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Abstract

We study the structure and learnability of sums of independent integer random variables
(SIIRVs). For k ∈ Z+, a k-SIIRV of order n ∈ Z+ is the probability distribution of the sum of
n mutually independent random variables each supported on {0, 1, . . . , k − 1}. We denote by
Sn,k the set of all k-SIIRVs of order n.

How many samples are required to learn an arbitrary distribution in Sn,k? In this paper,
we tightly characterize the sample and computational complexity of this problem. More pre-
cisely, we design a computationally efficient algorithm that uses Õ(k/ε2) samples, and learns
an arbitrary k-SIIRV within error ε, in total variation distance. Moreover, we show that the
optimal sample complexity of this learning problem is Θ((k/ε2)

√
log(1/ε)), i.e., we prove an

upper bound and a matching information-theoretic lower bound. Our algorithm proceeds by
learning the Fourier transform of the target k-SIIRV in its effective support. Its correctness
relies on the approximate sparsity of the Fourier transform of k-SIIRVs – a structural property
that we establish, roughly stating that the Fourier transform of k-SIIRVs has small magnitude
outside a small set.

Along the way we prove several new structural results about k-SIIRVs. As one of our main
structural contributions, we give an efficient algorithm to construct a sparse proper ε-cover for
Sn,k, in total variation distance. We also obtain a novel geometric characterization of the space
of k-SIIRVs. Our characterization allows us to prove a tight lower bound on the size of ε-covers
for Sn,k – establishing that our cover upper bound is optimal – and is the key ingredient in our
tight sample complexity lower bound.

Our approach of exploiting the sparsity of the Fourier transform in distribution learning is
general, and has recently found additional applications. In a subsequent work [DKS15a], we use
a generalization of this idea (in higher dimensions) to obtain the first efficient learning algorithm
for Poisson multinomial distributions. In [DKS15b], we build on this approach to obtain the
fastest known proper learning algorithm for Poisson binomial distributions (2-SIIRVs).
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1 Introduction

1.1 Motivation and Background We study sums of independent integer random variables:

Definition. For k ∈ Z+, a k-IRV is any random variable supported on {0, 1, . . . , k−1}. A k-SIIRV
of order n is any random variable X =

∑n
i=1Xi where the Xi’s are independent k-IRVs. We will

denote by Sn,k the set of probability distributions of all k-SIIRVs of order n.

For convenience, throughout this paper, we will often blur the distinction between a random
variable and its distribution. In particular, we will use the term k-SIIRV for the random variable
or its corresponding distribution, and the distinction will be clear from the context.

Sums of independent integer random variables (SIIRVs) comprise a rich class of distributions
that arise in many settings. The special case of k = 2, Sn,2, was first considered by Poisson [Poi37] as
a non-trivial extension of the Binomial distribution, and is known as Poisson binomial distribution
(PBD). In application domains, SIIRVs have many uses in research areas such as survey sampling,
case-control studies, and survival analysis, see e.g., [CL97] for a survey of the many practical uses
of these distributions. We remark that these distributions are of fundamental interest and have
been extensively studied in probability and statistics. For example, tail bounds on SIIRVs form an
important special case of Chernoff/Hoeffding bounds [Che52, Hoe63, DP09b]. Moreover, there is
a long line of research on approximate limit theorems for SIIRVs, dating back several decades (see
e.g., [Pre83, Kru86, BHJ92]), and [CL10, CGS11] for some recent results.

Structure and Learning of k-SIIRVs. The main motivation of this work was the problem of
learning an unknown k-SIIRV given access to independent samples. Understanding this problem
is intimately related to obtaining a refined structural understanding of the space of k-SIIRVs. The
connection between structure and distribution learning is the main thrust of this paper.

Distribution learning or density estimation is the following task [DG85, KMR+94, DL01]: Given
independent samples from an unknown distribution P in a family D, and an error tolerance ε > 0,
output a hypothesis H such that with high probability the total variation distance dTV (H,P) is at
most ε. The sample and computational complexity of this unsupervised learning problem depends
on the structure of the underlying family D. The main goals here are: (i) to characterize the sample
complexity of the learning problem, i.e., to obtain matching information-theoretic upper and lower
bounds, and (ii) to design a computationally efficient learning algorithm – i.e., an algorithm whose
running time is polynomial in the sample (input) size – that uses an information-theoretically
optimal sample size.

While density estimation has been studied for several decades, the number of samples required
to learn is not yet well understood, even for surprisingly simple and natural classes of univariate
discrete distributions. More specifically, there is no known complexity measure of a distribution
family D that characterizes the sample complexity of learning an unknown distribution from D.
In contrast, the VC dimension of a concept class plays such a role in the PAC model of learning
Boolean functions (see, e.g, [BEHW89, KV94]).

We remark that the classical information-theoretic quantity of the metric entropy [vdVW96,
DL01, Tsy08], i.e., the logarithm of the size of the smallest ε-cover1 of the distribution class, provides
an upper bound on the sample complexity of learning. Alas, this upper bound is suboptimal in
general – both quantitatively and qualitatively – and in particular for the class of k-SIIRVs, as we
show in this paper.

1Formally, a subset Dε ⊆ D in a metric space (D, d) is said to be an ε-cover of D with respect to the metric
d : X 2 → R+, if for every x ∈ D there exists some y ∈ Dε such that d(x,y) ≤ ε. In this paper, we focus on the total
variation distance between distributions.
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Obtaining a computationally efficient learning algorithm with optimal (or near-optimal) sample
complexity is an important goal. In many learning settings, achieving this goal turns out to be
quite challenging. More specifically, in many scenarios, both supervised and unsupervised, the
only computationally efficient learning algorithms known use a (provably) suboptimal sample size.
Intuitively, increasing the sample size (e.g., by a polynomial factor) can make the algorithmic task
substantially easier. Characterizing the tradeoff between sample complexity and computational
complexity is of fundamental importance in learning theory. In this work, we essentially characterize
this tradeoff for the unsupervised problem of learning SIIRVs.

1.2 Our Results The main technical contribution of this paper is the use of Fourier analytic
and geometric tools to obtain a refined structural understanding of the space of k-SIIRVs. As a
byproduct of our techniques, we characterize the sample complexity of learning k-SIIRVs (up to
constant factors), and moreover we obtain a computationally efficient learning algorithm with near-
optimal sample complexity. Our results answer the main open questions of [DDS12b, DDO+13].

Along the way we prove several new structural results of independent interest about k-SIIRVs,
including: the approximate sparsity of their Fourier transform; tight upper and lower bounds on ε-
covers (in total variation distance and Kolmogorov distance); and a novel geometric characterization
of the space of k-SIIRVs, that is crucial for our sample complexity lower bound. Below, we state
our results in detail and elaborate on their context and the connections between them.

Learning SIIRVs via the Fourier Transform. As our first result, we give a sample near-
optimal and computationally efficient learning algorithm for k-SIIRVs:

Theorem 1.1 (Nearly Optimal Learning of k-SIIRVs). There is a learning algorithm for k-SIIRVs
with the following performance guarantee: Let P be any k-SIIRV of order n. The algorithm uses
Õ(k/ε2) samples from P, runs in time2 Õ(k3/ε2), and with probability at least 2/3 outputs a (suc-
cinct description of a) hypothesis H such that dTV (H,P) ≤ ε.

Our algorithm outputs a succinct description of the hypothesis H, via its Discrete Fourier
Transform (DFT) Ĥ, which is supported on a set of small cardinality. The DFT immediately gives
a fast evaluation oracle for H. We also show how to use the DFT, in a black-box manner, to obtain
an efficient approximate sampler for the target distribution P. Our efficient learning algorithm is
described in Section 2.1. In Section 2.3 we give the efficient construction of our sampler.

We remark that the sample complexity of our algorithm is optimal up to logarithmic factors.
Indeed, even learning a single k-IRV to variation distance ε requires Ω(k/ε2) samples. For the
case of k = 2, [DDS12b] gave a learning algorithm that uses Õ(1/ε2) samples, but runs in quasi-
polynomial time, namely (1/ε)polylog(1/ε). More recently, [DDO+13] studied the case of general k,
and gave an algorithm that uses poly(k/ε) samples and time. Notably, the degree of this polynomial
is quite high: the sample complexity of the [DDO+13] algorithm is Ω(k9/ε6). Theorem 1.1 gives a
nearly-tight upper bound on the sample complexity of this learning problem, and does so with a
computationally efficient algorithm.

Given our Õ(k/ε2) sample upper bound, it would be tempting to conjecture that Θ(k/ε2) is in
fact the optimal sample complexity of learning k-SIIRVs. If true, this would imply that learning a
k-SIIRV is as easy as learning a k-IRV. Surprisingly, we show that this is not the case:

2We work in the standard “word RAM” model in which basic arithmetic operations on O(logn)-bit integers are
assumed to take constant time.
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Theorem 1.2 (Optimal Sample Complexity). For any k ∈ Z+, ε ≤ 1/poly(k), there is an algorithm
that learns k-SIIRVs within variation distance ε using O((k/ε2)

√
log(1/ε)) samples. Moreover, any

algorithm for this problem information-theoretically requires Ω((k/ε2)
√

log(1/ε)) samples.

Theorem 1.2 precisely characterizes the sample complexity of learning k-SIIRVs (up to constant
factors) by giving an upper bound and a matching information-theoretic sample lower bound.
The sharp sample complexity bound of Θ((k/ε2)

√
log(1/ε)) is surprising, and cannot be obtained

using standard information-theoretic tools (e.g., metric entropy). We elaborate on this issue in
Section 1.4.

We remark that the upper bound of Theorem 1.2 does not specify the running time of the corre-
sponding algorithm. This is because the simplest such algorithm actually runs in time exponential
in k. For the important special case of k = 2, we obtain a sample–optimal learning algorithm that
runs in sample–linear time:

Theorem 1.3 (Optimal Learning of PBDs (2-SIIRVs)). For any ε > 0, there is an algorithm that
learns PBDs within variation distance ε using O((1/ε2)

√
log(1/ε)) samples and running in time

O((1/ε2)
√

log(1/ε)).

The upper bound of Theorem 1.2 and Theorem 1.3 are established in Section 2.4. Our tight
sample complexity lower bound is proved in Section 5.

Using the Fourier Transform for Distribution Learning. Our learning upper bounds are
obtained via an approach which is novel in this context. Specifically, we show that the Fourier
transform of k-SIIRVs is approximately sparse, and exploit this property to learn the distribution
via learning its Fourier transform in its effective support. The sparsity of the Fourier transform
explains why this family of distributions is learnable with sample complexity independent of n, and
moreover it yields the sharp sample-complexity bound. The algorithmic idea of exploiting Fourier
sparsity for distribution learning is general (see Section 2.2), and was subsequently used by the
authors in other related settings [DKS15a, DKS15b].

Structure of k-SIIRVs. Our core structural result is the following simple property of the Fourier
transform of k-SIIRVs:

Any k-SIIRV with “large” variance has a Fourier transform with “small” effective support.

One can obtain different versions of the above informal statement depending on the setting and
the desired application. See Lemma 2.3 for a formal statement in the context of the DFT. The
Fourier sparsity of k-SIIRVs forms the basis for our upper bounds in this paper. As previously
mentioned, this structural property motivates and enables our learning algorithm. Moreover, it is
useful in order to obtain sparse ε-covers for Sn,k, the space of k-SIIRVs, under the total variation
distance.

More specifically, using the approximate sparsity of the Fourier transform of SIIRVs combined
with analytic arguments, we obtain a computationally efficient algorithm to construct a proper
ε-cover for Sn,k, of near-minimum size. In particular, we show:

Theorem 1.4 (Optimal Covers for k-SIIRVs). For ε ≤ 1/k, there exists a proper ε-cover Sn,k,ε ⊆
Sn,k of Sn,k under the total variation distance of size |Sn,k,ε| ≤ n · (1/ε)O(k log(1/ε)) that can be
constructed in polynomial time.
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The best previous upper bound on the cover size of 2-SIIRVs is n2 +n · (1/ε)O(log2(1/ε)) [DP09a,
DP14]. For k > 2, [DDO+13] gives a non-proper cover of size n · 2poly(k/ε).

Our proper cover upper bound construction provides a smaller search space for essentially any
optimization problem over k-SIIRVs. Specifically, Theorem 1.4 has the following implication in
computational game theory: Via a connection established in [DP07, DP09a], the proper cover
construction of Theorem 1.4 (for k = 2) yields an improved poly(n) · (1/ε)O(log(1/ε)) time algorithm
for computing ε-Nash equilibria in anonymous games with 2 strategies per player. Our matching
lower bound on the cover size implies that the “cover-based approach” cannot lead to an FPTAS
for this problem. We note that computing an (exact) Nash equilibrium in an anonymous game with
a constant number of strategies was recently shown to be intractable [CDO15]. Our cover upper
bound is proved in Section 3.

We also prove a matching lower bound on the cover size, showing that our above construction
is essentially optimal:

Theorem 1.5 (Cover Size Lower Bound for k-SIIRVs). For ε ≤ 1/poly(k), and n = Ω(log(1/ε)),
any ε-cover for Sn,k has size at least n · (1/ε)Ω(k log(1/ε)).

Before our work, no non-trivial lower bound on the cover size was known. We view the inherent
quasi-polynomial dependence on 1/ε of the cover size established here as a rather surprising fact.
Our cover size lower bound proof relies on a new geometric characterization of the space of k-SIIRVs
that we believe is of independent interest, and may find other applications. Our tight lower bound
on the sample complexity of learning k-SIIRVs relies critically on this characterization. Our cover
size lower bound is proved in Section 4.

1.3 Preliminaries We record a few definitions that will be used throughout this paper.

Distributions and Metrics. For m ∈ Z+, we denote [m]
def
= {0, 1, . . . ,m}. A function P : A→

R, over a finite set A, is called a distribution if P(a) ≥ 0 for all a ∈ A, and
∑

a∈A P(a) = 1. The
function P is called a pseudo-distribution if

∑
a∈A P(a) = 1. For a pseudo-distribution P over [m],

m ∈ Z+, we write P(i) to denote the value PrX∼P[X = i] of the probability density function (pdf)
at point i, and P(≤ i) to denote the value PrX∼P[X ≤ i] of the cumulative density function (cdf)
at point i. For S ⊆ [n], we write P(S) to denote

∑
i∈S P(i).

The total variation distance between two (pseudo-)distributions P and Q supported on a finite

set A is dTV (P,Q)
def
= maxS⊆A |P(S)−Q(S)| = (1/2) ·‖P−Q‖1. Similarly, if X and Y are random

variables, their total variation distance dTV (X,Y ) is defined as the total variation distance between
their distributions. Another useful notion of distance between distributions/random variables is the

Kolmogorov distance, defined as dK (P,Q)
def
= supx∈R |P(≤ x)−Q(≤ x)| . Note that for any pair of

distributions P and Q supported on a finite subset of R we have that dK (P,Q) ≤ dTV (P,Q) .

Distribution Learning. Since we are interested in the computational complexity of distribution
learning, our algorithms will need to use a succinct description of their hypotheses. A simple
succinct representation of a discrete distribution is via an evaluation oracle for the probability
mass function. For ε > 0, an ε-evaluation oracle for a distribution P over [m] is a polynomial
size circuit C with O(logm) input bits such that for each input z, the output of the circuit C(z)
equals the binary representation of the probability P′(z), for some pseudo-distribution P′ which
has dTV (P′,P) ≤ ε. Another general way to succinctly specify a distribution is to give the code
of an efficient algorithm that takes “pure” randomness and transforms it into a sample from the
distribution. This is the standard notion of a sampler. An ε-sampler for P is a circuit C with
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O(logm+ log(1/ε)) input bits z and O(logm) output bits y which is such that when z ∼ Um, then
y ∼ P′, for some distribution P′ which has dTV (P′,P) ≤ ε.

We emphasize that our learning algorithms output both an ε-sampler and an ε-evaluation oracle
for the target distribution.

Covers. Let F be a family of probability distributions. Given δ > 0, a subset G ⊆ F is said to be
a proper δ-cover of F with respect to the metric d(·, ·) if for every distribution P ∈ F there exists
some Q ∈ G such that d(P,Q) ≤ δ. If G is not a subset of F , then the cover is called non-proper.
The δ-covering number for (F , d) is the minimum cardinality of a δ-cover. The δ-packing number
for (F , d) is the maximum number of points (distributions) in F at pairwise distance at least δ
from each other.

1.4 Our Approach and Techniques The unifying idea of this work is an analysis of the
structure of the Fourier Transform (FT) of k-SIIRVs. The FT is a natural tool to consider in this
context. Recall that the FT of a sum of independent random variables is the product of the FT’s
of the individual variables. Moreover, if two random variables have similar FT’s, they also have
similar distributions. These two basic facts are the starting point of our analysis. We now provide
an overview of the ideas underlying our results, and give a comparison to previous techniques.

Discussion & Previous Approaches for Learning SIIRVs. LetD be a family of distributions
over a domain of size N. How many samples are required to learn an arbitrary P ∈ D within
variation distance ε? Without any restrictions on D, it is a folklore fact that the sample complexity
learning is Θ(N/ε2). The optimal learning algorithm in this case is the obvious one: output the
empirical distribution. By exploiting the structure of the family D, one may obtain better results.

A very natural type of structure to consider is some sort of “shape constraint” on the probability
density function, such as log-concavity or unimodality. There is a long line of work in statistics on
this topic (see, e.g., the books [BBBB72, GJ14]), and more recently in TCS [DDS12a, CDSS14a,
CDSS14b, ADLS15]. Alas, it turns out that k-SIIRVs do not satisfy any of the shape constraints
considered in the literature (see [DDO+13] for a discussion).

A different type of structure, based on the notion of metric entropy [Yat85, Bir86, DL01], yields
the following implication: If a distribution class D has an ε/2-cover of size M, then it is learnable
with O(logM/ε2) samples.3 In a celebrated paper in information theory [YB99], Yang and Barron
show that, for broad families of (continuous) distributions, the metric entropy characterizes the
sample complexity of learning. For k-SIIRVs, however, this is not the case: Via Theorem 1.4, the
metric entropy method implies a sample upper bound of O((1/ε2) · log n+ (k/ε2) · log2(1/ε)). Note
that, since our cover size upper bound is tight, this sample bound is the limit of the metric entropy
method for k-SIIRVs. Thus, this method gives a suboptimal sample upper bound for our learning
problem, both qualitatively (dependence on n), and quantitatively (dependence on ε).

Previous work on learning k-SIIRVs [DDS12b, DDO+13] relies on a certain “regularity” lemma
about the structure of these distributions: Any k-SIIRV is either ε-close in total variation distance
to being L = Θ(k9/ε4)- “sparse”, i.e., it is supported on a set of at most L consecutive integers, or
ε-close to being “Gaussian like”. In the former case, the distribution can be learned using O(L/ε2)
samples, and in the latter case one can exploit the Gaussian structure to learn with a small number
of samples as well. Unfortunately, the sparse case is a bottleneck for this approach, as any algorithm
to learn a istribution over support L requires Ω(L/ε2) samples. Hence, one needs to exploit the
structure of k-SIIRVs beyond the aforementioned.

3We remark that the running time of this method is Ω(M/ε2), which is not necessarily polynomial in the sample
size.
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Our Learning Approach. In this paper, we depart from the aforementioned approaches. We
identify a simple condition – the approximate sparsity of the Fourier transform – as the “right”
property that determines the sample complexity of our learning problem. The Fourier sparsity
explains why the sample complexity of learning k-SIIRVs is independent of n, and allows us to
obtain the sharp sample bound as a function of both k and ε. We show that this is a more general
phenomenon (see Theorem 2.5 in Section 2.2): any univariate distribution that has an s-sparse
Fourier transform, in a certain well-defined technical sense, is learnable with Õ(s/ε2) samples.

Our computationally efficient learning algorithm proceeds as follows: It starts by drawing an
initial set of samples to determine the effective support of the target distribution and its Fourier
transform. This is achieved by estimating the mean and variance of our SIIRV. We remark that,
for computational purposes, our algorithm uses the Discrete Fourier Transform (DFT). For the
appropriate definition of the DFT, we show (Lemma 2.3) there exists an explicit set S of cardinality
|S| = O(k2 log(k/ε)) that contains all the “heavy” Fourier coefficients4. Our algorithm then draws
an additional set of samples to estimate the DFT of the target distribution at the points of the
effective support S, and sets the DFT to 0 everywhere else. By exploiting the sparsity in the
Fourier domain, we show that the inverse of the empirical DFT achieves total variation distance
ε/2 after Õ(k/ε2) samples. Note that an explicit description of an accurate hypothesis for our
learning problem can have an effective support of size Ω(k

√
n). While we can easily obtain such a

description (by explicitly computing the inverse DFT), this would not lead to a computationally
efficient algorithm. We instead output a succinct description of our hypothesis (in time that is
independent of n). In particular, our algorithm outputs the empirical DFT at the points of its
effective support. Our learning algorithm is given in Section 2.1.

We emphasize that the implicit description of the hypothesis H, via its DFT Ĥ, is sufficient to
obtain both an approximate evaluation oracle and an approximate sampler for the target k-SIIRV
P. Obtaining an approximate evaluation oracle is straightforward: Since Ĥ is supported on the set
S, we can compute H(i) in time O(|S|). To obtain an efficient sampler, we proceed in two steps:
We first show how to efficiently compute the CDF of H, using oracle access to the the DFT Ĥ. To
do this, we express the value of the CDF at any point via a closed form expression involving the
values of Ĥ. Given oracle access to the CDF, we use a simple binary search procedure to sample
from a distribution Q satisfying dTV (Q,H) ≤ ε/2. Our sampler is given in Section 2.3.

Finally, we note that our above-described Fourier-learning algorithm achieves a near-optimal
sample complexity (up to logarithmic factors). The basic idea to obtain the optimal sample com-
plexity is to smoothly mollify the DFT instead of truncating it. This removes some artifacts caused
by a sharp truncation and yields a hypothesis whose error from the true distribution decays rapidly
as we move away from the mean. Our sample-optimal upper bound is established in Section 2.4.

Cover Upper Bound. We start by commenting on previous approaches for proving cover upper
bounds in this context. The main technique for the 2-SIIRV cover upper bound of [DP09a] is the
following lemma (that is deduced in [DP09a] using a result from [Roo00]): If two 2-SIIRVs agree on
their first Ω(log(1/ε)) moments, then their total variation distance is at most ε. First, we show that
this moment-matching lemma is quantitatively tight: we give an example of two 2-SIIRVs over k+1
variables that agree on the first k moments and have variation distance 2−Ω(k) (Proposition B.1).

We emphasize however that such a moment-matching technique cannot be generalized to k-
SIIRVs, even for k = 3. Intuitively, this is because knowledge about moments fails to account for
potential periodic structure of the probability mass function that comes into play for k > 2. For

4We moreover show that there exists a set of cardinality O(k log(k/ε)) that contains all the “heavy” Fourier
coefficients, alas this smaller set is not explicitly known a priori.

6



example, Ω(n) moments do not suffice to distinguish between the cases that a 3-SIIRV of order n is
supported on the even versus the odd integers. More specifically, in Proposition B.2 (Appendix B),
we give an explicit example of two 3-SIIRVs of order n/2 that agree exactly on the first n − 1
moments and have disjoint supports.

In conclusion, moment-based approaches fail to detect periodic structure. On the other hand,
this type of structure is easily detectable by considering the Fourier transform. Our cover upper
bound hinges on showing that the Fourier transform of a k-SIIRV is necessarily of low complexity,
i.e., it can be succinctly described up to small error. In particular, since the Fourier transform
is smooth, we show (Lemma 3.6), roughly, that its logarithm can be well approximated by a low
degree Taylor polynomial on intervals of length O(1/k). (Our actual statement is somewhat more
complicated as it needs to account for roots of the Fourier transform close to the unit circle.)
Therefore, providing approximations to the low-degree Taylor coefficients of the logarithm of the
Fourier transform provides a concise approximate description of the distribution.

Cover Lower Bound & Sample Lower Bound. Our lower bounds take a geometric view of
the problem. At a high-level, we consider the function that maps the set of n(k − 1) parameters
defining a k-SIIRV to the corresponding probability mass function. We show that there exists
a region of the space of distributions where this function is locally invertible. For k = 2, we in
fact show that the distribution of any 2-SIIRV with distinct parameters lies in the interior of this
region. This structural understanding allows us to use certain appropriately defined expectations to
extract the effect of individual parameters on the distribution. In addition, for n = Θ(log(1/ε)), we
show that near a particular k-SIIRV not only is the map from parameters to distribution locally a
bijection, but that this map is actually surjective onto a ball of reasonable size. In other words, near
this particular distribution, the Ω(k log(1/ε)) parameters of the output distribution are effectively
independent, which intuitively implies the (1/ε)Ω(k log(1/ε)) lower bound on the cover size.

To prove our sample lower bound, at a high-level, we combine the aforementioned geometric
understanding with Assouad’s lemma [Ass83]. We note that one might naively expect that such
a situation would lead to a lower bound of Ω(k log(1/ε)/ε2), but since the distributions under
consideration have additional structure, it turns out that the best lower bound that can be obtained
is Ω(k

√
log(1/ε)/ε2).

1.5 Related Work Density estimation is a classical topic in statistics and machine learning with
a rich history and extensive literature (see e.g., [BBBB72, DG85, Sil86, Sco92, DL01]). The reader
is referred to [Ize91] for a survey of statistical techniques in this context. In recent years, a large
body of work in TCS has been studying these questions from a computational perspective; see
e.g., [KMR+94, FM99, AK01, CGG02, VW02, FOS05, BS10, KMV10, MV10, DDS12a, DDS12b,
DDO+13, CDSS14a, CDSS14b, ADLS15].

Covering numbers (and their logarithms, known as metric entropy numbers) were first defined
by A. N. Kolmogorov in the 1950’s and have since played a central role in a number of areas, in-
cluding approximation theory, geometric functional analysis (see, e.g., [Dud74, Mak86, BGL07] and
the books [KT59, Lor66, CS90, ET96]), geometric approximation algorithms [Hp11], information
theory, statistics, and machine learning (see, e.g., [Yat85, Bir86, HI90, HO97, YB99, GS13] and the
books [vdVW96, DL01, Tsy08]).

