 log n)d · Inf`(p).

Proof. Since Inf`(pρ) is a degree-2d polynomial in ρ, Lemma 3.9 follows as an
immediate consequence of Theorem 2.3 and the upper bound on ||Inf`(pρ)||2 given by
Lemma 3.8.

3.4. The regular case. In this section we prove that regular degree-d PTF’s
have low average sensitivity. In particular, we show:

Lemma 3.10. Fix τ = n−Θ(1). Let f be a τ -regular degree-d PTF. Then,

AS(f) ≤ O(d · n · τ1/(4d+1)).

Claim 3.1 follows directly from the above lemma, recalling that we choose τ def=
n−(4d+1)/(4d+2). However, the lemma will also be useful in the “small critical index”
case of Section 3.5 for a slightly larger regularity parameter τ .

Proof. Let f : {−1, 1}n → R be a degree-d PTF, i.e. f = sign(p) where p is
τ -regular. We may assume that p is normalized such that

∑
0<|S|≤d p̂(S)2 = 1.

First we note that flipping the i-th bit of an input x ∈ {−1, 1}n changes the value
of p by the magnitude of its partial derivative with respect to i:

2Dip(x) = 2
∑
S3i

p̂(S)xS−{i}.

It follows that:

Infi(f) ≤ Prx∈{−1,1}n [|p(x)| ≤ |2Dip(x)|].

Therefore, bounding from above the influence of variable i in f can be done by
showing the following:

1. p(x) has small magnitude, |p(x)| ≤ t for some threshold t, with small proba-
bility.

2. 2Dip(x) has large magnitude, |2Dip(x)| ≥ t, with small probability.
We bound the probability of the first event using the anti-concentration property

of regular low-degree polynomials, as implied by the invariance principle along with
Theorem 2.4. For the second event we use the tail bound for degree-d polynomials
(Theorem 2.3).

We will take our threshold t to be t def= τ1/4, where τ is the regularity parameter
of p.

11



3.4.1. Bounding the probability of the first event. By the τ -regularity of
p, for all i ∈ [n] we have Infi(p) ≤ τ · Inf(p) ≤ d · τ where the last inequality follows by
the assumed normalization. With this bound, the invariance principle (Theorem 2.6)
tells us that Prx∈{−1,1}n [|p(x)| ≤ τ1/4] differs from PrG∼Nn [|p(G)| ≤ τ1/4] by at
most O(d · (dτ)1/(4d+1)) = O(d · τ1/(4d+1)). Applying the anti-concentration bound
of Carbery and Wright for polynomials in Gaussian random variables (Theorem 2.4),
we get:

Prx[|p(x)| ≤ τ1/4] ≤ PrG∼Nn [|p(G)| ≤ τ1/4] +O(dτ1/(4d+1))
≤ O(d · τ1/4d) +O(d · τ1/(4d+1))
= O(d · τ1/(4d+1)).

3.4.2. Bounding the probability of the second event. Next we consider
Prx[|2Dip(x)| ≥ τ1/4]. Note that 2Dip is a degree-(d− 1) polynomial whose l2 norm
is small:

‖2Dip‖2 = 2
√∑
S3i

p̂(S)2 = 2
√

Infi(p) ≤ 2
√
d · τ .

By (Theorem 2.3), we get that

Prx[|2Dip(x)| ≥ τ1/4] ≤ Prx[|2Dip(x)| ≥ τ−1/4/(2
√
d) · ‖2Dip‖]

≤ exp(−τ−1/(2d)/(2
√
d)2/d)

= exp(−Θ(1) · τ−1/(2d))� O(d · τ1/(4d+1)).

(In the second inequality, we were able to apply the concentration bound since, by
our assumptions on d and τ , we indeed have that τ−1/4/(2

√
d) > ed.)

Hence, we have shown that:

Infi(f) ≤ Prx∈{−1,1}n [|p(x)| ≤ |2Dip(x)|]
≤ Prx[|p(x)| ≤ τ1/4] + Prx[|2Dip(x)| ≥ τ1/4]
= O(d · τ1/(4d+1)).

