
Nearly Optimal Learning and Sparse Covers for Sums of

Independent Integer Random Variables

Ilias Diakonikolas∗

University of Edinburgh
ilias.d@ed.ac.uk.

Daniel M. Kane†

University of California, San Diego
dakane@cs.ucsd.edu.

Alistair Stewart‡

University of Edinburgh
stewart.al@gmail.com.

May 4, 2015

Abstract

For k ∈ Z+, a k-SIIRV of order n ∈ Z+ is the discrete probability distribution of the sum
of n mutually independent random variables each supported on {0, 1, . . . , k− 1}. We denote by
Sn,k the set of all k-SIIRV’s of order n. In this paper we prove two main results:

• We give a near-sample optimal and computationally efficient algorithm for learning k-
SIIRVs from independent samples under the total variation distance (L1 distance). Our

algorithm uses Õ(k/ε2) samples and runs in Õ(k3/ε2) time. The sample size of our algo-
rithm is optimal up to logarithmic factors, as Ω(k/ε2) samples are information-theoretically
necessary to learn a single random variable supported on {0, 1, . . . , k − 1}.

• We prove nearly tight bounds on the size of ε-covers for Sn,k under the total variation dis-
tance. In particular, we show that for all k, n ∈ Z+ and ε ≤ 1/k, Sn,k admits an ε-cover of
size n·(1/ε)O(k·log(1/ε)) that can be constructed in polynomial time. We also prove a nearly
matching lower bound: For k ∈ Z+ and n = Ω(log(1/ε)) any ε-cover for Sn,k has size at
least n · (1/ε)Ω(k·log(1/ε)). Using the structural understanding obtained from our construc-
tion, we prove that the sample complexity of learning 2-SIIRVs is Ω((1/ε2)

√
log(1/ε)).

The unifying idea of our upper bounds is an analysis of the structure of the Fourier Transform
of k-SIIRVs. Our learning algorithm relies on a structural property of the Fourier transform of
k-SIIRVs, namely that it has small effective support. Our lower bounds employ a combination
of geometric and analytic arguments.
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1 Introduction

This paper is concerned with sums of independent integer random variables:

Definition. For k ∈ Z+, a k-IRV is a random variable supported on {0, 1, . . . , k − 1}. A k-SIIRV
of order n is any random variable X =

∑n
i=1Xi where the Xi’s are independent k-IRVs. We will

denote by Sn,k the set of probability distributions of all k-SIIRVs of order n.

For convenience, throughout this paper, we will often blur the distinction between a random
variable and its distribution. In particular, we will use the term k-SIIRV for a random variable or
its corresponding distribution, and the distinction will be clear from the context.

Sums of independent integer random variables comprise a rich class of discrete distributions that
arise in many settings. The special case of k = 2, Sn,2, was first considered by Poisson [Poi37] as a
non-trivial extension of the Binomial distribution and are known as Poisson Binomial distributions
(PBDs). In application domains, PBDs have many uses in research areas such as survey sampling,
case-control studies, and survival analysis, see e.g., [CL97] for a survey of the many practical
uses of these distributions. We remark that k-SIIRVs are of fundamental interest and have been
extensively studied in probability and statistics. For example, tail bounds on k-SIIRVs form an
important special case of Chernoff/Hoeffding bounds [Che52, Hoe63, DP09b]. Moreover, there is
a long line of research on approximate limit theorems for sums of independent integer random
variables, dating back several decades (see e.g., [Pre83, Kru86, BHJ92]) and [CL10, CGS11] for
some recent results.

In this paper, we prove two main results: (1) We give a near-sample optimal efficient algorithm
for learning k-SIIRVs from independent samples, resolving the main open questions of [DDS12b,
DDO+13]. (2) We prove nearly-tight upper and lower bounds on the size of ε-covers for k-SIIRVs.
Our cover upper bound is constructive, i.e., we also give an efficient algorithm to construct a
near-minimum size cover. As we explain below, our cover bounds have interesting implications in
learning and computational game theory.

In the following, we state our results in detail and elaborate on their context and the connections
between them.

Learning k-SIIRVs. The main motivation of this work has been the problem of learning an
unknown k-SIIRV given access to independent samples drawn from it. More specifically, given
access to independent samples drawn from an unknown random variable X ∈ Sn,k, we must output
a hypothesis random variable H such that with probability at least 2/3 the total variation distance
dTV (X,H) between X and H is at most ε.

We note that this is the standard definition of density estimation [DG85, DL01], i.e., PAC
learning an unknown probability distribution from samples [KMR+94], which is a natural analogue
of Valiant’s well-known PAC model for learning Boolean functions [Val84] to the unsupervised
setting. Density estimation is a classical topic in statistics and machine learning with a rich history
and extensive literature (see e.g., [BBBB72, DG85, Sil86, Sco92, DL01]). The reader is referred
to [Ize91] for a survey of statistical techniques in this context. In recent years, a large body
of work in theoretical computer science has been studying these questions from a computational
perspective; see e.g., [KMR+94, FM99, AK01, CGG02, VW02, FOS05, BS10, KMV10, MV10,
DDS12a, DDS12b, DDO+13, CDSS14].

The ultimate goal in density estimation is to design a learning algorithm that is both computa-
tionally and information-theoretically efficient. The “gold standard” in this setting is an algorithm
with information-theoretically optimal sample size and running time polynomial (or, ideally, linear)
in its sample size. As our main learning result, we give a near-sample optimal and computationally
efficient algorithm for learning k-SIIRVs:
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Theorem 1 (Main Learning Result). There is a learning algorithm for k-SIIRVs with the following
properties: Let X be any k-SIIRV of order n. The algorithm uses Õ(k/ε2) samples from X, runs
in time Õ(k3/ε2), and with probability at least 2/3 outputs a (succinct description of a) hypothesis
H such that dTV (H,X) ≤ ε.

We remark that even learning a single k-IRV to total variation distance ε information-theoretically
requires Ω(k/ε2) samples, Hence, the sample complexity of our algorithm is provably optimal up
to logarithmic factors.

Comparison to Previous Work. The very special case of k = 2 (i.e., the problem of learning
2-SIIRVs/PBDs) was previously studied by [DDS12b]. [DDS12b] gave two algorithms for learn-
ing 2-SIIRVs: one that uses Õ(1/ε3) samples and runs in sample near-linear time, and one that
uses Õ(1/ε2) samples and runs in time (1/ε)polylog(1/ε). Obtaining a near-sample optimal and com-
putationally efficient learning algorithm for PBDs was posed as one of the main open problems
in [DDS12b]. As a corollary of Theorem 1, we obtain a near-sample optimal and near-linear time
algorithm for learning PBDs.

More recently, [DDO+13] studied the problem of learning k-SIIRVs for general k ≥ 2. They
obtained an algorithm for this problem that uses poly(k/ε) samples and runs in poly(k/ε) time.
We remark that the degree of these polynomials is quite high: the sample complexity (and, hence,
running time) of the [DDO+13] algorithm is Ω(k9/ε6). Even understanding the sample complexity
of learning k-SIIRVs for k > 2 (i.e., without any computational considerations) has been an open
problem. Theorem 1 gives a tight upper bound on the sample complexity of this learning problem
up to logarithmic factors, and does so with a computationally efficient algorithm.

Given our Õ(k/ε2) sample upper bound, it would be tempting to conjecture that Θ(k/ε2) is in
fact the optimal sample complexity of learning k-SIIRVs, i.e., that there exists an O(k/ε2) sample
algorithm. If true, this would imply that learning a k-SIIRV is as easy as learning a k-IRV. For
example, in the case k = 2, such a statement would mean that learning an arbitrary PBD up to
total variation distance ε is as easy (up to a constant factor) as distinguishing a fair coin from an
ε-biased coin. Perhaps surprisingly, we show that this is not the case:

Theorem 2 (Sample Lower Bound). Any algorithm that learns an arbitrary 2-SIIRV (PBD) to
total variation distance ε with probability at least 1/10 must use Ω((1/ε2)

√
log(1/ε)) samples.

Theorem 2 provides a separation between learning PBDs and learning Binomial distributions.
We conjecture that the optimal sample complexity for learning k-SIIRVs is Θ((k/ε2)

√
log(1/ε)).

Our learning algorithm and our information-theoretic lower bound both rely on a novel struc-
tural understanding of the space of k-SIIRVs. We elaborate on our techniques in Section 1.2 below.

Sparse Covers for k-SIIRVs. Let (X , d) be a metric space. Given δ > 0, a subset Y ⊆ X is said
to be a δ-cover of X with respect to the metric d : X 2 → R+ if for every x ∈ X there exists some
y ∈ Y such that d(x,y) ≤ δ. There may exist many δ-covers of X , but one is typically interested
in one with the minimum cardinality. The δ-covering number of (X , d) is the minimum cardinality
of any δ-cover of X . Intuitively, the covering number of a metric space captures the “size” of the
space. A sparse cover provides useful structural information about the underlying space that can
be exploited in a variety of applications.

Covering numbers (and their logarithms, known as metric entropy numbers) were first defined
by A. N. Kolmogorov in the 1950’s and have since played a central role in a number of areas, in-
cluding approximation theory, geometric functional analysis (see, e.g., [Dud74, Mak86, BGL07] and
the books [KT59, Lor66, CS90, ET96]), geometric approximation algorithms [Hp11], information
theory, statistics, and machine learning (see, e.g., [Yat85, Bir86, HI90, HO97, YB99, GS13] and
the books [vdVW96, DL01, Tsy08]).
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As our second main result, we prove nearly tight upper and lower bounds on the covering
numbers of k-SIIRVs under the total variation distance metric. Our upper bound is constructive
in the sense that it implies an efficient algorithm to computer a near-optimal size cover. We prove:

Theorem 3 (Sparse Cover Bound). For ε ≤ 1/k, there exists an ε-cover Sn,k,ε ⊆ Sn,k of Sn,k
under the total variation distance of size |Sn,k,ε| ≤ n · (1/ε)O(k log(1/ε)) that can be constructed in
polynomial time. Moreover, any ε-cover for Sn,k has size at least n · (1/ε)Ω(k log(1/ε)).

Comparison to Previous Work. The best previous upper bound on the cover size of PBDs
(k = 2) is n2 +n · (1/ε)O(log2(1/ε)) due to Daskalakis and Papadimitriou [DP09a, DP14a]. For k > 2,
the main theorem of [DDO+13] implies a (non-proper) cover of size n · 2poly(k/ε). Before our work,
no non-trivial lower bound on the cover size was known. We view the inherent quasi-polynomial
dependence on 1/ε in the cover size as a rather surprising result.

Beyond its independent interest as a structural result, Theorem 3 has consequences in learning
theory and computational game theory. In particular, our proper cover upper bound combined with
our non-proper learning algorithm implies that there exists a proper learning algorithm for k-SIIRVs,
i.e., an algorithm that outputs a k-SIIRV as its hypothesis, that draws Õ(k/ε2) samples and runs in
time (k/ε)O(k log(k/ε)). This cover-based approach needs to perform some sort of enumeration over
a cover, hence it cannot run in poly(k/ε) time because of our lower bound. Obtaining a poly(k/ε)
time proper algorithm requires new ideas and is an interesting open problem for future work.

We now point out a connection between covers for k-SIIRVs and approximate Nash equilib-
rium computation. In a sequence of papers, Daskalakis and Papadimitriou [DP07, DP09a, DP14a,
DP14b] showed that a constructive upper bound on the cover size of generalized multinomial distri-
butions (i.e., sums of independent random variables with support {ei}ki=1, where ei is the standard
unit vector along dimension i in Rk) implies an additive PTAS for the problem of computing ε-Nash
equilibria in anonymous games [Mil96, Blo99, Blo05] with k strategies per player.

Note that for k = 2, generalized multinomial distributions correspond exactly to PBDs. Hence,
our improved constructive upper bound on the cover size of PBDs implies an improved poly(n) ·
(1/ε)O(log(1/ε)) time algorithm for computing ε-Nash equilibria in anonymous games with 2 strategies
per player. Our matching lower bound on the cover size implies that the “cover based approach”
introduced by Daskalakis and Papadimitriou cannot lead to an FPTAS for this computational prob-
lem. We believe that this implication is interesting in light of the recent PPAD-hardness [CDO15]
of computing exact Nash equilibria in anonymous games.

1.1 Preliminaries For a distribution P supported on [m] = {0, 1, . . . ,m}, m ∈ Z+, we write
P(i) to denote the value PrX∼P[X = i] of the probability density function (pdf) at point i, and
P(≤ i) to denote the value PrX∼P[X ≤ i] of the cumulative density function (cdf) at point i. For
S ⊆ [n], we write P(S) to denote

∑
i∈S P(i).

The total variation distance between two distributions P and Q supported on a finite domain

A is dTV (P,Q)
def
= maxS⊆A |P(S)−Q(S)| = (1/2) · ‖P −Q‖1. Similarly, if X and Y are random

variables, their total variation distance dTV (X,Y ) is defined as the total variation distance between
their distributions. Another useful notion of distance between distributions/random variables is the

Kolmogorov distance, defined as dK (P,Q)
def
= supx∈R |P(≤ x)−Q(≤ x)| . Note that for any pair of

distributions P and Q supported on a finite subset of R we have that dK (P,Q) ≤ dTV (P,Q) .
Let F be a family of probability distributions. Given δ > 0, a subset G ⊆ F is said to be a

(proper) δ-cover of F with respect to the metric d(·, ·) if for every distribution P ∈ F there exists
some Q ∈ G such that d(P,Q) ≤ δ. The δ-covering number for (F , d) is the minimum cardinality
of a δ-cover. The δ-packing number for (F , d) is the maximum number of points (distributions) in
F at pairwise distance at least δ from each other.
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1.2 Prior Work and our Techniques In this section we give an overview of our techniques
and compare them to previous approaches.

Prior Work. A crucial ingredient for the PBD cover upper bound of [DP09a, DP14a] is the fol-
lowing moment matching theorem that they establish: If two PBDs agree on their first Ω(log(1/ε))
moments, then their total variation distance is at most ε. We show that this structural result
is in fact tight: In Proposition 29 (Appendix A), we give an explicit example of two PBDs over
k + 1 variables that agree exactly on the first k moments and have total variation distance 2−Ω(k).
Unfortunately, such a moment matching statement cannot be true for k-SIIRVs, even for k = 3. In-
tuitively, this is because knowledge about moments fails to account for potential periodic structure
of the probability mass function that comes into play for k > 2. For example, Ω(n) moments do not
suffice to distinguish between the cases that a 3-SIIRV of order n is supported on the even versus
the odd integers. More specifically, in Proposition 30 (Appendix A), we give an explicit example of
two 3-SIIRV of order n/2 that agree exactly on the first n− 1 moments and have disjoint supports.

Previous works on learning PBDs [DDS12b] and k-SIIRVs [DDO+13] rely on a certain limit
theorem that they establish about the structure of these distributions. In both cases, this limit
theorem has the form of a “regularity” lemma: Any k-SIIRV is either ε-close in total variation
distance to being L = Θ(k9/ε4)- “sparse”, i.e., it is supported on a set of at most L consecutive
integers, or ε-close to being “structured” (see Theorem 8 for a precise statement). In the former
case, the distribution can be learned by “brute force” (since the support is “small”), and in the
latter case one can exploit the structure to learn with a small number of samples as well. The overall
algorithm proceeds by running a subroutine for each case followed by a hypothesis testing to select
the correct hypothesis. Unfortunately, the sparse case is a bottleneck for the sample complexity of
this approach, as any algorithm to learn an arbitrary distribution over support L requires Ω(L/ε2)
samples. Hence, one needs to exploit the structure of k-SIIRVs beyond the aforementioned.