Concurrent Work. Concurrent work by Daskalakis et al. [DKT15], using different techniques,
gives upper bounds on the learning sample complexity of Poisson Multinomial Distributions (PMDs).
While upper bounds on the sample complexity of PMDs yield similar upper bounds for k-SIIRVs,
the implied upper bounds for k-SIIRVs are quantitatively significantly weaker than ours. Moreover,
the [DKT15] learning algorithm has running time exponential in k and super-polynomial in 1/ε.
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Subsequent Work. In a followup work [DKS15a], the authors have generalized the techniques of
this paper to the multidimensional case, namely to the family of Poisson Multinomial Distributions
(PMDs), i.e., sums of independent random vectors supported over the standard basis in Rk. We note
that the results of the current paper are not subsumed by the results of [DKS15a]. In particular,
[DKS15a] gives an efficient learning algorithm for PMDs that uses logO(k)(1/ε)/ε2 samples, and
proves that the optimal cover size for PMDs depends doubly exponentially on k.

1.6 Organization In Section 2 we describe and analyze our learning algorithms for k-SIIRVs.
Section 3 contains our cover upper bound construction. Our cover lower bound is given in Section 4,
and our sample lower bound in Section 5.

2 Learning SIIRVs

In this section, we describe our algorithms for learning k-SIIRVs. The structure of this section is
as follows: In Section 2.1, we give our sample near-optimal and computationally efficient learning
algorithm. As mentioned in the introduction, our algorithm outputs a succinct description of its
hypothesis H, via its DFT. In Section 2.2, we provide a simple general algorithm that learns any
one-dimensional discrete distribution with a sparse Fourier support. In Section 2.3, we show how
to efficiently obtain an ε-sampler for our unknown k-SIIRV, using the DFT representation of H
as a black-box. Finally, in Section 2.4 we present our more sophisticated Fourier-based learning
algorithm with optimal sample complexity.

2.1 A Computationally Efficient Sample Near-Optimal Algorithm The main result of
this subsection is Theorem 1.1, which we state below in more detail for the sake of completeness.

Theorem 2.1. There is an algorithm Learn-SIIRV that for any P ∈ Sn,k and ε > 0, takes

O(k log2(k/ε)/ε2) samples from P, runs in time Õ(k3/ε2) and returns a (succinct description of a)
hypothesis H so that with probability at least 2/3 we have that dTV (P,H) < ε.

For computational purposes, our learning algorithm in this section uses the Discrete Fourier
Transform, which we now define.

Definition 2.2. For x ∈ R we will denote e(x)
def
= exp(−2πix). The Discrete Fourier Transform

(DFT) modulo M of a function F : [n] → C is the function F̂ : [M − 1] → C defined as F̂ (ξ) =∑n
j=0 e(ξj/M)F (j) , for integers ξ ∈ [M − 1]. The DFT modulo M of a distribution P, P̂ is the

DFT modulo M of its probability mass function. The inverse DFT modulo M onto the range
[m,m + M − 1] of F̂ : [M − 1] → C, is the function F : [m,m + M − 1] ∩ Z → C defined by
F (j) = 1

M

∑M−1
ξ=0 e(−ξj/M)F̂ (ξ) , for j ∈ [m,m+M − 1]∩Z. The L2 norm of the DFT is defined

as ‖F̂‖2 =
√

1
M

∑M−1
ξ=0 |F̂ (ξ)|2 .

We start by giving an intuitive explanation of our approach. The Fourier transform Q̂ of the
empirical distribution Q provides an approximation to the Fourier transform P̂ of P. In particular,
if we take N samples from P, we expect that the empirical Fourier transform Q̂ has error O(N−1/2)
at each point. This implies that the expected L2 error ‖Q̂−P̂‖2 is O(N−1/2), and thus by applying
the inverse Fourier transform, would yield a distribution with L2 error of O(N−1/2) from P. This
guarantee may sound good, but unfortunately, the distribution P has effective support of size
approximately s

√
log(1/ε), where s =

√
VarX∼P[X], and thus the resulting distribution will likely

have L1 error of O(N−1/2s1/2 log1/4(1/ε)) from P. This bound is prohibitively large, especially
when the standard deviation of P is large.
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This obstacle can be circumvented by relying on a new structural result that we believe may be
of independent interest. We show that for any k-SIIRV with large variance, its Fourier Transform
will have small effective support. In particular, for any k-SIIRV with standard deviation s and
ε > 0 we consider its Discrete Fourier transform modulo M , and show the set of points in [M − 1]
whose Fourier transform is bigger than ε in magnitude has size at most O(Mks−1

√
log(1/ε)). By

choosing M to be approximately s
√

log(1/ε), i.e., of the same order as the effective support of P,

we conclude that the effective support of P̂ (modulo M) is O(k log(1/ε)).
If the effective support for P̂ was explicitly known, we could truncate our empirical Dis-

crete Fourier transform Q̂ (modulo M) outside this set and reduce the L2 error ‖Q̂ − P̂‖2 to
N−1/2k1/2s−1/2 log1/4(1/ε). This in turn would correspond to an L1 error ofO(N−1/2k1/2

√
log(1/ε)).

Unfortunately, we do not know exactly where the support of the Fourier transform is, so we will
need to approximate it by calculating the empirical DFT where the support might be, and then
simply truncating this empirical DFT whenever it is sufficiently small. Fortunately, we do have
some idea of where the support is and it is not hard to show that we can truncate at all of the
appropriate points with high probability.

Algorithm Learn-SIIRV

Input: sample access to a k-SIIRV P and ε > 0.

Let C be a sufficiently large universal constant.

1. Draw O(1) samples from P and with confidence probability 19/20 compute: (a) σ̃2, a factor
2 approximation to VarX∼P[X] + 1, and (b) µ̃, an approximation to EX∼P[X] to within one
standard deviation.

2. Take N = C3k/ε2 ln2(k/ε) samples from P to get an empirical distribution Q.

3. If σ̃ ≤ 4k ln(4/ε), then output Q. Otherwise, proceed to next step.

4. Set M
def
= 1 + 2d6σ̃

√
ln(4/ε))e. Let

S
def
= {ξ ∈ [M − 1] | ∃a, b ∈ Z, 0 ≤ a ≤ b < k such that |ξ/M − a/b| ≤ O(log(k/ε)/M)} .

For each ξ ∈ S, compute the DFT modulo M of Q at ξ, Q̂(ξ).

5. Compute Ĥ which is defined as Ĥ(ξ) = Q̂(ξ) if ξ ∈ S and |Q̂(ξ)| ≥ R := 2C−1ε/
√
k ln(k/ε),

and Ĥ(ξ) = 0 otherwise.

6. Output Ĥ which is a succinct representation of H, the inverse DFT of Ĥ modulo M onto
the range [bµ̃c − (M − 1)/2, bµ̃c+ (M − 1)/2].

The bulk of our analysis will depend on showing that the Fourier transform of P has appropri-
ately small effective support. To do this we need the following lemma:

Lemma 2.3. Let P ∈ Sn,k with
√

VarX∼P[X] = s, 1/2 > δ > 0, and M ∈ Z+ with M > s. Let P̂
be the discrete Fourier transform of P modulo M . Then, we have

(i) Let L = L(δ,M, s)
def
=

{
ξ ∈ [M − 1] | ∃a, b ∈ Z, 0 ≤ a ≤ b < k such that |ξ/M − a/b| <

√
ln(1/δ)

2s

}
.

Then, |P̂(ξ)| ≤ δ for all ξ ∈ [M−1]\L. That is, |P̂(ξ)| > δ for at most |L| ≤Mk2s−1
√

log(1/δ)
values of ξ .

(ii) At most 4Mks−1
√

log(1/δ) many integers 0 ≤ ξ ≤M − 1 have |P̂(ξ)| > δ .
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Before we proceed with the proof of the lemma some comments are in order. Statement (i)
of the lemma exhibits an explicit set L of cardinality O(Mk2s−1

√
log(1/δ)) that contains all the

points ξ ∈ [M − 1] such that |P̂(ξ)| > δ. Note that the set L can be efficiently computed from M ,
δ, s, and does not otherwise depend on the particular k-SIIRV P. Statement (ii) of the lemma
shows that the effective support L′ = L′(δ) = {ξ ∈ [M − 1] | |P̂(ξ)| > δ} is in fact significantly
smaller than L, namely |L′| = O(Mks−1

√
log(1/δ)). This part of the lemma is non-constructive

in the sense that it does not provide an explicit description for L′ (beyond the fact that L′ ⊆ L).
The upper bound on the size of the effective support is the basis for the analysis of our algorithm.

Proof of Lemma 2.3. Since P ∈ Sn,k, for X ∼ P, we have X =
∑n

i=1Xi where each Xi ∼ Pi for a k-
IRV Pi. Let Yi = Xi−X ′i be the difference of two independent copies of Xi. Let pij = Pr [|Yi| = j] .
Note that Yi is a symmetric random variable. Consider its DFT modulo M which we will write as
Ŷi. We have the following sequence of (in)equalities:

|P̂i(ξ)|2 = P̂i(ξ)P̂i(−ξ) = Ŷi(ξ)

=

k−1∑
j=0

pij cos

(
2πξj

M

)
= 1−

k−1∑
j=1

pij

(
1− cos

(
2πξj

M

))

≤ 1− 8

k−1∑
j=1

pij [ξj/M ]2 ≤ exp

−8

k−1∑
j=1

pij [ξj/M ]2

 ,

where [x], x ∈ R, denotes the distance between x and its nearest integer. For the last two inequal-
ities, we used that cos 2πx ≤ 1− 8x2 when |x| ≤ 1/2, and e−x ≥ 1− x when x ≥ 0.

Therefore, we have that |P̂(ξ)|2 =
∏n
i=1 |P̂i(ξ)|2 ≤ exp(−8

∑n
i=1

∑k−1
j=1 pij [ξj/M ]2). Taking

square roots, we obtain

|P̂(ξ)| ≤ exp
(
− 4

n∑
i=1

k−1∑
j=1

pij [ξj/M ]2
)
. (1)

Note that we can relate the variance of P to the pij ’s as follows:

s2 = Var[X] =
n∑
i=1

Var[Xi] =
1

2

n∑
i=1

E[Y 2
i ] =

1

2

n∑
i=1

k−1∑
j=1

pijj
2 . (2)

Using (1), we get

|P̂(ξ)| ≤ exp

(
−8s2

(
min
j

( [ξj/M ]

j

)2))
.

To complete the proof of (i), we will need a simple counting argument given in the following claim:

Claim 2.4. For a ∈ R+ j ∈ Z+, there are at most 2Maj + j integers 0 ≤ ξ ≤ M − 1 with the
following property: there exists c ∈ Z with 0 ≤ c ≤ j such that |ξ/M − c/j| < a. Therefore, there
are at most 2Ma+ j integers 0 ≤ ξ ≤M − 1 with [ξj/M ] < a.

Proof. For each c satisfying 1 ≤ c ≤ j−1 there are either b2Mac or b2Mac+1 integers 0 ≤ ξ ≤M−1
with | ξM −

c
j | < a. For c = 0 and c = j there are either bMac or bMac+1 integers with | ξM −

c
j | < a.

Finally, note that | ξM −
c
j | < a for some 1 ≤ c ≤ j − 1 if and only if [jξ/M ] < aj.
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An application of the above claim for a = (1/2s)
√

ln(1/δ) implies that there are at most

k−1∑
j=1

2Mjs−1
√

ln(1/δ)/2 + j ≤Mk2s−1
√

ln(1/δ) + k2 ≤ 2Mk2s−1
√

ln(1/δ)

integers 0 ≤ ξ ≤ M − 1 with minj
( [ξj/M ]

j

)2
< ln(1/δ)/(4s2). For all other integers we have

|P̂(ξ)| ≤ δ , which completes the proof of (i).
To prove (ii) we proceed by the probabilistic method as follows: Consider evaluating the RHS

of (1) with ξ being an integer random variable uniformly distributed in [M − 1]. For 1 ≤ j ≤ k− 1,
let Nj be the indicator random variable for the event that [ξj/M ] < ks−1

√
ln(1/δ)/2. Observe

that by Claim 2.4 it follows that E[Nj ] ≤ 2ks−1
√

ln(1/δ).
Note that [ξj/M ] ≥

√
1−Nj · ks−1

√
ln(1/δ)/2. Plugging this into (1) gives

|P̂(ξ)| ≤ exp

−k2

s2
ln(1/δ)

n∑
i=1

k−1∑
j=1

pij(1−Nj)

 .

Since s2 = 1
2

∑n
i=1

∑k−1
j=1 pijj

2 ≤ k2

2

∑n
i=1

∑k−1
j=1 pij , it follows that θ :=

∑n
i=1

∑k−1
j=1 pij ≥ 2s2/k2.

Therefore,

E

 n∑
i=1

k−1∑
j=1

pijNj

 ≤ θ · 2ks−1
√

ln(1/δ).

By Markov’s inequality, except with probability 4ks−1
√

ln(1/δ), we have that
∑n

i=1

∑k−1
j=1 pijNj ≤

θ
2 . In this event, we have

∑n
i=1

∑k−1
j=1 pij(1−Nj) ≥ θ

2 and hence

|P̂(ξ)| ≤ exp

−k2

s2
ln(1/δ)

n∑
i=1

k−1∑
j=1

pij(1−Nj)

 ≤ exp

(
−k

2

s2
ln(1/δ)

θ

2

)
≤ δ.

Since ξ is uniformly distributed on [M −1], it follows that |P̂(ξ)| > δ for at most 4Mks−1
√

ln(1/δ)
integers ξ in [M − 1]. This completes the proof of (ii).

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. Note that it is straightforward to verify the sample complexity bound. The
running time of the algorithm is dominated by computing the DFT Q̂. Since the support of Q is at
most N , for each ξ ∈ S, we sum at most N terms to calculate Q̂(ξ). Therefore, the overall running
time is O(N · |S|) = O(k log2(k/ε)/ε2 · k2 log(k/ε)) = O(k3 log3(k/ε)/ε2) as claimed.

To show correctness, we will prove that the expected squared L2 norm between Ĥ and P̂ is
small, i.e., that ‖Ĥ− P̂‖22 = (1/M) ·

∑M−1
ξ=0 |Ĥ(ξ)− P̂(ξ)|2 has small expected value.

It is easy to see that, after drawing a constant number of samples, the quantities µ̃ and σ̃ can
be estimated to satisfy the required conditions with probability at least 19/20. (This follows for
example by Lemma 6 of [DDS12b] with ε = 1/2.) We will henceforth condition on this event.

If σ̃ ≤ 4k ln(4/ε), then s ≤ 2k ln(4/ε) + 1, and Bernstein’s inequality implies that X ∼ P is
within O(k log(1/ε)) of the mean with probability 1 − ε/2. In this case, O(k log(1/ε)/ε2) ≤ N
samples are sufficient to give that dTV (P,Q) ≤ ε with probability 2/3. (This follows from the fact
that any distribution over support of size L can be learned with O(L/ε2) samples to total variation
distance ε.) We henceforth assume that we have |µ− µ̃| ≤ s, s ≥ σ̃/2 ≥ 2k ln(4/ε) and σ̃ ≤ 2s.
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Since M = 1 + 2d6σ̃
√

ln(4/ε))e, a random variable X ∼ P lies in [bµ̃c− (M − 1)/2, bµ̃c+ (M −
1)/2] with probability at least 1− ε

2 . Indeed, an application of Bernstein’s inequality for X yields
that

Pr(X > µ+ t) ≤ exp

(
− t2

2s2 + 2
3kt

)
,

where µ is the mean of P, for any t > 0. For t = 2s
√

ln(4/ε), we have t2 = (ln(4/ε))4s2 and
2s2 + 2

3kt = 2s2 + 4
3ks
√

ln(4/ε) ≤ 8
3s

2 ≤ 4s2. Thus, Pr(X > µ + t) ≤ ε/4. Similarly, it holds

Pr(X < µ − t) ≤ ε/4. Now note that bµ̃c + (M − 1)/2 ≥ (µ − s) + d3s
√

ln(4/ε))e ≥ µ + t and
bµ̃c − (M − 1)/2 ≤ µ − t. Hence, X is in [bµ̃c − (M − 1)/2, bµ̃c + (M − 1)/2] with probability at
least 1− ε/2 as desired.

Fix T = R/2 = C−1ε/(
√
k ln(k/ε)). We analyze separately the contribution to the squared L2

norm coming from ξ with |P̂(ξ)| > T and with |P̂(ξ)| ≤ T . Let us denote L′(T ) = {ξ ∈ [M − 1] |
|P̂(ξ)| > T}. First consider

(1/M) ·
∑

ξ∈L′(T )

|Ĥ(ξ)− P̂(ξ)|2.

We first claim that with high probability Ĥ(ξ) = 0 for all ξ ∈ L′(T ). This happens automatically
when ξ 6∈ S, where the S is defined in the algorithm description. Note that |S| = O(k2 log(k/ε)).
For ξ ∈ S \ L′(T ), we note that Q̂(ξ) is an average of N i.i.d. numbers each of absolute value 1
and mean P̂(ξ) (which has absolute value less than 1). Note that if |Q̂(ξ) − P̂(ξ)| ≥ R − T , then
either the real or the imaginary part is at least (R− T )/

√
2. By a Chernoff bound, the probability

that for a given ξ ∈ S \ L′(T ), <(Q̂(ξ) − P̂(ξ)) ≥ (R − T )/
√

2 is at most 2 exp(−N(R − T )2/4).
The same is true of the imaginary part so by a union bound the probability that |Q̂(ξ)− P̂(ξ)| ≥
R− T is at most 4 exp(−N(R− T )2/4). Again by a union bound we get that the probability that
any ξ ∈ S \ L′(T ) has |Q̂(ξ) − P̂(ξ)| ≥ R − T is at most O(k2 log(k/ε) exp(−N(R − T )2/4)) =
O(k2 log(k/ε) exp(−C ln(k/ε))) = O(εC−1). Hence, except with probability O(εC−1), for all ξ in
S \L′(T ) we have |Q̂(ξ)−P̂(ξ)| < R−T and so |Q̂(ξ)| ≤ R. In fact, the total expected contribution
to the squared L2 norm coming from cases when Ĥ(ξ) is not identically 0 on all such ξ is also
O(εC−1). Therefore, up to negligible error, the squared L2 error coming from this range is at most

∑
r≥0

(T2−r)2

(
#{ξ : |P̂(ξ)| > T2−r−1}

M

)
.

Applying Lemma 2.3 (ii) with δ := T2−r−1 for each r ≥ 0, this is at most

∑
r≥0

(T2−r)2

(
#{ξ : |P̂(ξ)| > T2−r−1}

M

)
≤
∑
r≥0

T 24−r4ks−1
√

log(2r/T )

≤ 8T 2ks−1
√

log(1/T ).

We now consider the remaining contribution

(1/M) ·
∑

ξ∈L′(T )

|Ĥ(ξ)− P̂(ξ)|2.

By Lemma 2.3 (i) applied with δ := T, it follows that L′(T ) ⊆ L(T,M, s). Since
√

ln(1/T )/2s =
O(log(k/ε)/M), we can choose the constant in the definition of S so that L(T,M, s) ⊆ S. So, for
ξ ∈ L′(T ), we do compute Q̂(ξ) and then either Ĥ(ξ) = Q̂(ξ) or |Q̂(ξ)| < R and Ĥ(ξ) = 0. In
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either case, we have that |Ĥ(ξ)− Q̂(ξ)| < R. Recall that the expected size of |Q̂(ξ)− P̂(ξ)|2 is 1/N
for any ξ ∈ [M −1]. So, for ξ ∈ L′(T ), the expected squared error at ξ satisfies E[|Ĥ(ξ)− P̂(ξ)|2] ≤
2(R2 +N−1).

By Lemma 2.3 (ii) applied with δ := T, we have |L′(T )| ≤ 4ks−1
√

ln(1/T ). So, the expected
size of the L2

2 error on L′(T ) has

E[(1/M) ·
∑

ξ∈L′(T )

|Ĥ(ξ)− P̂(ξ)|2] ≤ 4(R2 +N−1)(2ks−1
√

ln(1/T )) .

Combining the above results, we find that the expected L2
2 error between Ĥ and P̂ is at most

4(R2 +N−1 + T 2)(2ks−1
√

log(1/T )) = O(C−1s−1ε2/
√

log(k/ε)).

Therefore, if C is sufficiently large, Markov’s inequality yields that, with probability 2
3 , we have

‖Ĥ− P̂‖22 < ε2/M.
At this point, we would like to use Plancherel’s theorem followed by Cauchy-Schwartz to com-

plete the proof. Formally, since P may be supported outside [bµ̃c− (M −1)/2, bµ̃c+(M −1)/2], we
cannot use Plancherel’s theorem directly to show that ‖H−P‖2 = ‖Ĥ− P̂‖2. Instead, consider the
function P′ : [bµ̃c − (M − 1)/2, bµ̃c+ (M − 1)/2]∩Z→ [0, 1] defined as P′(i) =

∑
j≡i (mod M) P(j)

for bµ̃c − (M − 1)/2 ≤ i ≤ bµ̃c + (M − 1)/2. Note that P̂′ = P̂ by the definition of the DFT
modulo M , since e(ξj/M) = e(ξi/M) when j ≡ i (mod M) for all ξ ∈ [M −1] and i, j ∈ [n]. Thus,

‖Ĥ− P̂′‖22 < ε2/M and Plancherel’s theorem gives ‖H−P′‖2 = ‖Ĥ− P̂′‖2 < ε/
√
M . Since P′ has

support at most M , an application of Cauchy-Schwartz gives ‖H−P′‖1 ≤ ‖H−P′‖2
√
M < ε.

Since X ∼ P is in [bµ̃c − (M − 1)/2, bµ̃c + (M − 1)/2] with probability at least 1 − ε/2, we
have ‖P −P′‖1 ≤ ε and so ‖P −H‖1 ≤ ‖P −P′‖1 + ‖H −P′‖1 ≤ 2ε. Since Ĥ(0) = Q̂(0) = 1, it
follows that

∑n
i=0 H(i) = 1. Also, by symmetry, all the H(i)’s are real. This completes the proof

of Theorem 2.1.

2.2 A General Fourier Learning Algorithm The algorithmic approach of the previous sub-
section is not specialized to k-SIIRVs, but is applicable more generally. In essence, the approach
really only depended upon two facts:

• P is effectively supported on a small set T.

• P̂ is effectively supported on a small set S.

It turns out that by using similar ideas, we can learn any probability distribution with these prop-
erties. The following simple theorem provides a generalization for integer-valued random variables.
However, the approach can also be generalized to higher dimensions and to continuous distributions.

Theorem 2.5. Let P be an integer-valued random variable and ε > 0. Let T ⊂ Z and S ⊂ R/Z be
known subsets so that:∑

n∈Z\T

P(n) ≤ ε/3, and

∫
ξ∈(R/Z)\S

|P̂(ξ)|2dξ < ε2/(9|T |).

Then, there exists an algorithm which learns P to total variational distance ε using N = O(|T |µ(S)/ε2)
samples, where µ(S) is the Lebesgue measure of S.
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The generic algorithm is as follows:

Algorithm Learn-Sparse-FT

Input: sample access to a distribution P over [n] and ε > 0.

Let C be a sufficiently large universal constant.

1. Take N = C|T |µ(S)/ε2 samples from P to get an empirical distribution Q.

2. Compute Ĥ which is defined as Ĥ(ξ) = Q̂(ξ), if ξ ∈ S, and Ĥ(ξ) = 0 otherwise.

3. Output H, where H is the inverse Fourier transform on Ĥ restricted to T. In particular
H(i) =

∫
ξ∈S e(−nξ)Ĥ(ξ)dξ for i ∈ T and 0 for i 6∈ T.

Note that this is exactly the form of the algorithm for learning k-SIIRVs, except that the latter
algorithm must also learn T (which is done by computing an approximate mean and variance) and
S (which is obtained through a thresholding procedure). Also, note that we use the continuous
Fourier transform here rather than a discrete Fourier transform. This is mostly for conceptual
convenience. In practice, the continuous Fourier transform can be replaced by a sufficiently fine
discrete Fourier transform, yielding an algorithm in which the integrals can be replaced by finite
sums.

The analysis of the algorithm is not difficult. We begin by bounding that the expected L2

difference between P̂ and Ĥ. In particular, we note that∫
ξ∈R/Z

|P̂(ξ)− Ĥ(ξ)|2 =

∫
ξ∈S
|P̂(ξ)− Ĥ(ξ)|2 +

∫
ξ∈(R/Z)\S

|P̂(ξ)− Ĥ(ξ)|2

≤
∫
ξ∈S
|P̂(ξ)− Ĥ(ξ)|2 + ε2/(9|T |).

Now, for any given value of ξ, we note that P̂(ξ) − Ĥ(ξ) has mean 0 and variance at most 1/N .
Therefore, we have that

E
[∫

ξ∈S
|P̂(ξ)− Ĥ(ξ)|2

]
≤ µ(S)/N = ε2/(C|T |).

For C large enough, by the Markov inequality, this is at most ε2/(9|T |) with probability at least
2/3. If this holds, then ∫

ξ∈R/Z
|P̂(ξ)− Ĥ(ξ)|2 ≤ ε2/(4|T |).

By Plancherel’s Theorem, this would imply that the squared L2 distance between P and the inverse
Fourier transform of H is at most ε2/(4|T |). Along with Cauchy-Schwartz, this implies that∑

n∈T
|P(n)−H(n)| ≤

√
(ε2/(4|T |))|T | = ε/2.

On the other hand, ∑
n∈Z\T

|P(n)−H(n)| =
∑
n∈Z\T

P(n) ≤ ε/3.

Therefore, dTV (P,H) < ε.
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2.3 An Efficient Sampler for our Hypothesis The learning algorithm of Section 2.1 outputs
a succinct description of the hypothesis pseudo-distribution H, via its DFT. This immediately
provides us with an efficient evaluation oracle for H, i.e., an ε-evaluation oracle for our target
SIIRV P. The running time of this oracle is linear in the size of S, the effective support of the DFT.

Note that we can explicitly output the hypothesis H by computing the inverse DFT at all the
points of the support of H. However, in contrast to the effective support of Ĥ, the support of H
can be large, and this explicit description would not lead to a computationally efficient algorithm.
In this subsection, we show how to efficiently obtain an ε-sampler for our unknown k-SIIRV P,
using the DFT representation of H as a black-box. In particular, starting with the DFT of an
accurate hypothesis H, represented via its DFT, we show how to efficiently obtain an ε-sampler
for the unknown target distribution. We remark that the efficient procedure of this section is not
restricted to k-SIIRVs, but is more general, applying to all univariate discrete distributions for
which an efficient oracle for the DFT is available.