Since this holds for all indices i ∈ [n], we have the following bound on the average
sensitivity of f = sign(p):

AS(f) ≤ O(d · n · τ1/(4d+1)).

3.5. The small critical index case. Let f = sign(p) be such that the τ -critical
index of p is some value k between 1 and K = 2d log n/τ . By definition, the sequence
of influences Infk+1(p), . . . , Infn(p) is τ -regular. We essentially reduce this case to the
regular case for a regularity parameter τ ′ somewhat larger than τ .

Consider a random restriction ρ of all the variables up to the critical index. We
will show the following:

Lemma 3.11. For a 1/2O(d) fraction of restrictions ρ, the sequence of influences

Infk+1(pρ), . . . , Infn(pρ) is τ ′-regular, where τ ′
def
= (3 log n)d · τ .

By our choice of τ = n−(4d+1)/(4d+2), we have that τ ′ = n−Θ(1), and so we may
apply Lemma 3.10 to these restrictions to conclude that the associated PTFs have
average sensitivity at most O(d · n · (τ ′)1/(4d+1)).

12



Proof. Since the sequence of influences Infk+1(p), . . . , Infn(p) is τ -regular, we have

Infi(p)∑n
j=k+1 Infj(p)

≤ τ

for all i ∈ [k + 1, n].
We want to prove that for a 1/2O(d) fraction of all 2k restrictions ρ to x1, . . . , xk

we have

Infi(pρ)∑n
j=k+1 Infj(pρ)

≤ τ ′

for all i ∈ [k + 1, n].
To do this we proceed as follows: Lemma 3.9 implies that, with very high prob-

ability over the random restrictions, we have Infi(pρ) ≤ (3 log n)d · Infi(p), for all
i ∈ [k + 1, n]. We need to show that for a 1/2O(d) fraction of all restrictions the de-
nominator of the fraction above is at least

∑n
j=k+1 Infj(p) (its expected value). The

lemma then follows by a union bound.
We consider the degree-2d polynomial A(ρ1, . . . , ρk) def=

∑n
j=k+1 Infj(pρ) in vari-

ables ρ1, . . . , ρk. The expected value of A is Eρ[A] =
∑n
j=k+1 Infj(p) = Â(∅). We

apply the Theorem 2.5 for B = A − Â(∅). We thus get Prρ[B > 0] > 1/2O(d). We
thus get Prρ[A > Eρ[A]] > 1/2O(d) and we are done.

3.6. The large critical index case. Finally we consider PTFs f = sign(p)
with τ -critical index greater than K = 2d log n/τ . Let ρ be a restriction of the first
K variables H = {1, . . . ,K}; we call these the “head” variables. We will show the
following:

Lemma 3.12. For a 1/2O(d) fraction of restrictions ρ, the function sign(pρ(x))
is a constant function.

Proof. By Lemma 3.5, the surviving variables xK+1, . . . , xn have very small total
influence in p:

n∑
i=K+1

Infi(p) =
n∑

i=K+1

∑
S3i

p̂(S)2 ≤ (1− τ)K · Inf(p) ≤ d/n2d, (3.4)

where we use the fact that Inf(f) ≤ d and our choice of K for the final inequality.
Therefore, if we let p′ be the truncation of p comprising only the monomials with all
variables in H,

p′(x1, . . . , xk) =
∑
S⊆H

p̂(S)xS ,

we know that almost all of the original Fourier weight of p is on the coefficients of p′:

1 ≥
∑
∅6=S⊆H

p̂(S)2 ≥ 1−
n∑

i=K+1

Infi(p) ≥ 1− d/n2d.

We now apply Theorem 2.5 to p′ and get:

Prx∈{−1,1}K [|p′(x)| ≥ 1/2O(d)] ≥ 1/2O(d).
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In words, for a 1/2O(d) fraction of all restrictions ρ to x1, . . . , xK , the value p′(ρ)
has magnitude at least 1/2O(d).

For any such restriction, if the function fρ(x) = sign(pρ(xK+1, . . . , xn)) is not a
constant function it must necessarily be the case that:∑

∅6=S⊆[K+1,...,n]

|p̂ρ(S)| ≥ 1/2O(d).