Our Techniques. The unifying idea of our upper bounds is an analysis of the structure of the
Fourier Transform of k-SIIRVs. The Fourier transform is a natural tool to consider given that
previous moment-based techniques fail to detect periodic structure. On the other hand, this type
of structure is easily detectable by considering the Fourier transform. Recall that the Fourier
transform of a sum of independent random variables is the product of the Fourier transforms of
the individual variables. Moreover, if two random variables have similar Fourier transforms, they
also have similar distributions. These two basic facts are the starting point of our analysis.

Our learning algorithm makes essential use of a new structural property exhibited by the Fourier
transform of k-SIIRVs, namely that it has small effective support (see Lemma 6). Assuming that
the effective support is explicitly known, our new structural result suggests an extremely simple
learning algorithm: Use samples from the distribution to estimate its Fourier transform at the
points of the effective support, set the Fourier transform to 0 everywhere else, and compute the
inverse transform. By exploiting the sparsity of the Fourier transform, it can be shown that this
algorithm achieves total variation distance ε after Õ(k/ε2) samples. Our actual learning algorithm
(Section 2) is only slightly more complicated than the above two line description, because the
effective support of the Fourier transform is not precisely known in advance.

Our cover upper bound hinges on showing that the Fourier transform of a k-SIIRV is necessarily
of low complexity, i.e., it can be succinctly described up to small error. In particular, since the
Fourier transform is smooth, we show (Lemma 13), roughly, that its logarithm can be well approx-
imated by a low degree Taylor polynomial on intervals of length O(1/k). (Our actual statement
is somewhat more complicated as it needs to account for roots of the Fourier transform close to
the unit circle.) Therefore, providing approximations to the low-degree Taylor coefficients of the
logarithm of the Fourier transform provides a concise approximate description of the distribution.
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Our lower bounds take a geometric view of the problem. At a high-level, we consider the function
that maps the set of n(k− 1) parameters defining a k-SIIRV to the corresponding probability mass
function. We show that there exists a region of the space of distributions where this function is
invertible. For k = 2, we in fact show that the distribution of any PBD with distinct parameters lies
in the interior of this region. This structural understanding allows us to use certain appropriately
defined expectations to extract the effect of individual parameters on the distribution. We show,
roughly, that when n = Θ(log(1/ε)), the effects of changing each of the n(k− 1) parameters in this
region are sufficiently distinct, so that we can isolate the effect of a single parameter. In other words,
Ω(k log(1/ε)) parameters are effectively independent, which intuitively implies the (1/ε)Ω(k log(1/ε))

lower bound on the cover size. To prove our sample lower bound, at a high-level, we combine the
aforementioned construction with Assouad’s lemma [Ass83].

Remark. Recently, [CDSS14] introduced a general approach for learning structured distribution
families based on piecewise polynomial approximations. While the [CDSS14] is very general, it
provably does not apply to k-SIIRVs, k > 2, in the sense that it cannot lead to a learning algorithm
for this class with sample complexity independent of n. The reason is that any piecewise polynomial
approximation for k-SIIRVs of order n necessarily incurs at least a polynomial dependence on n.

Structure of the Paper. In Section 2 we describe and analyze our learning algorithm for k-
SIIRVs. Section 3 contains our cover upper bound construction. Our lower bounds are given in
Sections 4 and 5 respectively.

2 Learning Sums of Independent Integer Random Variables

In this section we prove Theorem 1, which we state below in more detail for the sake of completeness.

Theorem 4. There is an algorithm Learn-SIIRV that for any P ∈ Sn,k and ε > 0, takes O(k log2(k/ε)/ε2)

samples from P, runs in time Õ(k3/ε2) and returns a (succinct description of a) hypothesis H so
that with probability at least 2/3 we have that dTV (P,H) < ε.

Our algorithm uses the Discrete Fourier Transform, which we now define.

Definition 5. For x ∈ R we will denote e(x)
def
= exp(2πix). The Discrete Fourier Transform

(DFT) modulo M of a function F : [n] → C is the function F̂ : [M − 1] → C defined as F̂ (ξ) =∑n
j=0 e(−ξj/M)F (j) , for integers ξ ∈ [M − 1]. The DFT modulo M of a distribution P, P̂ is

the DFT modulo M of its probability mass function. The inverse DFT modulo M onto the range
[m,m + M − 1] of F̂ : [M − 1] → C, is the function F : [m,m + M − 1] ∩ Z → C defined by
F (j) = 1

M

∑M−1
ξ=0 e(ξj/M)F̂ (ξ) , for j ∈ [m,m + M − 1] ∩ Z. The L2 norm of the DFT is defined

as ‖F̂‖2 =
√

1
M

∑M−1
ξ=0 |F̂ (ξ)|2 .

We start by giving an intuitive explanation of our approach. The Fourier transform Q̂ of the
empirical distribution Q provides an approximation to the Fourier transform P̂ of P. In particular,
if we take N samples from P, we expect that the empirical Fourier transform Q̂ has error O(N−1/2)
at each point. This implies that the expected L2 error ‖Q̂−P̂‖2 is O(N−1/2), and thus by applying
the inverse Fourier transform, would yield a distribution with L2 error of O(N−1/2) from P. This
guarantee may sound good, but unfortunately, the distribution P has effective support of size
approximately s

√
log(1/ε), where s =

√
VarX∼P[X], and thus the resulting distribution will likely

have L1 error of O(N−1/2s1/2 log1/4(1/ε)) from P. This bound is prohibitively large, especially
when the standard deviation of P is large.

This obstacle can be circumvented by relying on a new structural result that we believe may be
of independent interest. We show that for any k-SIIRV with large variance, its Fourier Transform
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will have small effective support. In particular, for any k-SIIRV with standard deviation s and
ε > 0 we consider its Discrete Fourier transform modulo M , and show the set of points in [M − 1]
whose Fourier transform is bigger than ε in magnitude has size at most O(Mks−1

√
log(1/ε)). By

choosing M to be approximately s
√

log(1/ε), i.e., of the same order as the effective support of P,

we conclude that the effective support of P̂ (modulo M) is O(k log(1/ε)).
If the effective support for P̂ was explicitly known, we could truncate our empirical Dis-

crete Fourier transform Q̂ (modulo M) outside this set and reduce the L2 error ‖Q̂ − P̂‖2 to
N−1/2k1/2s−1/2 log1/4(1/ε). This in turn would correspond to an L1 error ofO(N−1/2k1/2

√
log(1/ε)).

Unfortunately, we do not know exactly where the support of the Fourier transform is, so we will
need to approximate it by calculating the empirical DFT where the support might be and then
simply truncating this empirical DFT whenever it is sufficiently small. Fortunately, we do have
some idea of where the support is and it is not hard to show that we can truncate at all of the
appropriate points with high probability.

Algorithm Learn-SIIRV

Input: sample access to a k-SIIRV P and ε > 0.

Let C be a sufficiently large universal constant.

1. Draw O(1) samples from P and with confidence probability 19/20 compute: (a) σ̃2, a factor
2 approximation to VarX∼P[X] + 1, and (b) µ̃, an approximation to EX∼P[X] to within one
standard deviation.

2. Take N = C3k/ε2 ln2(k/ε) samples from P to get an empirical distribution Q.

3. If σ̃ ≤ 4k ln(4/ε), then output Q. Otherwise, proceed to next step.

4. Set M
def
= 1 + 2d6σ̃

√
ln(4/ε))e. Let

S
def
= {ξ ∈ [M − 1] | ∃a, b ∈ Z, 0 ≤ a ≤ b < k such that |ξ/M − a/b| ≤ O(log(k/ε)/M)} .

For each ξ ∈ S, compute the DFT modulo M of Q at ξ, Q̂(ξ).

5. Compute Ĥ which is defined as Ĥ(ξ) = Q̂(ξ) if ξ ∈ S and |Q̂(ξ)| ≥ R := 2C−1ε/
√
k ln(k/ε),

and Ĥ(ξ) = 0 otherwise.

6. Output Ĥ which is a succinct representation of H, the inverse DFT of Ĥ modulo M onto
the range [bµ̃c − (M − 1)/2, bµ̃c+ (M − 1)/2].

The bulk of our analysis will depend on showing that the Fourier transform of P has appropri-
ately small effective support. To do this we need the following lemma:

Lemma 6. Let P ∈ Sn,k with
√

VarX∼P[X] = s, δ > 0, and M ∈ Z+. Let P̂ be the discrete
Fourier transform of P modulo M . Then, we have

(i) Let L = L(δ,M, s)
def
=

{
ξ ∈ [M − 1] | ∃a, b ∈ Z, 0 ≤ a ≤ b < k such that |ξ/M − a/b| <

√
ln(1/δ)

2s

}
.

Then, |P̂(ξ)| ≤ δ for all ξ ∈ [M−1]\L. That is, |P̂(ξ)| > δ for at most |L| ≤Mk2s−1
√

log(1/δ)
values of ξ .

(ii) At most 2Mks−1
√

log(1/δ) many integers 0 ≤ ξ ≤M − 1 have |P̂(ξ)| > δ .
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Before we proceed with the proof of the lemma some comments are in order. Statement (i)
of the lemma exhibits an explicit set L of cardinality O(Mk2s−1

√
log(1/δ)) that contains all the

points ξ ∈ [M − 1] such that |P̂(ξ)| > δ. Note that the set L can be efficiently computed from M ,
δ, s, and does not otherwise depend on the particular k-SIIRV P. Statement (ii) of the lemma
shows that the effective support L′ = L′(δ) = {ξ ∈ [M − 1] | |P̂(ξ)| > δ} is in fact significantly
smaller than L, namely |L′| = O(Mks−1

√
log(1/δ)). This part of the lemma is non-constructive in

the sense that it does not provide an explicit description for L′ (beyond the fact that L′ ⊆ L). We
remark that the upper bound on the size of the effective support will be crucial for the analysis of
our algorithm.

Proof of Lemma 6. Since P ∈ Sn,k, for X ∼ P, we have X =
∑n

i=1Xi where each Xi ∼ Pi for a k-
IRV Pi. Let Yi = Xi−X ′i be the difference of two independent copies of Xi. Let pij = Pr [|Yi| = j] .
Note that Yi is a symmetric random variable. Consider its DFT modulo M which we will write as
Ŷi. We have the following sequence of (in)equalities:

|P̂i(ξ)|2 = P̂i(ξ)P̂i(−ξ) = Ŷi(ξ)

=
k−1∑
j=0

pij cos

(
2πξj

M

)
= 1−

k−1∑
j=1

pij

(
1− cos

(
2πξj

M

))

≤ 1− 8

k−1∑
j=1

pij [ξj/M ]2 ≤ exp

−8

k−1∑
j=1

pij [ξj/M ]2

 ,

where [x], x ∈ R, denotes the distance between x and its nearest integer. For the last two inequal-
ities, we used that cos 2πx ≤ 1− 8x2 when |x| ≤ 1/2, and e−x ≥ 1− x when x ≥ 0.

Therefore, we have that |P̂(ξ)|2 =
∏n
i=1 |P̂i(ξ)|2 ≤ exp(−8

∑n
i=1

∑k−1
j=1 pij [ξj/M ]2). Taking

square roots, we obtain

|P̂(ξ)| ≤ exp
(
− 4

n∑
i=1

k−1∑
j=1

pij [ξj/M ]2
)
. (1)

Note that we can relate the variance of P to the pij ’s as follows:

s2 = Var[X] =
n∑
i=1

Var[Xi] =
1

2

n∑
i=1

E[Y 2
i ] =

1

2

n∑
i=1

k−1∑
j=1

pijj
2 .

Using (1), we get

|P̂(ξ)| ≤ exp

(
−8s2

(
min
j

( [ξj/M ]

j

)2))
.

To complete the proof of (i), we will need a simple counting argument given in the following claim:

Claim 7. For a ∈ R+ j ∈ Z+, there are at most 2Maj integers 0 ≤ ξ ≤M − 1 with the following
property: there exists c ∈ Z with 0 ≤ c ≤ j such that |ξ/M − c/j| < a. Therefore, there are at most
2Ma integers 0 ≤ ξ ≤M − 1 with [ξj/M ] < a.

Proof. For each c satisfying 1 ≤ c ≤ j−1 there are either b2Mac or b2Mac−1 integers 0 ≤ ξ ≤M−1
with | ξM −

c
j | < a. For c = 0 and c = j there are either bMac or bMac−1 integers with | ξM −

c
j | < a.

Finally, note that | ξM −
c
j | < a for some 1 ≤ c ≤ j − 1 if and only if [jξ/M ] < aj.
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An application of the above claim for a = (1/2)
√

ln(1/δ) implies that there are at most∑k−1
j=1 2Mjs−1

√
ln(1/δ)/2 ≤ Mk2s−1

√
ln(1/δ) integers 0 ≤ ξ ≤ M − 1 with minj

( [ξj/M ]
j

)2
<

ln(1/δ)/(4s2). For all other integers we have |P̂(ξ)| ≤ δ , which completes the proof of (i).
To prove (ii) we proceed by a probabilistic argument as follows: Consider evaluating the RHS

of (1) with ξ being an integer random variable uniformly distributed in [M − 1]. For 1 ≤ j ≤ k− 1,
let Nj be the indicator random variable for the event that [ξj/M ] < ks−1

√
ln(1/δ)/2. Note that

by Claim 7 it follows that E[Nj ] ≤ ks−1
√

ln(1/δ).
Note that [ξj/M ] ≥

√
1−Nj · ks−1

√
ln(1/δ)/2. Plugging this into (1) gives

|P̂(ξ)| ≤ exp

−k2

s2
ln(1/δ)

n∑
i=1

k−1∑
j=1

pij(1−Nj)

 .

Since s2 = 1
2

∑n
i=1

∑k−1
j=1 pijj

2 ≤ k2

2

∑n
i=1

∑k−1
j=1 pij , it follows that θ :=

∑n
i=1

∑k−1
j=1 pij ≥ 2s2/k2.

Therefore,

E

 n∑
i=1

k−1∑
j=1

pijNj

 ≤ θ · ks−1
√

ln(1/δ).

By Markov’s inequality, except with probability 2ks−1
√

ln(1/δ), we have that
∑n

i=1

∑k−1
j=1 pijNj ≤

θ
2 . In this event, we have

∑n
i=1

∑k−1
j=1 pij(1−Nj) ≥ θ

2 and hence

|P̂(ξ)| ≤ exp

−k2

s2
ln(1/δ)

n∑
i=1

k−1∑
j=1

pij(1−Nj)

 ≤ exp

(
−k

2

s2
ln(1/δ)

θ

2

)
≤ δ.

Since ξ is uniformly distributed on [M −1], it follows that |P̂(ξ)| > δ for at most 2Mks−1
√

ln(1/δ)
integers ξ in [M − 1]. This completes the proof of (ii).

We are now ready to prove Theorem 4.

Proof of Theorem 4. Note that it is straightforward to verify the sample complexity bound. The
running time of the algorithm is dominated by computing the DFT Q̂. Since the support of Q is at
most N , for each ξ ∈ S, we sum at most N terms to calculate Q̂(ξ). Therefore, the overall running
time is O(N · |S|) = O(k log2(k/ε)/ε2 · k2 log(k/ε)) = O(k3 log3(k/ε)/ε2) as claimed.

To show correctness, we will prove that the expected squared L2 norm between Ĥ and P̂ is
small, i.e., that ‖Ĥ− P̂‖22 = (1/M) ·

∑M−1
ξ=0 |Ĥ(ξ)− P̂(ξ)|2 has small expected value.

It is easy to see that, after drawing a constant number of samples, the quantities µ̃ and σ̃ can
be estimated to satisfy the required conditions with probability at least 19/20. (This follows for
example by Lemma 6 of [DDS12b] with ε = 1/2). We will henceforth condition on this event.

If σ̃ ≤ 4k ln(4/ε), then s ≤ 2k ln(4/ε) + 1, and Bernstein’s inequality implies that X ∼ P is
within O(k log(1/ε)) of the mean with probability 1 − ε/2. In this case, O(k log(1/ε)/ε2) ≤ N
samples are sufficient to give that dTV (P,Q) ≤ ε with probability 2/3. (This follows from the fact
that any distribution over support of size L can be learned with O(L/ε2) samples to total variation
distance ε.) We henceforth assume that we have |µ− µ̃| ≤ s, s ≥ σ̃/2 ≥ 2k ln(4/ε) and σ̃ ≤ 2s.