In particular, we prove the following theorem:

Theorem 2.6. Let M ∈ Z+, and a, b ∈ Z with b − a = M − 1. Let H : [a, b] → R be a pseudo-
distribution succinctly represented via its DFT (modulo M), Ĥ, which is supported on a set S, i.e.,
H(x) = (1/M) ·

∑
ξ∈S e(−ξ · x)Ĥ(ξ), for x ∈ [a, b], with 0 ∈ S and Ĥ(0) = 1. Suppose that there

exists a distribution P with dTV (H,P) ≤ ε/3. Then, there exists an ε-sampler for P, i.e., a sampler
for a distribution Q such that dTV (P,Q) ≤ ε, running in time O(log(M) log(M/ε) · |S|).

Combining the above with Theorem 2.1, we get:

Corollary 2.7. For all n, k ∈ Z+ and ε > 0, there is an algorithm with the following performance
guarantee: Let P ∈ Sn,k be an unknown k-SIIRV. The algorithm uses O(k log2(k/ε)/ε2) samples

from P, runs in time Õ(k3/ε2) · log n, and with probability at least 9/10 outputs an ε-sampler for
P. This ε-sampler produces a single sample in time O(k log2(kn) log2(k/ε)).

Proof. For the output of algorithm Learn-SIIRV, M = O((1 + σ)
√

log(1/ε)) = O(kn) and |S| ≤
|L′(T )| ≤ 2Mks−1

√
ln(1/T ) = O(k log(k/ε)).

Note that we can effectively reduce the k-SIIRV learning problem to the case of n = poly(k/ε).
We can use this fact as a simple bootstrapping step to eliminate the logarithmic dimension on n in
the runtime of the above described sampler. The details are deferred to Appendix C.1.

This section is devoted to the proof of Theorem 2.6. We start by providing some high-level in-
tuition. Roughly speaking, we obtain the desired sampler by the Cumulative Distribution Function
(CDF) corresponding to H. We use the DFT to obtain a closed form expression for the CDF of H,
and then we query the CDF using an appropriate binary search procedure to sample from the distri-
bution. One subtle point is that H(x) is a pseudo-distribution, i.e. it is not necessarily non-negative
at all points. Our analysis shows that this does not pose any problems with correctness.

Our first lemma shows that it is sufficient to have an efficient oracle for the CDF:

Lemma 2.8. Given a pseudo-distribution H supported on [a, b] ∩ Z, a, b ∈ Z, with CDF cH(x) =∑
i:a≤i≤x H(i) (which satisfies cH(b) = 1), and oracle access to a function c(x) so that |c(x) −

cH(x)| < ε/(10(b − a + 1)) for all x, we have the following: If there is a distribution P with
dTV (H,P) ≤ ε/3, there is a sampler for a distribution Q with dTV (P,Q) ≤ ε, using O(log(b+ 1−
a) + log(1/ε)) uniform random bits as input, running in time O((D+ 1)(log(b+ 1−a)) + log(1/ε)),
where D is the running time of evaluating the CDF c(x).
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Proof. We begin our analysis by producing an algorithm that works when we are able to exactly
compute cH(x).

We can compute an inverse to the CDF dH : [0, 1]→ [a, b]∩Z, at y ∈ [0, 1], using binary search,
as follows:

1. We have an interval [a′, b′], initially [a− 1, b], with cH(a′) ≤ y ≤ cH(b′) and cH(a′) < cH(b′).

2. If b′ − a′ = 1, output dH(y) = b′.

3. Otherwise, find the midpoint c′ = b(a′ + b′)/2c.

4. If cH(a′) < cH(c′) and y ≤ cH(c′), repeat with [a′, c′]; else repeat with [c′, b].

The function dH can be thought of as some kind of inverse to the CDF cH : [a− 1, b] ∩ Z → [0, 1]
in the following sense:

Claim 2.9. The function dH satisfies: For any y ∈ [0, 1], it holds cH(dH(y)− 1) ≤ y ≤ cH(dH(y))
and cH(dH(y)− 1) < cH(dH(y)).

Proof. Note that if we don’t have cH(a′) < cH(c′) and y ≤ cH(c′), then cH(c′) < y ≤ cH(b′). So,
Step 4 gives an interval [a′, b′] which satisfies cH(a′) ≤ y ≤ cH(b′) and cH(a′) < cH(b′). The initial
interval [a − 1, b] satisfies these conditions since cH(a − 1) = 0 and cH(b) = 1. By induction, all
[a′, b′] in the execution of the above algorithm have cH(a′) ≤ y ≤ cH(b′) and cH(a′) < cH(b′). Since
this is impossible if a′ = b′, and Step 4 always recurses on a shorter interval, we eventually have
b′ − a′ = 1. Then, the conditions cH(a′) ≤ y ≤ cH(b′) and cH(a′) < cH(b′) give the claim.

Computing dH(y) requires O(log(b−a+1)) evaluations of cH, and O(log(b−a+1)) comparisons
of y. For the rest of this proof, we will use n = b− a+ 1 to denote the support size.

Consider the random variable dH(Y ), for Y uniformly distributed in [0, 1], whose distribution
we will call Q′. When dH(Y ) = x, we have cH(x − 1) ≤ Y ≤ cH(x), and so when Q′(x) > 0, we
have Q′(x) ≤ Pr [cH(x− 1) ≤ Y ≤ cH(x)] = cH(x) − cH(x − 1) = H(x). So, when H(x) > 0, we
have H(x) ≥ Q′(x). But when H(x) ≤ 0, we have Q′(x) = 0, since then cH(x) < cH(x− 1) and no
y has cH(x− 1) ≤ y ≤ cH(x). So, we have dTV (Q′,H) =

∑
x:H(x)<0−H(x) ≤ dTV (H,P) ≤ ε/3.

We now show how to effectively sample from Q′. The issue is how to simulate a sample from
the uniform distribution on [0, 1] with uniform random bits. We do this by flipping coins for the
bits of Y lazily. We note that we will only need to know more than m bits of Y if Y is within 2−m

of one of the values of cH(x) for some x. By a union bound, this happens with probability at most
n2−m over the choice of Y . Therefore, for m > log2(10n/ε), the probability that this will happen
is at most ε/10 and can be ignored.

Therefore, the random variable dH(Y ′), for Y ′ uniformly distributed on the multiples of 2−r in
[0, 1) for r = O(log n+ log(1/ε)), has distribution Q′ that satisfies dTV (Q,Q′) ≤ ε/10. Therefore,
dTV (P,Q′) ≤ dTV (P,H) + dTV (H,Q) + dTV (Q,Q′) ≤ 9ε/10. This is an ε-sampler that uses
O(log n+ log(1/ε)) coin flips, O(log n) calls to cH(x), and has the desired running time.

We now need to show how this can be simulated without access to cH and instead only having
access to its approximation c(x). The modification required is rather straightforward. Essentially,
we can run the same algorithm using c(x) in place of cH(x). Observe that all comparisons with Y
will produce the same result, unless the chosen Y is between c(x) and cH(x) for some value of x.
We note that because of our bounds on their difference, the probability of this occurring for any
given value of x is at most ε/(10n). By a union bound, the probability of it occurring for any x is
at most ε/10. Thus, with probability at least 1 − ε/10 our algorithm returns the same result that
it would have had it had access to cH(x) instead of c(x). This implies that the variable sampled
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by this algorithm has variation distance at most ε/10 from what would have been sampled by our
other algorithm. Therefore, this algorithm samples a Q with dTV (P,Q) ≤ ε.

We next show that we can efficiently compute an appropriate CDF, using the DFT.

Proposition 2.10. For H as in Theorem 2.6, there is an algorithm to compute the CDF cH :
[a, b] ∩ Z → [0, 1] with cH(x) =

∑
i:a≤i≤x H(i) to any precision δ > 0, where b − a = M − 1,

M ∈ Z+. The algorithm runs in time O(|S| log(1/δ)).

Proof. Recall that the PMF of H at x ∈ S is given by the inverse DFT:

H(x) =
1

M

∑
ξ∈S

e(−ξx/M)Ĥ(ξ) . (3)

The CDF is given by:

cH(x) =
1

M

∑
i:a≤i≤x

∑
ξ∈T

e(−ξx/M)Ĥ(ξ) =
1

M

∑
ξ∈T

Ĥ(ξ)
∑

i:a≤i≤x
e(−ξx/M) .

When ξ 6= 0, the term
∑

i:a≤i≤x e(−ξx/M) is a geometric series. By standard results on its sum,
we have: ∑

i:a≤i≤x
e(−ξx) =

e(−ξa/M)− e(−ξ(x+ 1)/M)

1− e(−ξ/M)
.

When ξ = 0, e(−ξ) = 1, and we get
∑

a≤i≤x e(−ξx/M) = i + 1 − a. In this case, we also have

Ĥ(ξ) = 1. Putting this together we have:

cH(x) =
1

M

i+ 1− a+
∑

ξ∈S\{0}

Ĥ(ξ)
e(−ξa/M)− e(−ξ(x+ 1)/M)

1− e(−ξ/M)

 . (4)

Hence, we obtain a closed form expression for the CDF that can be approximated to desired
precision in time O(|S| log(1/δ)).

Now we can prove the main theorem of this subsection.

Proof of Theorem 2.6. By Proposition 2.10, we can efficiently calculate the CDF of H. So, we
can apply Lemma 2.8 to this CDF. This gives us an ε-sampler for H. To find the time it takes to
compute each sample, we need to substitute D = O (|S| log(M/ε)) from the running time of the
CDF into the bound in Lemma 2.8, yielding O (logM · log(M/ε)) · |S| time. This completes the
proof.

2.4 Sample–Optimal Learning Algorithm In this subsection, we show how to improve the
sample complexity of our learning algorithm for k-SIIRVs given in Section 2.1, and obtain an
algorithm with optimal sample complexity (up to constant factors). The basic idea behind the
improvement is as follows: In our previous analysis, we made critical use of the fact that essentially
all of the mass of the distribution in question lies in an explicit interval of length O(s

√
log(1/ε)),

where s is the standard deviation. By using our Fourier learning approach, we were able to learn
a distribution that approximated our target on this support. In order to improve this algorithm,
we observe that although it is necessary to move Ω(

√
log(1/ε)) standard deviations from the mean

before the cumulative density function (CDF) drops below ε, the CDF has already begun to drop
off exponentially after only a single standard deviation from the mean.
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Unfortunately, applying a sharp threshold to our Fourier transform (as in Section 2.1) can lead
to effects that fall off relatively slowly with distance. Note that such a sharp thresholding in the
Fourier domain is equivalent to convolution with a Sinc function, which has tails proportional to
1/|x|. In order to correct this issue, we will instead perform our thresholding by multiplying by
a function with smooth cutoffs. This smooth thresholding step corresponds to convolving with a
function of width approximately s with Gaussian tails. We remark that this step has the critical
effect of causing our expected errors to be much smaller at points further from the mean, since
most of our samples (within a few standard deviations of the mean) will have little effect on our
output for these points. A careful analysis of the expected error at each point will yield our final
bound.

We will warm up in Section 2.4.1, where we describe our algorithm in the case of 2-SIIRVs.
This will exhibit the important new ideas of this technique. Then, in Section 2.4.2, we extend these
results to k-SIIRVs, which brings with it several technical complications, mostly arising from the
fact that we do not know a priori a good effective support for the Fourier transform.

2.4.1 Sample Optimal Learning Algorithm for 2-SIIRVs In this subsection, we will prove
the following theorem:

Theorem 2.11. There exists an algorithm that given N = O(
√

log(1/ε)/ε2) independent samples
to a 2-SIIRV X, runs in time O(N) and with probability at least 2/3 outputs a hypothesis distribution
Y that is within ε of X in total variational distance.

Our new algorithm Learn-2-SIIRV-Optimal-Sample is described in pseudocode below. We
first provide an equivalent alternative interpretation of our algorithm in terms of truncating the
Fourier transform. As in our algorithm Learn-SIIRV of Section 2.1, we start by obtain approx-
imations σ̃2 and µ̃ for the variance and mean. Similarly, we output the empirical distribution if
σ̃ ≤ Θ(

√
ln(1/ε)). This allows us to assume that σ̃ = Ω(

√
ln(1/ε)). (Note that this bound is not as

strong as that in Learn-SIIRV because in the current setting we aim to use fewer samples.)
Our new learning algorithm proceeds by computing the empirical Fourier transform of X and

truncating it in a judiciously chosen way. Let Ĝ(ξ), ξ ∈ R, be a Gaussian of standard deviation
1/σ̃ taken modulo 1. More specifically, let

Ĝ(ξ) =
∑
n∈Z

1√
2π/σ̃2

· e−σ̃2(n+ξ)2/2 .

Let I(ξ) be the indicator function of the interval [−Cσ̃−1
√

log(1/ε), Cσ̃−1
√

log(1/ε)], for C a

sufficiently large constant. Let F̂ be the convolution of I and Ĝ, i.e., F̂ = I ∗ Ĝ. We note that
multiplication by F̂ is an appropriate method of thresholding. In particular, we start by showing
that F̂ approximates I in the following way:

Claim 2.12. (i) F̂ (ξ) ∈ [0, 1] for all ξ.

(ii) F̂ (ξ) ≥ 1− ε2 for |ξ| ≤ (C − 3)σ̃−1
√

log(1/ε).

(iii) F̂ (ξ) ≤ ε2 for 1
4 ≥ |ξ| ≥ (C + 3)σ̃−1

√
log(1/ε).

Proof. Note that F̂ is the convolution of I and Ĝ. We can write:

F̂ (ξ) =

∫ ξ+Cσ̃−1
√

log(1/ε)

ξ−Cσ̃−1
√

log(1/ε)
Ĝ(ν)dν ≤

∫ ∞
−∞

1√
2π/σ̃2

e−σ̃
2(ξ)2/2dξ = 1. (5)
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Clearly, this convolution is positive at all points. Thus, we get (i).
When |ξ| ≤ (C − 3)σ̃−1

√
log(1/ε), note that the integral in (5) is over

ν ∈ [ξ − Cσ̃−1
√

log(1/ε), ξ + Cσ̃−1
√

log(1/ε)] ⊇ [−3σ̃−1
√

log(1/ε), 3σ̃−1
√

log(1/ε)].

By standard tail bounds, the Gaussian s√
2π
e−σ̃

2ν2/2 has all but 1 − ε2 of its mass in the interval

[−3σ̃−1
√

log(1/ε), 3σ̃−1
√

log(1/ε)], and so F̂ (ξ) ≥ 1− ε2. This gives us (ii).
When 1

4 ≥ |ξ| ≥ (C + 3)σ̃−1
√

log(1/ε), the integral in (5) is over ν ∈ [ξ − Cσ̃−1
√

log(1/ε), ξ +

Cσ̃−1
√

log(1/ε)], which is disjoint from the interval [−3σ̃−1
√

log(1/ε), 3σ̃−1
√

log(1/ε)]. By the
same bound, the Gaussian has at most ε2 of its mass outside [−3σ̃−1

√
log(1/ε), 3σ̃−1

√
log(1/ε)].

So, we deduce (iii).

At a high-level, our new algorithm involves the following steps:

1. Let Z be the empirical distribution and Ẑ be the (continuous) Fourier transform of Z.

2. Let Ŷ (ξ) = Ẑ(ξ)F̂ (ξ).

3. Let Y be the truncation of the inverse Fourier transform of Ŷ to [µ̃ − Cσ̃
√

log(1/ε), µ̃ +
Cσ̃
√

log(1/ε)], for C a sufficiently large constant.

Both to aid in the performance of this computation and the theoretical analysis, we note another
way to obtain the same answer. As Y is the truncation of the inverse Fourier transform of a
pointwise product of Ẑ and F̂ , we may instead write it as the truncation to the same interval
[µ̃ − Cσ̃

√
log(1/ε), µ̃ + Cσ̃

√
log(1/ε)] of the convolution of Z and F : Z → R, the inverse Fourier

transform of F̂ . We show below (Claim 2.13) that

F (x) = e−x
2/(2σ̃2)2Cσ̃−1

√
log(1/ε)Sinc(2πCσ̃−1

√
log(1/ε)x) ,

where Sinc(x)
def
= (sinx)/x. Also note that F can be computed explicitly to within absolute error δ

in time poly(log(1/δ)), and thus this convolution can be computed efficiently, yielding an alternative
algorithm for computing Y.

Algorithm Learn-2-SIIRV-Optimal-Sample
Input: sample access to a 2-SIIRV X and ε > 0
Output: A hypothesis pseudo-distribution Y that is ε-close to X

1. Draw O(1) samples from P and with confidence probability 19/20 compute: (a) σ̃2, a factor
2 approximation to VarX∼P[X] + 1, and (b) µ̃, an approximation to EX∼P[X] to within one
standard deviation.

2. If σ̃ ≥ Ω(1/ε), draw O(1/ε2) samples and use them to estimate the mean and variance of
X. Output a discrete Gaussian with this mean and variance.

3. Take N = Θ(
√

log(1/ε))/ε2 samples from P to get an empirical distribution Z.

4. If σ̃ ≤ O(
√

ln(1/ε)), then output Z. Otherwise, proceed to next step.

5. If M, the difference between the largest and smallest sample is Ω(σ̃
√

log(1/ε)), output fail.

6. Compute F (x) to within O(ε4) for integers |x| ≤M + Cσ̃
√

log(1/ε).

7. Compute the convolution Y of Z and F using the FFT (modulo ≥ 2M + 2Cσ̃
√

log(1/ε)).
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We start by analyzing the running time of the algorithm. First note that the first two steps
run in sample-linear time, i.e., O(1/ε2). We now focus on the running time of the remaining steps.
Note that computing the empirical distribution Z takes time O(N). Computing the values of
F (x) in Step 6 up to an additive error poly(ε) can be done in time Mpolylog(1/ε), where M =
O(σ̃

√
log(1/ε)) = Õ(1/ε). Computing the convolution is done using the FFT modulo a power

of two that is Θ(M), and so can be done in time O(M logM). So, the overall running time is
O(N +M logMpoly(log(1/ε))) = O(N).

We now proceed to show correctness. In the proof of Theorem 2.1, we argued that O(1) samples
suffice to get that with high probability σ̃ and µ̃ satisfy the desired bounds. We condition on this
event. We claim that when σ̃ is small, namely O(

√
ln(1/ε)), the empirical distribution suffices. This

follows from the fact that the empirical estimate of a discrete distribution P has expected variation
distance ≤ ε from P after O(‖P‖1/2/ε2) samples. By an application of Bernstein’s inequality (see
Lemma C.3) it follows that a 2-SIIRV with standard deviation σ has 1/2-norm bounded from above
by O(σ + 1). This proves our claim.

We also note that if the standard deviation of X is Ω(1/ε), then X is ε-close to a discretized
Gaussian with the same mean and variance. Indeed, for any 2-SIIRV with mean µ and standard
deviation σ, we have dTV (X,G) ≤ O(1/σ), whereG ∼ Z(µ, σ2). (See, e.g., Theorem 7.1 of [CGS11].)
In this case, we claim that Step 2 of the algorithm outputs an ε-accurate hypothesis. Indeed, by
Lemma 6 of [DDS15] it follows that with O(1/ε2) samples from a discrete distribution, we can obtain
(in sample-linear time) estimates µ̂ and σ̂ such that with high constant probability |µ̂ − µ| ≤ εσ
and |σ2 − σ̂2| ≤ εσ2

√
4 + 1/σ2. Proposition A.4 completes the proof of our claim.

So, we henceforth assume that σ̃ is Ω(
√

ln(1/ε)) and O(1/ε). We now proceed with the main
part of the analysis. We start with the following simple claim:

Claim 2.13. We have that

F (x) = e−x
2/(2σ̃2)2Cσ̃−1

√
log(1/ε)Sinc(2πCσ̃−1

√
log(1/ε)x) ,

for all x ∈ Z. Also, |F (x)| = O(σ̃−1)
√

log(1/ε) exp(−Ω((x/σ̃)2)).

Proof. As F̂ is a convolution of functions, F (x) is the pointwise product of G(x) the inverse Fourier
transform of Ĝ(ξ) with S(x), the inverse Fourier transform of I(ξ). We define G(x) := e−x

2/(2σ̃2)

and S(x) := 2Cσ̃−1
√

log(1/ε)Sinc(2πCσ̃−1
√

log(1/ε)x). Standard results for the Fourier transform
of the Gaussian and Sinc(x) give us the result. Since |Sinc(x)| ≤ 1 for all x, we have that |F (x)| =
O(σ̃−1)

√
log(1/ε) exp(−Ω((x/σ̃)2)).

In order to show the correctness of our algorithm, we will need to introduce a new distribution,
Y ′. We let Y ′ be the truncated inverse Fourier transform of the pointwise product of F̂ with X̂
(note that Y differs from Y ′ by using Ẑ instead of X̂). We begin by showing that dTV (X,Y ′) is

small. To do this, we let Ŷ ′ = X̂F̂ .

Claim 2.14. We have that dTV (X,Y ′) = O(ε2
√

log(1/ε)).

Proof. Note that
X̂(ξ)− Ŷ ′(ξ) = X̂(ξ)(1− F̂ (ξ)).

If [ξ] ≤ (C−3)σ̃−1
√

log(1/ε), by Claim 2.12 (ii), we have 1−F̂ (ξ) ≤ ε2. Since |X̂(ξ)| = |E[e(Xξ)]| ≤
1, in this case we have |X̂(ξ) − Ŷ ′(ξ)| ≤ ε2. Otherwise, if [ξ] ≥ (C − 3)σ̃−1

√
log(1/ε), by Lemma
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2.3 part (i) it follows that |X̂(ξ)| ≤ exp(−Ω(σ̃2[ξ]2)). Since 0 ≤ 1− F̂ (ξ) ≤ 1, in this case we have

|X̂(ξ)− Ŷ ′(ξ)| ≤ |X̂(ξ)||1− F̂ (ξ)| ≤ exp(−Ω(σ̃2[ξ]2)). Therefore,

|X̂ − Ŷ ′|1 =

∫ 1/2

−1/2
|X̂(ξ)− Ŷ ′(ξ)|dξ

=

∫ −(C−3)σ̃−1
√

log(1/ε)

−1/2
|X̂(ξ)− Ŷ ′(ξ)|dξ +

∫ (C−3)σ̃−1
√

log(1/ε)

−(C−3)σ̃−1
√

log(1/ε)
|X̂(ξ)− Ŷ ′(ξ)|dξ

+

∫ 1/2

−(C−3)σ̃−1
√

log(1/ε)
|X̂(ξ)− Ŷ ′(ξ)|dξ

≤ε2 · 2(C − 3)σ̃−1
√

log(1/ε) + 2

∫ 1/2

(C−3)σ̃−1
√

log(1/ε)
exp(−Ω(σ̃2[ξ]2))dξ

=O(ε2
√

log(1/ε)/σ̃) +
√

2π/s · Pr
W∼N(0,σ̃−2)

[
|W | ≥ (C − 3)σ̃−1

√
log(1/ε)

]
≤O(ε2

√
log(1/ε)/σ̃) .

Taking an inverse Fourier transform implies that |X − Y ′|∞ = O(ε2/σ̃), within the domain of
truncation. Since this domain has size O(σ̃

√
log(1/ε)), we have that the L1 error between X and

Y ′ within this domain is O(
√

log(1/ε)ε2). However, both X and Y ′ have at most O(ε2) mass outside
of this domain, and therefore we have that dTV (X,Y ′) = O(ε2

√
log(1/ε)).

It remains to bound from above dTV (Y, Y ′). In particular, we will show that dTV (Y, Y ′) has
expectation O(ε). Then, by decreasing ε by a constant factor and applying the Markov and triangle
inequalities, we will have that dTV (X,Y ) < ε with probability at least 2/3.

Proposition 2.15. We have that E [dTV (Y, Y ′)] ≤ O(ε).

Proof. Recall that Y is a the convolution of Z with F. If we consider our samples to be random
variables X(1), . . . , X(N) each of which is an i.i.d. copy of X, we can express Y (p) for a given p as

a random variable: Y (p) = 1
N

∑N
i=1 F (p −X(i)) , for a ≤ p ≤ b, where a = µ̃ − Cσ̃

√
log(1/ε) and

b = µ̃+ Cσ̃
√

log(1/ε). Note that the expectation of Y (p) is

1

N

N∑
i=1

EX [F (p−X)] = EX [F (p−X)] = Y ′(p).

Therefore, we have that E[|Y (p)−Y ′(p)|] = O(
√

Var(Y (p))). For the variance we have the following
sequence of (in)equalities:

Var[Y (p)] = Var[F (p−X)]/N = E

(F (p−X)−
b∑

q=a

F (p− q)X(q)

)2
 /N

=

b∑
r=a

(X(r)/N) ·

(
F 2(p− r)

+
b∑

q=a

(
F 2(p− q)X(q)2 − 2F (p− r)F (p− q)X(q) + 2

∑
q′ 6=q

F (p− q)F (p− q′)X(q)X(q′)
))

=1/N ·
b∑

q=a

F 2(p− q)(X(q)−X(q)2) ≤ 1/N ·
b∑

q=a

F 2(p− q)X(q) .
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We claim that this quantity will become small as p moves away from µ. Intuitively, this should be
the case because for p far from µ, then for all q either |p− q| will be large or |q − µ| will be large.
In the former case, F (p − q) is small, and in the latter X(q) is. In order to properly analyze this
quantity, we will have to group up these errors for p in blocks of size σ̃. In particular, we have that

µ+(t+1)σ̃∑
p=µ+tσ̃

E[|Y (p)− Y ′(p)|] =

µ+(t+1)σ̃∑
p=µ+tσ̃

O(
√

Var(Y (p)))

= O(1/
√
N)

µ+(t+1)σ̃∑
p=µ+tσ̃

√√√√ b∑
q=a

F 2(p− q)X(q)

= O(
√
σ̃/N)

√√√√√µ+(t+1)σ̃∑
p=µ+tσ̃

b∑
q=a

F 2(p− q)X(q) (by Cauchy-Schwartz)

≤ O(
√
σ̃/N)

√√√√√b−µ−(t+1)σ̃∑
r=µ+tσ̃−a

F 2(r)

µ+(t+1)σ̃−r∑
q=µ+tσ̃−r

X(q)

≤ O(
√
σ̃/N)

√√√√ ∞∑
r=−∞

F 2(r) exp(−Ω(|tσ̃ − r|/σ̃)2) (by Bernstein’s inequality)

= O(
√
σ̃/N)

√√√√ ∞∑
r=−∞

S2(r) exp(−Ω(((tσ̃ − r)/σ̃)2 + (r/σ̃)2))

= O(
√
σ̃/N)

√√√√ ∞∑
r=−∞

S2(r) exp(−Ω(t2))

= O(
√
σ̃/N) exp(−Ω(t2))

√∫ 1

ξ=0
I2(ξ)dξ (by Plancherel’s Theorem)

= O(
√
σ̃/N) exp(−Ω(t2))σ̃−1σ̃1/2 log1/4(1/ε) = O(log1/4(1/ε)/

√
N) exp(−Ω(t2)).