As noted in (3.4), each tail variable ` > K has very small influence in p:

Inf`(p) ≤
n∑

i=K+1

Infi(p) = d/n2d.

Applying Lemma 3.9, we get that for the overwhelming majority of the 1/2O(d)

fraction of restrictions mentioned above, the influence of ` in pρ is not much larger
than the influence of ` in p:

Inf`(pρ) ≤ (3 log n)d · Inf`(p) ≤ d · (3 log n)d/n2d. (3.5)

Using Cauchy-Schwarz, we have

∑
S3`,S⊆[K+1,n]

|p̂ρ(S)| ≤ nd/2 ·
√ ∑
S3`,S⊆[K+1,n]

p̂ρ(S)2

= nd/2
√

Inf`(pρ)

≤ n−Ω(1)

where we have used (3.5) (and our upper bound on d). From this we easily get that

∑
∅6=S⊆[K+1,n]

|p̂ρ(S)| ≤ n−Ω(1) � 1/2O(d).

We have established that for a 1/2O(d) fraction of all restrictions to x1, . . . , xK ,
the function fρ = sign(pρ) is a constant function, and the lemma is proved.

3.7. Proof of Claim 3.2. If f is a degree-d PTF that is not τ -regular, then its
τ -critical index is either in the range [1, . . . ,K] or it is greater than K.

In the first case (small critical index case), as shown in Section 3.5, we have that
for a 1/2O(d) fraction of restrictions ρ to variables x1, . . . , xk, the total influence of
fρ = sign(pρ) is at most

O(d · n · (τ ′)1/(4d+1)) = O(d · (log n)1/4 · n1−1/(4d+2)),

so the conclusion of Claim 3.2 holds in this case.
In the second case (large critical index case), as shown in Section 3.6, for a 1/2O(d)

fraction of restrictions ρ to x1, . . . , xK the function fρ is constant and hence has zero
influence, so the conclusion of Claim 3.2 certainly holds in this case as well.
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4. A Fourier-Analytic Bound on Boolean Average Sensitivity. In this
section, we present a simple proof of the following upper bound on the average sensi-
tivity of a degree-d PTF (Theorem 1.2):

AS(n, d) ≤ 2n1−1/2d .

We recall here the definition of the formal derivative of a function f : {−1, 1}n →
R.

Dif(x) =
∑
S3i

f̂SxS−{i}.

It is easy to see that

Dif(x) =
1
2
xi[f(x)− f(x⊕i)] =

1
2

(
f(x)− f(x⊕i)

xi

)
(4.1)

where “x⊕i” means “x with the i-th bit flipped.”
For a Boolean function f , we have Dif(x) = ±1 iff flipping the ith bit flips f ;

otherwise Dif(x) = 0. So we have

Infi(f) = E[|Dif(x)|].

Lemma 4.1. Fix i 6= j ∈ [n]. Let f, g : {−1, 1}n → R be functions such that f is
independent of the ith bit xi and g is independent of the jth bit xj . Then

Ex[xixjf(x)g(x)] ≤ Infi(g) + Infj(f)
2

.

Proof. First, note that the influence of ith coordinate on a function f can be
written as:

Infi(f) = Ex−i [Varxi [f(x)]] = Ex

[(
|f(x⊕i)− f(x)|

2

)2
]

= Ex−i

[
|Exi [xif(x)]|2

]
(4.2)

As f is independent of xi and g is independent of xj , we can write,

Ex[xixjf(x)g(x)] = Ex−{i,j} Exi,xj [xixjf(x)g(x)]

= Ex−{i,j}

[
Exi [xig(x)] Exj [xjf(x)]

]
≤ Ex−{i,j}

[
1
2
|Exi [xig(x)]|2 +

1
2
|Exj [xjf(x)]|2

]
(using ab ≤ 1

2 (a2 + b2))

≤ Infj(f) + Infi(g)
2

(using Equation 4.2).