Since M = 1 + 2d6σ̃
√

ln(4/ε))e, a random variable X ∼ P lies in [bµ̃c− (M − 1)/2, bµ̃c+ (M −
1)/2] with probability at least 1− ε

2 . Indeed, an application of Bernstein’s inequality for X yields
that

Pr(X > µ+ t) ≤ exp

(
− t2

2s2 + 2
3kt

)
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where µ is the mean of P, for any t > 0. For t = 2s
√

ln(4/ε), we have t2 = (ln(4/ε))4s2 and
2s2 + 2

3kt = 2s2 + 4
3ks
√

ln(4/ε) ≤ 8
3s

2 ≤ 4s2. Thus Pr(X > µ + t) ≤ ε/4. Similarly, it holds

Pr(X < µ − t) ≤ ε/4. Now note that bµ̃c + (M − 1)/2 ≥ (µ − s) + d3s
√

ln(4/ε))e ≥ µ + t and
bµ̃c − (M − 1)/2 ≤ µ − t. Hence, X is in [bµ̃c − (M − 1)/2, bµ̃c + (M − 1)/2] with probability at
least 1− ε/2 as desired.

Fix T = R/2 = C−1ε/(
√
k ln(k/ε)). We analyze separately the contribution to the squared L2

norm coming from ξ with |P̂(ξ)| > T and with |P̂(ξ)| ≤ T . Let us denote L′(T ) = {ξ ∈ [M − 1] |
|P̂(ξ)| > T}. First consider

(1/M) ·
∑

ξ∈L′(T )

|Ĥ(ξ)− P̂(ξ)|2.

We first claim that with high probability Ĥ(ξ) = 0 for all ξ ∈ L′(T ). This happens automatically
when ξ 6∈ S, where the S is defined in the algorithm description. Note that |S| = O(k2 log(k/ε)).
For ξ ∈ S \ L′(T ), we note that Q̂(ξ) is an average of N i.i.d. numbers each of absolute value 1
and mean P̂(ξ) (which has absolute value less than 1). Note that if |Q̂(ξ) − P̂(ξ)| ≥ R − T , then
either the real or the imaginary part is at least (R− T )/

√
2. By a Chernoff bound, the probability

that for a given ξ ∈ S \ L′(T ), <(Q̂(ξ) − P̂(ξ)) ≥ (R − T )/
√

2 is at most 2 exp(−N(R − T )2/4).
The same is true of the imaginary part so by a union bound the probability that |Q̂(ξ)− P̂(ξ)| ≥
R− T is at most 4 exp(−N(R− T )2/4). Again by a union bound we get that the probability that
any ξ ∈ S \ L′(T ) has |Q̂(ξ) − P̂(ξ)| ≥ R − T is at most O(k2 log(k/ε) exp(−N(R − T )2/4)) =
O(k2 log(k/ε) exp(−C ln(k/ε))) = O(εC−1). So, except with probability O(εC−1), for all ξ in S \
L′(T ) we have |Q̂(ξ)− P̂(ξ)| < R − T and so |Q̂(ξ)| ≤ R. In fact, the total expected contribution
to the squared L2 norm coming from cases when Ĥ(ξ) is not identically 0 on all such ξ is also
O(εC−1). Therefore, up to negligible error, the squared L2 error coming from this range is at most∑

r≥0

(T2−r)2

(
#{ξ : |P̂(ξ)| > T2−r−1}

M

)
.

Applying Lemma 6 (ii) with δ := T2−r−1 for each r ≥ 0, this is at most∑
r≥0

(T2−r)2

(
#{ξ : |P̂(ξ)| > T2−r−1}

M

)
≤
∑
r≥0

T 24−r2ks−1
√

log(2r/T )

≤ 4T 2ks−1
√

log(1/T ).

Next we consider the remaining contribution

(1/M) ·
∑

ξ∈L′(T )

|Ĥ(ξ)− P̂(ξ)|2.

We note by Lemma 6 (i) applied with δ := T , L′(T ) ⊆ L(T,M, s). Since
√

ln(1/T )/2s =
O(log(k/ε)/M), we can choose the constant in the definition of S so that L(T,M, s) ⊆ S. So,
for ξ ∈ L′(T ), we do compute Q̂(ξ) and then either Ĥ(ξ) = Q̂(ξ) or |Q̂(ξ)| < R and Ĥ(ξ) = 0. In
either case, we have that |Ĥ(ξ) − Q̂(ξ)| < R. Recall that the expected size of |Q̂(ξ) − P̂(ξ)|2
is 1/N for any ξ ∈ [M − 1]. So, for ξ ∈ L′(T ), the expected squared error at ξ satisfies
E[|Ĥ(ξ)− P̂(ξ)|2] ≤ 2(R2 +N−1).

We note that by Lemma 6 (ii) applied with δ := T , we have |L′(T )| ≤ 2ks−1
√

ln(1/T ). So the
expected size of the L2

2 error on L′(T ) has

E[(1/M) ·
∑

ξ∈L′(T )

|Ĥ(ξ)− P̂(ξ)|2] ≤ 2(R2 +N−1)(2ks−1
√

ln(1/T ))
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Combining the above results, we find that the expected L2
2 error between Ĥ and P̂ is at most

2(R2 +N−1 + T 2)(2ks−1
√

log(1/T )) = O(C−1s−1ε2/
√

log(k/ε)).

Therefore, if C is sufficiently large, the Markov inequality yields that, with probability 2
3 , we have

‖Ĥ− P̂‖22 < ε2/M .
At this point, we would like to use Plancherel’s theorem followed by Cauchy-Schwartz to com-

plete the proof. Formally, since P may be supported outside [bµ̃c− (M −1)/2, bµ̃c+(M −1)/2], we
cannot use Plancherel’s theorem directly to show that ‖H−P‖2 = ‖Ĥ− P̂‖2. Instead, consider the
function P′ : [bµ̃c − (M − 1)/2, bµ̃c+ (M − 1)/2]∩Z→ [0, 1] defined as P′(i) =

∑
j≡i (mod M) P(j)

for bµ̃c − (M − 1)/2 ≤ i ≤ bµ̃c + (M − 1)/2. Note that P̂′ = P̂ by the definition of the DFT
modulo M , since e(ξj/M) = e(ξi/M) when j ≡ i (mod M) for all ξ ∈ [M −1] and i, j ∈ [n]. Thus,

‖Ĥ− P̂′‖22 < ε2/M and Plancherel’s theorem gives ‖H−P′‖2 = ‖Ĥ− P̂′‖2 < ε/
√
M . Since P′ has

support at most M , an application of Cauchy-Schwartz gives ‖H−P′‖1 ≤ ‖H−P′‖2
√
M < ε.

Since X ∼ P is in [bµ̃c − (M − 1)/2, bµ̃c + (M − 1)/2] with probability at least 1 − ε/2, we
have ‖P −P′‖1 ≤ ε and so ‖P −H‖1 ≤ ‖P −P′‖1 + ‖H −P′‖1 ≤ 2ε. Since Ĥ(0) = Q̂(0) = 1, it
follows that

∑n
i=0 H(i) = 1. Also, by symmetry, all the H(i)’s are real. This completes the proof

of Theorem 4.

3 Cover Size Upper Bound and Efficient Construction

We start by establishing an upper bound on the cover size and then proceed to describe our efficient
algorithm for the construction of a proper cover with near minimum size. To prove the desired
upper bound on the size of the cover, we proceed as follows: We start (Section 3.1) by reducing the
cover size problem to the case that the order n of the k-SIIRV is at most poly(k/ε). In the second
and main step (Section 3.2), we prove the desired upper bound for the polynomially sparse case.
Our efficient algorithm for the cover construction (Section 3.3) is based on dynamic programming
and follows a similar case analysis.

3.1 Reduction to Sparse Case. Our starting point is the following theorem:

Theorem 8. [[DDO+13], Theorem I.2] Let P ∈ Sn,k be a k-SIIRV of order n. Then, for any
ε > 0, P is either

1. a distribution with variance at most poly(k/ε); or

2. ε-close to a distribution P′ such that for a random variable X ∼ P′, we have X = cZ + Y
for some 1 ≤ c ≤ k − 1, where Y , Z are independent random variables such that: (i) Y is
distributed as a c-IRV, and (ii) Z is a discretized normal random variable with parameters
µ
c ,

σ2

c2
where µ = E[X] and σ2 = Var[X].

The above theorem allows us to reduce the problem of constructing an O(ε)-cover for Sn,k to
the problem of constructing an ε-cover for Sn′,k, where n′ = poly(k/ε). Indeed, given an arbitrary
k-SIIRV P ∈ Sn,k we proceed as follows: If P belongs to Case 1 of the above theorem, then we
show (Lemma 9) that there exists a translation of a k-SIIRV with n′ = poly(k/ε) variables that
is ε-close to P. We show in the following subsection (Proposition 10) that Sn′,k admits an ε-cover
of size (1/ε)O(k log(1/ε)). Since there are O(kn) possible translations, this gives a 2ε-cover of size
n(1/ε)O(k log(1/ε)) for k-SIIRVs in Case 1.

Moreover, it is not difficult to show that there exists an ε-cover for distributions in Case 2 with
at most n · (k/ε)O(k) points. In particular, we claim that for distributions in sub-case 2(i) there
exists an ε-cover of size (1/ε)O(k), and for distributions in sub-case 2(ii) there exists an ε-cover of
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size O(n). Assuming these claims, the sub-additivity of total variation distance (Proposition 41)
implies that distributions in Case 2 have a 2ε-cover of size n · (1/ε)O(k) as desired.

Note that the random variable Y in Case 2(i) is distributed as a k-IRV, i.e., it has support
k. It is well-known and easy to show that the set of all distributions over a domain of size k has
an ε-cover of size (1/ε)O(k). It remains to show that we can ε-cover the set of discretized normal
distributions of Case2(ii) with O(nk/ε) points. To do this, we exploit the fact that the variance
of such distributions is large. Let σmin = Ω(k9/ε3) be the minimum variance of a k-SIIRV X in
Case 2. Note that the discrete Gaussian in Case 2 has a variance of Var[X]/c2. Hence, we want to
ε-cover the set of discrete Gaussians with standard deviation σ in the interval [σmin, σmax], where
σmax = O(

√
nk), and mean value µ in the interval [0, n(k−1)]. Consider the following discretization

of the space (σ2, µ): We first define a geometric grid on σ2 with ratio (1 + ε), i.e., σ2
i = σ2

min(1 + ε)i,
where where 0 ≤ i ≤ imax and imax = O((1/ε) · log(n)). For every fixed i, we define an additive grid
on the means, so that |µj+1 − µj | ≤ ε · σi. A combination of Propositions 40 and 42 implies that
this grid defines an ε-cover. Note that the total size of the described grid on (σ2, µ) is

imax∑
i=0

n(k − 1)

ε · σi
=

imax∑
i=0

n(k − 1)

ε · σmin(1 + ε)i/2
= O(n),

where the last inequality follows from the lower bound on σmin and the elementary inequality∑
i(1 + ε)−i/2 = O(1/ε).

The following lemma completes our reduction to the n = poly(k/ε) case:

Lemma 9. Let P ∈ Sn,k be a k-SIIRV with VarX∼P[X] = V . For any 0 < δ < 1/4, there exists
Q ∈ Sn,k with dTV (P,Q) = O(δV ) such that all but O(k + V/δ) of the k-IRV’s defining Q are
constant.

The proof of Lemma 9 is deferred to Appendix B.1. Note that an application of the lemma for
δ = ε/V completes the proof.

3.2 Cover Upper Bound for Sparse Support. In this subsection we prove the desired upper
bound on the cover size for the sparse case:

Proposition 10. Fix arbitrary constants c, C > 0. Consider n, k, ε satisfying ε ≤ k−c and n ≤
(k/ε)C . Then there exists an ε-cover of Sn,k under dTV of size (1/ε)Oc,C(k log(1/ε)).

Our proof proceeds by analyzing the Fourier transform of the probability density functions of
k-SIIRVs. We will need the following definitions.

Basic Definitions. For ξ ∈ R, recall that we use the notation e(ξ)
def
= exp(2πiξ). For a probability

density function (pdf) P over R, its Fourier Transform is the function P̂ : [0, 1) → C defined by
P̂(ξ) = Ey∼P[exp(−2πiyξ)] = Ey∼P[e(−yξ)]. Note that Parseval’s identity states that for two pdf’s

P and Q we have ‖P−Q‖2 = ‖P̂− Q̂‖2. In our context, P and Q are going to be supported on a

discrete set A, in which case we have ‖P−Q‖2 =
(∑

a∈A(P(a)−Q(a))2
)1/2

. On the other hand,

P̂ and Q̂ are Lebesgue measuable and we have ‖P̂− Q̂‖2 =
(∫ 1

0 |P̂(ξ)− Q̂(ξ)|2dξ
)1/2

.

An equivalent way to view the Fourier transform is as a function defined on the unit circle
in the complex plane. For our purposes, we will need to analyze the corresponding polynomial
defined over the entire complex plane. Namely, we will consider the probability generating function
P̃ : C→ C of P defined as P̃(z) = Ey∼P[zy]. Note that when |z| = 1, this function agrees with the

Fourier transform, i.e., P̂(ξ) = P̃(e(−ξ)).
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At a high-level, our proof is conceptually simple: For a k-SIIRV P, we would like to show that
the logarithm of its Fourier transform log P̂(ξ) is determined up to an additive ε by its degree
O(log(1/ε)) Taylor polynomial. Assuming this holds, it is relatively straightforward to prove the
desired upper bound on the cover size. Unfortunately, such a statement cannot be true in general
for the following reason: the function P̃(z) may have roots near (or on) the unit circle, in which case
the logarithm of the Fourier transform is either very big or infinite at certain points. Intuitively,
we would like to show that the magnitude of P̃(z) close to a root is small. Unfortunately, this is
not necessarily true.

We circumvent this problem as follows: We partition the unit circle into O(k) arcs each of
length O(1/k). We perform a case analysis based on the number of roots that are close to an arc.
If there are at least Ω(log(1/ε)) roots of P̃(z) close to a particular arc, then we show (Lemma 12(i))
that the magnitude of P̃(z) within the arc is going to be negligibly small. Otherwise, we consider
the polynomial q(z) obtained by P̃(z) after dividing by the corresponding roots, and show that
log q(z) is determined up to an additive ε by its degree O(log(1/ε)) Taylor polynomial within the
arc (see Lemma 13). Using the aforementioned structural understanding, to prove the cover upper
bound, we define a “succinct” description of the Fourier Transform based on the logarithm of q(z)
and appropriate discretization of O(log(1/ε)) nearby roots.

Note that we take advantage of the fact that our distributions are supported over a domain of
size ` = poly(k/ε), in order to relate their total variation distance to the L∞ distance between their
Fourier transforms. In particular, we have the following simple fact:

Fact 11. For any pair of pdfs P,Q over [`], we have ‖P−Q‖1 ≤
√
`+ 1‖P̂− Q̂‖∞.

Indeed, note that ‖P−Q‖1 ≤
√
`+ 1‖P−Q‖2 =

√
`+ 1‖P̂− Q̂‖2 ≤

√
`+ 1‖P̂− Q̂‖∞, where

the equality is Parseval’s identity.
For the rest of this section we fix an arbitrary P ∈ Sn,k and analyze the polynomial P̃(x). We

start with the following important lemma whose proof is deferred to Appendix B.2:

Lemma 12. Fix x ∈ C with |x| = 1. Suppose that ρ1, . . . , ρm are roots of P̃(x) (listed with
appropriate multiplicity) which have |ρi − x| ≤ 1

2k . Then, we have the following:

(i) |P̃(x)| ≤ 2−m .