Summing over t gives that

E[dTV (Y, Y ′)] = O(log1/4(1/ε)/
√
N) = O(ε) ,

for N =
√

log(1/ε)/ε2. This completes the proof.

2.4.2 Sample Optimal Learning Algorithm for k-SIIRVs

Theorem 2.16. For ε ≤ 1/poly(k), there exists an algorithm that given O(k
√

log(1/ε)/ε2) inde-
pendent samples from a k-SIIRV, X, with probability at least 2/3 outputs a hypothesis distribution
Y that is within ε of X in total variational distance.

The proof of this theorem is somewhat analogous to that of Theorem 2.11. However, it should
be noted that the runtime of this algorithm is not given. This is because the runtime of the
simplest such algorithm is actually exponential in k. The difficulty is that while in the 2-SIIRV case
we could determine the effective support of the Fourier transform just from the standard deviation,
in the case of k-SIIRVs this is not the case. In essence, our algorithm will first guess this effective
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support (of which there are exponentially many possibilities), and then given this guess will run
an appropriate algorithm. At the end, we will need to run a standard tournament procedure
(e.g., [DL01]) to determine which of these guesses lead to the closest approximation to X. Since
the number of possibilities is 2O(k) (see Claim 2.19), the sample complexity of this tournament is
O(k/ε2).

As in Algorithm Learn-SIIRV, we begin by estimating the mean and variance with O(1) sam-
ples, producing estimates µ̃ and σ̃2 with (Var[X] + 1)/2 ≤ σ̃2 ≤ 2(Var[X] + 1) and E[X] − σ̃ ≤
µ̃ ≤ E[X] + σ̃. Again, if σ̃ = O(k

√
log(1/ε)), we output the empirical distribution after taking

O(k
√

log(1/ε)/ε2) samples. Our upper bound on the 1/2-norm of k-SIIRVs (Lemma C.3) implies
that this step gives an ε-accurate hypothesis. This allows us to assume that σ̃ = Ω(k

√
log(1/ε)).

We will assume this throughout the remainder of our analysis.
Once again, under these assumptions, we can use Bernstein’s inequality to prove concentration

bounds for X:

Lemma 2.17. Suppose that σ̃ ≥ Ck
√

log(1/ε), for C sufficiently large, then for all t ≥ 0 we have
that

Pr(|X − µ̃| > (2 + t)σ̃) ≤ exp(−Ω(t2)) + ε2.

Proof. We assumed that |µ− µ̃| ≤ σ̃. So, if |X− µ̃| ≥ (2+ t)σ̃), then |X−µ| ≥ (1+ t)σ̃. Bernstein’s
inequality gives that

Pr(X − E[X] ≥ (1 + t)σ̃) ≤ exp

(
−1

2(1 + t)2σ̃2

Var[X] + 1
3k

)
.

Since σ̃ = Ω(k
√

log(1/ε)) = Ω(k) and Var[X] = O(σ̃2), we have that Var[X] + 1
3k = O(σ̃2).

In particular, this implies that with probability 1 − 2ε2 that |X − µ̃| = O(σ̃
√

log(1/ε)). Next,
we will recall concentration bounds on the Fourier transform of X. To do so, we first devise some
notation. Let X =

∑n
i=1Xi , where Xi are independent k-IRVs. We let pi,j be the probability that

two independent copies of Xi have absolute difference j. We let vj =
∑n

i=1 pi,j . In terms of this,
we restate Equations (1) and (2) from the proof of Lemma 2.3 as

|X̂(ξ)| = exp

−Ω

k−1∑
j=1

vj [jξ]
2

 ,

and

Var(X) =
k−1∑
j=1

j2vj .

Finally, we note that we can find some particular good scale to consider. In particular, we note

Lemma 2.18. There exists an m ∈ [k] so that
∑2m

j=m vj = Ω(σ̃/k)2.

Proof. We assume for sake of contradiction that this is not the case. We have that

2m∑
j=m

vj < c(σ̃/k)2 ,
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where c is a sufficiently small constant. This implies that

2m∑
j=m

j2vj < c(2σ̃m/k)2.

Summing over m powers of 2 less than or equal to k, we find that

k∑
j=1

j2vj < c

blog2(k)c∑
`=1

(2s/k)24` ≤ c4log2(k)+1(4σ̃2/k2) = 16cσ̃2.

However, we know that
k∑
j=1

j2vj = Var(X) = Θ(σ̃2) .

This yields a contradiction for c sufficiently small.

Our algorithm will begin by guessing a value for m. We assume throughout the following that
m represents such an integer. Furthermore, we assume that our algorithm has guessed values
wm, wm+1, . . . , w2m so that wi ≤ vi for all i and

∑2m
j=mwj = Ω(σ̃/k)2.

Claim 2.19. Given m and σ̃, this can be done by considering only 2O(k) possible vectors of w’s.

Proof. By Lemma 2.18, we have that
∑2m

j=m vj = Ω(σ̃/k)2. Suppose concretely that C ′ is a constant

such that we always have
∑2m

j=m vj ≥ C ′(σ̃/k)2. Then, we claim that there is some set of non-

negative integers aj , for m ≤ j ≤ 2m such that
∑2m

j=m aj = m and vj ≥ (aj/(m+ 1)) · C ′(σ̃/k)2/2.

In particular, take aj = bvj2(m+1)
C′(σ̃/k)2

c then |(C ′(σ̃/k)2/2(m+ 1))
(∑2m

j=m aj

)
− vj | ≤ C ′(σ̃/k)2/2, and

so
∑2m

j=m aj ≥
|vj−C′(σ̃/k)2/2|
C′(σ̃/k)2/2(m+1)

≥ m+ 1.

If we guess such integers, then we can set wj = (aj/(m+ 1)) ·C ′(σ̃/k)2/2 and have vj ≥ wj and∑2m
j=mwj ≥ C ′(σ̃/k)2/2 = Ω(σ̃/k)2. There are

(
n+k
n

)
k-vectors a of non-negative integers summing

to n. So in our case, there are
(

2m
m

)
≤ 22m ≤ 22k possible combinations of wj .

We then have that

|X̂(ξ)| ≤ B(ξ)
def
= exp

−Θ

 2m∑
j=m

wj [jξ]
2

 .

We have the following simple lemma about B:

Lemma 2.20. If |ξ − ξ′| < 1/(6m), then

B(ξ)B(ξ′) = exp(−Ω(σ̃2(ξ − ξ′)2m2/k2)).

Proof. Firstly, we show that for each m ≤ j ≤ 2m, either we have [jξ] ≥ j|ξ − ξ′|/2 or [jξ′] ≥
j|ξ − ξ′|/2. If [jξ] ≤ j|ξ − ξ′|/2, then there is an integer i such that |jξ − i| ≤ |jξ − jξ′|/2 and so
|jξ′− i| ≥ |jξ− jξ′|− |jξ− i| ≥ |jξ− jξ′|/2. But we also have |jξ′− i| ≤ |jξ− jξ′|+ |jξ− i| ≥ 3|jξ−
jξ′|/2 ≤ 3j/12m ≤ 1

2 . So, i is still one of the closest integers to jξ′ and [jξ′] = |jξ′−i| ≥ |jξ−jξ′|/2.
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Thus, we have:

B(ξ)B(ξ′) = exp

−Θ

 2m∑
j=m

wj [jξ]
2 + [jξ′2]


≤ exp

−Ω

 2m∑
j=m

wjj
2(ξ − ξ′)2


≤ exp

−Ω

(
2m∑
j=m

wj)m
2(ξ − ξ′)2


≤ exp(−Ω(σ̃2(ξ − ξ′)2)m2/k2) ,

where the final line follows since we guessed w so that
∑2m

j=mwj = Ω(σ̃/k)2.

This implies that within each interval of length 1/(6m), B(ξ) is bounded by an appropriate
Gaussian. In particular, for 0 ≤ i < 6m, let Ii be the interval [i/6m, (i+ 1)/6m], and let ξi be the
element of Ii at which B is maximized. Since

∑2m
j=mwj [jξ]

2 is a piecewise quadratic, we can easily
calculate its minima ξi on each Ii given wj for m ≤ j ≤ 2m. As a corollary of the above, we have:

Corollary 2.21. For ξ ∈ Ii, we have that

|X̂(ξ)| ≤ exp(−Ω(σ̃2(ξ − ξi)2)m2/k2).

Proof. We can write |X̂(ξ)| ≤ B(ξ) ≤
√
B(ξ)B(ξi) = exp(−Ω(σ̃2(ξ − ξi)2)m2/k2) .

From this point onwards, our analysis is nearly identical to that from the previous subsection.
We will need the function I(ξ) to be small not just near 0, but also near all of the ξi’s so that F̂
will be close to 1 on the effective support of X̂. This has the effect of making its inverse Fourier
transform a sum of O(m) Sinc functions rather than a single one. This in turn will increase the
size of the F by a factor of m, which is where the final additional factor of k in our sample size
comes from.

Our algorithm depends on taking the empirical Fourier transform of X and truncating it in
a judiciously chosen way. Let Ĝ(ξ) be a Gaussian of standard deviation 1/σ̃ taken modulo 1. In
particular,

Ĝ(ξ) =
∑
n∈Z

1√
2π/σ̃2

e−σ̃
2(n+ξ)2/2.

Let I(ξ) be the indicator function that is 1 if and only if ξ is within Ckσ̃−1
√

log(1/ε)/m of one

of the ξi modulo 1, for C a sufficiently large constant. Let F̂ be the convolution of I and Ĝ. As
before, F̂ approximates I in that:

Claim 2.22. (i) F̂ (ξ) ∈ [0, 1] for all ξ.

(ii) F̂ (ξ) ≥ 1− ε2/k for ξ within (Ck/m− 3)σ̃−1
√

log(1/ε) of some ξi.

(iii) F̂ (ξ) ≤ ε2/k for ξ not within (Ck/m+ 3)σ̃−1
√

log(1/ε) of any ξi.
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Proof. Note that F̂ is the convolution of I and Ĝ. I(x) is the indicator function of some set T .
Explicitly, we have:

F̂ (ξ) =

∫
T
Ĝ(ν)dν ≤

∫ 1

0
Ĝ(ν)dν =

∫ ∞
−∞

1√
2π/σ̃2

e−σ̃
2(ν)2/2dν = 1.

This gives (i).
For (ii), we note that since I contains the interval [ξi−Ckσ̃−1

√
log(1/ε)/m, ξi+Ckσ̃

−1
√

log(1/ε)/m],
we have

F̂ (ξ) ≥
∫ ξ−ξi+Ckσ̃−1

√
log(1/ε)/m

ξ−ξi−Ckσ̃−1
√

log(1/ε)/m

s√
2π
e−σ̃

2([ν])2/2dν.

Since |ξ−ξi| ≤ (Ck/m−3)σ̃−1
√

log(1/ε), this interval contains [−3σ̃−1
√

log(1/ε), 3σ̃−1
√

log(1/ε)],
and so

F̂ (ξ) ≥
∫ 3σ̃−1

√
log(1/ε)

3σ̃−1
√

log(1/ε)

s√
2π
e−σ̃

2ν2/2dν ≥ 1−O(ε3) ≥ 1− ε2/k ,

by standard bounds on the Gaussian.
For (iii), we note that T is disjoint from the set [ξ − 3σ̃−1

√
log(1/ε), ξ + 3σ̃−1

√
log(1/ε)]. We

have

F̂ (ξ) =

∫
ν∈R,ν−ξ (mod Z)∈T

1√
2π/σ̃2

e−σ̃
2(ν)2/2dν

≤
∫
|ν|≥3σ̃−1

√
log(1/ε)

1√
2π/σ̃2

e−σ̃
2(ν)2/2dν = O(ε3) ≤ ε2/k.

Our algorithm is now quite simple to state and works as follows:

1. Let Z be the empirical distribution and Ẑ be the Fourier transform of Z.

2. Let Ŷ be the pointwise product of Ẑ with F̂ .

3. Let Y be the truncation of the inverse Fourier transform of Ŷ to
[
µ− Cσ̃

√
log(1/ε), µ+ Cσ̃

√
log(1/ε)

]
,

for C a sufficiently large constant.

Both to aid in the performance of this computation and in its theoretical analysis, we note another
way to obtain the same answer. As Y is the truncation of the inverse Fourier transform of a
pointwise product of Ẑ and F̂ , we may instead write it as the truncation of the convolution of Z
and F, the inverse Fourier transform of F̂ . As F̂ is a convolution of functions, F (x) is the pointwise
product of G(x) (a Gaussian of standard deviation Θ(σ̃), normalized to have size 1 at the origin)
with S(x), an explicit combination of Sinc functions. Note that F can be computed explicitly, and
thus this convolution can be computed in polynomial time.

In order to analyze the correctness, we will need to introduce a new distribution, Y ′. We let
Y ′ be the truncated inverse Fourier transform of the pointwise product of F̂ with X̂ (note that Y
differs by using Ẑ instead of X̂). We begin by showing that dTV (X,Y ′) is small. To do this, we let

Ŷ ′ = X̂F̂ .

Claim 2.23. We have that
|X̂ − Ŷ ′|1 = O(ε2

√
log(1/ε)/σ̃).
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Proof. We similarly use the fact that

X̂(ξ)− Ŷ ′(ξ) = X̂(ξ)(1− F̂ (ξ)).

If [ξ − ξi] is at most (Ck/m− 3)σ̃−1
√

log(1/ε) for some i, the above expression has absolute value

at most ε2/k because 1− F̂ (ξ) does. Otherwise, it has absolute value exp(−Ω(σ̃2[ξ − ξi0 ]2m2/k2)),
where ξi0 is such that i0 ∈ argmini[ξ − ξi]. Next, we combine these bounds and integrate.

We consider intervals [ai, bi] with bi = ai+1 for 1 ≤ i < 6m and b6m = a1+1 such that ξi ∈ [ai, bi]
and for any x+ Z in [ai, bi] + Z is at least as close to ξi + Z than to any ξj + Z for j 6= i.

|X̂ − Ŷ ′|1 =

∫ b6m

a1

|X̂(ξ)− Ŷ ′(ξ)|dξ

=

6m∑
i=1

(∫ max{ξi−(Ck/m−3)σ̃−1
√

log(1/ε),ai}

ai

|X̂(ξ)− Ŷ ′(ξ)|dξ

+

∫ min{ξi+(Ck/m−3)σ̃−1
√

log(1/ε),bi}

max{ξi−(Ck/m−3)σ̃−1
√

log(1/ε),ai}
|X̂(ξ)− Ŷ ′(ξ)|dξ

+

∫ bi

min{ξi+(Ck/m−3)σ̃−1
√

log(1/ε),bi}
|X̂(ξ)− Ŷ ′(ξ)|dξ

)

≤O(1) ·
6m∑
i=1

(
Pr

W∼N(0,σ̃−2k2/m2)

[
|W | ≥ (Ck/m− 3)σ̃−1

√
log(1/ε)

]
+ (ε2/k) · 2(Ck/m− 3)σ̃−1

√
log(1/ε)

)
≤O(ε2

√
log(1/ε)/σ̃) .

This completes the proof.

Taking an inverse Fourier transform implies that |X−Y ′|∞ = O(ε2
√

log(1/ε)/σ̃), at least within
the domain of truncation. Since this domain has size O(σ̃

√
log(1/ε)), we have that the L1 error

between X and Y ′ within this domain is O(
√

log(1/ε)ε2). However, both X and Y ′ have at most
O(ε2) mass outside of this domain, and therefore we have that

dTV (X,Y ′) = O(ε2 log(1/ε)).

It remains to bound dTV (Y, Y ′). In particular, we will show that it has expectation O(ε). Then,
by decreasing ε by a constant factor and applying Markov’s and triangle inequalities, we will have
that dTV (X,Y ) < ε, with probability at least 2/3.

Proposition 2.24. We have that E[dTV (Y, Y ′)] ≤ O(ε).

Proof. Recall that Y is a the convolution of Z with F. If we consider our samples to be random
variables X(1), . . . , X(N) each of which is an i.i.d. copy of X, we can express Y (p) for a given p as
a random variable:

Y (p) =
1

N

N∑
i=1

F (p−X(i)) ,
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for a ≤ p ≤ b, where a = µ̃ − Cσ̃
√

log(1/ε) and b = µ̃ + Cσ̃
√

log(1/ε). Note that the expectation
of Y (p) is

1

N

N∑
i=1

EX [F (p−X)] = EX [F (p−X)] = Y ′(p).

Therefore, we have that E[|Y (p)− Y ′(p)|] = O(
√

Var(Y (p))). We bound the variance as follows:

Var[Y (p)] = Var[F (p−X)]/N = E

[
(F (p−X)−

b∑
q=a

F (p− q)X(q))2

]
/N

=

b∑
r=a

(X(r)/N) ·

(
F 2(p− r)

+
b∑

q=a

(
F 2(p− q)X(q)2 − 2F (p− r)F (p− q)X(q) + 2

∑
q′ 6=q

F (p− q)F (p− q′)X(q)X(q′)
))

=1/N ·
b∑
a

F 2(p− q)(X(q)−X(q)2) ≤ (1/N) ·
b∑

q=a

F 2(p− q)X(q) .

We have that∑
p∈[µ+tσ̃,µ+(t+1)σ̃]

E[|Y (p)− Y ′(p)|]

= O(1/
√
N)
∑
p

√∑
q

F 2(p− q)X(q)

= O(
√
σ̃/N)

√∑
r

F 2(r)
∑

q∈[µ+tσ̃−r,µ+(t+1)σ̃−r]

X(q) (by Cauchy-Schwarz)

= O(
√
σ̃/N)

√∑
r

F 2(r) exp(−Ω(|tσ̃ − r|/σ̃)2)) (by Lemma 2.17)

= O(
√
σ̃/N)

√∑
r

S(r)2 exp(−Ω(((tσ̃ − r)/σ̃)2 + (r/σ̃)2))

= O(
√
σ̃/N)

√∑
r

S(r)2 exp(−Ω(t2))

= O(
√
σ̃/N) exp(−Ω(t2))

√∑
r

S(r)2

= O(
√
σ̃/N) exp(−Ω(t2))

√∫ 1

ξ=0
I(ξ)2 (by Plancherel’s Theorem)

= O(
√
σ̃/N) exp(−Ω(t2))

√
kσ̃−1

√
log(1/ε)

= O(k1/2 log1/4(1/ε)/
√
N) exp(−Ω(t2)).

Summing the above over t gives that

E[dTV (Y, Y ′)] = O(k1/2 log1/4(1/ε)/
√
N) = O(ε) ,

for N = k
√

log(1/ε)/ε2. This completes the proof.
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3 Cover Size Upper Bound and Efficient Construction

We start by establishing an upper bound on the cover size and then proceed to describe our efficient
algorithm for the construction of a proper cover with near–minimum size. To prove the desired
upper bound on the size of the cover, we proceed as follows: We start (Section 3.1) by reducing the
cover size problem to the case that the order n of the k-SIIRV is at most poly(k/ε). In the second
and main step (Section 3.2), we prove the desired upper bound for the polynomially sparse case.
Our efficient algorithm for the cover construction (Section 3.3) is based on dynamic programming
and follows a similar case analysis.

3.1 Reduction to Sparse Case Our starting point is the following theorem:

Theorem 3.1. [[DDO+13], Theorem I.2] Let P ∈ Sn,k be a k-SIIRV of order n. Then, for any
ε > 0, P is either

1. a distribution with variance at most poly(k/ε); or

2. ε-close to a distribution P′ such that for a random variable X ∼ P′, we have X = cZ + Y
for some 1 ≤ c ≤ k − 1, where Y , Z are independent random variables such that: (i) Y is
distributed as a c-IRV, and (ii) Z is a discretized normal random variable with parameters
µ
c ,

σ2

c2
where µ = E[X] and σ2 = Var[X].

The above theorem allows us to reduce the problem of constructing an O(ε)-cover for Sn,k to
the problem of constructing an ε-cover for Sn′,k, where n′ = poly(k/ε). Indeed, given an arbitrary
k-SIIRV P ∈ Sn,k we proceed as follows: If P belongs to Case 1 of the above theorem, then we
show (Lemma 3.2) that there exists a translation of a k-SIIRV with n′ = poly(k/ε) variables that
is ε-close to P. We show in the following subsection (Proposition 3.3) that Sn′,k admits an ε-cover
of size (1/ε)O(k log(1/ε)). Since there are O(kn) possible translations, this gives a 2ε-cover of size
n(1/ε)O(k log(1/ε)) for k-SIIRVs in Case 1.

Moreover, it is not difficult to show that there exists an ε-cover for distributions in Case 2 with
at most n · (k/ε)O(k) points. In particular, we claim that for distributions in sub-case 2(i) there
exists an ε-cover of size (1/ε)O(k), and for distributions in sub-case 2(ii) there exists an ε-cover of
size O(n). Assuming these claims, the sub-additivity of total variation distance (Proposition A.3)
implies that distributions in Case 2 have a 2ε-cover of size n · (1/ε)O(k) as desired.

Note that the random variable Y in Case 2(i) is distributed as a k-IRV, i.e., it has support
k. It is well-known and easy to show that the set of all distributions over a domain of size k has
an ε-cover of size (1/ε)O(k). It remains to show that we can ε-cover the set of discretized normal
distributions of Case2(ii) with O(nk/ε) points. To do this, we exploit the fact that the variance
of such distributions is large. Let σmin = Ω(k9/ε3) be the minimum variance of a k-SIIRV X in
Case 2. Note that the discrete Gaussian in Case 2 has a variance of Var[X]/c2. Hence, we want to
ε-cover the set of discrete Gaussians with standard deviation σ in the interval [σmin, σmax], where
σmax = O(

√
nk), and mean value µ in the interval [0, n(k−1)]. Consider the following discretization

of the space (σ2, µ): We first define a geometric grid on σ2 with ratio (1 + ε), i.e., σ2
i = σ2

min(1 + ε)i,
where where 0 ≤ i ≤ imax and imax = O((1/ε) · log(n)). For every fixed i, we define an additive grid
on the means, so that |µj+1− µj | ≤ ε · σi. A combination of Propositions A.2 and A.4 implies that
this grid defines an ε-cover. Note that the total size of the described grid on (σ2, µ) is

imax∑
i=0

n(k − 1)

ε · σi
=

imax∑
i=0

n(k − 1)

ε · σmin(1 + ε)i/2
= O(n),

where the last inequality follows from the lower bound on σmin and the elementary inequality∑
i(1 + ε)−i/2 = O(1/ε).
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The following lemma completes our reduction to the n = poly(k/ε) case:

Lemma 3.2. Let P ∈ Sn,k be a k-SIIRV with VarX∼P[X] = V . For any 0 < δ < 1/4, there exists
Q ∈ Sn,k with dTV (P,Q) = O(δV ) such that all but O(k + V/δ) of the k-IRV’s defining Q are
constant.

The proof of Lemma 3.2 is deferred to Appendix D.1. Note that an application of the lemma
for δ = ε/V completes the proof.

3.2 Cover Upper Bound for Sparse Support In this subsection we prove the desired upper
bound on the cover size for the sparse case:

Proposition 3.3. Fix arbitrary constants c, C > 0. Consider n, k, ε satisfying ε ≤ k−c and n ≤
(k/ε)C . Then there exists an ε-cover of Sn,k under dTV of size (1/ε)Oc,C(k log(1/ε)).

Our proof proceeds by analyzing the Fourier transform of the probability density functions of
k-SIIRVs. We will need the following definitions.

Basic Definitions. For ξ ∈ R, recall that we use the notation e(ξ)
def
= exp(−2πiξ). For a probability

distribution P over Z, its Fourier Transform is the function P̂ : [0, 1) → C defined by P̂(ξ) =
Ey∼P[exp(−2πiyξ)] = Ey∼P[e(yξ)]. Note that Parseval’s identity states that for two pdf’s P and Q

we have ‖P−Q‖2 = ‖P̂− Q̂‖2. In our context, P and Q are going to be supported on a discrete

set A, in which case we have ‖P−Q‖2 =
(∑

a∈A(P(a)−Q(a))2
)1/2

. On the other hand, P̂ and Q̂

are Lebesgue measurable and we have ‖P̂− Q̂‖2 =
(∫ 1

0 |P̂(ξ)− Q̂(ξ)|2dξ
)1/2

.

An equivalent way to view the Fourier transform is as a function defined on the unit circle
in the complex plane. For our purposes, we will need to analyze the corresponding polynomial
defined over the entire complex plane. Namely, we will consider the probability generating function
P̃ : C→ C of P defined as P̃(z) = Ey∼P[zy]. Note that when |z| = 1, this function agrees with the

Fourier transform, i.e., P̂(ξ) = P̃(e(ξ)).
At a high-level, our proof is conceptually simple: For a k-SIIRV P, we would like to show that

the logarithm of its Fourier transform log P̂(ξ) is determined up to an additive ε by its degree
O(log(1/ε)) Taylor polynomial. Assuming this holds, it is relatively straightforward to prove the
desired upper bound on the cover size. Unfortunately, such a statement cannot be true in general
for the following reason: the function P̃(z) may have roots near (or on) the unit circle, in which case
the logarithm of the Fourier transform is either very big or infinite at certain points. Intuitively,
we would like to show that the magnitude of P̃(z) close to a root is small. Unfortunately, this is
not necessarily true.

We circumvent this problem as follows: We partition the unit circle into O(k) arcs each of
length O(1/k). We perform a case analysis based on the number of roots that are close to an arc.
If there are at least Ω(log(1/ε)) roots of P̃(z) close to a particular arc, then we show (Lemma 3.5(i))
that the magnitude of P̃(z) within the arc is going to be negligibly small. Otherwise, we consider
the polynomial q(z) obtained by P̃(z) after dividing by the corresponding roots, and show that
log q(z) is determined up to an additive ε by its degree O(log(1/ε)) Taylor polynomial within the
arc (see Lemma 3.6). Using the aforementioned structural understanding, to prove the cover upper
bound, we define a “succinct” description of the Fourier Transform based on the logarithm of q(z)
and appropriate discretization of O(log(1/ε)) nearby roots.