Theorem 1.2 is shown using an inductive argument over the degree d. Central to
this inductive argument is the following lemma relating the influences of a degree-d
PTF sign(p(x)) to the degree-(d − 1) PTFs obtained by taking formal derivatives of
p.
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Lemma 4.2. For a PTF f = sign(p(x)) on n variables and i ∈ [n], Infi(f) =
E[f(x)xisign(Dip(x))]. The following simple claim will be useful in the proof of the
above lemma.

Claim 4.3. For two real numbers a, b, if sign(a) 6= sign(b) then

sign(sign(a)− sign(b)) = sign(a− b)

Proof. If sign(a) = 1 and sign(b) = −1 (a ≥ 0, b < 0) then a − b ≥ 0. Hence in
this case, sign(a − b) = 1 = sign(1 − (−1)) = sign(sign(a) − sign(b)). On the other
hand, if sign(a) = −1 and sign(b) = 1, then sign(a − b) = −1 = sign((−1) − 1) =
sign(sign(a)− sign(b)).

Proof. [of Lemma 4.2] The influence of the ith coordinate is given by,

Infi(f) = E
[

1
2
|f(x)− f(x⊕i)|

]
= E

[
1
2
(
f(x)− f(x⊕i)

)
sign

(
f(x)− f(x⊕i)

)]
. (4.3)

Consider an x for which f(x) 6= f(x⊕i). In this case, we can use Claim 4.3 to conclude:

sign
(
f(x)− f(x⊕i)

)
= sign

(
p(x)− p(x⊕i)

)
= sign(2xiDip(x)) = xisign(Dip(x)) . (using (4.1))

Hence for an x with f(x) 6= f(x⊕i),(
f(x)− f(x⊕i)

)
sign

(
f(x)− f(x⊕i)

)
=
(
f(x)− f(x⊕i)

)
xisign(Dip(x)) .

On the other hand, if f(x) = f(x⊕i) then the above equation continues to hold since
both sides evaluate to 0. Substituting this equality into Equation 4.3 yields,

Infi(f) =
1
2

E [f(x)xisign(Dip(x))]− 1
2

E
[
f(x⊕i)xisign(Dip(x))

]
.

Notice that the ith coordinate (x⊕i)i of x⊕i is given by −xi. Since Dip is independent
of the ith coordinate xi, we have Dip(x) = Dip(x⊕i). Rewriting the above equation,
we get

Infi(f) =
1
2

E [f(x)xisign(Dip(x))] +
1
2

E
[
f(x⊕i)(x⊕i)isign(Dip(x⊕i))

]
= E [f(x)xisign(Dip(x))] ((x⊕i) is also uniformly distributed).

Theorem 4.4. Let AS(n, d) denote the max possible average sensitivity of any
degree-d PTF on n variables. Then we have

AS(n, d) ≤
√
n+ n ·AS(n, d− 1).
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Proof.

Inf(f) =
∑
i

Infi(f)

=
∑
i

E [f(x)xisign(Dip(x))] (by Lemma 4.2)

= E

[
f(x)

∑
i

xisign(Dip(x))

]

≤
√

E[f(x)2] ·

√√√√E

[
(
∑
i

xisign(Dip(x)))2

]
(4.4)

= 1 ·

√√√√√E

∑
i,j

xixjsign(Dip(x))sign(Djp(x))

 (4.5)

≤

√√√√E

[∑
i

x2
i sign(Dip(x))2

]
+
∑
i6=j

Infi (sign(Djp(x))) (4.6)

=
√
n+

∑
i6=j

Infi (sign(Djp(x))). (4.7)

Here (4.4) is the Cauchy-Schwarz inequality, (4.5) is expanding the square. Step (4.6)
uses Lemma 4.1 which we may apply since Dip(x) does not depend on xi.

Observe that for any fixed j′, we have Dj′p(x) is a degree-(d− 1) polynomial and
sign(Dj′p(x)) is a degree-(d− 1) PTF. Hence, by definition,∑

i 6=j′
Inf(sign(Dj′p(x))) ≤ AS(n, d− 1) ,

for all j′ ∈ [n]. Therefore the quantity
∑
i 6=j Inf(sign(Djp(x))) ≤ n · AS(n, d − 1),

finishing the proof.
The bound on average sensitivity (Theorem 1.2) follows immediately from the

above recursive relation.
Proof. [of Theorem 1.2] Clearly, we have AS(n, 0) = 0. For d = 1, Theorem 4.4

yields AS(n, 1) ≤
√
n. Now suppose AS(n, d) = 2n1−1/2d for d ≥ 1, then by Theo-

rem 4.4,

AS(n, d+ 1) ≤
√
n+ n ·AS(n, d) ≤

√
4n2−1/2d = 2n1−1/2d+1

,

finishing the proof.