(ii) For the polynomial q(x) = P̃(x)/
∏m
i=1(x− ρi), we have that |q(x)| ≤ km.

Our main lemma for this section shows that we can ε-approximate the Taylor series of q(x) by
only considering the first O(log(1/ε)) terms:

Lemma 13. Fix w ∈ C with |w| = 1. Suppose that ρ1, . . . , ρm are all the roots of P̃(x) (listed with

appropriate multiplicity) which have |ρi − w| ≤ 1
3k . Let q(x) = P̃(x)∏m

i=1(x−ρi) and let the Taylor series

of ln(q(x)) at w be ln q(x) =
∑∞

j=0 cj(x − w)j . Then, we have that |cj | ≤ nk(3k)j, for all j ≥ 1,
and the real part of c0 is at most m ln k.

Fix 0 < ε ≤ 1/(12mk) and an integer ` satisfying ` ≥ log(9nk). For ρ′j with |ρ′j − ρj | ≤ ε for
j ∈ {1, . . . ,m}, and c′j with |c′j − cj | ≤ ε for j ∈ {1, . . . , `} we have: For all x ∈ C with |x| = 1 and

|x− w| ≤ 1
6k ∣∣∣∣∣P̃(x)−

( m∏
j=1

(x− ρ′j)
)

exp
( ∑̀
j=0

c′j(x− w)j
)∣∣∣∣∣ ≤ O (εmk + nk2−`

)
. (2)
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Proof. We start by noting that, by the triangle inequality, Lemma 12 applies to all points x ∈ C
with |x| = 1 and |x−w| ≤ 1

6k . Observe that c0 = ln[q(w)] and by Lemma 12(ii) |q(w)| ≤ km. This
gives the claim on the real part of c0.

Note that ln(q(x)) can be expressed as a sum of the form

ln(q(x)) = c0 +
R∑
h=1

ln(1− (x− w)/(rh − w)) ,

where c0 = ln[q(w)], rj are the roots of q(x), and R ≤ n(k − 1) is the degree of q(x). By the
definition of q, it follows that |rh − w| > 1

3k for all 1 ≤ h ≤ R.

Inserting the standard Taylor series ln(1 + y) =
∑∞

j=0
yj

j gives

ln(q(x)) = c0 +
R∑
h=1

∞∑
j=0

(−1)j(x− w)j

j · (rh − w)j
.

Considering the (x− w)j term above gives cj = (−1)j

j

∑R
j=1(rj − w)−j . Therefore,

|cj | ≤ R(3k)j ≤ nk(3k)j .

This gives the desired bound on |cj |, j ≥ 1.
We now proceed to prove (2). We start by considering the difference

∑̀
j=0

c′j(x− w)j − ln(q(x)) ,

for x in the appropriate range. Since |x− w| ≤ 1
6k ≤ 1/2 and |c′j − cj | ≤ ε, we have∣∣∣∣∣∣

∑̀
j=0

c′j(x− w)j −
∑̀
j=0

cj(x− w)j

∣∣∣∣∣∣ ≤ ε ·
∑̀
j=0

2−j ≤ 2ε .

So, we need to consider the error introduced by truncating the Taylor series after the first ` terms.
We have ∣∣∣∣∣∣

∑̀
j=0

cj(x− w)j − ln(q(x))

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
j>`

cj(x− w)j

∣∣∣∣∣∣
≤

∑
j>`

nk(3k)j(6k)−j

= nk2−`

Therefore, by the triangle inequality,∣∣∣∣∣∣
∑̀
j=0

c′j(x− w)j − log(q(x))

∣∣∣∣∣∣ ≤ 2ε+ nk2−`.

Thus, the multiplicative error in this approximation, i.e.,

1

q(x)
exp

∑̀
j=0

c′j(x− w)j

 =
1

P̃(x)

 m∏
j=1

(x− ρj)

 exp

∑̀
j=0

c′j(x− w)j
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is between exp(−(2ε+ nk2−`)) and exp(2ε+ nk2−`). Since |P̃(x)| ≤ 1 and by our assumptions on
`, 2ε+ nk2−` ≤ 1, we have that∣∣∣∣∣∣P̃(x)−

 m∏
j=1

(x− ρj)

 exp

∑̀
j=0

c′j(x− w)j

∣∣∣∣∣∣ ≤ e · (2ε+ nk2−`).

We next replace each ρj by the corresponding ρ′j one at a time. By a simple induction, we will
show that for all 1 ≤ h ≤ m∣∣∣∣∣∣P̃(x)−

 h∏
j=1

(x− ρ′j)

 m∏
j=h+1

(x− ρj)

 exp

∑̀
j=0

c′j(x− w)j

∣∣∣∣∣∣ ≤ e · (2ε+ nk2−`) + 4hkε. (3)

We have just shown this for h = 0. So, we assume (3) for 0 ≤ h ≤ m − 1 and seek to prove it for
h+ 1. For simplicity, we rewrite (3) as∣∣∣P̃(x)− (x− ρh)fh(x)

∣∣∣ ≤ e · (2ε+ nk2−`) + 4hkε

where fh(x) =
(∏h−1

j=1 (x− ρ′j)
)(∏m

j=h+1(x− ρj)
)

exp
(∑`

j=0 c
′
j(x− w)j

)
.

Note that the RHS of (3) satisfies

e · (2ε+ nk2−`) + 4hkε ≤ e · (2ε+ nk2−`) + 4mkε ≤ 1 ,

by our assumptions on ε and `. Since |P̃(x)| ≤ 2−m ≤ 1, we have |(x− ρh)fh(x)| ≤ 2 or |fh(x)| ≤
2

|x−ρh| ≤ 4k. Now if we replace (x − ρh)fh(x) with (x − ρ′h)fh(x), we introduce an error of |(x −
ρh)fh(x)− (x− ρ′h)fh(x)| = |ρ′h − ρh||fh(x)| ≤ ε · 4k. Hence,∣∣∣P̃(x)− (x− ρ′h)fh(x)

∣∣∣ ≤ e · (`ε+ nk2−`) + 4(h+ 1)kε

But this is just (3) for h+ 1, completing the induction.
Taking h = m in (3) gives:∣∣∣∣∣∣P̃(x)−

 m∏
j=1

(x− ρ′j)

 exp

∑̀
j=0

c′j(x− w)j

∣∣∣∣∣∣ ≤ e · (2ε+ nk2−`) + 4mkε

as required.

We are now prepared to prove Proposition 10.

Proof of Proposition 10. By replacing ε by a power of itself, we may assume that ε ≤ k−1 and that
n ≤ ε−1. We may additionally assume that ε is sufficiently small.

It suffices to find a subset T of Sn,k of appropriate size so that for any P ∈ Sn,k there is some

Q ∈ T so that |P̃(z)− Q̃(z)| ≤ ε2 for all |z| = 1, as Fact 11 would then imply that dTV (P,Q) ≤ ε.
We begin by defining some parameters. Let m be an integer larger than 3 log(1/ε). Let ` be an

integer larger than log(nk/ε3) and δ > 0 a real number smaller than ε3/(mk+ `). Additionally, we
divide the unit circle of C into O(k) arcs each of length at most 1/(3k).

To each P ∈ Sn,k we associate the following data:
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• For each arc in our partition with midpoint wI , define q(z) as in Lemma 13. Then we define
PI as follows:

– If P̃(z) has at least m roots within distance 1/(3k) of wI or if |q(wI)| < ε3 exp(−nk), we
let PI = Small.

– Otherwise, we let PI consist of the following data:

∗ Roundings of the roots of P̃(z) that are within 1/(3k) of wI to the nearest complex
numbers whose real and imaginary parts are multiples of δ/2.

∗ Roundings of the first ` Taylor coefficients of log(q) about wI to the nearest complex
numbers whose real and imaginary parts are multiples of δ/2.

We then let D(P) be the sequence {PI}I an arc in the partition. For each value V that can be
obtained as D(P) for some P ∈ Sn,k, we pick one such P called QV . We define our cover T to be
the set of all such QV . In order to show that this is an appropriate cover, we need to show two
claims:

1. The number of possible values of D(P) is at most (1/ε)O(k log(1/ε)) . This implies that |T | is
appropriately small.

2. If P,Q ∈ Sn,k have D(P) = D(Q), then dTV (P,Q) ≤ ε. This will imply that T is a cover,
since given any P ∈ Sn,k, we may take Q = QD(P) ∈ T .

The first claim is relatively straightforward. For each of O(k) arcs, I, we have that PI is either
Small or a sequence of O(log(1/ε)) complex numbers, each of which can take only poly(1/δ) many
possible values. Thus, the number of possible values for PI is at most δ−O(log(1/ε)) = (1/ε)O(log(1/ε)).
The number of possible values for D(P) is at most this raised to the number of arcs, which is
(1/ε)O(k log(1/ε)).

The second claim is slightly more involved. We note that it is sufficient to show that if D(P) =
D(Q), then |P̃(z)− Q̃(z)| ≤ ε2 for all unit norm z. In particular, we show the stronger claim that
for any of our arcs I if PI = QI , then |P̃(z)− Q̃(z)| = O(ε3) for all z ∈ I.

If PI = QI = Small, we claim that |P̃(z)|, |Q̃(z)| = O(ε3) for all z ∈ I. It suffices to show this
merely for P. On the one hand, if P̃(z) has more than m roots near wI , this follows from the first
part of Lemma 12. On the other hand, if |q(wI)| ≤ ε3 exp(−nk), then for any other z ∈ I we have
that

q(z) = q(wI) exp

( ∞∑
i=1

ci(z − wI)i
)
,

where by Lemma 13, |ci| ≤ nk(3k)i. Therefore, for z ∈ I, since |z − wI | ≤ 1/(6k), we have by
Lemma 12 that

|P̃(z)| ≤ |q(z)| ≤ |q(wI)| exp(nk) ≤ ε3.

If PI = QI 6= Small, we note by Lemma 13 that for z ∈ I that both of P̃(z) and Q̃(z) are

within O(mkδ+ `δ+nk2−`) = O(ε3) of
∏M
j=1(z−ρ′j) exp

(∑`
j=0 c

′
j(z − wI)j

)
, where the ρ′j are the

roundings of nearby roots and c′j the roundings of the Taylor coefficients given by the data pI = qI .

Thus, again in this case, |P̃(z)− Q̃(z)| ≤ O(ε3) for all z ∈ I.
This completes the proof of Proposition 10.
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3.3 Efficient Cover Construction. In this section, we give an algorithm to construct a near-
minimum size cover in output polynomial time:

Theorem 14. Let n, k be positive integers and ε > 0. There exists an algorithm that runs in time
n (k/ε)O(k log(1/ε)) and returns a proper ε-cover for Sn,k, i.e., a cover consisting of n (k/ε)O(k log(1/ε))

k-SIIRVs each given as an explicit sum of k-IRVs.

Our algorithm builds on the existential upper bound established in the previous subsections.
We first construct an ε-cover for k-SIIRVs in Case 2 of Theorem 8, i.e., k-SIIRVs whose variance is
more than a sufficiently large polynomial in k/ε. By Theorem 8 each such k-SIIRV is ε-close to a
random variable of the form cZ+Y , where 1 ≤ c ≤ k−1 is an integer, Z is a discrete Gaussian and
Y is a c-IRV. In Section 3.1 we exploited this structural fact to construct a non-proper cover for
k-SIIRVs in this case. We remark that this non-proper cover may contain “spurious” points, i.e.,
points not close to a large variance k-SIIRV. Efficiently constructing a proper cover without spurious
points for the high variance case requires careful arguments and is deferred to Appendix B.3.

We now focus our attention to Case 1. By Lemma 9, we have that all such k-SIIRVs can be
approximated by a constant plus a sum of poly(k/ε) k-IRVs. Since there are only nk possibilities
for this constant, and all such possibilities are easily obtainable, it suffices to find an explicit ε-cover
for Sn,k when n = poly(k/ε).

A simple but useful observation is that we can round each coordinate probability for each of our
k-IRVs to a multiple of ε/(nk) and introduce an error of O(ε) in total variation distance. Therefore,
it suffices to find a cover of S ′n,k, a sum of n = poly(k/ε) independent k-IRVs, where each of their

coordinate probabilities is a multiple of 1
N for some integer N = poly(k/ε). We will henceforth call

such a k-IRV N -discrete k-IRV.
Our main workhorse here will once again be Lemma 13. The cover we construct will be much the

same as in Proposition 10, but we will now explicitly produce SIIRVs that obtain every possible
value of D. Fortunately, the Taylor series of the log of the Fourier transform is additive in the
composite k-IRVs, and so there exists an appropriate dynamic program to solve this problem.

Let δ > 0 be given by a sufficiently small polynomial in ε/k, and let m be an integer at least
a sufficiently large multiple of log(1/ε). We divide the unit circle into arcs I with midpoints wI as
described in the proof of Proposition 10. For any N -discrete k-IRV, P, we associate the following
data. For each interval I, let ρ1,I , . . . , ρrI ,I be the roots of P̃ that are within distance 1/(3k) of wI ,

and let q(z) = P̃(z)∏
(z−ρi,I) . For 1 ≤ j ≤ rI , let ρ′j,I be a rounding of ρj,I with ρ′j , I = (a + bi)δ for

some a, b ∈ Z and |ρ′j,I − ρj,I | ≤ δ. For 1 ≤ j ≤ m, let c′j,I be a rounding of cj,I with c′j,I = (a+ bi)δ
for some a, b ∈ Z and |c′i,I − ci,I | ≤ δ, where the ck,I are the coefficients of first m+ 1 terms of the

Taylor series ln q(z) =
∑∞

j=0 cj(z − wI)j . Let PI be the data consisting of the list (ρ′1,I , . . . , ρ
′
rI ,I

)
and the vector (c′0,I , c

′
1,I , . . . , c

′
m,I). We let D(P) be the sequence of PI over all intervals I.

Given a sequence P1,P2, . . . ,Ph of k-IRVs, we let D(P1, . . . ,Pk) be given by the following data
for each I:

• The first m elements of the concatenation of the lists of approximate roots of
∏h
i=1 P̃i(z) near

wI .

• The list of elements
∑h

i=1 c
′
j,I(Pi) for 0 ≤ j ≤ m, with the exception that the j = 0 term

is replaced by −∞ if for any h′ < h we have that the real part of
∑h′

i=1 c
′
0,I(Pi) is less than

−nk −m−m ln k.

Our algorithm will follow from three important claims:
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Claim 15. We have the following:

(i) D(P1, . . . ,Ph) can be computed in poly(k/ε) time from D(P1, . . . ,Ph−1) and D(Ph).

(ii) There are only (k/ε)O(k log(1/ε)) possible values for D(P1, . . . ,Ph) for any h ≤ n.

(iii) If D(P1, . . . ,Pn) = D(Q1, . . . ,Qn) and P,Q are the distributions of
∑n

i=1Xi and
∑n

i=1 Yi
for Xi ∼ Pi and Yi ∼ Qi then dTV (P,Q) ≤ ε.

Proof. The first statement follows from the fact that the lists of roots in D(P1, . . . ,Ph) are obtained
by concatenating those in D(P1, . . . ,Ph−1) with those in D(Ph), and truncating if necessary.
And moreover that

∑h
i=1 c

′
j,I(Pi) is obtained by adding c′j,I(Ph) to

∑h−1
i=1 c

′
j,I(Pi) (with the term

remaining −∞ if it was in D(P1, . . . ,Ph−1)).
For the second statement note that for each of the O(I) intervals, we store O(log(1/ε)) complex

numbers whose real and imaginary parts are each multiples of δ. As each of these numbers (with
the exception of a −∞ term) have size at most poly(k/ε) and δ = poly(ε/k), there are only
poly(k/ε)O(k log(1/ε)) many possible values for D(P1, . . . ,Ph).

The third statement is true for essentially the same reasons as in the proof of Proposition 10.