Note that we take advantage of the fact that our distributions are supported over a domain of
size ` = poly(k/ε), in order to relate their total variation distance to the L∞ distance between their
Fourier transforms. In particular, we have the following simple fact:
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Fact 3.4. For any pair of pdfs P,Q over [`], we have ‖P−Q‖1 ≤
√
`+ 1‖P̂− Q̂‖∞.

Indeed, note that ‖P−Q‖1 ≤
√
`+ 1‖P−Q‖2 =

√
`+ 1‖P̂− Q̂‖2 ≤

√
`+ 1‖P̂− Q̂‖∞, where

the equality is Parseval’s identity.
For the rest of this section we fix an arbitrary P ∈ Sn,k and analyze the polynomial P̃(x). We

start with the following important lemma whose proof is deferred to Appendix D.2:

Lemma 3.5. Fix x ∈ C with |x| = 1. Suppose that ρ1, . . . , ρm are roots of P̃(x) (listed with
appropriate multiplicity) which have |ρi − x| ≤ 1

2k . Then, we have the following:

(i) |P̃(x)| ≤ 2−m .

(ii) For the polynomial q(x) = P̃(x)/
∏m
i=1(x− ρi), we have that |q(x)| ≤ km.

Our main lemma for this section shows that we can ε-approximate the Taylor series of q(x) by
only considering the first O(log(1/ε)) terms:

Lemma 3.6. Fix w ∈ C with |w| = 1. Suppose that ρ1, . . . , ρm are all the roots of P̃(x) (listed with

appropriate multiplicity) which have |ρi − w| ≤ 1
3k . Let q(x) = P̃(x)∏m

i=1(x−ρi) and let the Taylor series

of ln(q(x)) at w be ln q(x) =
∑∞

j=0 cj(x − w)j . Then, we have that |cj | ≤ nk(3k)j, for all j ≥ 1,
and the real part of c0 is at most m ln k.

Fix 0 < ε ≤ 1/(12mk) and an integer ` satisfying ` ≥ log(9nk). For ρ′j with |ρ′j − ρj | ≤ ε for
j ∈ {1, . . . ,m}, and c′j with |c′j − cj | ≤ ε for j ∈ {1, . . . , `} we have: For all x ∈ C with |x| = 1 and

|x− w| ≤ 1
6k ∣∣∣∣∣P̃(x)−

( m∏
j=1

(x− ρ′j)
)

exp
( ∑̀
j=0

c′j(x− w)j
)∣∣∣∣∣ ≤ O (εmk + nk2−`

)
. (6)

Proof. We start by noting that, by the triangle inequality, Lemma 3.5 applies to all points x ∈ C
with |x| = 1 and |x−w| ≤ 1

6k . Observe that c0 = ln[q(w)] and by Lemma 3.5(ii) |q(w)| ≤ km. This
gives the claim on the real part of c0.

Note that ln(q(x)) can be expressed as a sum of the form

ln(q(x)) = c0 +

R∑
h=1

ln(1− (x− w)/(rh − w)) ,

where c0 = ln[q(w)], rj are the roots of q(x), and R ≤ n(k − 1) is the degree of q(x). By the
definition of q, it follows that |rh − w| > 1

3k for all 1 ≤ h ≤ R.

Inserting the standard Taylor series ln(1 + y) =
∑∞

j=0
yj

j gives

ln(q(x)) = c0 +
R∑
h=1

∞∑
j=0

(−1)j(x− w)j

j · (rh − w)j
.

Considering the (x− w)j term above gives cj = (−1)j

j

∑R
j=1(rj − w)−j . Therefore,

|cj | ≤ R(3k)j ≤ nk(3k)j .

This gives the desired bound on |cj |, j ≥ 1.
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We now proceed to prove (6). We start by considering the difference

∑̀
j=0

c′j(x− w)j − ln(q(x)) ,

for x in the appropriate range. Since |x− w| ≤ 1
6k ≤ 1/2 and |c′j − cj | ≤ ε, we have∣∣∣∣∣∣

∑̀
j=0

c′j(x− w)j −
∑̀
j=0

cj(x− w)j

∣∣∣∣∣∣ ≤ ε ·
∑̀
j=0

2−j ≤ 2ε .

So, we need to consider the error introduced by truncating the Taylor series after the first ` terms.
We have ∣∣∣∣∣∣

∑̀
j=0

cj(x− w)j − ln(q(x))

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
j>`

cj(x− w)j

∣∣∣∣∣∣
≤

∑
j>`

nk(3k)j(6k)−j

= nk2−`

Therefore, by the triangle inequality,∣∣∣∣∣∣
∑̀
j=0

c′j(x− w)j − log(q(x))

∣∣∣∣∣∣ ≤ 2ε+ nk2−`.

Thus, the multiplicative error in this approximation, i.e.,

1

q(x)
exp

∑̀
j=0

c′j(x− w)j

 =
1

P̃(x)

 m∏
j=1

(x− ρj)

 exp

∑̀
j=0

c′j(x− w)j


is exp(E), where |E| ≤ 2ε+ nk2−`. Since |P̃(x)| ≤ 1 and by our assumptions on `, 2ε+ nk2−` ≤ 1,
we have that ∣∣∣∣∣∣P̃(x)−

 m∏
j=1

(x− ρj)

 exp

∑̀
j=0

c′j(x− w)j

∣∣∣∣∣∣ ≤ e · (2ε+ nk2−`).

We next replace each ρj by the corresponding ρ′j one at a time. By a simple induction, we will
show that for all 1 ≤ h ≤ m∣∣∣∣∣∣P̃(x)−

 h∏
j=1

(x− ρ′j)

 m∏
j=h+1

(x− ρj)

 exp

∑̀
j=0

c′j(x− w)j

∣∣∣∣∣∣ ≤ e · (2ε+ nk2−`) + 4hkε. (7)

We have just shown this for h = 0. So, we assume (7) for 0 ≤ h ≤ m − 1 and seek to prove it for
h+ 1. For simplicity, we rewrite (7) as∣∣∣P̃(x)− (x− ρh)fh(x)

∣∣∣ ≤ e · (2ε+ nk2−`) + 4hkε ,
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where fh(x) =
(∏h−1

j=1 (x− ρ′j)
)(∏m

j=h+1(x− ρj)
)

exp
(∑`

j=0 c
′
j(x− w)j

)
.

Note that the RHS of (7) satisfies

e · (2ε+ nk2−`) + 4hkε ≤ e · (2ε+ nk2−`) + 4mkε ≤ 1 ,

by our assumptions on ε and `. Since |P̃(x)| ≤ 2−m ≤ 1, we have |(x− ρh)fh(x)| ≤ 2 or |fh(x)| ≤
2

|x−ρh| ≤ 4k. Now if we replace (x − ρh)fh(x) with (x − ρ′h)fh(x), we introduce an error of |(x −
ρh)fh(x)− (x− ρ′h)fh(x)| = |ρ′h − ρh||fh(x)| ≤ ε · 4k. Hence,∣∣∣P̃(x)− (x− ρ′h)fh(x)

∣∣∣ ≤ e · (`ε+ nk2−`) + 4(h+ 1)kε

But this is just (7) for h+ 1, completing the induction.
Taking h = m in (7) gives:∣∣∣∣∣∣P̃(x)−

 m∏
j=1

(x− ρ′j)

 exp

∑̀
j=0

c′j(x− w)j

∣∣∣∣∣∣ ≤ e · (2ε+ nk2−`) + 4mkε

as required.

We are now prepared to prove Proposition 3.3.

Proof of Proposition 3.3. By replacing ε by a power of itself, we may assume that ε ≤ k−1 and that
n ≤ ε−1. We may additionally assume that ε is sufficiently small.

It suffices to find a subset T of Sn,k of appropriate size so that for any P ∈ Sn,k there is some

Q ∈ T so that |P̃(z)− Q̃(z)| ≤ ε2 for all |z| = 1, as Fact 3.4 would then imply that dTV (P,Q) ≤ ε.
We begin by defining some parameters. Let m be an integer larger than 3 log(1/ε). Let ` be an

integer larger than log(nk/ε3) and δ > 0 a real number smaller than ε3/(mk+ `). Additionally, we
divide the unit circle of C into O(k) arcs each of length at most 1/(3k).

To each P ∈ Sn,k we associate the following data:

• For each arc in our partition with midpoint wI , define q(z) as in Lemma 3.6. Then we define
PI as follows:

– If P̃(z) has at least m roots within distance 1/(3k) of wI or if |q(wI)| < ε3 exp(−nk), we
let PI = Small.

– Otherwise, we let PI consist of the following data:

∗ Roundings of the roots of P̃(z) that are within 1/(3k) of wI to the nearest complex
numbers whose real and imaginary parts are multiples of δ/2.

∗ Roundings of the first ` Taylor coefficients of log(q) about wI to the nearest complex
numbers whose real and imaginary parts are multiples of δ/2.

We then let D(P) be the sequence {PI}I an arc in the partition. For each value V that can be
obtained as D(P) for some P ∈ Sn,k, we pick one such P called QV . We define our cover T to be
the set of all such QV . In order to show that this is an appropriate cover, we need to show two
claims:

1. The number of possible values of D(P) is at most (1/ε)O(k log(1/ε)) . This implies that |T | is
appropriately small.
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2. If P,Q ∈ Sn,k have D(P) = D(Q), then dTV (P,Q) ≤ ε. This will imply that T is a cover,
since given any P ∈ Sn,k, we may take Q = QD(P) ∈ T .

The first claim is relatively straightforward. For each of O(k) arcs, I, we have that PI is either
Small or a sequence of O(log(1/ε)) complex numbers, each of which can take only poly(1/δ) many
possible values. Thus, the number of possible values for PI is at most δ−O(log(1/ε)) = (1/ε)O(log(1/ε)).
The number of possible values for D(P) is at most this raised to the number of arcs, which is
(1/ε)O(k log(1/ε)).

The second claim is slightly more involved. We note that it is sufficient to show that if D(P) =
D(Q), then |P̃(z)− Q̃(z)| ≤ ε2 for all unit norm z. In particular, we show the stronger claim that
for any of our arcs I if PI = QI , then |P̃(z)− Q̃(z)| = O(ε3) for all z ∈ I.

If PI = QI = Small, we claim that |P̃(z)|, |Q̃(z)| = O(ε3) for all z ∈ I. It suffices to show this
merely for P. On the one hand, if P̃(z) has more than m roots near wI , this follows from the first
part of Lemma 3.5. On the other hand, if |q(wI)| ≤ ε3 exp(−nk), then for any other z ∈ I we have
that

q(z) = q(wI) exp

( ∞∑
i=1

ci(z − wI)i
)
,

where by Lemma 3.6, |ci| ≤ nk(3k)i. Therefore, for z ∈ I, since |z − wI | ≤ 1/(6k), we have by
Lemma 3.5 that

|P̃(z)| ≤ |q(z)| ≤ |q(wI)| exp(nk) ≤ ε3.

If PI = QI 6= Small, we note by Lemma 3.6 that for z ∈ I that both of P̃(z) and Q̃(z) are

within O(mkδ+ `δ+nk2−`) = O(ε3) of
∏M
j=1(z−ρ′j) exp

(∑`
j=0 c

′
j(z − wI)j

)
, where the ρ′j are the

roundings of nearby roots and c′j the roundings of the Taylor coefficients given by the data pI = qI .

Thus, again in this case, |P̃(z)− Q̃(z)| ≤ O(ε3) for all z ∈ I.
This completes the proof of Proposition 3.3.

3.3 Efficient Cover Construction In this section, we give an algorithm to construct a near-
minimum size cover in output polynomial time:

Theorem 3.7. Let n, k be positive integers and ε > 0. There exists an algorithm that runs in time
n (k/ε)O(k log(1/ε)) and returns a proper ε-cover for Sn,k, i.e., a cover consisting of n (k/ε)O(k log(1/ε))

k-SIIRVs each given as an explicit sum of k-IRVs.

Our algorithm builds on the existential upper bound established in the previous subsections.
We first construct an ε-cover for k-SIIRVs in Case 2 of Theorem 3.1, i.e., k-SIIRVs whose variance
is more than a sufficiently large polynomial in k/ε. By Theorem 3.1 each such k-SIIRV is ε-close to
a random variable of the form cZ + Y , where 1 ≤ c ≤ k − 1 is an integer, Z is a discrete Gaussian
and Y is a c-IRV. In Section 3.1 we exploited this structural fact to construct a non-proper cover for
k-SIIRVs in this case. We remark that this non-proper cover may contain “spurious” points, i.e.,
points not close to a large variance k-SIIRV. Efficiently constructing a proper cover without spurious
points for the high variance case requires careful arguments and is deferred to Appendix D.3.

We now focus our attention to Case 1. By Lemma 3.2, we have that all such k-SIIRVs can be
approximated by a constant plus a sum of poly(k/ε) k-IRVs. Since there are only nk possibilities
for this constant, and all such possibilities are easily obtainable, it suffices to find an explicit ε-cover
for Sn,k when n = poly(k/ε).

A simple but useful observation is that we can round each coordinate probability for each of our
k-IRVs to a multiple of ε/(nk) and introduce an error of O(ε) in total variation distance. Therefore,

34



it suffices to find a cover of S ′n,k, a sum of n = poly(k/ε) independent k-IRVs, where each of their

coordinate probabilities is a multiple of 1
N for some integer N = poly(k/ε). We will henceforth call

such a k-IRV N -discrete k-IRV.
Our main workhorse here will once again be Lemma 3.6. The cover we construct will be

much the same as in Proposition 3.3, but we will now explicitly produce SIIRVs that obtain every
possible value of D. Fortunately, the Taylor series of the log of the Fourier transform is additive in
the composite k-IRVs, and so there exists an appropriate dynamic program to solve this problem.

Let δ > 0 be given by a sufficiently small polynomial in ε/k, and let m be an integer at least
a sufficiently large multiple of log(1/ε). We divide the unit circle into arcs I with midpoints wI as
described in the proof of Proposition 3.3. For any N -discrete k-IRV, P, we associate the following
data. For each interval I, let ρ1,I , . . . , ρrI ,I be the roots of P̃ that are within distance 1/(3k) of wI ,

and let q(z) = P̃(z)∏
(z−ρi,I) . For 1 ≤ j ≤ rI , let ρ′j,I be a rounding of ρj,I with ρ′j , I = (a + bi)δ for

some a, b ∈ Z and |ρ′j,I − ρj,I | ≤ δ. For 1 ≤ j ≤ m, let c′j,I be a rounding of cj,I with c′j,I = (a+ bi)δ
for some a, b ∈ Z and |c′i,I − ci,I | ≤ δ, where the ck,I are the coefficients of first m+ 1 terms of the

Taylor series ln q(z) =
∑∞

j=0 cj(z − wI)j . Let PI be the data consisting of the list (ρ′1,I , . . . , ρ
′
rI ,I

)
and the vector (c′0,I , c

′
1,I , . . . , c

′
m,I). We let D(P) be the sequence of PI over all intervals I.

Given a sequence P1,P2, . . . ,Ph of k-IRVs, we let D(P1, . . . ,Pk) be given by the following data
for each I:

• The first m elements of the concatenation of the lists of approximate roots of
∏h
i=1 P̃i(z) near

wI .

• The list of elements
∑h

i=1 c
′
j,I(Pi) for 0 ≤ j ≤ m, with the exception that the j = 0 term

is replaced by −∞ if for any h′ < h we have that the real part of
∑h′

i=1 c
′
0,I(Pi) is less than

−nk −m−m ln k.

Our algorithm will follow from three important claims:

Claim 3.8. We have the following:

(i) D(P1, . . . ,Ph) can be computed in poly(k/ε) time from D(P1, . . . ,Ph−1) and D(Ph).

(ii) There are only (k/ε)O(k log(1/ε)) possible values for D(P1, . . . ,Ph) for any h ≤ n.

(iii) If D(P1, . . . ,Pn) = D(Q1, . . . ,Qn) and P,Q are the distributions of
∑n

i=1Xi and
∑n

i=1 Yi
for Xi ∼ Pi and Yi ∼ Qi then dTV (P,Q) ≤ ε.

Proof. The first statement follows from the fact that the lists of roots in D(P1, . . . ,Ph) are obtained
by concatenating those in D(P1, . . . ,Ph−1) with those in D(Ph), and truncating if necessary.
And moreover that

∑h
i=1 c

′
j,I(Pi) is obtained by adding c′j,I(Ph) to

∑h−1
i=1 c

′
j,I(Pi) (with the term

remaining −∞ if it was in D(P1, . . . ,Ph−1)).
For the second statement note that for each of the O(I) intervals, we store O(log(1/ε)) complex

numbers whose real and imaginary parts are each multiples of δ. As each of these numbers (with
the exception of a −∞ term) have size at most poly(k/ε) and δ = poly(ε/k), there are only
poly(k/ε)O(k log(1/ε)) many possible values for D(P1, . . . ,Ph).

The third statement is true for essentially the same reasons as in the proof of Proposition 3.3.

Once again, we simply need to show that for each interval I it holds |P̃(z)− Q̃(z)| ≤ (ε/k)c for all
z ∈ I and c a sufficiently large constant. Note that the listed roots are simply δ-approximations
of the (first m) roots of P̃ and q̃ within distance 1/(3k) of wI , and the

∑n
i=1 c

′
j,I(Pi) are within

distance nδ of the coefficients of the Taylor expansion of the logarithm of q(z) about wI . If we have
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m nearby roots, both P̃ and Q̃ are small for all z in this range. Otherwise, unless there is a −∞
in D(P) = D(Q), they are close by Lemma 3.6. If we do have a −∞ then

<

(
h′∑
i=1

c′0,I(Pi)

)
< −nk −m−m ln k

for some h′ ≤ h. Since the later c0,I(Pi) and c0,I(Qi) have <c0,I(Pi) ≤ mi ln k and <c0,I(Pi) ≤
mi ln k by Lemma 3.6, this means that |q(wI)| < e−me−nk, and as in Proposition 3.3, this implies
that both P̃ and Q̃ are sufficiently small.

We can now present the algorithm for producing our cover. The basic idea is to use a dynamic
program to come up with one representative collection of P1, . . . ,Ph to obtain each achievable
value of D. The algorithm is as follows:

Algorithm Cover-SIIRV

Input: k, ε > 0 and n,N = poly(k/ε).

1. Define δ and m as above.

2. Let L0 = {(D(∅), ∅)}.

3. For h = 1 to n

4. Let Lh be the set of terms of the form (D(P1, . . . ,Ph), (P1, . . . ,Ph)) where
(D(P1, . . . ,Ph−1), (P1, . . . ,Ph−1)) ∈ Lh−1 and Ph is an N -discrete k-IRV.

5. Use a hash table to remove from Lh all but one term with each possible value of
D(P1, . . . ,Ph)

6. End for

7. Return the list of distributions
∑n

i=1Xi with Xi ∼ Pi for each
(D(P1, . . . ,Pn), (P1, . . . ,Pn)) ∈ Ln.

To prove that this produces a cover, we claim by induction on h that Lh contains an element
that achieves each possible value of D(P1, . . . ,Ph). This is clearly true for h = 0. Given that it
holds for h− 1, Claim 3.8(i) implies that the non-deduped version of Lh also satisfies this property,
and deduping clearly does not destroy it. Therefore Ln contains (exactly one) element for each
possible value of D(P1, . . . ,Pn). Therefore, by Claims 3.8(ii) and (iii), the algorithm will return a
cover of the appropriate size. For the runtime, we note that the initial size of Lh before deduping
is the product of the size of Lh−1 and the number of N -discrete k-IRVs, which by Claim 3.8(ii)
is poly(k/ε)k log(1/ε). Each of these elements are generated in poly(k/ε) time, and the deduping
process takes only polynomial time per element. Therefore, the final runtime is poly(k/ε)k log(1/ε).
This completes the proof of Theorem 3.7.

4 Cover Size Lower Bound

In this section we prove our lower bound on the cover size of k-SIIRVs. In Section 4.1 we show
the desired lower bound for the case of 2-SIIRVs. In Section 4.2 we generalize this construction for
general k-SIIRVs.
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4.1 Cover Size Lower Bound for 2-SIIRVs We start by providing an explicit lower bound
on the cover size of 2-SIIRVs. In particular, we show the following:

Theorem 4.1. For all 0 < ε ≤ e−42 and n ∈ Z such that 7 ≤ n ≤ 1
6 ln(1/ε), there is an ε-packing

of Sn,2 under dTV with cardinality (1/ε)Ω(n).

We begin with the following useful lemma:

Lemma 4.2. Let P and Q be 2-SIIRVs given by parameters pi and qi for 1 ≤ i ≤ n, for some
n ≥ 7. Suppose that for all i, 1 ≤ i ≤ n, it holds |pi − i/(n+ 1)| ≤ 1/4(n+1) and |qi − i/(n+ 1)| ≤
1/4(n+ 1). Then,

dTV (P,Q) ≥ max
i
|pi − qi| · e−3n.

Proof. Let ε = |pi−qi|e−3n. For a distribution P supported on [n], define rP(p) to be the polynomial

rP(p) = EX∼P
[
(p− 1)X · pn−X

]
=

n∑
i=0

P(i)(p− 1)ipn−i.

For a PBD P ∈ Sn,2 and X ∼ P with X =
∑n

i=1Xi for Xi ∼ Ber(pi), we have that

rP(p) = E
[
(p− 1)Xpn−X

]
= E

[
(p− 1)

∑n
i=1Xi · p

∑n
i=1(1−Xi)

]
= E

[
n∏
i=1

(p− 1)Xip1−Xi

]
=

n∏
i=1

E
[
(p− 1)Xip1−Xi

]
=

n∏
i=1

(pi(p− 1) + (1− pi)p) =
n∏
i=1

(p− pi) .

Hence, the roots of the polynomial rP are exactly the parameters pi of the 2-SIIRV P ∈ Sn,2. We
have the following simple claim:

Claim 4.3. Let P,Q ∈ Sn,2 such that dTV (P,Q) < ε. Then for any p ∈ [0, 1], we have that

|rP(p)− rQ(p)| < 2ε.

Proof. We have the following sequence of (in)equalities:

|rP(p)− rQ(p)| =

∣∣∣∣∣
n∑
i=0

(P(i)−Q(i))(p− 1)ipn−i

∣∣∣∣∣ ≤
n∑
i=0

|(P(i)−Q(i))| ·
∣∣(p− 1)ipn−i

∣∣
≤

n∑
i=0

|P(i)−Q(i)| = 2dTV (P,Q) < 2ε ,

where the second line is the triangle inequality and the third line uses the fact that |(p−1)ipn−i| ≤ 1
for all i ∈ [n] and p ∈ [0, 1].

Hence, to prove the lemma, it suffices to show that for some p ∈ [0, 1] that

|rP(p)− rQ(p)| ≥ 2ε.
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In particular, we show this for p = pi. Noting that rP(pi) = 0, it suffices to show that |rQ(pi)| ≥ 2ε.
We now proceed to prove this fact. If j 6= i we have that,

|pi − qj | ≥
|i− j|
n+ 1

−
∣∣∣∣pi − i

n+ 1

∣∣∣∣− ∣∣∣∣qj − j

n+ 1

∣∣∣∣ ≥ 1

2(n+ 1)
.

Therefore, we have that

|rQ(pi)| =
n∏
j=1

|pi − qj | ≥ |pi − qi| ·
∏
j 6=i

|i− j|
2(n+ 1)

.

We note that ∏
j 6=i

|i− j|
(n+ 1)

= (i− 1)!(n− i)! ≥ n!(
n−1
i−1

) ≥ (n/e)n

2n−1
, (8)

where we use the elementary inequalities n! ≥ (n/e)n and
(
n−1
i∗−1

)
≤ 2n−1. Applying this to the

above, we find that

|rQ(pi)| =
|pi − qi|

e · (n+ 1)(4e)n
≥ 2|pi − qi|

e3n
≥ 2ε.

Proof of Theorem 4.1. Given ε > 0 and n ∈ Z satisfying the condition of the theorem, we define
an explicit ε-packing for Sn,2 as follows: Let s = bε−1/2c. For a vector a = (a1, . . . , an) ∈ [s]n, let

pai =
i

n+ 1
+
ai
√
ε

4n
, i ∈ {1, . . . , n} ,

be the parameters of a 2-SIIRV Pa ∈ Sn,2. We claim that the set of 2-SIIRVs
{
Pa

}
a∈[s]n

satisfies

the conditions of the theorem, i.e., for all a,b ∈ [s]n, a 6= b implies dTV (Pa,Pb) ≥ ε.
In particular, if a 6= b, then there must be some i so that ai 6= bi. Then, by Lemma 4.2, we

have that

dTV (Pa,Pb) ≥ |pai − pbi |e−3n ≥
√
ε

4n
e−3n ≥ ε3/4

4n
≥ ε.

As a simple corollary we obtain the desired lower bound:

Corollary 4.4. For all 0 < ε < 1 and n = Ω(log(1/ε)), any ε-cover of Sn,2 under dTV must be of
size n · (1/ε)Ω(log 1/ε).

Proof. We will assume without loss of generality that ε is smaller than an appropriately small
positive constant. First note that if there exists a 3ε-packing for Sn,2 of cardinality M , then any
ε-cover for Sn,2 must be of cardinality at least M . Indeed, for every Qi, i = 1, . . . ,M , in the
3ε-packing, consider the (non-empty) set Nε(Qi) of points P in the ε-cover with dTV (Qi,P) ≤ ε.
If P ∈ Nε(Qi) and j 6= i, we have dTV (P,Qj) ≥ dTV (Qj ,Qi)− dTV (Qi,P) ≥ 2ε. That is, the sets
Nε(Qi) are each non-empty and mutually disjoint, which implies that the size of any ε-cover is at
least M .
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By Theorem 4.1, for any 0 < ε ≤ e−42/3, if we fix n0 = b1
6 ln(1/3ε)c, there is a 3ε-packing for

Sn0,2 of size (1/ε)Ω(log(1/ε)). From the argument of the previous paragraph, any ε-cover for Sn0,2 is
of size (1/ε)Ω(log(1/ε)).