5. Boolean average sensitivity vs noise sensitivity. Our results on Boolean
noise sensitivity are obtained via the following simple reduction which translates any
upper bound on average sensitivity for degree-d PTFs over Boolean variables into a
corresponding upper bound on noise sensitivity. This theorem is inspired by the proof
of noise sensitivity of halfspaces by Peres [Per04].

Theorem 5.1. Let NS(ε, d) denote the maximum noise sensitivity of a degree
d-PTF at a noise rate of ε. For all 0 < ε < 1/2, if m = b 1

ε c then,

NS(ε, d) ≤ 1
m

AS(m, d) .
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Theorem 1.3 follows immediately from this reduction along with our bounds on
Boolean average sensitivity (Theorems 1.1 and 1.2), so it remains for us to prove
Theorem 5.1.

5.1. Proof of Theorem 5.1. Let f(x) = sign(p(x)) be a degee d-PTF. Let us
denote δ = 1

m≤
1
2 . We remind the reader that, for any f : {−1, 1}n → {−1, 1}, the

noise sensitivity NSγ(f) is a non-decreasing function of γ in the range [0, 1/2]. (This
fact follows immediately from the Fourier expression (1.1).) As 1/2 ≥ δ ≥ ε, it follows
that NSε(f) ≤ NSδ(f). In the following, we will show that NSδ(f) ≤ 1

mAS(m, d)
which implies the intended result. Recall that NSδ(f) is defined as

NSδ(f) = Prx∼δy [f(x) 6= f(y)] ,

where x ∼δ y denotes that y is generated by flipping each bit of x independently with
probability δ. An alternate way to generate y from x is as follows:

– Sample r ∈ {1, . . . ,m} uniformly at random.
– Partition the bits of x into m = 1

δ sets S1, S2, . . . , Sm by independently as-
signing each bit to a uniformly random set. Formally, a partition α is specified
by a function α : {1, . . . , n} → {1, . . . ,m} mapping bit locations to their par-
tition numbers, i.e., i ∈ Sα(i). A uniformly random partition is picked by
sampling α(i) for each i ∈ {1, . . . , n} uniformly at random from {1, . . . ,m}.

– Flip the bits of x contained in the set Sr to obtain y.
Each bit of x belongs to the set Sr independently with probability 1

m = δ. Therefore,
the vector y generated by the above procedure can equivalently be generated by
flipping each bit of x with probability δ.

Inspired by the above procedure, we now define an alternate equivalent procedure
to generate the pair x ∼δ y.

– Sample a ∈ {−1, 1}n uniformly at random.
– Sample a uniformly random partition α : {1, . . . , n} → {1, . . . ,m} of the bits

of a.
– Sample z ∈ {−1, 1}m uniformly at random.
– Sample r ∈ {1, . . . ,m} uniformly at random. Let z̃ = z⊕r and

xi = aizα(i), yi = aiz̃α(i).

Notice that x is uniformly distributed in {−1, 1}n, since both a and z are uniformly
distributed in {−1, 1}n and {−1, 1}m respectively. Furthermore, z̃i = zi for all i 6= r
and z̃r = −zr. Therefore, y is obtained by flipping the bits of x in the coordinates
belonging to the rth partition. As the partition α is generated uniformly at random,
this amounts to flipping each bit of x with probability exactly 1

m = δ.
The noise sensitivity of f can be rewritten as

NSδ(f) = Pra,α,z,r [f(x) 6= f(y)] .