Once again, we simply need to show that for each interval I it holds |P̃(z)− Q̃(z)| ≤ (ε/k)c for all
z ∈ I and c a sufficiently large constant. Note that the listed roots are simply δ-approximations
of the (first m) roots of P̃ and q̃ within distance 1/(3k) of wI , and the

∑n
i=1 c

′
j,I(Pi) are within

distance nδ of the coefficients of the Taylor expansion of the logarithm of q(z) about wI . If we have
m nearby roots, both P̃ and Q̃ are small for all z in this range. Otherwise, unless there is a −∞
in D(P) = D(Q), they are close by Lemma 13. If we do have a −∞ then

<

(
h′∑
i=1

c′0,I(Pi)

)
< −nk −m−m ln k

for some h′ ≤ h. Since the later c0,I(Pi) and c0,I(Qi) have <c0,I(Pi) ≤ mi ln k and <c0,I(Pi) ≤
mi ln k by Lemma 13, this means that |q(wI)| < e−me−nk, and as in Proposition 10, this implies
that both P̃ and Q̃ are sufficiently small.

We can now present the algorithm for producing our cover. The basic idea is to use a dynamic
program to come up with one representative collection of P1, . . . ,Ph to obtain each achievable
value of D. The algorithm is as follows:
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Algorithm Cover-SIIRV

Input: k, ε > 0 and n,N = poly(k/ε).

1. Define δ and m as above.

2. Let L0 = {(D(∅), ∅)}.

3. For h = 1 to n

4. Let Lh be the set of terms of the form (D(P1, . . . ,Ph), (P1, . . . ,Ph)) where
(D(P1, . . . ,Ph−1), (P1, . . . ,Ph−1)) ∈ Lh−1 and Ph is an N -discrete k-IRV.

5. Use a hash table to remove from Lh all but one term with each possible value of
D(P1, . . . ,Ph)

6. End for

7. Return the list of distributions
∑n

i=1Xi with Xi ∼ Pi for each
(D(P1, . . . ,Pn), (P1, . . . ,Pn)) ∈ Ln.

To prove that this produces a cover, we claim by induction on h that Lh contains an element
that achieves each possible value of D(P1, . . . ,Ph). This is clearly true for h = 0. Given that it
holds for h− 1, Claim 15(i) implies that the non-deduped version of Lh also satisfies this property,
and deduping clearly does not destroy it. Therefore Ln contains (exactly one) element for each
possible value of D(P1, . . . ,Pn). Therefore, by Claims 15(ii) and (iii), the algorithm will return a
cover of the appropriate size. For the runtime, we note that the initial size of Lh before deduping
is the product of the size of Lh−1 and the number of N -discrete k-IRVs, which by Claim 15(ii)
is poly(k/ε)k log(1/ε). Each of these elements are generated in poly(k/ε) time, and the deduping
process takes only polynomial time per element. Therefore, the final runtime is poly(k/ε)k log(1/ε).
This completes the proof of Theorem 14.

4 Cover Size Lower Bound

In this section we prove our lower bound on the cover size of k-SIIRVs. In Section 4.1 we show the
desired lower bound for the case of PBDs (k = 2). In Section 4.2 we generalize this construction
for general k-SIIRVs.

4.1 Cover Size Lower Bound for PBDs. We start by providing an explicit lower bound on
the cover size of PBDs. In particular, we show the following:

Theorem 16. For all 0 < ε ≤ e−42 and n ∈ Z such that 7 ≤ n ≤ 1
6 ln(1/ε), there is an ε-packing

of Sn,2 under dTV with cardinality (1/ε)Ω(n).

We begin with the following useful lemma:

Lemma 17. Let P and Q be PBDs given by parameters pi and qi for 1 ≤ i ≤ n, for some n ≥ 7.
Suppose that for all i, 1 ≤ i ≤ n, it holds |pi − i/(n+ 1)| ≤ 1/4(n + 1) and |qi − i/(n+ 1)| ≤
1/4(n+ 1). Then,

dTV (P,Q) ≥ max
i
|pi − qi| · e−3n.
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Proof. Let ε = |pi−qi|e−3n. For a distribution P supported on [n], define rP(p) to be the polynomial

rP(p) = EX∼P
[
(p− 1)X · pn−X

]
=

n∑
i=0

P(i)(p− 1)ipn−i.

For a PBD P ∈ Sn,2 and X ∼ P with X =
∑n

i=1Xi for Xi ∼ Ber(pi), we have that

rP(p) = E
[
(p− 1)Xpn−X

]
= E

[
(p− 1)

∑n
i=1Xi · p

∑n
i=1(1−Xi)

]
= E

[
n∏
i=1

(p− 1)Xip1−Xi

]

=
n∏
i=1

E
[
(p− 1)Xip1−Xi

]
=

n∏
i=1

(pi(p− 1) + (1− pi)p)

=
n∏
i=1

(p− pi) .

Hence, the roots of the polynomial rP are exactly the parameters pi of the PBD P ∈ Sn,2. We have
the following simple claim:

Claim 18. Let P,Q ∈ Sn,2 such that dTV (P,Q) < ε. Then for any p ∈ [0, 1], we have that

|rP(p)− rQ(p)| < 2ε.

Proof. We have the following sequence of (in)equalities:

|rP(p)− rQ(p)| =

∣∣∣∣∣
n∑
i=0

(P(i)−Q(i))(p− 1)ipn−i

∣∣∣∣∣
≤

n∑
i=0

|(P(i)−Q(i))| ·
∣∣(p− 1)ipn−i

∣∣
≤

n∑
i=0

|P(i)−Q(i)| = 2dTV (P,Q)

< 2ε ,

where the second line is the triangle inequality and the third line uses the fact that |(p−1)ipn−i| ≤ 1
for all i ∈ [n] and p ∈ [0, 1].

Hence, to prove the lemma, it suffices to show that for some p ∈ [0, 1] that

|rP(p)− rQ(p)| ≥ 2ε.

In particular, we show this for p = pi. Noting that rP(pi) = 0, it suffices to show that |rQ(pi)| ≥ 2ε.
We now proceed to prove this fact. If j 6= i we have that,

|pi − qj | ≥
|i− j|
n+ 1

−
∣∣∣∣pi − i

n+ 1

∣∣∣∣− ∣∣∣∣qj − j

n+ 1

∣∣∣∣ ≥ 1

2(n+ 1)
.
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Therefore, we have that

|rQ(pi)| =
n∏
j=1

|pi − qj | ≥ |pi − qi| ·
∏
j 6=i

|i− j|
2(n+ 1)

.

We note that ∏
j 6=i

|i− j|
(n+ 1)

= (i− 1)!(n− i)! ≥ n!(
n−1
i−1

)
≥ (n/e)n

2n−1
, (4)

where we use the elementary inequalities n! ≥ (n/e)n and
(
n−1
i∗−1

)
≤ 2n−1. Applying this to the

above, we find that

|rQ(pi)| =
|pi − qi|

e(n+ 1)(4e)n
≥ 2|pi − qi|

e3n
≥ 2ε.

Proof of Theorem 16. Given ε > 0 and n ∈ Z satisfying the condition of the theorem, we define an
explicit ε-packing for Sn,2 as follows: Let s = bε−1/2c. For a vector a = (a1, . . . , an) ∈ [s]n, let

pai =
i

n+ 1
+
ai
√
ε

4n
, i ∈ {1, . . . , n}

be the parameters of a PBD Pa ∈ Sn,2. We claim that the set of PBDs
{
Pa

}
a∈[s]n

satisfies the

conditions of the theorem, i.e., for all a,b ∈ [s]n, a 6= b implies dTV (Pa,Pb) ≥ ε.
In particular, if a 6= b, then there must be some i so that ai 6= bi. Then, by Lemma 17, we

have that

dTV (Pa,Pb) ≥ |pai − pbi |e−3n ≥
√
ε

4n
e−3n ≥ ε3/4

4n
≥ ε.

As a simple corollary we obtain the desired lower bound:

Corollary 19. For all 0 < ε < 1 and n = Ω(log(1/ε)), any ε-cover of Sn,2 under dTV must be of
size n · (1/ε)Ω(log 1/ε).

Proof. We will assume without loss of generality that ε is smaller than an appropriately small
positive constant. First note that if there exists a 3ε-packing for Sn,2 of cardinality M , then any
ε-cover for Sn,2 must be of cardinality at least M . Indeed, for every Qi, i = 1, . . . ,M , in the
3ε-packing, consider the (non-empty) set Nε(Qi) of points P in the ε-cover with dTV (Qi,P) ≤ ε.
If P ∈ Nε(Qi) and j 6= i, we have dTV (P,Qj) ≥ dTV (Qj ,Qi)− dTV (Qi,P) ≥ 2ε. That is, the sets
Nε(Qi) are each non-empty and mutually disjoint, which implies that the size of any ε-cover is at
least M .

By Theorem 16, for any 0 < ε ≤ e−42/3, if we fix n0 = b1
6 ln(1/3ε)c, there is a 3ε-packing for

Sn0,2 of size (1/ε)Ω(log(1/ε)). From the argument of the previous paragraph, any ε-cover for Sn0,2 is
of size (1/ε)Ω(log(1/ε)).
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To prove the desired lower bound of n · (1/ε)Ω(log(1/ε)) we construct appropriate “shifts” of the
set Sn0,2 as follows: Consider the set Sn,2 where n ≥ r(n0 + 1) for some r ∈ Z+. For 0 ≤ i < r,
let Sin,2 be the subset of Sn,2 where i(n0 + 1) of the parameters pj are equal to 1, and at most n0

other pj ’s are non-zero. Note that for i 6= j any elements of Sin,2 and Sjn,2 have disjoint supports.

Therefore, any ε-cover of Sn,2 must contain disjoint ε-covers for Sin,2 for each i. Note also that

Sin,2 is isomorphic to Sn0,2 for each i, and thus has minimal ε-cover size at least (1/ε)Ω(log(1/ε)).

Therefore, any ε-cover of Sn must have size at least bn/n0c · (1/ε)Ω(log(1/ε)) = n(1/ε)Ω(log(1/ε)).

4.2 Cover Size Lower Bound for k-SIIRVs. In this section, we prove our cover lower bound
for k-SIIRVs:

Theorem 20. For 0 < ε ≤ e−12(2k)−9 and n ≤ b 1
12 log(1/ε)c, there is an ε-packing of Sn,k under

dTV with cardinality (1/ε)Ω(nk).

Proof. We consider k-SIIRVs close to the (k−1) multiple of the PBD P0 with parameters pi = i
n+1

we used for the explicit lower bound in 4.1. Let m ∈ Z+ and 0 < δ < 1 be parameters that will be
fixed later. Given an a ∈ [m]n(k−2), which will index by aij , for i ∈ {1, . . . , n} and j ∈ {1, . . . , k−2},
we define a k-SIIRV Pa as follows. For each i, we take a k-IRV Yi with pdf defined as follows:

Pr[Yi = 0] = (1− pi)

1− δ ·
∑
j

aij

 ,

Pr[Yi = j] = δ · aij , 1 ≤ j ≤ k − 2,

Pr[Yi = k − 1] = pi

1− δ
∑
j

aij

 .

For convenience, we will denote γa,i =
(

1− δ ·
∑

j aij

)
. We claim that the set of distributions

Pa, a ∈ [m]n(k−2), is an ε-packing. To prove this statement we proceed similarly to the proof of
Theorem 16. For a distribution P, we will consider the expectations

rP,ij =

n∑
l=0

pn−li (pi − 1)lP(l(k − 1) + j)

for i ∈ {1, . . . , n} and j ∈ {1, . . . , k − 2}. Similarly to Claim 18, we have the following

Claim 21. Let P,Q ∈ Sn,k such that dTV (P,Q) < ε. Then for any i ∈ {1, . . . , n} and j ∈
{1, . . . , k − 2}, we have that

|rP,ij − rQ,ij | < 2ε.

Proof. We have the following sequence of (in)equalities:

|rP,ij − rQ,ij | =

∣∣∣∣∣
n∑
l=0

(P(l(k − 1) + j)−Q(l(k − 1) + j))pn−li (pi − 1)l

∣∣∣∣∣
≤

n∑
i=0

|(P(l(k − 1) + j)−Q(l(k − 1) + j)| ·
∣∣∣pn−li (pi − 1)l

∣∣∣
≤

n∑
i=0

|P(l(k − 1) + j)−Q(l(k − 1) + j)| ≤ 2dTV (P,Q)

< 2ε ,
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where the second line is the triangle inequality and the third line uses the fact that |pn−li (pi−1)l| ≤ 1
for all l ∈ [n] and i ∈ {1, . . . , n}.

By the above claim, to complete the proof, it suffices to show that |rPa,ij−rPb,ij | ≥ 2ε whenever
aij 6= bij . To prove this statement, we exploit the fact that these k-SIIRVs are close to a multiple
of P0, by ignoring terms in the expectations that are O(δ2).

Let Y =
∑n

i=1 Yi with Y ∼ Pa for a given a ∈ [m]n(k−2). We define several events depending
on which coordinates Yi are equal to 0 or k− 1, and consider their contribution to the expectation
rPa,ij separately.

Firstly, let A≥2 be the event that more than one Yi is not 0 or k− 1 . The probability that any
fixed Yi is not 0 or k − 1 is small, namely

k−2∑
j=1

Pr[Yi = j] =
k−2∑
j=1

δaij ≤ (k − 2)mδ .

Hence,

Pr[A≥2] ≤
(
n

2

)
((k − 2)mδ)2 ≤ 1

2
· (n(k − 2)mδ)2 .

The contribution ofA≥2 to rPa,ij is rPa,ij,A≥2
:=
∑n

l=0 p
n−l
i (pi−1)lPrY∼Pa [Y = l(k − 1) + j ∩A≥2] ,

and therefore

|rPa,ij,A≥2
| ≤ 1

2
(n(k − 2)mδ)2 ,

since |pn−li (pi − 1)l| ≤ 1.
Secondly, let A0 be the event that all Yi’s are 0 or k − 1. If A0 occurs then Y is a multiple of

k − 1. Thus, for l ∈ [n] and j ∈ {1, . . . , k − 2}, we have PrY∼Pa [Y = l(k − 1) + j ∩A0] = 0. The
contribution of A0 to rPa,ij is

rPa,ij,A0 :=

n∑
l=0

pn−li (pi − 1)lPrY∼Pa [Y = l(k − 1) + j ∩A0] = 0 .