To prove the desired lower bound of n · (1/ε)Ω(log(1/ε)) we construct appropriate “shifts” of the
set Sn0,2 as follows: Consider the set Sn,2 where n ≥ r(n0 + 1) for some r ∈ Z+. For 0 ≤ i < r,
let Sin,2 be the subset of Sn,2 where i(n0 + 1) of the parameters pj are equal to 1, and at most n0

other pj ’s are non-zero. Note that for i 6= j any elements of Sin,2 and Sjn,2 have disjoint supports.

Therefore, any ε-cover of Sn,2 must contain disjoint ε-covers for Sin,2 for each i. Note also that

Sin,2 is isomorphic to Sn0,2 for each i, and thus has minimal ε-cover size at least (1/ε)Ω(log(1/ε)).

Therefore, any ε-cover of Sn must have size at least bn/n0c · (1/ε)Ω(log(1/ε)) = n(1/ε)Ω(log(1/ε)).

4.2 Cover Size Lower Bound for k-SIIRVs In this section, we prove our cover lower bound
for k-SIIRVs:

Theorem 4.5. For 0 < ε ≤ e−12(2k)−9 and n ≤ b 1
12 log(1/ε)c, there is an ε-packing of Sn,k under

dTV with cardinality (1/ε)Ω(nk).

Proof. We consider k-SIIRVs close to the (k − 1) multiple of the 2-SIIRV P0 with parameters
pi = i

n+1 we used for the explicit lower bound in Section 4.1. Let m ∈ Z+ and 0 < δ < 1

be parameters that will be fixed later. Given an a ∈ [m]n(k−2), which will index by aij , for
i ∈ {1, . . . , n} and j ∈ {1, . . . , k − 2}, we define a k-SIIRV Pa as follows. For each i, we take a
k-IRV Yi with pdf defined as follows:

Pr[Yi = 0] = (1− pi)

1− δ ·
∑
j

aij

 ,

Pr[Yi = j] = δ · aij , 1 ≤ j ≤ k − 2,

Pr[Yi = k − 1] = pi

1− δ
∑
j

aij

 .

For convenience, we will denote γa,i =
(

1− δ ·
∑

j aij

)
. We claim that the set of distributions

Pa, a ∈ [m]n(k−2), is an ε-packing. To prove this statement we proceed similarly to the proof of
Theorem 4.1. For a distribution P, we will consider the expectations

rP,ij =
n∑
l=0

pn−li (pi − 1)lP(l(k − 1) + j)

for i ∈ {1, . . . , n} and j ∈ {1, . . . , k − 2}. Similarly to Claim 4.3, we have the following:

Claim 4.6. Let P,Q ∈ Sn,k such that dTV (P,Q) < ε. Then for any i ∈ {1, . . . , n} and j ∈
{1, . . . , k − 2}, we have that

|rP,ij − rQ,ij | < 2ε.
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Proof. We have the following sequence of (in)equalities:

|rP,ij − rQ,ij | =

∣∣∣∣∣
n∑
l=0

(P(l(k − 1) + j)−Q(l(k − 1) + j))pn−li (pi − 1)l

∣∣∣∣∣
≤

n∑
i=0

|(P(l(k − 1) + j)−Q(l(k − 1) + j)| ·
∣∣∣pn−li (pi − 1)l

∣∣∣
≤

n∑
i=0

|P(l(k − 1) + j)−Q(l(k − 1) + j)| ≤ 2dTV (P,Q)

< 2ε ,

where the second line is the triangle inequality and the third line uses the fact that |pn−li (pi−1)l| ≤ 1
for all l ∈ [n] and i ∈ {1, . . . , n}.

By the above claim, to complete the proof, it suffices to show that |rPa,ij−rPb,ij | ≥ 2ε whenever
aij 6= bij . To prove this statement, we exploit the fact that these k-SIIRVs are close to a multiple
of P0, by ignoring terms in the expectations that are O(δ2).

Let Y =
∑n

i=1 Yi with Y ∼ Pa for a given a ∈ [m]n(k−2). We define several events depending
on which coordinates Yi are equal to 0 or k− 1, and consider their contribution to the expectation
rPa,ij separately.

Firstly, let A≥2 be the event that more than one Yi is not 0 or k− 1 . The probability that any
fixed Yi is not 0 or k − 1 is small, namely

k−2∑
j=1

Pr[Yi = j] =
k−2∑
j=1

δaij ≤ (k − 2)mδ .

Hence,

Pr[A≥2] ≤
(
n

2

)
((k − 2)mδ)2 ≤ 1

2
· (n(k − 2)mδ)2 .

The contribution ofA≥2 to rPa,ij is rPa,ij,A≥2
:=
∑n

l=0 p
n−l
i (pi−1)lPrY∼Pa [Y = l(k − 1) + j ∩A≥2] ,

and therefore

|rPa,ij,A≥2
| ≤ 1

2
(n(k − 2)mδ)2 ,

since |pn−li (pi − 1)l| ≤ 1.
Secondly, let A0 be the event that all Yi’s are 0 or k − 1. If A0 occurs then Y is a multiple of

k − 1. Thus, for l ∈ [n] and j ∈ {1, . . . , k − 2}, we have PrY∼Pa [Y = l(k − 1) + j ∩A0] = 0. The
contribution of A0 to rPa,ij is

rPa,ij,A0 :=

n∑
l=0

pn−li (pi − 1)lPrY∼Pa [Y = l(k − 1) + j ∩A0] = 0 .

Finally, for i ∈ {1, . . . , n}, let Bi be the event that Yi is the only k-IRV that takes a value between 1
and k−2. The probability of all other Yh, with h 6= i, being either 0 or k−1 is

∏
h6=i γa,h. We consider

the RVs X−i =
∑

h6=iXh, where Xh ∼ Ber(ph). That is, X−i ∼ P−i ∈ Sn−1,2, i.e., it is a 2-SIIRV

with parameters ph for h 6= i. Then, the conditional probability Pr
[∑

h6=i Yh = l(k − 1)|(Bi ∪A0)
]
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is equal to Pr [X−i = l] = P−i(l) for all l ∈ [n]. So, for all l ∈ [n] and j ∈ {1, . . . , k − 2} we have

Pr [Y = l(k − 1) + j ∩Bi] = Pr

∑
h6=i

Yh = l(k − 1) ∩ (Bi ∪A0)

Pr[Yi = j]

=

∏
h6=i

γa,h

P−i(l)δaij

Then, the contribution of Bi to rPa,gj is

rPa,gj,Bi :=

n∑
l=0

pn−lg (pg − 1)lPrY∼Pa [Y = l(k − 1) + j ∩Bi]

=

∏
h6=i

γa,h

 · δaij · n∑
l=0

pn−lg (pg − 1)lP−i(l)

=

∏
h6=i

γa,h

 · δaij · rP−i(pg)
=

∏
h6=i

γa,h

 · δaij ·∏
h6=i

(ph − pg) ,

where rP−i above is as defined in the previous section, and when g 6= i, the second product includes
the term pg−pg = 0, so rPa,gj,Bi = 0. Summing these contributions to the expectation rPa,ij gives:

rPa,ij = rPa,ij,A≥2
+ rPa,ij,A0 +

n∑
g=1

rPa,ij,Bg

= rPa,ij,A≥2
+ rPa,ij,Bi

= rPa,ij,A≥2
+
∏
h6=i

γa,h · δaij ·
∏
h6=i

(ph − pi)

Now consider a and b which for some i ∈ {1, 2, ..., n} and j ∈ {1, 2, ..., k − 2} have aij 6= bij . We
have that

∏
h6=i |ph − pi| ≥ e−3n by Equation (8), and thus,∏

h6=i
γa,h =

∏
h6=i

(
1− δ

∑
j
ahj

)
≥ (1− (k − 2)mδ)n−1 ≥ (1− (n− 1)(k − 2)mδ),

|aij − bij | ≥ 1, and |rPa,ij,A≥2
| ≤ 1

2(n(k − 2)mδ)2.
We obtain the following sequence of inequalities:

|rPa,ij − rPb,ij | = |rPa,ij,Bi − rPb,ij,Bi + rPa,ij,A≥2
− rPb,ij,A≥2

|

≥
∣∣∣ ∏
h6=i

(ph − pg)
( ∏
h6=i

γa,hδaij −
∏
h6=i

γb,hδbij
)∣∣∣− (n(k − 2)mδ)2

≥ e−3n
∣∣ ∏
h6=i

γa,hδ
∣∣ · |aij − bij | − e−3nδbij

∣∣ ∏
h6=i

γa,h −
∏
h6=i

γb,h
∣∣− (n(k − 2)mδ)2

≥ e−3n(1− (n− 1)(k − 2)mδ)δ − δm
(∣∣1− ∏

h6=i
γa,h

∣∣+
∣∣1− ∏

h6=i
γb,h

∣∣)− (n(k − 2)mδ)2

≥ e−3nδ − 2δmn(k − 2)mδ − 2(n(k − 2)mδ)2

≥ e−3nδ − 3(n(k − 2)mδ)2 .
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Recall that by assumption ε ≤ e−12(2k)−9. We set n = b 1
12 log(1/ε)c, δ = 3ε3/4, and m =

b ε−1/4

2n2(k−2)2
c. Then, e−3nδ ≥ 3ε and 3(n(k − 2)mδ)2 ≤ ε. So, we have that |rPa,ij − rPb,ij | ≥ 2ε as

required. Also, γa ≥ 1−
√
ε ≥ 0, so the k-IRVs are indeed well-defined.

Therefore, we have exhibited a set of mn(k−2) k-SIIRVs that have pairwise total variation
distance at least ε. The proof follows by observing that mn(k−2) = (1/ε)Ω(k log 1/ε).

5 Sample Complexity Lower Bound

In this section, we prove our sample complexity lower bounds. We start with the case k = 2, and
then generalize our construction for an arbitrary value of k. As mentioned in the introduction, our
sample lower bounds make crucial use of a geometric characterization of the space of k-SIIRVs.
In Section 5.1, we describe our geometric characterization for 2-SIIRVs, and in Section 5.2 we use
it to prove our 2-SIIRV sample lower bound. Similarly, in Section 5.3, we describe our geometric
characterization for k-SIIRVs, and in Section 5.4 we use it to prove our k-SIIRV sample lower
bound.

5.1 A Useful Structural Result for 2-SIIRVs In this subsection, we prove a novel structural
result for the space of 2-SIIRVs (Lemma 5.1). This allows us to obtain a simple non-constructive
lower bound on the cover size of 2-SIIRVs under the Kolmogorov distance metric. More importantly,
this lemma is crucial for our tight sample complexity lower bound of the following subsection.

Before we state our lemma, we provide some basic intuition. The set of all distributions sup-
ported on [n] is n-dimensional (viewed as a metric space). Note that each P ∈ Sn,2 is defined by
n parameters. It turns out that Sn,2 is also n-dimensional in a precise sense. This intuition is
formalized in the following lemma:

Lemma 5.1. (i) Given any P ∈ Sn,2 with distinct parameters in (0, 1), there is a radius δ = δ(P)
such that any distribution Q with support [n] that satisfies dK(P,Q) ≤ δ can also be expressed as
a 2-SIIRV, i.e., Q ∈ Sn,2.

(ii) Let P0 ∈ Sn,2 be the 2-SIIRV with parameters pi = i
n+1 , 1 ≤ i ≤ n. Then any distribution

Q with support [n] that satisfies dK(P0,Q) ≤ 2−9n is itself a 2-SIIRV with parameters qi such that
|qi − pi| ≤ 1

4(n+1) .

Proof. We consider the space of cumulative distribution functions (CDF’s) of all distributions
of support [n]. Let Tn be the set of sequences 0 ≤ x1 ≤ x2 ≤ . . . ≤ xn ≤ 1. Consider the
map Pn : Tn → Tn defined as follows: For p = (p1, . . . , pn) ∈ Tn (i.e., with ordered parameters
0 ≤ p1 ≤ . . . ≤ pn ≤ 1), let P be the corresponding 2-SIIRV in Sn,2. For i ∈ {1, . . . , n}, let
(Pn(p))i = P(< i). Namely, Pn maps a sequence of probabilities to the sequence of probabilities
defining the CDF of the corresponding 2-SIIRV.

The basic idea of the proof is that the mapping Pn is invertible in a neighborhood of a point p
with distinct coordinates. This allows us to uniquely obtain the distinct parameters of a 2-SIIRV
P ∈ Sn,2 from its CDF. We will make essential use of the inverse function theorem for Pn, which
we now recall:

Theorem 5.2 (Inverse function theorem [Rud76]). Let F : S → Rn, S ⊆ Rn, be a continuously
differentiable function and x be a point in the interior of S such that the Jacobian matrix of F ,
Jac(F )(x), is non-singular. Then there exists an inverse function, F−1, of F in a neighborhood of
F (x). Furthermore the inverse function F−1 is continuously differentiable and its Jacobian matrix
satisfies Jac(F−1)(F (x)) = (Jac(F )(x))−1.
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We will apply the inverse function theorem for Pn at the point p defining the distinct parameters
of the 2-SIIRV P in the statement of the theorem. It is easy to see that Pn is continuously
differentiable. The main part of the argument involves proving that the Jacobian matrix of Pn at
p, Jac(Pn)(p), is non-singular.

Recall that Jac(Pn)(p) is the n× n matrix whose (i, j) entry is the partial derivatives of (Pn)i
in direction j, i.e., (Jac(Pn)(p))ij = ∂(Pn(p))i

∂pj
. We start by showing the following lemma:

Lemma 5.3. For a 2-SIIRV P ∈ Sn,2 with parameters p, we have

M(p) · Jac(Pn)(p) = −diag

∏
j 6=i

(pi − pj)

 (9)

where M(p) is the n × n matrix with entries (M(p))ij = (1 − pi)j−1pn−ji , 1 ≤ i, j ≤ n. Here, for
x ∈ Rn, we denote by diag(x) the diagonal matrix with entries (diag(x))ii = xi.

Proof. To calculate the partial derivative ∂(Pn(p))i
∂pj

, we isolate the effect of the parameter pj from

the other variables. In particular, for X ∼ P, i.e., X =
∑n

i=1Xi, with Xi ∼ Ber(pi), we can write
X = X−j + Xj , where X−j =

∑
i 6=j Xi. Note that Xj ∼ P−j ∈ Sn−1,2, i.e., it is the (n − 1)

parameter 2-SIIRV with parameters pi for i 6= j. Now, for 1 ≤ i ≤ n, we can write

(Pn(p))i = P(< i) = P−j(< (i− 1)) + (1− pj)P−j(i− 1).

The derivative of this quantity with respect to pj equals ∂(Pn(p))i
∂pj

= −P−j(i − 1). Therefore, the

j-th column of Jac(Pn)(p) equals −1 times the pdf of the distribution P−j . This allows us to
consider multiplying on the right by Jac(Pn)(p) as taking the expectations of certain distributions.
In particular, for y ∈ Rn and any 1 ≤ j ≤ n, we have that

(yTJac(Pn)(p))j = −
n∑
i=1

yiP−j(i− 1) = −E
[
yX−j+1

]
.

Therefore, for 1 ≤ i, j ≤ n, we can write

(M(p) · Jac(Pn)(p))ij = −
n∑
k=1

(pi − 1)k−1pn−ki P−j(k − 1) = −E
[
(pi − 1)X−jp

n−X−j−1
i

]

= −E

∏
k 6=j

(pi − 1)Xkp1−Xk
i

 = −
∏
k 6=j

E
[
(pi − 1)Xkp1−Xk

i

]
= −

∏
k 6=j

[(pi − 1)pk + pi(1− pk)] = −
∏
k 6=j

(pi − pk) .

Note that for i 6= j, the above product contains the term (pi−pi) and so is equal to 0. When i = j,
we have (M(p) · Jac(Pn)(p))ii = −

∏
k 6=i(pi − pk) completing the proof of the lemma.

We are now ready to prove part (i) of Lemma 5.1. To this end, consider a 2-SIIRV P with distinct
parameters p, i.e., pi 6= pj for i 6= j, such that pi ∈ (0, 1) for all i. Note that p lies in the interior
of Tn. Moreover, for all i, we have

∏
j 6=i(pi − pj) 6= 0 and therefore the matrix diag(

∏
j 6=i(pi − pj))

appearing in (9) is non-singular. It follows from Lemma 5.3 that both matrices on the LHS of (9) are
non-singular. In particular, Jac(Pn)(p) is non-singular, hence we can apply the inverse function
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theorem. As a corollary, there exists an inverse mapping P−1
n in some neighborhood of Pn(p).

Specifically, there is some δ > 0 such that P−1
n is defined at every x ∈ Tn with ‖x−Pn(p)‖∞ ≤ δ.

Let Q be a distribution over [n] satisfying dK(P,Q) ≤ δ. Equivalently, if y = (Q(< i))ni=1 ∈ Tn
is the CDF of Q, then ‖Pn(p) − y‖∞ ≤ δ. Thus P−1

n is defined at y and q = P−1
n (y) ∈ Tn are

the parameters of a 2-SIIRV with distribution Q. Thus, Q is a 2-SIIRV with parameters q, which
completes the proof of (i). Note that the proof also implies that Q in this neighborhood can be
taken to be Pn(q′) for q′ in some small neighborhood of p.

To prove part (ii) of Lemma 5.1, we use a geometric argument. Recall that the parameters of

P0 are p0 =
(

1
n+1 , . . . ,

n
n+1

)
. Let S ⊆ Tn be the set of vectors p with ‖p − p0‖∞ ≤ 1

4(n+1) . By

Lemma 4.2 we have that any Q in Pn(∂S) satisfies dTV (P0,Q) ≥ e−3n

4(n+1) , and therefore dK(P0,Q) ≥
e−3n

8(n+1)2
≥ 2−9n.

Let B be the set of distributions Q on [n] so that dK(P0,Q) ≤ 2−9n. We claim that Pn(S)∩B =
B. To begin, note that S is compact, and therefore this intersection is closed. On the other hand,
since Pn(∂S) is disjoint from B, this intersection is Pn(int(S)) ∩ B. On the other hand, since Pn
has non-singular Jacobian on int(S), the open mapping theorem implies that Pn(int(S)) ∩B is an
open subset of B. Therefore, Pn(S)∩B is both a closed and open subset of B, and therefore, since
B is connected, it must be all of B. This completes the proof of part (ii).

As a simple application of our structural lemma, we obtain a non-constructive lower bound on
the cover size under the Kolmogorov distance metric:

Theorem 5.4. For any ε > 0 and n = Ω(log(1/ε)) any ε-cover of Sn,2 under dK must have size at
least n · (1/ε)Ω(log(1/ε)).

Proof. Note that by an argument identical to that of Corollary 4.4 it suffices to prove a packing
lower bound of (1/ε)Ω(log(1/ε)) for n = Θ(log(1/ε)).

To that end, fix n = n0 = b 1
18 log2(1/ε)c. Then, we have 2−9n ≥

√
ε. By Lemma 5.1(ii), there

is a 2-SIIRV P0 ∈ Sn,2, such that any distribution Q with support [n] and dK(P0,Q) ≤
√
ε is in

Sn,2. We will give an ε-packing lower bound for this subset of 2-SIIRVs.
Let us denote by z ∈ Tn the vector defining the CDF of P0, i.e., z = (P0(< i))ni=1. Let S ⊆ Rn

be the set of points x ∈ Rn with ‖x− z‖∞ ≤
√
ε. Note that S is an n-cube with side length 2

√
ε.

We claim that every x ∈ S is the CDF of a 2-SIIRV Q ∈ Sn,2 . By Lemma 5.1, this follows
immediately if x ∈ Tn, i.e., if x is the CDF of a distribution. So, it suffices to show that S ⊆ Tn.
Suppose for the sake of contradiction that there is a point y ∈ S \Tn. Then, there is a point x ∈ S
such that x lies on the boundary of Tn. For such a point x, one of the inequalities 0 ≤ x1 ≤ x2 ≤
. . . ≤ xn ≤ 1 is tight. Thus, x is the CDF of a distribution Q which has Q(i) = 0 for some i. Since
x ∈ S ∩ Tn, Q is a 2-SIIRV with parameters given by Lemma 5.1. In particular Q does not have
any parameters equal to 0 or 1. Thus, we have Q(i) > 0 for all i ∈ [n], a contradiction.

Therefore, any ε-cover of Sn,2 in Kolmogorov distance induces an ε-cover of the same size in
L∞ distance of the CDFs of distributions in Sn,2. If s is the size of such a cover, then we have s
n-cubes of side length ε whose union contains S. Recall that S is an n-cube of side length

√
ε. The

volume of each of these s n-cubes is (2ε)n and the volume of S is (2
√
ε)n. The volume of the union

of s n-cubes is at most s · (2ε)n and hence s · (2ε)n ≥ (2
√
ε)n or s = (1/ε)Ω(n), which competes the

proof.

5.2 Sample complexity lower bound for 2-SIIRVs In this subsection, we prove our tight
sample lower bound for learning 2-SIIRVs. Our proof uses a combination of information-theoretic
arguments and the structural lemma of the previous subsection. In particular, we show:
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Theorem 5.5 (Sample Lower Bound for 2-SIIRVs). Let A be any algorithm which, given as input
n, ε, and sample access to an unknown P ∈ Sn,2 outputs a hypothesis distribution H such that
E[dTV (H,P)] ≤ ε. Then, A must use Ω((1/ε2) ·

√
log(1/ε)) samples.

Our main information-theoretic tool to prove our lower bound is Assouad’s Lemma [Ass83].
We recall the statement of the lemma (see, e.g., [DG85]), tailored to discrete distributions below:

Theorem 5.6. [Theorem 5, Chapter 4, [DG85]] Let r ≥ 1 be an integer. For each b ∈ {−1, 1}r,
let Pb be a probability distribution over a finite set A. For 1 ≤ ` ≤ r and b ∈ {−1, 1}r, we denote

by b(`,+) (resp. b(`,−)) the vector with b
(`,+)
i = bi (resp. b

(`,−)
i = bi) for i 6= ` and b

(`,+)
` = 1 (resp.

b
(`,−)
` = −1). Suppose there exists a partition A0, A1, . . . , Ar of A such that for all b ∈ {−1, 1}r

and all 1 ≤ ` ≤ r, the following inequalities are valid:

(a)
∑

x∈A` |Pb(`,+)(x)−Pb(`,−)(x)| ≥ α, and

(b)
∑

x∈A
√

Pb(`,+)(x)Pb(`,−)(x) ≥ 1− γ > 0.

Then, for any any algorithm A that draws s samples from an unknown P ∈ Pb and outputs a
hypothesis distribution H, there is some b ∈ {−1, 1}r such that if the target distribution P is Pb,

E [dTV (P,H)] ≥ (rα/4)(1−
√

2sγ).

Recall that 2-SIIRVs are discrete log-concave distributions. We will use the following basic
properties of log-concave distributions:

Lemma 5.7. There exists a universal constant c > 0 such that the following holds: For any log-
concave distribution P supported on the integers and standard deviation σ, there exist at least Ω(σ)
consecutive integers with probability mass under P at least c · 1

1+σ .

Proof. Note that if σ ≤ 1, taking the mode trivially satisfies this property.
Without loss of generality we can assume that 0 is the mode of P. We know that

∑
x∈Z x

2P(x) =

Θ(σ2). Let σ2
+ =

∑
x>0 x

2P(x). Let t+ be the largest integer so that P(t+ + 1)/P(t+) ≤ e1/t+ . We
note that ∑

x>0

x2P(x) ≤
∞∑
x=0

x2P(t+)e−(x−t+)/t+ = Θ(t3+P(0)),

and ∑
x>0

x2P(x) ≥ P(t+)

t+∑
x=0

x2 = Θ(t3+P(0)).

Also note that ∑
x>0

P(x) ≤
∞∑
x=0

P(t+)e−(x−t+)/t+ = Θ(t+P(0)).

Similarly, defining σ− and t−, we find that σ2 = Θ(σ2
++σ2

−) = Θ(P(0)(t3++t3−)). Thus, max(t+, t−)3P(0) =
Θ(σ2) and max(t+, t−)P(0) = Ω(1). Without loss of generality this maximum is t+. Note that
for all 0 ≤ x ≤ t+ that P(x) = Θ(P(t+)). This implies that t+P(0) = O(1), and thus, by the
above is Θ(1). Therefore, it follows by the variance bounds that t2+ = Ω(σ2), so t+ = Θ(σ). Hence,
x = 0, 1, . . . , t+ are Ω(σ) terms on which the value of P is Ω(1/t+) = Ω(1/σ). This completes the
proof.
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We are now ready to prove Theorem 5.5.

Proof of Theorem 5.5. Ideally, we would like to use the set of 2-SIIRVs whose parameters are
explicitly described in Theorem 4.1 in our application of Assouad’s lemma. Unfortunately, however,
this particular set is not in a form that allows a direct application of the theorem. The difficulty lies
in the fact that it is not clear how to isolate the changes between distributions in disjoint intervals
using explicit parameters.

We therefore proceed with an indirect approach making essential use of Lemma 5.1(ii). We
start from the 2-SIIRV P0 in the statement of the lemma and we perturb its pdf appropriately
to construct our “hypercube” distributions Pb. The lemma guarantees that, if the perturbation is
small enough, all these distributions are indeed 2-SIIRVs.

Observe that the variance of P0 is Ω(n) since Ω(n) parameters pi lie in [1/4, 3/4]. By Lemma
5.7, there exist r = Ω(

√
n) consecutive integers, an integer m, 0 ≤ m ≤ n, and a real value t with

t ≥ c · r, such that for all i, with m ≤ i ≤ m+ 2r, we have

P(i) ≥ 2

t
.

For n sufficiently large, we can assume that 2−9n ≤ c and therefore 1
t ≥

2−9n

r .
We are now ready to define our “hypercube” of 2-SIIRVs. For b ∈ {−1, 1}r, consider the

distribution Pb with

Pb(i) =


P0(i) if i < m, i > m+ 2r, or bb 1

2
(i−m)c = −1

P0(i)− 2−9n

r if bb 1
2

(i−m)c = 1 and i is even

P0(i) + 2−9n

r if bb 1
2

(i−m)c = 1 and i is odd

Note that all these distributions are 2-SIIRVs as follows from Lemma 5.1(ii) since

dK(Pb,P0) ≤ dTV (Pb,P0) = 2−9n .

For 0 ≤ i ≤ r− 1, the sets Ai+1 = {m+ 2i,m+ 2i+ 1} define the partition of the domain. We can
now apply Assouad’s lemma to this instance.