For a fixed choice of a and α, f(x) is a function of z. In this light, let us define the
function fa,α : {−1, 1}m → {−1, 1} for each a, α as fa,α(z) = f(x). Returning to the
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expression for noise sensitivity we get:

NSδ(f) = Pra,α,z,r [fa,α(z) 6= fa,α(z̃)]

= Ea,α,z,r

[
1[fa,α(z) 6= fa,α(z⊕r)]

]
= Ea,α,z

[
1
m

m∑
r=1

1
[
fa,α(z) 6= fa,α(z⊕r)

]]

= Ea,α

[
1
m

m∑
r=1

Ez

[
1
[
fa,α(z) 6= fa,α(z⊕r)

]]]
.

In the above calculation, the notation 1[E] refers to the indicator function of the event
E. Recall that, by definition of influences,

Infr(fa,α) = Ez

[
1
[
fa,α(z) 6= fa,α(z⊕r)

]]
,

for all r. Thus, we can rewrite the noise sensitivity of f as

NSδ(f) = Ea,α

[
1
m

m∑
r=1

Infr(fa,α)

]
=

1
m

Ea,α [Inf(fa,α)] . (5.1)

We claim that fa,α is a degree d-PTF in m variables. To see this observe that

fa,α(z) = sign(p(x1, . . . , xn)) = sign
(
p(a1zα(1), . . . , anzα(n))

)
,

which for a fixed choice of a, α is a degree d-PTF in z. Consequently, by definition of
AS(m, d) we have Inf(fa,α) ≤ AS(m, d) for all a and α. Using this in (5.1), the result
follows.

6. Application to Agnostic Learning. In this section, we outline the appli-
cation of the noise sensitivity bound presented in this work to agnostic learning of
PTFs. Specifically, we will present the proof of Theorem 1.4. To begin with, we recall
the main theorem of [KKMS08] about the L1 polynomial regression algorithm:

Theorem 6.1. Let D be a distribution over X × {−1, 1} (where X ⊆ Rn)
which has marginal DX over X. Let C be a class of Boolean-valued functions over
X such that for every f ∈ C, there is a degree-d polynomial p(x1, . . . , xn) such that
Ex∼DX [(p(x)−f(x))2] ≤ ε2. Then given independent draws from D, the L1 polynomial
regression algorithm with parameters δ and ε runs in time poly(nd, 1/ε, log(1/δ)) and
with probability 1− δ outputs a hypothesis h : X×{−1, 1} such that Pr(x,y)∼D[h(x) 6=
y] ≤ opt + ε, where opt = minf∈C Pr(x,y)∼D[f(x) 6= y].

We first consider the case where DX is the uniform distribution over the n-
dimensional Boolean hypercube {−1, 1}n. Klivans et al. [KOS04] observed that
Boolean noise sensitivity bounds are easily shown to imply the existence of low-degree
polynomial approximators in the L2 norm under the uniform distribution on {−1, 1}n:

Fact 6.2. For any Boolean function f : {−1, 1}n → {−1, 1} and any value
0 ≤ γ < 1/2, there is a polynomial p(x) of degree at most d = 1/γ such that E[(p(x)−
f(x))2] ≤ 2

1−e−2 NSγ(f).
Theorem 1.4 follows directly from Theorem 6.1, Fact 6.2 and Theorem 1.3.

7. Discussion. An obvious question left open by this work is to actually resolve
the Gotsman–Linial conjecture and show that every degree-d PTF over {−1, 1}n has
average sensitivity at most O(d

√
n). [GS10] show that this would have interesting
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implications in computational learning theory beyond the obvious strengthenings of
the agnostic learning results presented in this paper. Currently, it seems that our
techniques cannot avoid the n1−Ω(1/d) dependency due to the inherent loss in the
invariance principle (Theorem 2.6).

In this section we point out (Proposition 7.1) that the Gotsman-Linial conjecture
is in fact equivalent to a strong upper bound on the Boolean noise sensitivity of degree-
d PTFs. We further point out (Proposition 7.2) that Gaussian noise sensitivity of
degree-d PTFs is upper bounded by Boolean noise sensitivity. Thus, improved upper
bounds for the Gaussian noise sensitivity of degree-d PTFs is a necessary step to
settling the Gotsman-Linial conjecture.