Finally, for i ∈ {1, . . . , n}, let Bi be the event that Yi is the only k-IRV that takes a value between 1
and k−2. The probability of all other Yh, with h 6= i, being either 0 or k−1 is

∏
h6=i γa,h. We consider

the RVs X−i =
∑

h6=iXh, where Xh ∼ Ber(ph). That is, X−i ∼ P−i ∈ Sn−1,2, i.e., it is a PBD

with parameters ph for h 6= i. Then, the conditional probability Pr
[∑

h6=i Yh = l(k − 1)|(Bi ∪A0)
]

is equal to Pr [X−i = l] = P−i(l) for all l ∈ [n]. So, for all l ∈ [n] and j ∈ {1, . . . , k − 2} we have

Pr [Y = l(k − 1) + j ∩Bi] = Pr

∑
h6=i

Yh = l(k − 1) ∩ (Bi ∪A0)

Pr[Yi = j]

=

∏
h6=i

γa,h

P−i(l)δaij
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Then, the contribution of Bi to rPa,gj is

rPa,gj,Bi :=

n∑
l=0

pn−lg (pg − 1)lPrY∼Pa [Y = l(k − 1) + j ∩Bi]

=

∏
h6=i

γa,h

 · δaij · n∑
l=0

pn−lg (pg − 1)lP−i(l)

=

∏
h6=i

γa,h

 · δaij · rP−i(pg)

=

∏
h6=i

γa,h

 · δaij ·∏
h6=i

(ph − pg) ,

where rP−i above is as defined in the previous section, and when g 6= i, the second product includes
the term pg−pg = 0, so rPa,gj,Bi = 0. Summing these contributions to the expectation rPa,ij gives:

rPa,ij = rPa,ij,A≥2
+ rPa,ij,A0 +

n∑
g=1

rPa,ij,Bg

= rPa,ij,A≥2
+ rPa,ij,Bi

= rPa,ij,A≥2
+
∏
h6=i

γa,h · δaij ·
∏
h6=i

(ph − pi)

Now consider a and b which for some i ∈ {1, 2, ..., n} and j ∈ {1, 2, ..., k − 2} have aij 6= bij . We
have that

∏
h6=i |ph − pi| ≥ e−3n by Equation (4), and thus,

∏
h6=i

γa,h =
∏
h6=i

(
1− δ

∑
j
ahj

)
≥ (1− (k − 2)mδ)n−1 ≥ (1− (n− 1)(k − 2)mδ),

|aij − bij | ≥ 1, and |rPa,ij,A≥2
| ≤ 1

2(n(k − 2)mδ)2.
We obtain the following sequence of inequalities:

|rPa,ij − rPb,ij | = |rPa,ij,Bi − rPb,ij,Bi + rPa,ij,A≥2
− rPb,ij,A≥2

|

≥
∣∣∣ ∏
h6=i

(ph − pg)
( ∏
h6=i

γa,hδaij −
∏
h6=i

γb,hδbij
)∣∣∣− (n(k − 2)mδ)2

≥ e−3n
∣∣ ∏
h6=i

γa,hδ
∣∣ · |aij − bij | − e−3nδbij

∣∣ ∏
h6=i

γa,h −
∏
h6=i

γb,h
∣∣− (n(k − 2)mδ)2

≥ e−3n(1− (n− 1)(k − 2)mδ)δ − δm
(∣∣1− ∏

h6=i
γa,h

∣∣+
∣∣1− ∏

h6=i
γb,h

∣∣)− (n(k − 2)mδ)2

≥ e−3nδ − 2δmn(k − 2)mδ − 2(n(k − 2)mδ)2

≥ e−3nδ − 3(n(k − 2)mδ)2 .

Recall that by assumption ε ≤ e−12(2k)−9. We set n = b 1
12 log(1/ε)c, δ = 3ε3/4, and m =

b ε−1/4

2n2(k−2)2
c. Then, e−3nδ ≥ 3ε and 3(n(k − 2)mδ)2 ≤ ε. So, we have that |rPa,ij − rPb,ij | ≥ 2ε as

required. Also, γa ≥ 1−
√
ε ≥ 0, so the k-IRVs are indeed well-defined.

Therefore, we have exhibited a set of mn(k−2) k-SIIRVs that have pairwise total variation
distance at least ε. The proof follows by observing that mn(k−2) = (1/ε)Ω(k log 1/ε).
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5 Sample Complexity Lower Bound

5.1 A Useful Structural Result. In this section, we prove a novel structural result for the
space of PBDs (Lemma 22). This allows us to obtain a simple non-constructive lower bound on
the cover size of PBDs under the Kolmogorov distance metric. More importantly, this lemma is
crucial for the sample complexity lower bound of the following subsection.

Before we state our lemma, we provide some basic intuition. The set of all distributions sup-
ported on [n] is n-dimensional (viewed as a metric space). Note that each P ∈ Sn,2 is defined by
n parameters. It turns out that Sn,2 is also n-dimensional in a precise sense. This intuition is
formalized in the following lemma:

Lemma 22. (i) Given any P ∈ Sn,2 with distinct parameters in (0, 1), there is a radius δ = δ(P)
such that any distribution Q with support [n] that satisfies dK(P,Q) ≤ δ can also be expressed as
a PBD, i.e., Q ∈ Sn,2.

(ii) Let P0 ∈ Sn,2 be the PBD with parameters pi = i
n+1 , 1 ≤ i ≤ n. Then any distribution

Q with support [n] that satisfies dK(P0,Q) ≤ 2−9n is itself a PBD with parameters qi such that
|qi − pi| ≤ 1

4(n+1) .

Proof. We consider the space of cumulative distribution functions (CDF’s) of all distributions
of support [n]. Let Tn be the set of sequences 0 ≤ x1 ≤ x2 ≤ . . . ≤ xn ≤ 1. Consider the
map Pn : Tn → Tn defined as follows: For p = (p1, . . . , pn) ∈ Tn (i.e., with ordered parameters
0 ≤ p1 ≤ . . . ≤ pn ≤ 1), let P be the corresponding PBD in Sn,2. For i ∈ {1, . . . , n}, let
(Pn(p))i = P(< i). Namely, Pn maps a sequence of probabilities to the sequence of probabilities
defining the CDF of the corresponding PBD.

The basic idea of the proof is that the mapping Pn is invertible in a neighborhood of a point
p with distinct coordinates. This allows us to uniquely obtain the distinct parameters of a PBD
P ∈ Sn,2 from its CDF. We will make essential use of the inverse function theorem for Pn, which
we now recall:

Theorem 23 (Inverse function theorem [Rud76]). Let F : S → Rn, S ⊆ Rn, be a continuously
differentiable function and x be a point in the interior of S such that the Jacobian matrix of F ,
Jac(F )(x), is non-singular. Then there exists an inverse function, F−1, of F in a neighborhood of
F (x). Furthermore the inverse function F−1 is continuously differentiable and its Jacobian matrix
satisfies Jac(F−1)(F (x)) = (Jac(F )(x))−1.

We will apply the inverse function theorem for Pn at the point p defining the distinct parameters
of the PBD P in the statement of the theorem. It is easy to see that Pn is continuously differentiable.
The main part of the argument involves proving that the Jacobian matrix of Pn at p, Jac(Pn)(p),
is non-singular.

Recall that Jac(Pn)(p) is the n× n matrix whose (i, j) entry is the partial derivatives of (Pn)i
in direction j, i.e., (Jac(Pn)(p))ij = ∂(Pn(p))i

∂pj
. We start by showing the following lemma:

Lemma 24. For a PBD P ∈ Sn,2 with parameters p, we have

M(p) · Jac(Pn)(p) = −diag

∏
j 6=i

(pi − pj)

 (5)

where M(p) is the n × n matrix with entries (M(p))ij = (1 − pi)j−1pn−ji , 1 ≤ i, j ≤ n. Here, for
x ∈ Rn, we denote by diag(x) the diagonal matrix with entries (diag(x))ii = xi.
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Proof. To calculate the partial derivative ∂(Pn(p))i
∂pj

, we isolate the effect of the parameter pj from

the other variables. In particular, for X ∼ P, i.e., X =
∑n

i=1Xi, with Xi ∼ Ber(pi), we can write
X = X−j + Xj , where X−j =

∑
i 6=j Xi. Note that Xj ∼ P−j ∈ Sn−1,2, i.e., it is the (n − 1)

parameter PBD with parameters pi for i 6= j. Now, for 1 ≤ i ≤ n, we can write

(Pn(p))i = P(< i) = P−j(< (i− 1)) + (1− pj)P−j(i− 1).

The derivative of this quantity with respect to pj equals

∂(Pn(p))i
∂pj

= −P−j(i− 1).

Therefore, the j-th column of Jac(Pn)(p) equals −1 times the pdf of the distribution P−j . This
allows us to consider multiplying on the right by Jac(Pn)(p) as taking the expectations of certain
distributions. In particular, for y ∈ Rn and any 1 ≤ j ≤ n, we have that

(yTJac(Pn)(p))j = −
n∑
i=1

yiP−j(i− 1) = −E
[
yX−j+1

]
.

Therefore, for 1 ≤ i, j ≤ n, we can write

(M(p) · Jac(Pn)(p))ij = −
n∑
k=1

(pi − 1)k−1pn−ki P−j(k − 1)

= −E
[
(pi − 1)X−jp

n−X−j−1
i

]
= −E

∏
k 6=j

(pi − 1)Xkp1−Xk
i


= −

∏
k 6=j

E
[
(pi − 1)Xkp1−Xk

i

]
= −

∏
k 6=j

[(pi − 1)pk + pi(1− pk)]

= −
∏
k 6=j

(pi − pk) .

Note that for i 6= j, the above product contains the term (pi−pi) and so is equal to 0. When i = j,
we have (M(p) · Jac(Pn)(p))ii = −

∏
k 6=i(pi − pk) completing the proof of the lemma.

We are now ready to prove part (i) of Lemma 22. To this end, consider a PBD P with distinct
parameters p, i.e., pi 6= pj for i 6= j, such that pi ∈ (0, 1) for all i. Note that p lies in the interior
of Tn. Moreover, for all i, we have

∏
j 6=i(pi − pj) 6= 0 and therefore the matrix diag(

∏
j 6=i(pi − pj))

appearing in (5) is non-singular. It follows from Lemma 24 that both matrices on the LHS of (5) are
non-singular. In particular, Jac(Pn)(p) is non-singular, hence we can apply the inverse function
theorem. As a corollary, there exists an inverse mapping P−1

n in some neighborhood of Pn(p).
Specifically, there is some δ > 0 such that P−1

n is defined at every x ∈ Tn with ‖x−Pn(p)‖∞ ≤ δ.
Let Q be a distribution over [n] satisfying dK(P,Q) ≤ δ. Equivalently, if y = (Q(< i))ni=1 ∈ Tn

is the CDF of Q, then ‖Pn(p)− y‖∞ ≤ δ. Thus P−1
n is defined at y and q = P−1

n (y) ∈ Tn are the
parameters of a PBD with distribution Q. Thus, Q is a PBD with parameters q, which completes
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the proof of (i). Note that the proof also implies that Q in this neighborhood can be taken to be
Pn(q′) for q′ in some small neighborhood of p.

To prove part (ii) of Lemma 22, we use a geometric argument. Recall that the parameters of

P0 are p0 =
(

1
n+1 , . . . ,

n
n+1

)
. Let S ⊆ Tn be the set of vectors p with ‖p − p0‖∞ ≤ 1

4(n+1) . By

Lemma 17 we have that any Q in Pn(∂S) satisfies dTV (P0,Q) ≥ e−3n

4(n+1) , and therefore dK(P0,Q) ≥
e−3n

8(n+1)2
≥ 2−9n.

Let B be the set of distributions Q on [n] so that dK(P0,Q) ≤ 2−9n. We claim that Pn(S)∩B =
B. To begin, note that S is compact, and therefore this intersection is closed. On the other hand,
since Pn(∂S) is disjoint from B, this intersection is Pn(int(S)) ∩ B. On the other hand, since Pn
has non-singular Jacobian on int(S), the open mapping theorem implies that Pn(int(S)) ∩B is an
open subset of B. Therefore, Pn(S)∩B is both a closed and open subset of B, and therefore, since
B is connected, it must be all of B. This completes the proof of part (ii).

As a simple application of our structural lemma, we obtain a non-constructive lower bound on
the cover size under the Kolmogorov distance metric:

Theorem 25. For any ε > 0 and n = Ω(log(1/ε)) any ε-cover of Sn,2 under dK must have size at
least n · (1/ε)Ω(log(1/ε)).

Proof. Note that by an argument identical to that of Corollary 19 it suffices to prove a packing
lower bound of (1/ε)Ω(log(1/ε)) for n = Θ(log(1/ε)).

To that end, fix n = n0 = b 1
18 log2(1/ε)c. Then, we have 2−9n ≥

√
ε. By Lemma 22(ii), there

is a PBD P0 ∈ Sn,2, such that any distribution Q with support [n] and dK(P0,Q) ≤
√
ε is in Sn,2.

We will give an ε-packing lower bound for this subset of PBDs.
Let us denote by z ∈ Tn the vector defining the CDF of P0, i.e., z = (P0(< i))ni=1. Let S ⊆ Rn

be the set of points x ∈ Rn with ‖x− z‖∞ ≤
√
ε. Note that S is an n-cube with side length 2

√
ε.

We claim that every x ∈ S is the CDF of a PBD Q ∈ Sn,2 . By Lemma 22, this follows
immediately if x ∈ Tn, i.e., if x is the CDF of a distribution. So, it suffices to show that S ⊆ Tn.
Suppose for the sake of contradiction that there is a point y ∈ S \Tn. Then, there is a point x ∈ S
such that x lies on the boundary of Tn. For such a point x, one of the inequalities 0 ≤ x1 ≤ x2 ≤
. . . ≤ xn ≤ 1 is tight. Thus, x is the CDF of a distribution Q which has Q(i) = 0 for some i. Since
x ∈ S ∩ Tn, Q is a PBD with parameters given by Lemma 22. In particular Q does not have any
parameters equal to 0 or 1. Thus, we have Q(i) > 0 for all i ∈ [n], a contradiction.

Therefore, any ε-cover of Sn,2 in Kolmogorov distance induces an ε-cover of the same size in
L∞ distance of the CDFs of distributions in Sn,2. If s is the size of such a cover, then we have s
n-cubes of side length ε whose union contains S. Recall that S is an n-cube of side length

√
ε. The

volume of each of these s n-cubes is (2ε)n and the volume of S is (2
√
ε)n. The volume of the union

of s n-cubes is at most s · (2ε)n and hence s · (2ε)n ≥ (2
√
ε)n or s = (1/ε)Ω(n), which competes the

proof.

5.2 Sample complexity lower bound for PBDs. In this subsection we prove our sample
complexity lower bound of ω(1/ε2) for learning PBDs to total variation distance ε. Our proves
uses a combination of information-theoretic arguments and the structural lemma of the previous
subsection. In particular, we show:

Theorem 26 (Sample Lower Bound). Let A be any algorithm which, given as input n, ε, and sam-
ple access to an unknown P ∈ Sn,2 outputs a hypothesis distribution H such that E[dTV (H,P)] ≤ ε.
Then A must use Ω((1/ε2) ·

√
log(1/ε)) samples.
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Our main information-theoretic tool to prove our lower bound is Assouad’s Lemma [Ass83].
We recall the statement of the lemma (see, e.g., [DG85]), tailored to discrete distributions below:

Theorem 27. [Theorem 5, Chapter 4, [DG85]] Let r ≥ 1 be an integer. For each b ∈ {−1, 1}r, let
Pb be a probability distribution over a finite set A. For 1 ≤ ` ≤ r and b ∈ {−1, 1}r, we denote by

b(`,+) (resp. b(`,−)) the vector with b
(`,+)
i = bi (resp. b

(`,−)
i = bi) for i 6= ` and b

(`,+)
` = 1 (resp.

b
(`,−)
` = −1). Suppose there exists a partition A0, A1, . . . , Ar of A such that for all b ∈ {−1, 1}r

and all 1 ≤ ` ≤ r, the following inequalities are valid:

(a)
∑

x∈A`
|Pb(`,+)(x)−Pb(`,−)(x)| ≥ α, and

(b)
∑

x∈A
√

Pb(`,+)(x)Pb(`,−)(x) ≥ 1− γ > 0.

Then, for any any algorithm A that draws s samples from an unknown P ∈ Pb and outputs a
hypothesis distribution H, there is some b ∈ {−1, 1}r such that if the target distribution P is Pb,

E [dTV (P,H)] ≥ (rα/4)(1−
√

2sγ).

Recall that PBDs are discrete log-concave distributions. We will use the following basic prop-
erties of log-concave distributions:

Lemma 28. There exists a universal constant c > 0 such that the following holds: For any log-
concave distribution P supported on the integers and standard deviation σ, there exist at least Ω(σ)
consecutive integers with probability mass under P at least c · 1

1+σ .

The simple proof is deferred to Appendix C.1. We are now ready to prove Theorem 26.

Proof of Theorem 26. Ideally, we would like to use the set of PBDs whose parameters are explicitly
described in Theorem 16 in our application of Assouad’s lemma. Unfortunately, however, this
particular set is not in a form that allows a direct application of the theorem. The difficulty lies
in the fact that it is not clear how to isolate the changes between distributions in disjoint intervals
using explicit parameters.