For b ∈ {−1, 1}r we can write∑
x∈A`

|Pb(`,+)(x)−Pb(`,−)(x)| = 2 · 2−9n

r
.

Similarly,

n∑
i=0

(√
Pb(`,+)(i)−

√
Pb(`,−)(i)

)2

=
∑

i=m+2`,m+2`+1

(
Pb(`,+)(i)−Pb(`,−)(i)√
Pb(`,+)(i)) +

√
Pb(`,−)(i)

)2

=
∑

i=m+2`,m+2`+1

(
2−9n/r√

Pb(`,+)(i)) +
√

Pb(`,−)(i)

)2

≥
∑

i=m+2`,m+2`+1

(
2−9n/r

2
√

1/t

)2

=
2−18n · c

2r
,
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where the first inequality uses the fact that

Pb(i) ≥ P0(i)− 2−9n

r
≥ 2

t
− 1

t
≥ 1

t
,

for m ≤ i ≤ m+ 2k.
Therefore, the parameters in Assouad’s Lemma are

α :=
2 · 2−9n

r
, γ =

2−18n · c
2r

, and s =
1

8γ

from which we obtain that that there is a Pb with

E [dTV (H,Pb)] ≥ (rα/4) · (1−
√

2sγ) =
2−9n

4
.

Hence, for ε = 2−9n−2, if the number of samples satisfies

s ≤ 1

8γ
=
r · 218n

4c
= O(218n√n) = O

(
(1/ε2)

√
log(1/ε)

)
,

then E [dTV (H,Pa)] ≥ ε, completing the proof of the theorem.

5.3 A Useful Structural Result for k-SIIRVs In this subsection, we prove the analogous
structural result to Lemma 5.1 for k-SIIRVs.

Proposition 5.8. Let k ≥ 2 be a positive integer and ε ≤ 1/poly(k) be sufficiently small. Let n
be a sufficiently small multiple of log(1/ε). Define P to be the k-SIIRV given by X ∼ P such that
X =

∑n
i=1Xi , where Xi(j) = pi,j , and for 1 ≤ i ≤ n, 1 ≤ j ≤ k − 2 we have that

pi,j = 1/(3(k − 2)n), pi,0 = 1/3 + (i− 1)/(3n), pi,k−1(k − 1) = 1/3 + (n− i)/(3n).

Then, if Q is any distribution supported on [n(k − 1)] with dTV (P,Q) ≤ ε, then Q is a k-SIIRV.

Proof. The basic idea of the proof will be topological. We note that the dimensionality of the
parameter space of n-variate k-SIIRVs is the same as the dimensionality of the space of random
variables of appropriate support size. Our result will follow from the following lemma:

Lemma 5.9. Let qi,j (1 ≤ i ≤ n, 0 ≤ j ≤ k − 1) be a sequence of positive real numbers with∑k−1
j=0 qi,j = 1 for each i. Let Y be the k-SIIRV defined by the qi,j. Suppose that maxi,j(|pi,j−qi,j |) =

ε2/3. Then, dTV (X,Y ) ≥ ε.

Proof. Let I and J be one of the pairs of integers such that we achieve |pI,J − qI,J | = ε2/3. X has

probability generating function X̃(z) = E[zX ] =
∏n
i=1 X̃i(z). We start with the following claim:

Claim 5.10. Assuming n is sufficiently large, the roots of X̃i(z) = 0 satisfy∣∣∣∣∣z` − eπi(1+2`)/(k−1)

(
n+ I

2n− I

)1/(k−1)
∣∣∣∣∣ ≤ O(1/(k − 1)n) ,

for 0 ≤ ` ≤ k − 2. Also, |zj` | ≤ 3 for all 1 ≤ j ≤ k − 1.
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Proof. Specifically we claim that when n ≥ 200, there is a root within distance 33/(k − 1)n.
Consider the polynomial fI(x) = (1/3 + (n − I)/(3n))xk−1 + (1/3 + I/(3n)). Then, fi(x) = 0

has roots x = a`, where

a` = eπi(1+2`)/(k−1)

(
n+ I

2n− I

)1/(k−1)

,

for 0 ≤ ` ≤ k−2. Note that X̃I(x) = fI(x)+
∑k−2

j=1 x
j/(3(k−2)n)−1/3n. Also, for any 1 ≤ k ≤ k−1,

we have 1
2 ≤ |a

j
` | ≤ 2.

We will show that for any y ∈ C with |y − a`| = 33/(k − 1)n, it holds |X̃I(y)| ≥ |X̃I(a`)|, and

therefore there is a root z` of X̃I(x) with |z` − a`| ≤ 33/(k − 1)n. We have

|X̃I(a`)| = |fI(a`) +
k−2∑
j=1

a`/(3(k − 2)n)− a`/3n| ≤ 2|a`|/3n ≤ 4/3n.

Now we consider fI(x) expressed as a polynomial in w = x− a`. We claim that this is dominated
by the w term when |w| = 33/(k−1)n. We show that, under certain conditions, the binomial series
is dominated by its first two terms:

Claim 5.11. If m|x/b| ≤ 1/3, then |(b+ x)m − bm − (m− 1)xbm−1| ≤ (m− 1)|xbm−1|/2.

Proof. By the binomial theorem (b + x)m =
∑m

j=0

(
m
j

)
xjbm−j . Note that the ratio of the absolute

values of the xj+1 and xj terms is∣∣∣∣( m

j + 1

)
xj+1bm−j−1

∣∣∣∣ / ∣∣∣∣(mj
)
xjbm−j

∣∣∣∣ = (m− j)/(j + 1) · |x/b| ≤ 1/3 .

Thus,

|(b+x)m− bm− (m−1)xbm−1| = |
m∑
j=2

(
m

j

)
xjbm−j | ≤ (m−1)|xbm−1|

m−1∑
j=1

3−j ≤ (m−1)|xbm−1|/2.

When |w| = 33/(k − 1)n, we have (k − 1)|(w/aI)| ≤ 66/n ≤ 1/3, and therefore

fI(w + aI) = (1/3 + (n− I)/(3n))(w + aI)
k−1 + (1/3 + I/(3n))

satisfies

|fI(w + aI)− (1/3 + (n− I)/(3n))(k − 1)wak−1
I | ≤ (1/3 + (n− I)/(3n))(k − 1)|wak−1

I |/2.

Since |(1/3 + (n− I)/(3n))(k − 1)|wak−1
I |/2 ≥ 33/12n, and so |fI(w + aI)| ≥ 33/12n.

Now we have that |fi(y)| ≥ 33/12n and fI(a`) = 0. We also have

|(X̃I(y)− fi(y))| = |
k−2∑
j=1

yj/(3(k − 2n)− 1/3n| ≤
k−2∑
j=1

(|a`|+ 33/(k − 1)n)j/(3(k − 2)n) + 1/3n.

By Claim 5.11 on (|a1|+ 33/(k − 1)n)j , we have that

(|a1|+ 33/(k − 1)n)j ≤ |a1|j + 3j|a1|33/(k − 1)2n ≤ 2 + 99j/(k − 1)n ≤ 3.
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So,

1/3n+
k−2∑
j=1

(|a`|+ 1/n)j/(3(k − 2)n) ≤ 1/n+ 1/3n = 4/3n.

We have

|X̃I(y)| ≥ |fi(y)| − |(X̃I(y)− fi(y))| ≥ (33− 16)/12n > 4/3n ≥ |X̃I(a`)|.

Since this holds for all y ∈ C with |y − a`| = 33/(k − 1)n, it follows that there is a z` ∈ C with
|z` − a`| ≤ 33/(k − 1)n.

Finally, note that since |z` − a`| ≤ 33/(k − 1)n ≤ 1/6(k − 1), for any 1 ≤ j ≤ k − 1, we have
(j − 1)(z` − a`)/a` ≤ 1/3 and so by Claim 5.11,

|zj` − a
j
` − (j − 1)(z` − a`)aj−1

` | ≤ |(j − 1)(z` − a`)aj−1
` |/2 ≤ 1/6.

Thus, |zj` | ≤ |a
j
` |+ 1/2 ≤ 3.

Our lemma will follow easily from the following claim:

Claim 5.12. For some `, we have that |X̃(z`)− Ỹ (z`)| ≥ ε5/6.

Proof. Note that for each i, since |z`|j ≤ 3 for all 1 ≤ j ≤ k − 1,

|X̃i(z`)− Ỹi(z`)| ≤ 3ε2/3 ≤ ε1/2/n .

Furthermore, note that for i 6= I that |X̃i(z`)| = Θ(|i− I|/n). This implies that∏
i 6=I

Ỹi(z`) = 2O(n).

However, we have that
X̃I(z`) = 0

for all `.
It suffices to show that |ỸI(z`)| ≥ ε3/4 for some `. Let zk−1 = 1. By standard polynomial

interpolation, we have that

ỸI(z) =

k−1∑
`=0

ỸI(zi)

∏
j 6=i

z − zj
zi − zj

 .

Similarly,

X̃I(z) =
k−1∑
`=0

X̃I(z`)

∏
j 6=`

z − zj
z` − zj

 .

In order to make use of this, we need to bound the size of the coefficients of the polynomial(∏
j 6=`

z−zj
z`−zj

)
.

Claim 5.13. For any `, we have that all coefficients of
(∏

j 6=`
z−zj
z`−zj

)
are O(1).
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Proof. Let

Q(z) = X̃i(z) =
k−1∑
j=0

pi,jz
j =

(
1 + 2(n− i)

5

) k−1∏
j=1

(z − zj).

Firstly, for ` = k−1 the polynomial in question is Q(z)/Q(1) = Q(z), which clearly has coefficients
of size O(1). For ` < k − 1, the polynomial in question is

Q(z)(z − 1)

(z − z`)(Q′(z`))(z` − 1)
.

It should be noted that (Q′(z`))(z` − 1) = Ω(1) and that multiplying a polynomial by z − 1
at most doubles the size of its maximum coefficient. Therefore, it suffices to consider the poly-
nomial Q(z)/(z − z`). In order to analyze this, we write 1/(z − z`) as a power series P (z) :=∑∞

m=0−zm/z
m+1
` . We note that the polynomial in question is the product of Q(z) times this power

series. We note that we need only consider the first k terms of this product since terms of degree
more than k cancel. Noting that the first k coefficients of P (z) are all O(1) and that the coefficients
of Q(z) have absolute values summing to 1, implies that the first k coefficients in their product are
all O(1). This completes the proof.

Therefore, the largest coefficient of X̃I(z)− ỸI(z) is at most

O(1)
∑
`

∣∣∣X̃I(z`)− ỸI(z`)
∣∣∣ .

Recall that this largest coefficient is ε2/3 by assumption. Therefore, for some ` we must have that∣∣∣X̃I(z`)− ỸI(z`)
∣∣∣ ≥ Ω(ε2/3/k) ≥ ε3/4.

On the other hand, we have that

X̃I(zk−1) = ỸI(zk−1) = 1 ,

and so for some other ` we must have that |ỸI(z`)| ≥ ε3/4. Noting that

X̃(z`) = 0 ,

and
Ỹ (z`) ≥ 2O(n)ε3/4 ≥ ε5/6.

This proves the claim.

The lemma now follows from the fact that

∣∣∣X̃(z`)− Ỹ (z`)
∣∣∣ =

n(k−1)∑
m=0

zm|X(m)− Y (m)|

≤ 2O(n)

n(k−1)∑
m=0

|X(m)− Y (m)|

= 2O(n)dTV (X,Y ).
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Note that Lemma 5.9 actually applies for any Y and Z with all parameters of Z within ε2/3 of
those of X, and the parameters of Y of distance δ from Z, that dTV (Y, Z) ≥ ε1/3δ. This implies
that the derivative of the map F : Rn(k−1) → Rn(k−1) from parameters of (n, k)-SIIRVs close to X
to probability distributions on [n(k− 1)] is everywhere injective (if DF (Z) had some null-vector v,
then F (Z+δv) would be F (Z)+o(δ), which is a contradiction). Therefore, by the Inverse Function
Theorem, F is an open map.

Let B1 be the set of parameters of k-SIIRVs within ε2/3 in L∞ of those of X. Let B2 be the
set of distributions on [n(k − 1)] within ε of X. Let V = F (B1) ∩ B2. On the one hand since
B1 is compact, this must be a closed subset of B2. On the other hand, Lemma 5.9 implies that
V = F (Int(B1))∩B2, which is an open subset of B2, since F is an open map. Therefore, V is both
an open and closed subset of B2. Since B2 is connected, this implies that V = B2. Thus, every
element of B2 is in the image of F, and is thus a k-SIIRV, proving Proposition 5.8.

5.4 Sample complexity lower bound for k-SIIRVs In this subsection, we prove our general
sample lower bound against k-SIIRVs:

Theorem 5.14 (Sample Lower Bound for k-SIIRVs). Let A be any algorithm which, given as
input n, k ≥ 2, ε ≤ 1/poly(k), and sample access to an unknown P ∈ Sn,k outputs a hypothesis
distribution H such that E[dTV (H,P)] ≤ ε. Then, A must use Ω((k/ε2) ·

√
log(1/ε)) samples.

In addition to the structural result of the previous subsection, we also need to prove an analogue
of Lemma 5.7, which does not immediately apply, as k-SIIRVs need not be logconcave. In fact, we
remark that Lemma 5.7 does not apply to the k-SIIRVs used in the lower bound construction of
Section 4.2. So, we need to use a slightly different construction.

Lemma 5.15. For the k-SIIRV P defined in Proposition 5.8, there exist Ω((k− 1)
√
n) consecutive

integers with probability mass under P at least Ω( 1
(k−1)

√
n

).

Proof. We wish to reduce this claim to Lemma 5.7, which gives that there are universal constants
c > 0 such that for any PBD Q with standard deviation σ, there are at least Ω(σ) consecutive
integers with probability mass at least c · 1

1+σ .
Recall that P is the k-SIIRV given by X ∼ P such that X =

∑n
i=1Xi , where Xi(j) = pi,j

and for 1 ≤ i ≤ n, 1 ≤ j ≤ k − 2, we have that pi,j = 1/(3(k − 2)n), pi,0 = 1/3 + (i − 1)/(3n),
pi,k−1(k − 1) = 1/3 + (n− i)/(3n). So, we have that Pr[Xi = 0 ∨Xi = k − 1] = 1− 1/3n for all i.

Let A0 be the event that all Xi are equal to 0 or k− 1. Then, Pr[A0] = (1− 1/3n)n = Ω(1). Let
Y = X/(k − 1) and Yi = Xi/(k − 1). Conditioned on the event A0, each Yi is a Bernoulli random
variable and Y is a PBD Q. Note that Var[Y | A0] ≥ n(1/3·2/3) = 2n/9 = Ω(n). So, by Lemma 5.7,
we have that there are integers a, b, with a−b = Ω(

√
n) such that Q(h) ≥ 3c√

2(1+
√
n)
, for each integer

a ≤ i ≤ b. Since the probability of A0 is Ω(1), it follows that any integer h ∈ [(k − 1)a, (k − 1)b]
with h ≡ 0 (mod k − 1) has Pr[X = h] ≥ Ω( 1√

n
) ≥ Ω( 1

(k−1)
√
n

).

For a given 1 ≤ i ≤ n, let Bi be the event that only Xi takes a value between 1 and k − 2.
Then, the conditional distribution of Y−i =

∑
j 6=i Yi under either A0 or Bi is a PBD Q−i, which is

the same in both cases. Now, Y = Y−i + Yi and conditional on A0, Yi is a Bernoulli for any integer
h, so either Pr[Y−i = h | A0] ≥ Pr[Y = h|A0]/2, or Pr[Y−i = h − 1 | A0] ≥ Pr[Y = h | A0]/2. In
particular, Q(a) ≥ Ω(1/

√
n) and Q(b) ≥ Ω(1/

√
n), so it follows that either Q−i(a) ≥ Ω(1/

√
n) or

Q−i(a − 1) ≥ Ω(1/
√
n) and either Q−i(b) ≥ Ω(1/

√
n) or Q−i(b − 1) ≥ Ω(1/

√
n). However, as a

PBD, Q−j is unimodal, and it follows that for every integer a ≤ h ≤ b−1, Q−i(h) ≥ Ω(1/
√
n). Now,

consider an integer (k− 1)a < h < (k− 1)b with h 6≡ 0 (mod k− 1). We can write h = q(k− 1) + r
for integers a ≤ q ≤ b − 1 and 1 ≤ r ≤ k − 1. Note that Pr[Xi = r|Bi] = 1/(k − 2), since we are
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conditioning on it not taking the values 0 or k− 1. Then Pr[X = h | Bi] = Pr[Y−i = q | Bi]Pr[Xi =
r | Bi] = Ω(1/

√
n) · 1/(k − 2) = Ω(1/((k − 1)

√
n).

For each 1 ≤ i ≤ n, Pr[Bi] = (1−1/3n)n−1 ·1/3n = Ω(1/n). So, consider any integer (k−1)a ≤
h ≤ (k−1)b. If h 6≡ 0 (mod k−1), Pr[X = h] ≥

∑n
i=1 Pr[X = h∧Bi] =

∑n
i=1 Pr[X = h|Bi]Pr[Ai] =∑n

i=1 Ω(1/((k − 1)
√
n) · Ω(1/n) = Ω(1/((k − 1)

√
n). When h ≡ 0 (mod k − 1), we showed earlier

using A0 that Ω( 1
(k−1)

√
n)

). This holds for (k − 1)(a − b) ≥ (k − 1)(Ω(
√
n) − 1) = Ω((k − 1)

√
n)

consecutive integers.

The proof of Theorem 5.14 using Assouad’s Lemma is now almost identical to that of Theorem
5.5.

Proof of Theorem 5.14. Let P be the k-SIIRV defined in 5.8. Let C be a constant large enough
that Proposition 5.8 implies that all distributions Q with dTV (P,Q) ≤ 2−Cn are k-SIIRVs.

By Lemma 5.15, there exists some c > 0 and r = Ω((k− 1)
√
n) consecutive integers, an integer

m, 0 ≤ m ≤ n, and a real value t with t ≥ c · r, such that for all i, with m ≤ i ≤ m+ 2r, we have

P(i) ≥ 2

t
.

For n sufficiently large, we can assume that 2−Cn ≤ c and therefore 1
t ≥

2−Cn

r .
We are now ready to define our “hypercube” of k-SIIRVs. For b ∈ {−1, 1}r, consider the

distribution Pb with

Pb(i) =


P0(i) if i < m, i > m+ 2r, or bb 1

2
(i−m)c = −1

P0(i)− 2−Cn

r if bb 1
2

(i−m)c = 1 and i is even

P0(i) + 2−Cn

r if bb 1
2

(i−m)c = 1 and i is odd

Note that Proposition 5.8 yields that all these distributions are k-SIIRVs since

dK(Pb,P0) ≤ dTV (Pb,P0) = 2−Cn .

For 0 ≤ i ≤ r− 1, the sets Ai+1 = {m+ 2i,m+ 2i+ 1} define the partition of the domain. We can
now apply Assouad’s lemma to this instance.

For b ∈ {−1, 1}r we can write∑
x∈A`

|Pb(`,+)(x)−Pb(`,−)(x)| = 2 · 2−Cn

r
.

Similarly,

n∑
i=0

(√
Pb(`,+)(i)−

√
Pb(`,−)(i)

)2

=
∑

i=m+2`,m+2`+1

(
Pb(`,+)(i)−Pb(`,−)(i)√
Pb(`,+)(i)) +

√
Pb(`,−)(i)

)2

=
∑

i=m+2`,m+2`+1

(
2−Cn/r√

Pb(`,+)(i)) +
√

Pb(`,−)(i)

)2

≥
∑

i=m+2`,m+2`+1

(
2−Cn/r

2
√

1/t

)2

=
2−2Cn · c

2r
,
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where the first inequality uses the fact that

Pb(i) ≥ P0(i)− 2−Cn

r
≥ 2

t
− 1

t
≥ 1

t
,

for m ≤ i ≤ m+ 2k.
Therefore, the parameters in Assouad’s Lemma are

α :=
2 · 2−Cn

r
, γ =

2−2Cn · c
2r

, and s =
1

8γ

from which we obtain that that there is a Pb with

E [dTV (H,Pb)] ≥ (rα/4) · (1−
√

2sγ) =
2−Cn

4
.

Hence, for ε = 2−Cn−2, if the number of samples satisfies

s ≤ 1

8γ
=
r · 22Cn

4c
= O(22Cn(k − 1)

√
n) = O

(
(k/ε2)

√
log(1/ε)

)
,

then E [dTV (H,Pa)] ≥ ε, completing the proof of the theorem.
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Appendix

A Basic Facts from Probability

Definition A.1. Let µ ∈ R, σ ∈ R≥0. We let Z(µ, σ2) denote the discretized normal distribution.
The definition of Z ∼ Z(µ, σ2) is that we first draw a normal G ∼ N(µ, σ2) and then we set
Z = bGe; i.e., G rounded to the nearest integer.

We begin by recalling some basic facts concerning total variation distance, starting with the “data
processing inequality for total variation distance”:

Proposition A.2 (Data Processing Inequality for Total Variation Distance). Let X, X ′ be two
random variables over a domain Ω. Fix any (possibly randomized) function F on Ω (which may be
viewed as a distribution over deterministic functions on Ω) and let F (X) be the random variable
such that a draw from F (X) is obtained by drawing independently x from X and f from F and
then outputting f(x) (likewise for F (X ′)). Then we have dTV (F (X), F (X ′)) ≤ dTV (X,X ′).

Next we recall the subadditivity of total variation distance for independent random variables:

Proposition A.3. Let A,A′, B,B′ be integer random variables such that (A,A′) is independent of
(B,B′). Then dTV (A+B,A′ +B′) ≤ dTV (A,A′) + dTV (B,B′).

We will use the following standard result which bounds the variation distance between two
normal distributions in terms of their means and variances:

Proposition A.4. Let µ1, µ2 ∈ R and 0 < σ1 ≤ σ2. Then dTV (N(µ1, σ
2
1),N(µ2, σ

2
2)) ≤ 1

2

(
|µ1−µ2|
σ1

+
σ2
2−σ2

1

σ2
1

)
.

B Lower Bounds on Matching Moments

We start by giving an explicit example of two PBDs over k + 1 variables that agree exactly on the
first k moments and have total variation distance 2−Ω(k).

Proposition B.1. Let P,Q ∈ Sk+1,2 be PBD’s with parameters pi = (1 + cos( 2πi
k+1))/2 and qi =

(1 + cos(2πi+π
k+1 ))/2 respectively, where 1 ≤ i ≤ k+ 1. Then P and Q agree on their first k moments

and have dTV (P,Q) ≥ 4−k.

Proof. Let X =
∑k+1

i=1 Xi, where Xi are independent Bernoulli variables, and suppose that X ∼ P.
We note that, for m ≤ k, the random variable Xm can be expressed as a degree m polynomial
in the Xi’s. Therefore, the m-th moment of P is a degree m symmetric polynomial of the pi’s.
Similarly, the m-th moment of Q must be the same symmetric polynomial of the qi. Therefore,
to show that the first k moments of P and Q agree, it suffices to show that the first k elementary
symmetric polynomials in the pi have the same values as the corresponding polynomials of the qi’s.

Note that the pi are the roots of Tk+1(2x−1)−1 and that the qi are the roots of Tk+1(2x−1)+1,
where Tk+1 is the (k + 1)-st Chebychev polynomial. Therefore, for m ≤ k, the m-th elementary
symmetric polynomial in the pi is [xk+1−m](−1)m2−2k−1Tk+1(2x + 1) and the same holds for the
qi. Thus, the first k moments of P and Q agree. To bound the total variation distance from below
we observe that

k+1∏
i=1

pi = P(k + 1) = [x0](−1)k+12−2k−1(Tk+1(2x+ 1)− 1),

and
k+1∏
i=1

qi = Q(k + 1) = [x0](−1)k+12−2k−1(Tk+1(2x+ 1) + 1).
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Therefore, the probability that P = k + 1 and the probability that Q = k + 1 differ by 4−k. This
implies the appropriate bound in their variational distance and completes the proof.

We also show that matching moments does not suffice for the case of k-SIIRVs, even for k = 3:

Proposition B.2. For n an even integer, there exist P,Q ∈ Sn/2,3 with disjoint supports such that
their first n− 1 moments agree.

Proof. We first show that there exist such P and Q with P supported on even numbers and Q
supported on odd numbers, so that

P(2j) = 2−n+1

(
n

2j

)
,

and

Q(2j + 1) = 2−n+1

(
n

2j + 1

)
.

We begin by showing that P ∈ Sn/2,3. Since
∑

j 2−n+1
(
n
2j

)
= 1, we will show that the polynomial

P̃(z) =
∑

j 2−n+1
(
n
2j

)
z2j factors as a product of n/2 quadratic polynomials with non-negative

coefficients. To prove this, we note that it suffices to show that all roots of P̃ are pure imaginary;
then, the natural factorization into quadratics using complex conjugate pairs will complete the
argument. For this, we observe that P̃(z) = 2−n((1 + z)n + (1 − z)n). Therefore, z is a root of P̃
only when |1 + z| = |1− z|, or when z is equidistant from 1 and −1, which happens only when the
real part of z is 0, i.e., when z is pure imaginary.

Similarly, we show that Q ∈ Sn/2,3. Once again
∑

j 2−n+1
(

n
2j+1

)
= 1, and so we merely need

to show that Q̃(z) =
∑

j 2−n+1
(

n
2j+1

)
z2j+1 factors into quadratics with non-negative coefficients.

Since Q̃(z) = 2−n((1 + z)n − (1− z)n), it also has only purely imaginary roots.
It remains to show that P and Q have identical first n − 1 moments. For this, it suffices to

show that P̃(z)(k)(1) = Q̃(z)(k)(1) for all 0 ≤ k < n. Indeed, we have that

P̃(z)(k)(1)− Q̃(z)(k)(1) = 21−n ∂
k

∂zk
(1− z)n|z=1 =

21−n(1− z)n−kn!

(n− k)!
|z=1 = 0.

This completes the proof.

C Omitted Proofs from Section 2

C.1 Bootstrapping Our Sampler The running time of the sampler described in Section 2.3
has an O(log n) dependence. In this subsection, we show that the dependence on n can be easily
removed, by dealing separately with the case that the variance is Ω(poly(k/ε)). In particular, we
have the following algorithm, which is similar to the Learn-Heavy routine from [DDO+13].