Proposition 7.1. The following two statements are equivalent:
1. Every degree-d PTF over {−1, 1}n has AS(f) ≤ O(d

√
n).

2. Every degree-d PTF over {−1, 1}n has NSε(f) ≤ O(d
√
ε) for all ε.

Proof.
1) ⇒ 2): This follows immediately from Theorem 5.1.

2) ⇒ 1): Let f = sign(p) be a degree-d PTF. We have

NS1/n(f) = Prx,y[f(x) 6= f(y)]

=
n∑
k=0

Prx,y[f(x) 6= f(y) | y flips k of x’s bits] ·Prx,y[y flips k of x’s bits]

≥ Prx,y[f(x) 6= f(y) | y flips 1 of x’s bits] ·Prx,y[y flips 1 of x’s bits]
≥ (1/n)AS(f) ·Θ(1),

where the last inequality holds because at noise rate 1/n, there is constant probability
that y flips exactly 1 of x’s bits, and conditioned on this taking place, the probability
that f(x) 6= f(y) is exactly AS(f)/n. Taking ε = 1/n in 2) and rearranging, we get
1).

Proposition 7.2. Let NS(ε, d) and GNS(ε, d) denote the maximum noise sensi-
tivity of a degree d PTF in the Boolean and Gaussian domains respectively. For all ε
and d, we have

NS(ε, d) ≥ GNS(ε, d).

Proof. Consider a degree-d PTF f = sign(p(x)) in the Gaussian setting. We will
define a sequence of degree-d PTFs {hk}∞k=1 over the Boolean domain. The function
hk : {−1, 1}nk → {−1, 1} is on nk input bits {y(j)

i |i ∈ [n], j ∈ [k]} and is given by,

hk(y(1)
1 , y

(2)
1 , . . . , y(k)

n ) def= sign

(
p

(∑
j∈[k] y

(j)
1√

k
,

∑
j∈[k] y

(j)
2√

k
, . . . ,

∑
j∈[k] y

(j)
n

√
k

))
.

By the Central Limit Theorem, the normalized sum
P
j∈[k] y

(j)
i√

k
of k independent

random values from {−1, 1}, tends to in distribution to the normal distributionN (0, 1)
as k → ∞. Intuitively, this implies that as k → ∞, among other things the Boolean
noise sensitivity of hk approaches the noise sensitivity of f . However, since hk is a
Boolean PTF its noise sensitivity is bounded by NS(ε, d).
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We now present the details of the above argument. Consider the random variables
y = (y1, . . . , yn), ỹ = (ỹ1, . . . , ỹn) ∈ {−1, 1}n generated by setting each yi to an
uniform random value in {−1, 1} and ỹi as

ỹi =

{
yi with probability 1− ε
uniform value in {−1, 1} with probability ε.

It is clear that E[yiỹi] = 1− ε for all i ∈ [n] and all other pairwise correlations are 0.
Let {(y(1), ỹ(1)), . . . , (y(k), ỹ(k))} be k independent samples of (y, ỹ). By definition of
Boolean noise sensitivity,

NSε(hk) = Pr[hk(y) 6= hk(ỹ)]

= Pr

[
p

(∑
j∈[k] y

(j)

√
k

)
· p

(∑
j∈[k] ỹ

(j)

√
k

)
≤ 0

]
.

Let x ∼ Nn, z ∼ Nn be independent and let x̃ = αx + βz, with α = 1 − ε and
β =

√
2ε− ε2. By the Multidimensional Central Limit Theorem [Fel68], as k → ∞

we have the following convergence in distribution,(∑
j∈[k] y

(j)

√
k

,

∑
j∈[k] ỹ

(j)

√
k

)
D−→ (x, x̃).

Since the function a(x, x̃) = p(x) · p(x̃) is a continous function we get

lim
k→∞

NSε(hk) = lim
k→∞

Pr

[
p

(∑
j∈[k] y

(j)

√
k

)
· p

(∑
j∈[k] ỹ

(j)

√
k

)
≤ 0

]
= Prx,x̃[p(x)p(x̃) ≤ 0]
= GNSε(f)

and the result is proved.
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