We therefore proceed with an indirect approach making essential use of Lemma 22(ii). We start
from the PBD P0 in the statement of the lemma and we perturb its pdf appropriately to construct
our “hypercube” distributions Pb. The lemma guarantees that, if the perturbation is small enough,
all these distributions are indeed PBDs.

Observe that the variance of P0 is Ω(n) since Ω(n) parameters pi lie in [1/4, 3/4]. By Lemma
28, there exist r = Ω(

√
n) consecutive integers, an integer m, 0 ≤ m ≤ n, and a real value t with

t ≥ c · r, such that for all i, with m ≤ i ≤ m+ 2r, we have

P(i) ≥ 2

t
.

For n sufficiently large, we can assume that 2−9n ≤ c and therefore 1
t ≥

2−9n

r .
We are now ready to define our “hypercube” of PBDs. For b ∈ {−1, 1}r, consider the distri-

bution Pb with

Pb(i) =


P0(i) if i < m, i > m+ 2r, or bb 1

2
(i−m)c = −1

P0(i)− 2−9n

r if bb 1
2

(i−m)c = 1 and i is even

P0(i) + 2−9n

r if bb 1
2

(i−m)c = 1 and i is odd
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Note that all these distributions are PBDs as follows from Lemma 22(ii) since

dK(Pb,P0) ≤ dTV (Pb,P0) = 2−9n .

For 0 ≤ i ≤ r− 1, the sets Ai+1 = {m+ 2i,m+ 2i+ 1} define the partition of the domain. We can
now apply Assouad’s lemma to this instance.

For b ∈ {−1, 1}r we can write

∑
x∈A`

|Pb(`,+)(x)−Pb(`,−)(x)| = 2 · 2−9n

r
.

Similarly,

n∑
i=0

(√
Pb(`,+)(i)−

√
Pb(`,−)(i)

)2

=
∑

i=m+2`,m+2`+1

(
Pb(`,+)(i)−Pb(`,−)(i)√
Pb(`,+)(i)) +

√
Pb(`,−)(i)

)2

=
∑

i=m+2`,m+2`+1

(
2−9n/r√

Pb(`,+)(i)) +
√

Pb(`,−)(i)

)2

≥
∑

i=m+2`,m+2`+1

(
2−9n/r

2
√

1/t

)2

=
2−18n · c

2r
,

where the first inequality uses the fact that

Pb(i) ≥ P0(i)− 2−9n

r
≥ 2

t
− 1

t
≥ 1

t
,

for m ≤ i ≤ m+ 2k.
Therefore, the parameters in Assouad’s Lemma are

α :=
2 · 2−9n

r
, γ =

2−18n · c
2r

, and s =
1

8γ

from which we obtain that that there is a Pb with

E [dTV (H,Pb)] ≥ (rα/4) · (1−
√

2sγ) =
2−9n

4
.

Hence, for ε = 2−9n−2, if the number of samples satisfies

s ≤ 1

8γ
=
r · 218n

4c
= O(218n√n) = O

(
(1/ε2)

√
log(1/ε)

)
,

then E [dTV (H,Pa)] ≥ ε, completing the proof of the theorem.
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Appendix

A Lower Bounds on Matching Moments

We start by giving an explicit example of two PBDs over k + 1 variables that agree exactly on the
first k moments and have total variation distance 2−Ω(k).

Proposition 29. Let P,Q ∈ Sk+1,2 be PBD’s with parameters pi = (1 + cos( 2πi
k+1))/2 and qi =

(1 + cos(2πi+π
k+1 ))/2 respectively, where 1 ≤ i ≤ k+ 1. Then P and Q agree on their first k moments

and have dTV (P,Q) ≥ 4−k.

Proof. Let X =
∑k+1

i=1 Xi, where Xi are independent Bernoulli variables, and suppose that X ∼ P.
We note that, for m ≤ k, the random variable Xm can be expressed as a degree m polynomial
in the Xi’s. Therefore, the m-th moment of P is a degree m symmetric polynomial of the pi’s.
Similarly, the m-th moment of Q must be the same symmetric polynomial of the qi. Therefore,
to show that the first k moments of P and Q agree, it suffices to show that the first k elementary
symmetric polynomials in the pi have the same values as the corresponding polynomials of the qi’s.

Note that the pi are the roots of Tk+1(2x−1)−1 and that the qi are the roots of Tk+1(2x−1)+1,
where Tk+1 is the (k + 1)-st Chebychev polynomial. Therefore, for m ≤ k, the m-th elementary
symmetric polynomial in the pi is [xk+1−m](−1)m2−2k−1Tk+1(2x + 1) and the same holds for the
qi. Thus, the first k moments of P and Q agree. To bound the total variation distance from below
we observe that

k+1∏
i=1

pi = P(k + 1) = [x0](−1)k+12−2k−1(Tk+1(2x+ 1)− 1),

and
k+1∏
i=1

qi = Q(k + 1) = [x0](−1)k+12−2k−1(Tk+1(2x+ 1) + 1).

Therefore, the probability that P = k + 1 and the probability that Q = k + 1 differ by 4−k. This
implies the appropriate bound in their variational distance and completes the proof.

We also show that matching moments does not suffice for the case of k-SIIRVs, even for k = 3:

Proposition 30. For n an even integer, there exist P,Q ∈ Sn/2,3 with disjoint supports such that
their first n− 1 moments agree.

Proof. We first show that there exist such P and Q with P supported on even numbers and Q
supported on odd numbers, so that

P(2j) = 2−n+1

(
n

2j

)
,

and

Q(2j + 1) = 2−n+1

(
n

2j + 1

)
.
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We begin by showing that P ∈ Sn/2,3. Since
∑

j 2−n+1
(
n
2j

)
= 1, we will show that the polynomial

P̃(z) =
∑

j 2−n+1
(
n
2j

)
z2j factors as a product of n/2 quadratic polynomials with non-negative

coefficients. To prove this, we note that it suffices to show that all roots of P̃ are pure imaginary;
then, the natural factorization into quadratics using complex conjugate pairs will complete the
argument. For this, we observe that P̃(z) = 2−n((1 + z)n + (1 − z)n). Therefore, z is a root of P̃
only when |1 + z| = |1− z|, or when z is equidistant from 1 and −1, which happens only when the
real part of z is 0, i.e., when z is pure imaginary.

Similarly, we show that Q ∈ Sn/2,3. Once again
∑

j 2−n+1
(

n
2j+1

)
= 1, and so we merely need

to show that Q̃(z) =
∑

j 2−n+1
(

n
2j+1

)
z2j+1 factors into quadratics with non-negative coefficients.

Since Q̃(z) = 2−n((1 + z)n − (1− z)n), it also has only purely imaginary roots.
It remains to show that P and Q have identical first n − 1 moments. For this, it suffices to

show that P̃(z)(k)(1) = Q̃(z)(k)(1) for all 0 ≤ k < n. Indeed, we have that

P̃(z)(k)(1)− Q̃(z)(k)(1) = 21−n ∂
k

∂zk
(1− z)n|z=1 =

21−n(1− z)n−kn!

(n− k)!
|z=1 = 0.

This completes the proof.

B Omitted Proofs from Section 3

B.1 Proof of Lemma 9. For convenience, we restate Lemma 9:

Lemma 9. Let P ∈ Sn,k be a k-SIIRV with Var[X] = V . For any 0 < δ < 1/4, there exists
Q ∈ Sn,k with dTV (P,Q) = O(δV ) such that all but O(k + V/δ) of the k-IRV’s defining Q are
constant.

Proof. For a k-IRV A let m(A) be an index i so that Pr[A = i] is maximized. Let d(A) = Pr[A 6=
m(A)] be the probability A assigns to values in [k] \ {i}. Suppose that d(A) ≤ 1/2. Then we have
that

d(A)/2 ≤ (1/2) · Pr(A 6= A′) ≤ (1/2) · E[|A−A′|2] = Var[A] ≤ E[|A−m(A)|2] ≤ k2 · d(A),

where A′ is an independent copy of A. The leftmost inequality follows from our assumption that
d(A) ≤ 1/2. The proof of the lemma will make repeated applications of the following claim:

Claim 31. Let A,B be independent k-IRV’s with m(A) = m(B) and d(A) + d(B) ≤ 1/2. Then
there exist independent k-IRV’s C and D, where D is a constant, d(C) = d(A) + d(B), and
dTV (A+B,C +D) = O(d(A)d(B)).

Proof. Let m(A) = m(B) = i. Let d(A) = δ1, d(B) = δ2. Let A′ be the random variable A
conditioned on A not equaling i, and B′ be the random variable B conditioned on it not equaling
i. Note that A is a mixture of i and A′ and B a mixture of i and B′. Furthermore A+B equals 2i
with probability (1−δ1)(1−δ2), i+A′ with probability δ1(1−δ2), i+B′ with probability (1−δ1)δ2

and A′ +B′ with probability δ1δ2.
Let D be the random variable that is deterministically i and C be the random variable that

equals i with probability 1 − δ1 − δ2, A′ with probability δ1, and B′ with probability δ2. Then
C + D equals 2i, i + A′, i + B′ and A′ + B′ with probabilities 1 − δ1 − δ2, δ1, δ2, and 0. These
probabilities are within an additive δ1δ2 of the corresponding probabilities for A+B and therefore
dTV (A + B,C + D) = O(δ1δ2). Note that C = i with probability 1 − δ1 − δ2, so d(C) = δ1 + δ2,
which completes the proof.
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For a random variable X ∼ P, we have that X =
∑n

i=1Ai where the Ai’s are independent
k-IRV’s. We iteratively modify P as follows: If two of the non-constant component k-IRV’s of P
are A and B, with m(A) = m(B) and d(A), d(B) < δ, then we replace the pair A and B with
the pair C and D as described by the above claim. Notice that every step reduces the number of
non-constant component variables, and therefore this process terminates, giving a k-SIIRV Q with
for Y ∼ Q, Y =

∑n
i=1Bi.

By construction, for each 1 ≤ i ≤ k, Q has at most one non-constant component variable with
m(Bj) = i and d(Bj) < δ. Claim 31 implies the sum of the d’s of the component variables does
not increase in any iteration, and therefore

n∑
j=1

d(Bj) ≤
n∑
j=1

d(Aj) ≤ 2
n∑
j=1

Var[Aj ] = 2Var[X] = 2V ,

where the second inequality uses the aforementioned lower bound on the variance of a k-IRV. Hence,
the number of non-constant component variables in Q is at most k + 2V δ−1.

It remains to show that dTV (P,Q) = O(δV ). Let A,B and C,D be the k-IRV’s of Claim 31.
Then dTV (A + B,C + D) = O(d(A)d(B)) = O([d(C)2 + d(D)2] − [d(A)2 + d(B)2]). That is, the
total variation distance error introduced by replacing A,B by C,D is at most a constant times the
amount that the sum of the squares of the d’s of the component variables increases by. Repeated
application of this observation combined with the sub-additivity of total variation distance gives

dTV (P,Q) = O
(∑n

j=1 d(Bj)
2 −

∑n
j=1 d(Aj)

2
)
. On the other hand, note that all of the Bj ’s that

are not also Aj satisfy d(Bj) ≤ 2δ. Therefore, we have that dTV (P,Q) ≤ O
(∑

j:d(Bj)≤2δ d(Bj)
2
)

=

O
(
δ
∑

j d(Bj)
)

= O(δV ) , which completes the proof.

B.2 Proof of Lemma 12. For convenience, we restate Lemma 12:

Lemma 12. Fix x ∈ C with |x| = 1. Suppose that ρ1, . . . , ρm are roots of P̃(x) (listed with
appropriate multiplicity) which have |ρi − x| ≤ 1

2k . Then, we have the following:

(i) |P̃(x)| ≤ 2−m .

(ii) For the polynomial q(x) = P̃(x)/
∏m
i=1(x− ρi), we have that |q(x)| ≤ km.

To prove our lemma, we will make essential use of the following simple lemma:

Lemma 32. For any polynomial p(x) ∈ C[x] of degree d where the sum of the absolute values of
the coefficients of p is at most 1, we have the following: Fix z ∈ C with |z| = 1. Suppose that p has
roots ρ1, . . . , ρm with |ρi − z| ≤ 1

2d , for i ∈ {1, . . . ,m}. Then, the following hold:

(i) |p(z)| ≤ 2−m,

(ii) for the polynomial q(x) = p(x)/
∏m
i=1(x− ρi) we have that |q(z)| ≤ dm.

Proof. The lemma is proved by repeated applications of the following claim:

Claim 33. Let p(x) ∈ C[x] be a degree-d polynomial such that the sum of the absolute values of

the coefficients of p is at most 1. Let ρ be a root of p(x) and q(x) be the polynomial p(x)
x−ρ . Then,

the sum of the absolute values of the coefficients of q is at most d.
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Proof. We write the coefficients of p(x) and q(x) as p(x) =
∑d

i=0 pix
i and q(x) =

∑d−1
i=0 qix

i. Since
p(x) = (x− ρ)q(x), for 1 ≤ i ≤ d− 1, we have

pi = qi−1 − ρqi , (6)

and similarly pd = qd−1, p0 = −ρq0.
We consider two cases based on the magnitude of ρ. First, suppose that |ρ| ≤ 1. Since qd−1 = pd

and, by (6), qi−1 = pi + ρqi, for 1 ≤ i ≤ d − 1, an easy induction gives that qi =
∑d

j=i+1 pjρ
j−i−1

for 0 ≤ i ≤ d− 1. Summing and taking absolute values gives:

d−1∑
i=0

|qi| ≤
d−1∑
i=0

d∑
j=i+1

|pj ||ρ|j−i−1 =
d∑
i=1

(|pi|
i−1∑
j=0

|ρ|j)

≤
d∑
i=1

|pi|i ≤ d
d∑
i=1

|pi| ≤ d .

Second, suppose |ρ| > 1. Then, 1
|ρ| < 1. We have q0 = −1

ρp0 and by (6), for 1 ≤ i ≤ d − 1,

qi = 1
ρ(qi−1 − pi). By an easy induction, for 0 ≤ i ≤ d, qi = −

∑i
j=0 pj

1
ρi−j . Summing and taking

absolute values gives:

d−1∑
i=0

|qi| ≤
d−1∑
i=0

i∑
j=0

|pj |
1

|ρ|i−j
=

d−1∑
i=0

(|pi|
d−1∑
j=i

1

|ρ|d−1−i )

≤
d−1∑
i=0

|pi|(d− 1− i) ≤ d
d−1∑
i=0

|pi| ≤ d .

By repeated applications of the claim it follows that the polynomial q(x) has the sum of the
absolute values of its coefficients at most dm. Since |z| = 1, it follows that |q(z)| ≤ dm which gives
(ii). To show (i) we note that

|p(z)| = |q(z)| ·
m∏
i=1

|z − ρi| ≤ |q(z)| · (1/2d)m ≤ 2−m .

This completes the proof of Lemma 32.

Proof of Lemma 12. Note that P̃(x) is the degree n(k−1) polynomial defined by P̃(x) =
∑n(k−1)

i=0 P(i)xi.

Note that the sum of the absolute values of P̃’s coefficients is 1. However, to apply Lemma 32 di-
rectly to P̃ we would need the roots to be at distance at most 1

2n(k−1) .

Note that P̃(x) factors as
∏n
i=1 pi(x), where pi(x) = E[xXi ] is a degree k − 1 polynomial that

is determined by the i-th k-IRV. It is clear that the coefficients of pi(x) are non-negative and sum
to 1, hence we may apply Lemma 32 to pi(x). Suppose that pi(x) has mi roots with |ρi − x| ≤ 1

2k .

Lemma 32(i) implies that |pi(x)| ≤ 2−mi . Since P̃(x) =
∏n
i=1 pi(x), this yields part (i) of Lemma 12.