Lemma C.1. There is an algorithm with the following performance guarantee: For any ε > 0
and X ∈ Sn,k with Var[X] = Ω(poly(k/ε)), the algorithm draws O(k/ε2) samples from X, runs in

Õ(k2/ε2) time, and with high constant probability outputs a distribution cZ + Y, where 1 ≤ c ≤ k,
Z is a discrete Gaussian, and Y is a c-IRV, with dTV (X, cZ + Y ) ≤ ε.

Proof. By Theorem 3.1, there is a 1 ≤ c′ ≤ k such that the discrete Gaussian Z ′ with parameters
E[X]/c′ and Var[X]/c′2 and the c′-IIRV Y ′ := X (mod c′) satisfy dTV (X, c′Z ′ + Y ′) ≤ ε.

We start by guessing c. For each guess for c, we learn the appropriate Y and Z. Finally, we
run a tournament over the possible values of c. Fix 1 ≤ c ≤ k. To learn Y , we first draw Θ(c/ε2)
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samples and let X ′ be the resulting empirical distribution. Then, we take Y = X ′ (mod c). To
learn Z, we take Θ(1/ε2) samples from X and calculate the empirical mean and variance, µ̃ and
σ̃2. Then, we let Z be the distribution obtained by sampling from N (µ̃/c, σ̃2/c2) and rounding the
sample to the nearest integer.

Suppose that c = c′. By standard facts, we have dTV (Y, Y ′) = dTV (X ′ (mod c), X (mod c)) ≤
ε/4 with high probability. Also, with high probability, we have (1− ε/4)σ̃2 ≤ Var[X] ≤ (1 + ε/4)σ̃2

and |E[X]− µ̃| ≤ σ̃ε/4. By a combination of Propositions A.2 and A.4, we have that dTV (Z,Z ′) ≤
1
2

(
|E[Z]−E[Z′]|√

Var[Z]
+ |Var[Z]−Var[Z′]|

Var[Z]

)
≤ ε/4. Thus, we have dTV (Y + cZ, Y ′ + cZ ′) ≤ dTV (Y, Y ′) +

dTV (Z,Z ′) ≤ ε/2, and therefore dTV (X,Y + cZ) ≤ dTV (X,Y ′ + cZ ′) + dTV (Y + cZ, Y ′ + cZ ′) ≤ ε.
In summary, we have k different hypothesis distributions Yc + cZc, for each 1 ≤ c ≤ k, one

of which is promised to satisfy dTV (X,Yc + cZc) ≤ ε. We can now run a standard tournament
procedure [DL01, DDS15] that produces a hypothesis with dTV (X,Yc + cZc) ≤ O(ε) with high
probability. This requires O(log k/ε2) samples and can be easily done in Õ(k2/ε2) time.

We thus obtain the following corollary:

Corollary C.2. For all n, k ∈ Z+ and ε > 0, there is an algorithm with the following performance
guarantee: Let X ∈ Sn,k be an unknown k-SIIRV. The algorithm uses O(k log2(k/ε)/ε2) samples

from P, runs in time Õ(k3/ε2), and with probability at least 9/10 outputs an ε-sampler for X. This
ε-sampler produces a single sample in time Õ(k).

Proof. First we take O(1) samples and estimate the variance of X. If the variance is Ω(poly(k/ε)),
we use the algorithm given by Lemma C.1 to output a distribution cZ + Y, where 1 ≤ c ≤ k, Z is
a discrete Gaussian and Y is a c-IRV, with dTV (X, cZ + Y ) ≤ ε. Note that cZ + Y can be sampled
in time O(k).

If the variance is O(poly(k/ε)), we use Learn-SIIRV. This produces a distribution H given by
its DFT modulo M = O(poly(k/ε)) at O(k log(k/ε)) points. By Theorem 2.6, we can compute an
ε-sampler which produces a single sample in time

O(log(M) log(M/ε) · |S|) = O(log2(k/ε) · k log(k/ε)).

C.2 A Bound on the 1/2-norm of k-SIIRVs

Lemma C.3. The 1/2-norm of a k-SIIRV P with variance σ2 is O(σ + k).

Proof. Recall that ‖P‖1/2 = (
∑

i

√
P(i))2. Let µ be the mean of X ∼ P. By Cauchy-Schwartz, for

any S ⊆ [kn], we have
∑

i∈S
√

P(i) ≤
√

P(S) · |S|. By Bernstein’s inequality, for any ε > 0, it
holds Pr[|X − µ| > (k + σ) log(1/ε)] ≤ ε. Therefore, we can write∑

i

√
P(i) =

∑
|µ−i|≤σ+k

√
P(i) +

∞∑
m=0

∑
(σ+k)2m<|µ−i|≤2m+1(σ+k)

√
P(i)

≤
√
σ + k +

∞∑
m=0

2
√
σ + k · 2m/2

√
Pr[|X − µ| > (σ + k)2m]

≤
√
σ + k +

∞∑
m=0

2
√
σ + k · 2m/2−2m/2 = O(

√
σ + k) .
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D Omitted Proofs from Section 3

D.1 Proof of Lemma 3.2. For convenience, we restate Lemma 3.2:

Lemma 3.2. Let P ∈ Sn,k be a k-SIIRV with Var[X] = V . For any 0 < δ < 1/4, there exists
Q ∈ Sn,k with dTV (P,Q) = O(δV ) such that all but O(k + V/δ) of the k-IRV’s defining Q are
constant.

Proof. For a k-IRV A let m(A) be an index i so that Pr[A = i] is maximized. Let d(A) = Pr[A 6=
m(A)] be the probability A assigns to values in [k] \ {i}. Suppose that d(A) ≤ 1/2. Then we have
that

d(A)/2 ≤ (1/2) · Pr(A 6= A′) ≤ (1/2) · E[|A−A′|2] = Var[A] ≤ E[|A−m(A)|2] ≤ k2 · d(A),

where A′ is an independent copy of A. The leftmost inequality follows from our assumption that
d(A) ≤ 1/2. The proof of the lemma will make repeated applications of the following claim:

Claim D.1. Let A,B be independent k-IRV’s with m(A) = m(B) and d(A) + d(B) ≤ 1/2. Then
there exist independent k-IRV’s C and D, where D is a constant, d(C) = d(A) + d(B), and
dTV (A+B,C +D) = O(d(A)d(B)).

Proof. Let m(A) = m(B) = i. Let d(A) = δ1, d(B) = δ2. Let A′ be the random variable A
conditioned on A not equaling i, and B′ be the random variable B conditioned on it not equaling
i. Note that A is a mixture of i and A′ and B a mixture of i and B′. Furthermore A+B equals 2i
with probability (1−δ1)(1−δ2), i+A′ with probability δ1(1−δ2), i+B′ with probability (1−δ1)δ2

and A′ +B′ with probability δ1δ2.
Let D be the random variable that is deterministically i and C be the random variable that

equals i with probability 1 − δ1 − δ2, A′ with probability δ1, and B′ with probability δ2. Then
C + D equals 2i, i + A′, i + B′ and A′ + B′ with probabilities 1 − δ1 − δ2, δ1, δ2, and 0. These
probabilities are within an additive δ1δ2 of the corresponding probabilities for A+B and therefore
dTV (A + B,C + D) = O(δ1δ2). Note that C = i with probability 1 − δ1 − δ2, so d(C) = δ1 + δ2,
which completes the proof.

For a random variable X ∼ P, we have that X =
∑n

i=1Ai where the Ai’s are independent
k-IRV’s. We iteratively modify P as follows: If two of the non-constant component k-IRV’s of P
are A and B, with m(A) = m(B) and d(A), d(B) < δ, then we replace the pair A and B with
the pair C and D as described by the above claim. Notice that every step reduces the number of
non-constant component variables, and therefore this process terminates, giving a k-SIIRV Q with
for Y ∼ Q, Y =

∑n
i=1Bi.

By construction, for each 1 ≤ i ≤ k, Q has at most one non-constant component variable with
m(Bj) = i and d(Bj) < δ. Claim D.1 implies the sum of the d’s of the component variables does
not increase in any iteration, and therefore

n∑
j=1

d(Bj) ≤
n∑
j=1

d(Aj) ≤ 2
n∑
j=1

Var[Aj ] = 2Var[X] = 2V ,

where the second inequality uses the aforementioned lower bound on the variance of a k-IRV. Hence,
the number of non-constant component variables in Q is at most k + 2V δ−1.

It remains to show that dTV (P,Q) = O(δV ). Let A,B and C,D be the k-IRV’s of Claim D.1.
Then dTV (A + B,C + D) = O(d(A)d(B)) = O([d(C)2 + d(D)2] − [d(A)2 + d(B)2]). That is, the
total variation distance error introduced by replacing A,B by C,D is at most a constant times the
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amount that the sum of the squares of the d’s of the component variables increases by. Repeated
application of this observation combined with the sub-additivity of total variation distance gives

dTV (P,Q) = O
(∑n

j=1 d(Bj)
2 −

∑n
j=1 d(Aj)

2
)
. On the other hand, note that all of the Bj ’s that

are not also Aj satisfy d(Bj) ≤ 2δ. Therefore, we have that dTV (P,Q) ≤ O
(∑

j:d(Bj)≤2δ d(Bj)
2
)

=

O
(
δ
∑

j d(Bj)
)

= O(δV ) , which completes the proof.

D.2 Proof of Lemma 3.5. For convenience, we restate Lemma 3.5:

Lemma 3.5. Fix x ∈ C with |x| = 1. Suppose that ρ1, . . . , ρm are roots of P̃(x) (listed with
appropriate multiplicity) which have |ρi − x| ≤ 1

2k . Then, we have the following:

(i) |P̃(x)| ≤ 2−m .

(ii) For the polynomial q(x) = P̃(x)/
∏m
i=1(x− ρi), we have that |q(x)| ≤ km.

To prove our lemma, we will make essential use of the following simple lemma:

Lemma D.2. For any polynomial p(x) ∈ C[x] of degree d where the sum of the absolute values of
the coefficients of p is at most 1, we have the following: Fix z ∈ C with |z| = 1. Suppose that p has
roots ρ1, . . . , ρm with |ρi − z| ≤ 1

2d , for i ∈ {1, . . . ,m}. Then, the following hold:

(i) |p(z)| ≤ 2−m,

(ii) for the polynomial q(x) = p(x)/
∏m
i=1(x− ρi) we have that |q(z)| ≤ dm.

Proof. The lemma is proved by repeated applications of the following claim:

Claim D.3. Let p(x) ∈ C[x] be a degree-d polynomial such that the sum of the absolute values of

the coefficients of p is at most 1. Let ρ be a root of p(x) and q(x) be the polynomial p(x)
x−ρ . Then,

the sum of the absolute values of the coefficients of q is at most d.

Proof. We write the coefficients of p(x) and q(x) as p(x) =
∑d

i=0 pix
i and q(x) =

∑d−1
i=0 qix

i. Since
p(x) = (x− ρ)q(x), for 1 ≤ i ≤ d− 1, we have

pi = qi−1 − ρqi , (10)

and similarly pd = qd−1, p0 = −ρq0.
We consider two cases based on the magnitude of ρ. First, suppose that |ρ| ≤ 1. Since qd−1 = pd

and, by (10), qi−1 = pi + ρqi, for 1 ≤ i ≤ d− 1, an easy induction gives that qi =
∑d

j=i+1 pjρ
j−i−1

for 0 ≤ i ≤ d− 1. Summing and taking absolute values gives:

d−1∑
i=0

|qi| ≤
d−1∑
i=0

d∑
j=i+1

|pj ||ρ|j−i−1 =

d∑
i=1

(|pi|
i−1∑
j=0

|ρ|j)

≤
d∑
i=1

|pi|i ≤ d
d∑
i=1

|pi| ≤ d .

Second, suppose |ρ| > 1. Then, 1
|ρ| < 1. We have q0 = −1

ρp0 and by (10), for 1 ≤ i ≤ d − 1,

qi = 1
ρ(qi−1 − pi). By an easy induction, for 0 ≤ i ≤ d, qi = −

∑i
j=0 pj

1
ρi−j

. Summing and taking
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absolute values gives:

d−1∑
i=0

|qi| ≤
d−1∑
i=0

i∑
j=0

|pj |
1

|ρ|i−j
=

d−1∑
i=0

(|pi|
d−1∑
j=i

1

|ρ|d−1−i )

≤
d−1∑
i=0

|pi|(d− 1− i) ≤ d
d−1∑
i=0

|pi| ≤ d .

By repeated applications of the claim it follows that the polynomial q(x) has the sum of the
absolute values of its coefficients at most dm. Since |z| = 1, it follows that |q(z)| ≤ dm which gives
(ii). To show (i) we note that

|p(z)| = |q(z)| ·
m∏
i=1

|z − ρi| ≤ |q(z)| · (1/2d)m ≤ 2−m .

This completes the proof of Lemma D.2.

Proof of Lemma 3.5. Note that P̃(x) is the degree n(k−1) polynomial defined by P̃(x) =
∑n(k−1)

i=0 P(i)xi.

Note that the sum of the absolute values of P̃’s coefficients is 1. However, to apply Lemma D.2
directly to P̃ we would need the roots to be at distance at most 1

2n(k−1) .

Note that P̃(x) factors as
∏n
i=1 pi(x), where pi(x) = E[xXi ] is a degree k − 1 polynomial

that is determined by the i-th k-IRV. It is clear that the coefficients of pi(x) are non-negative
and sum to 1, hence we may apply Lemma D.2 to pi(x). Suppose that pi(x) has mi roots with
|ρi − x| ≤ 1

2k . Lemma D.2(i) implies that |pi(x)| ≤ 2−mi . Since P̃(x) =
∏n
i=1 pi(x), this yields part

(i) of Lemma 3.5.
Lemma D.2(ii) implies that the polynomial qi(x) = pi(x)/

∏
j∈Si(x − ρj), for Si ⊆ {1, . . . ,m}

with |Si| = mi, satisfies |qi(x)| ≤ kmi . Note that q(x) =
∏n
i=1 qi(x). Therefore, |q(x)| ≤

∏
i k

mi =
km, giving part (ii) of Lemma 3.5.

D.3 Proper Cover Construction for the High Variance Case. Exhausting over the k − 1
possible values of c, we can assume that c is known to the algorithm. Before proceeding further,
we will need further structural information about the k-SIIRVs in this case. We start with the
following simple lemma giving an upper bound on the total variation distance between two high
variance k-SIIRVs:

Lemma D.4. For ε > 0, let X, X ′ be k-SIIRVs with Var[X],Var[X ′] ≥ poly(k/ε) for a sufficiently
large poly(k/ε) that have dTV (X,Y + cZ) ≤ ε and dTV (X ′, Y ′ + cZ ′) ≤ ε for c-IRVs Y ,Y ′ and
discrete Gaussians Z,Z ′, with E[X] = cE[Z], Var[X] = c2Var[Z], E[X ′] = cE[Z ′] and Var[X ′] =
c2Var[Z ′]. Then we have that

dTV (X,X ′) ≤ 4ε+ dTV

(
X (mod c), X ′ (mod c)

)
+

1

2

|E[X]− E[X ′]|√
Var[X]

+
1

2

|Var[X]−Var[X ′]|
Var[X]

where X (mod c) is the c-IRV with Pr[X (mod c) = i] = Pr[X ≡ i (mod c)] for i ∈ [c].
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Proof. Using Proposition A.2, since dTV (X,Y + cZ) ≤ ε with Y ≡ Y + cZ (mod c), we have
dTV (X (mod c), Y ) ≤ ε. Similarly, dTV (X ′ (mod c), Y ′) ≤ ε. By a combination of Proposi-

tions A.2 and A.4, we have that dTV (Z,Z ′) ≤ 1
2

(
|E[Z]−E[Z′]|√

Var[Z]
+ |Var[Z]−Var[Z′]|

Var[Z]

)
. Since E[X] = cE[Z],

Var[X] = c2Var[Z], E[X ′] = cE[Z ′] and Var[X ′] = c2Var[Z ′] it follows that

|E[Z]− E[Z ′]|√
Var[Z]

+
|Var[Z]−Var[Z ′]|

Var[Z]
=
|E[X]− E[X ′]|√

Var[X]
+
|Var[X]−Var[X ′]|

Var[X]
.

Therefore,

dTV (Y + cZ, Y ′ + cZ ′) ≤ dTV (Y, Y ′) + dTV (Z,Z ′)

≤ 2ε+ dTV

(
X (mod c), X ′ (mod c)

)
+

+
1

2

(
|E[X]− E[X ′]|√

Var[X]
+
|Var[X]−Var[X ′]|

Var[X]

)
.

By another application of the triangle inequality, we have that dTV (X,X ′) ≤ dTV (X,Y + cZ) +
dTV (Y + cZ, Y ′ + cZ ′) + dTV (Y ′ + cZ ′, X ′) ≤ 2ε + dTV (Y + cZ, Y ′ + cZ), which completes the
proof.

To use the above lemma, we need a way to characterize the constant c in the statement of
Theorem 3.1, namely to show that the theorem applies to both X and X ′ for the same value of
c. For a k-IRV A, let m(A) be an index i so that Pr[A = i] is maximized. The following result is
implicit in the proof of Theorem 3.1 in [DDO+13] (in particular, in Theorem 4.3 of that paper):

Lemma D.5 ([DDO+13]). Given a k-SIIRV X =
∑n

i=1Xi with Var[X] ≥ poly(k/ε), let H be the
set of integers b such that

∑n
i=1 Pr[Xi −m(Xi) = c] ≥ Θ(k7/ε2) and c = gcd(H). Then there is a

c-IRV Y and a discrete Gaussian Z with dTV (X,Y + cZ) ≤ ε.

Let X ∈ Sn,k be a k-SIIRV with Var[X] ≥ poly(k/ε) as in Case 2 of Theorem 3.1. Our main
claim is that, up to ε error in total variation distance, we can assume that X has a special structure.
In particular, we can take all but one of the component IRVs of X to be constant modulo c, with the
last one being a c-IRV. More formally, we claim that there is a k-SIIRV X ′ with dTV (X,X ′) ≤ ε,
such that X ′ =

∑n
i=1X

′
i with

• For 1 ≤ i ≤ H, where H = Θ(k7/ε2), X ′i is either 0 or c each with equal probability.

• For 1 ≤ i ≤ n− 1, X ′i is constant modulo c.

• X ′n is a c-IRV.

where c is as in Lemma D.5.
We can construct such an X ′ from X as follows. For 1 ≤ i ≤ H, we replace Xi with the X ′i above

that is 0 or c with equal probability. For H + 1 ≤ i ≤ n− 1, we replace each Xi by Xi conditioned
on the event that Xi (mod c) = m(Xi) (mod c). Finally we take X ′n to be (X−

∑n−1
i=1 X

′
i) (mod c)

noting that
∑n−1

i=1 X
′
i (mod c) is a constant.

We now show that the above procedure only changes the expectation and variance by |E[X]−
E[X ′]| ≤ poly(k/ε) and |Var[X]−Var[X ′]| ≤ poly(k/ε). Note that for two arbitrary k-IRVs, A and
B, we have that |E[A]− E[B]| ≤ k and |Var[A]−Var[B]| ≤ k2. Thus,

|E[Xn +
H∑
i=1

Xi]− E[X ′n +
H∑
i=1

X ′i]| ≤ (H + 1)k ≤ poly(k/ε)
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and

|Var[Xn +
H∑
i=1

Xi]−Var[X ′n +
H∑
i=1

X ′i]| ≤ (H + 1)k2 ≤ poly(k/ε).

For the remaining variables H+1 ≤ i ≤ n−1, we have dTV (Xi, X
′
i) ≤ Pr[Xi−m(Xi) 6≡ 0 (mod c)]

and so |E[Xi]−E[X ′i]| ≤ kPr[Xi−m(Xi) 6≡ 0 (mod c)] and |Var[Xi]−Var[X ′i]| ≤ k2 Pr[Xi−m(Xi) 6≡
0 (mod c)]. For each integer 0 ≤ b ≤ k − 1 that does not divide c, by Lemma D.5, we must have
that b /∈ H and hence

∑n
i=1 Pr[Xi − m(Xi) = b] = O(k7/ε2). Thus,

∑n
i=1 Pr[Xi − m(Xi) 6≡ 0

(mod c)] = O(k8/ε2).
If Var[X] is a sufficiently large poly(k/ε), then Var[X ′] is large enough that we can apply

Theorem 3.1 and Lemma D.5 toX ′. Note that
∑n

i=1 Pr[|X ′i−m(X ′i)| = c] ≥
∑H

i=1 Pr[|X ′i−m(X ′i)| =
c] = H/2. We thus have that either c ∈ H or −c ∈ H. Since for b that does not divide c, we have∑n

i=1 Pr[X ′i −m(X ′i) = b] = Pr[X ′n −m(X ′n) = b] ≤ 1 and thus b /∈ (H), we have that gcd(H) = c.
Thus, for X with sufficiently large poly(k/ε) variance, we have that dTV (X,Y + cZ) ≤ ε/10 and
dTV (X ′, Y ′ + cZ ′) ≤ ε/10 for the same 1 ≤ c ≤ k − 1 and c-IRVs Y, Y ′ and discrete Gaussians
Z,Z ′. In conclusion, we can apply Lemma D.4 to X and X ′. We have that X ′ (mod c) = X ′n = X
(mod c). We have shown that E[X] − E[X ′] ≤ poly(k/ε) and Var[X] − Var[X ′] ≤ poly(1/ε). If
Var[X] is a sufficiently large poly(k/ε) then we can make the contributions of each of these to
dTV (X,X ′) in Lemma D.4 smaller than ε/10. Then we have dTV (X,X ′) ≤ ε.

Since every k-SIIRV X in Case 2 is ε-close to an X ′ of the aforementioned form, to compute a
proper cover for this case, we can consider only k-SIIRVs of the form stated above. By a similar
argument as above, our cover only needs to ensure that the triple of X (mod c),E[X],Var[X] is
sufficiently close to any such triple achievable by an element of Sn,k of this form. Obtaining a cover
of X (mod c) is easy, as we only need to deal with the single term Xn that is non-constant modulo
c, and produce a cover for c-IRVs. Indeed, it is straightforward to produce such a cover of size
O(k/ε)k.

As explained in Section 3.1, we have an explicit cover for the discrete Gaussian random variables
that can appear in this setting. However, we are left with the difficulty of producing an explicit
k-SIIRV approximating one of these c times a discrete Gaussian whenever such an approximation
is possible. Fortunately, we note that we only need to be able to approximately match the mean
and the variance. Note that as above, the H = poly(k/ε) components that we are requiring to be
either 0 or c, and the one that is a c-IRV can be assumed to have negligible effect on the final mean
and variance if we had a sufficiently large poly(k/ε) threshold for the variance.

Let C be the largest multiple of c that is at most k − 1. Let Sn,k,c be the set of k-SIIRVs on
n components all of which are constant modulo c. For a given σ > poly(k/ε) and µ we need to
determine whether or not there is an element of Sn,k,c whose mean and variance match µ and σ to
within εσ, and if so to produce one. To do this, we first need a couple of observations about which
µ, σ are attainable.

Observation D.6. For P ∈ Sn,k,c, VarX∼P[X] < nC2/4.

Proof. This is because any k-IRV that is constant modulo c has a distance of at most C between
its minimum and maximum values, and thus has variance at most C2/4.

Observation D.7. For P ∈ Sn,k,c and X ∼ P, if E[X] ≤ nC/2, then Var[X] ≤ CE[X]−E[X]2/n.

Proof. We note that in the range in question the quantity CE[X]−E[X]2/n is increasing in E[X],
and therefore, we may show that for any given achievable variance the minimum possible expecta-
tion satisfies this inequality. Note that for the minimum achievable expectation, we may assume
that each of the component IRVs is deterministically 0 modulo c, since otherwise we could subtract
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a constant from it, which would decrease the expectation and leave the variance unchanged. The
observation now follows given that for any k-IRV, Y that has Pr[Y (mod c) = 0] = 1 it holds
Var[Y ] = E[Y 2]− E[Y ]2 ≤ CE[Y ]− E[Y ]2.

Observation D.8. For P ∈ Sn,k,c and X ∼ P, if E[X] ≥ n(k − 1) − nC/2, then Var[X] ≤
C(n(k − 1)− E[X])− (n(k − 1)− E[X])2/n.

Proof. This follows from the previous observation by considering the random variable n(k − 1) −
X.

We now claim that any pair of expectation and variance µ and σ2 not disallowed by the above
observations may be approximated by an explicitly computable element of Sn,k,c. Note that, by
symmetry, we may assume that µ ≤ n(k − 1)/2. If µ ≥ 2σ2/C, we may make b4σ2/C2c ≤ n of our
IRVs either xi or xi+C with equal probability for some integers 0 ≤ xi ≤ k−1 and all other Xi with
H + 1 ≤ i ≤ n− 1 constant. By adjusting the xi’s and the constants, we can make the expectation
of X satisfy |E[X]− µ| ≤ 1 so long as µ ≥ 2σ2/C, and the variance Var[X] = C2b4σ2/C2c satisfies
|Var[X]− σ2| ≤ 1.

Otherwise, if µ ≤ 2σ2/C, let σ2 = Cµ · q with 1 > q > 1/2. We then use a sum of k-IRVs that
are 0 with probability q and C with probability 1− q, and some k-IRVs that are deterministically
0. If we have a many IRVs of the first type, then we get a mean and variance of E[X] = a(1− q)C
and Var[X] = aq(1−q)C. Letting a be approximately Var[X]/(q(1−q)C) completes the argument.
We simply need to verify that in this case a ≤ n i.e., that σ2/(q(1− q)C) ≤ n. Indeed, note that

Var[X]/(q(1− q)C) =
Var[X]

(Var[X]/(CE[X]))(1− (Var[X]/(CE[X])))C
=

CE[X]2

CE[X]−Var[X]
≤ n

by Observation D.7. This shows that given a discrete Gaussian, Z so that cZ approximates some
element of Sn,k,c, we can efficiently find such an element. In Section 3.1 we gave an appropriately
small cover of the set of such Gaussians, which consists of a grid of means and variances of size O(n).
It is easy to construct such a grid and by the above, we can construct an X with |E[X] − cµ| ≤
poly(k/ε) and |Var[X] − c2σ2| ≤ poly(k/ε) for each µ, σ2 in the grid that is not disallowed by
our observations. Thus, we can efficiently find a cover of the elements of Sn,k satisfying Case 2 of
Theorem 3.1.
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