Lemma 32(ii) implies that the polynomial qi(x) = pi(x)/
∏
j∈Si

(x−ρj), for Si ⊆ {1, . . . ,m} with
|Si| = mi, satisfies |qi(x)| ≤ kmi . Note that q(x) =

∏n
i=1 qi(x). Therefore, |q(x)| ≤

∏
i k

mi = km,
giving part (ii) of Lemma 12.
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B.3 Proper Cover Construction for the High Variance Case. Exhausting over the k − 1
possible values of c, we can assume that c is known to the algorithm. Before proceeding further,
we will need further structural information about the k-SIIRVs in this case. We start with the
following simple lemma giving an upper bound on the total variation distance between two high
variance k-SIIRVs:

Lemma 34. For ε > 0, let X, X ′ be k-SIIRVs with Var[X],Var[X ′] ≥ poly(k/ε) for a sufficiently
large poly(k/ε) that have dTV (X,Y + cZ) ≤ ε and dTV (X ′, Y ′ + cZ ′) ≤ ε for c-IRVs Y ,Y ′ and
discrete Gaussians Z,Z ′, with E[X] = cE[Z], Var[X] = c2Var[Z], E[X ′] = cE[Z ′] and Var[X ′] =
c2Var[Z ′]. Then we have that

dTV (X,X ′) ≤ 4ε+ dTV

(
X (mod c), X ′ (mod c)

)
+

1

2

|E[X]− E[X ′]|√
Var[X]

+
1

2

|Var[X]−Var[X ′]|
Var[X]

where X (mod c) is the c-IRV with Pr[X (mod c) = i] = Pr[X ≡ i (mod c)] for i ∈ [c].

Proof. Using Proposition 40, since dTV (X,Y + cZ) ≤ ε with Y ≡ Y + cZ (mod c), we have
dTV (X (mod c), Y ) ≤ ε. Similarly, dTV (X ′ (mod c), Y ′) ≤ ε. By a combination of Propositions 40

and 42, we have that dTV (Z,Z ′) ≤ 1
2

(
|E[Z]−E[Z′]|√

Var[Z]
+ |Var[Z]−Var[Z′]|

Var[Z]

)
. Since E[X] = cE[Z], Var[X] =

c2Var[Z], E[X ′] = cE[Z ′] and Var[X ′] = c2Var[Z ′] it follows that

|E[Z]− E[Z ′]|√
Var[Z]

+
|Var[Z]−Var[Z ′]|

Var[Z]
=
|E[X]− E[X ′]|√

Var[X]
+
|Var[X]−Var[X ′]|

Var[X]
.

Therefore,

dTV (Y + cZ, Y ′ + cZ ′) ≤ dTV (Y, Y ′) + dTV (Z,Z ′)

≤ 2ε+ dTV

(
X (mod c), X ′ (mod c)

)
+

+
1

2

(
|E[X]− E[X ′]|√

Var[X]
+
|Var[X]−Var[X ′]|

Var[X]

)
.

By another application of the triangle inequality, we have that dTV (X,X ′) ≤ dTV (X,Y + cZ) +
dTV (Y + cZ, Y ′ + cZ ′) + dTV (Y ′ + cZ ′, X ′) ≤ 2ε + dTV (Y + cZ, Y ′ + cZ), which completes the
proof.

To use the above lemma, we need a way to characterize the constant c in the statement of
Theorem 8, namely to show that the theorem applies to both X and X ′ for the same value of c.
For a k-IRV A, let m(A) be an index i so that Pr[A = i] is maximized. The following result is
implicit in the proof of Theorem 8 in [DDO+13] (in particular, in Theorem 4.3 of that paper):

Lemma 35 ([DDO+13]). Given a k-SIIRV X =
∑n

i=1Xi with Var[X] ≥ poly(k/ε), let H be the
set of integers b such that

∑n
i=1 Pr[Xi −m(Xi) = c] ≥ Θ(k7/ε2) and c = gcd(H). Then there is a

c-IRV Y and a discrete Gaussian Z with dTV (X,Y + cZ) ≤ ε.

Let X ∈ Sn,k be a k-SIIRV with Var[X] ≥ poly(k/ε) as in Case 2 of Theorem 8. Our main
claim is that, up to ε error in total variation distance, we can assume that X has a special structure.
In particular, we can take all but one of the component IRVs of X to be constant modulo c, with the
last one being a c-IRV. More formally, we claim that there is a k-SIIRV X ′ with dTV (X,X ′) ≤ ε,
such that X ′ =

∑n
i=1X

′
i with
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• For 1 ≤ i ≤ H, where H = Θ(k7/ε2), X ′i is either 0 or c each with equal probability.

• For 1 ≤ i ≤ n− 1, X ′i is constant modulo c.

• X ′n is a c-IRV.

where c is as in Lemma 35.
We can construct such an X ′ from X as follows. For 1 ≤ i ≤ H, we replace Xi with the X ′i above

that is 0 or c with equal probability. For H+1 ≤ i ≤ n−1, we replace each Xi by Xi conditioned on
the event that Xi (mod c) = m(Xi) (mod c). Finally we take X ′n to be (Xn −

∑n−1
i=1 X

′
i) (mod c)

noting that
∑n−1

i=1 X
′
i (mod c) is a constant.

We now show that the above procedure only changes the expectation and variance by |E[X]−
E[X ′]| ≤ poly(k/ε) and |Var[X]−Var[X ′]| ≤ poly(k/ε). Note that for two arbitrary k-IRVs, A and
B, we have that |E[A]− E[B]| ≤ k and |Var[A]−Var[B]| ≤ k2. Thus,

|E[Xn +

H∑
i=1

Xi]− E[X ′n +

H∑
i=1

X ′i]| ≤ (H + 1)k ≤ poly(k/ε)

and

|Var[Xn +

H∑
i=1

Xi]−Var[X ′n +

H∑
i=1

X ′i]| ≤ (H + 1)k2 ≤ poly(k/ε).

For the remaining variables H+1 ≤ i ≤ n−1, we have dTV (Xi, X
′
i) ≤ Pr[Xi−m(Xi) 6≡ 0 (mod c)]

and so |E[Xi]−E[X ′i]| ≤ kPr[Xi−m(Xi) 6≡ 0 (mod c)] and |Var[Xi]−Var[X ′i]| ≤ k2 Pr[Xi−m(Xi) 6≡
0 (mod c)]. For each integer 0 ≤ b ≤ k − 1 that does not divide c, by Lemma 35, we must have
that b /∈ H and hence

∑n
i=1 Pr[Xi − m(Xi) = b] = O(k7/ε2). Thus,

∑n
i=1 Pr[Xi − m(Xi) 6≡ 0

(mod c)] = O(k8/ε2).
If Var[X] is a sufficiently large poly(k/ε), then Var[X ′] is large enough that we can apply

Theorem 8 and Lemma 35 to X ′. Note that
∑n

i=1 Pr[|X ′i −m(X ′i)| = c] ≥
∑H

i=1 Pr[|X ′i −m(X ′i)| =
c] = H/2. We thus have that either c ∈ H or −c ∈ H. Since for b that does not divide c, we have∑n

i=1 Pr[X ′i −m(X ′i) = b] = Pr[X ′n −m(X ′n) = b] ≤ 1 and thus b /∈ (H), we have that gcd(H) = c.
Thus, for X with sufficiently large poly(k/ε) variance, we have that dTV (X,Y + cZ) ≤ ε/10 and
dTV (X ′, Y ′ + cZ ′) ≤ ε/10 for the same 1 ≤ c ≤ k − 1 and c-IRVs Y, Y ′ and discrete Gaussians
Z,Z ′. In conclusion, we can apply Lemma 34 to X and X ′. We have that X ′ (mod c) = X ′n = X
(mod c). We have shown that E[X] − E[X ′] ≤ poly(k/ε) and Var[X] − Var[X ′] ≤ poly(1/ε). If
Var[X] is a sufficiently large poly(k/ε) then we can make the contributions of each of these to
dTV (X,X ′) in Lemma 34 smaller than ε/10. Then we have dTV (X,X ′) ≤ ε.

Since every k-SIIRV X in Case 2 is ε-close to an X ′ of the aforementioned form, to compute a
proper cover for this case, we can consider only k-SIIRVs of the form stated above. By a similar
argument as above, our cover only needs to ensure that the triple of X (mod c),E[X],Var[X] is
sufficiently close to any such triple achievable by an element of Sn,k of this form. Obtaining a cover
of X (mod c) is easy, as we only need to deal with the single term Xn that is non-constant modulo
c, and produce a cover for c-IRVs. Indeed, it is straightforward to produce such a cover of size
O(k/ε)k.

As explained in Section 3.1, we have an explicit cover for the discrete Gaussian random variables
that can appear in this setting. However, we are left with the difficulty of producing an explicit
k-SIIRV approximating one of these c times a discrete Gaussian whenever such an approximation
is possible. Fortunately, we note that we only need to be able to approximately match the mean
and the variance. Note that as above, the H = poly(k/ε) components that we are requiring to be
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either 0 or c, and the one that is a c-IRV can be assumed to have negligible effect on the final mean
and variance if we had a sufficiently large poly(k/ε) threshold for the variance.

Let C be the largest multiple of c that is at most k. Let Sn,k,c be the set of k-SIIRVs on n
components all of which are constant modulo c. For a given σ > poly(k/ε) and µ we need to
determine whether or not there is an element of Sn,k,c whose mean and variance match µ and σ to
within εσ, and if so to produce one. To do this, we first need a couple of observations about which
µ, σ are attainable.

Observation 36. For P ∈ Sn,k,c, VarX∼P[X] < nC2/4.

Proof. This is because any k-IRV that is constant modulo c has a distance of at most C between
its minimum and maximum values, and thus has variance at most C2/4.

Observation 37. For P ∈ Sn,k,c and X ∼ P, if E[X] ≤ nC/2, then Var[X] ≤ CE[X]− E[X]2/n.

Proof. We note that in the range in question the quantity CE[X]−E[X]2/n is increasing in E[X],
and therefore, we may show that for any given achievable variance the minimum possible expecta-
tion satisfies this inequality. Note that for the minimum achievable expectation, we may assume
that each of the component IRVs is deterministically 0 modulo c, since otherwise we could subtract
a constant from it, which would decrease the expectation and leave the variance unchanged. The
observation now follows given that for any k-IRV, Y that has Pr[Y (mod c) = 0] = 1 it holds
Var[Y ] = E[Y 2]− E[Y ]2 ≤ CE[Y ]− E[Y ]2.

Observation 38. For P ∈ Sn,k,c and X ∼ P, if E[X] ≥ nk−nC/2, then Var[X] ≤ C(nk−E[X])−
(nk − E[X])2/n.

Proof. This follows from the previous observation by considering the random variable nk−X.

We now claim that any pair of expectation and variance µ and σ2 not disallowed by the above
observations may be approximated by an explicitly computable element of Sn,k,c. Note that, by
symmetry, we may assume that µ ≤ nk/2. If µ ≥ 2σ2/C, we may make b4σ2/C2c ≤ n of our IRVs
either xi or xi + C with equal probability for some integers 0 ≤ xi ≤ k − 1 and all other Xi with
H + 1 ≤ i ≤ n− 1 constant. By adjusting the xi’s and the constants, we can make the expectation
of X satisfy |E[X]− µ| ≤ 1 so long as µ ≥ 2σ2/C, and the variance Var[X] = C2b4σ2/C2c satisfies
|Var[X]− σ2| ≤ 1.

Otherwise, if µ ≤ 2σ2/C, let σ2 = Cµ · q with 1 > q > 1/2. We then use a sum of k-IRVs that
are 0 with probability q and C with probability 1− q, and some k-IRVs that are deterministically
0. If we have a many IRVs of the first type, then we get a mean and variance of E[X] = a(1− q)C
and Var[X] = aq(1−q)C. Letting a be approximately Var[X]/(q(1−q)C) completes the argument.
We simply need to verify that in this case a ≤ n i.e., that σ2/(q(1− q)C) ≤ n. Indeed, note that

Var[X]/(q(1− q)C) =
Var[X]

(Var[X]/(CE[X]))(1− (Var[X]/(CE[X])))C
=

CE[X]2

CE[X]−Var[X]
≤ n

by Observation 37. This shows that given a discrete Gaussian, Z so that cZ approximates some
element of Sn,k,c, we can efficiently find such an element. In Section 3.1 we gave an appropriately
small cover of the set of such Gaussians, which consists of a grid of means and variances of size O(n).
It is easy to construct such a grid and by the above, we can construct an X with |E[X] − cµ| ≤
poly(k/ε) and |Var[X] − c2σ2| ≤ poly(k/ε) for each µ, σ2 in the grid that is not disallowed by
our observations. Thus, we can efficiently find a cover of the elements of Sn,k satisfying Case 2 of
Theorem 8.
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C Omitted Proofs from Section 4

C.1 Proof of Lemma 28. For completeness, we restate the lemma below.

Lemma 28. There exists a universal constant c > 0 such that the following holds: For any log-
concave distribution P supported on the integers and standard deviation σ, there exist at least Ω(σ)
consecutive integers with probability mass under P at least c · 1

1+σ .

Proof. Note that if σ ≤ 1, taking the mode trivially satisfies this property.
Without loss of generality we can assume that 0 is the mode of P. We know that

∑
x∈Z x

2P(x) =

Θ(σ2). Let σ2
+ =

∑
x>0 x

2P(x). Let t+ be the largest integer so that P(t+ + 1)/P(t+) ≤ e1/t+ . We
note that ∑

x>0

x2P(x) ≤
∞∑
x=0

x2P(t+)e−(x−t+)/t+ = Θ(t3+P(0)),

and ∑
x>0

x2P(x) ≥ P(t+)

t+∑
x=0

x2 = Θ(t3+P(0)).

Also note that ∑
x>0

P(x) ≤
∞∑
x=0

P(t+)e−(x−t+)/t+ = Θ(t+P(0)).

Similarly, defining σ− and t−, we find that σ2 = Θ(σ2
++σ2

−) = Θ(P(0)(t3++t3−)). Thus, max(t+, t−)3P(0) =
Θ(σ2) and max(t+, t−)P(0) = Ω(1). Without loss of generality this maximum is t+. Note that
for all 0 ≤ x ≤ t+ that P(x) = Θ(P(t+)). This implies that t+P(0) = O(1), and thus, by the
above is Θ(1). Therefore, it follows by the variance bounds that t2+ = Ω(σ2), so t+ = Θ(σ). Hence,
x = 0, 1, . . . , t+ are Ω(σ) terms on which the value of P is Ω(1/t+) = Ω(1/σ). This completes the
proof.

D Basic Facts from Probability

Definition 39. Let µ ∈ R, σ ∈ R≥0. We let Z(µ, σ2) denote the discretized normal distribution.
The definition of Z ∼ Z(µ, σ2) is that we first draw a normal G ∼ N(µ, σ2) and then we set
Z = bGe; i.e., G rounded to the nearest integer.

We begin by recalling some basic facts concerning total variation distance, starting with the “data
processing inequality for total variation distance”:

Proposition 40 (Data Processing Inequality for Total Variation Distance). Let X, X ′ be two
random variables over a domain Ω. Fix any (possibly randomized) function F on Ω (which may be
viewed as a distribution over deterministic functions on Ω) and let F (X) be the random variable
such that a draw from F (X) is obtained by drawing independently x from X and f from F and
then outputting f(x) (likewise for F (X ′)). Then we have dTV (F (X), F (X ′)) ≤ dTV (X,X ′).

Next we recall the subadditivity of total variation distance for independent random variables:

Proposition 41. Let A,A′, B,B′ be integer random variables such that (A,A′) is independent of
(B,B′). Then dTV (A+B,A′ +B′) ≤ dTV (A,A′) + dTV (B,B′).

We will use the following standard result which bounds the variation distance between two
normal distributions in terms of their means and variances:

Proposition 42. Let µ1, µ2 ∈ R and 0 < σ1 ≤ σ2. Then dTV (N(µ1, σ
2
1),N(µ2, σ

2
2)) ≤ 1

2

(
|µ1−µ2|
σ1

+
σ2
2−σ2

1

σ2
1

)
.
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