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Abstract

We give highly efficient algorithms, and almost matching lower bounds, for a range of basic statistical
problems that involve testing and estimating the L1 (total variation) distance between two k-modal distributions
p and q over the discrete domain {1, . . . , n}. More precisely, we consider the following four problems: given
sample access to an unknown k-modal distribution p,

TESTING IDENTITY TO A KNOWN OR UNKNOWN DISTRIBUTION:
1. Determine whether p = q (for an explicitly given k-modal distribution q) versus p is ε-far from q;
2. Determine whether p = q (where q is available via sample access) versus p is ε-far from q;

ESTIMATING L1 DISTANCE (“TOLERANT TESTING”) AGAINST A KNOWN OR UNKNOWN DISTRIBUTION:
3. Approximate dTV (p, q) to within additive ε where q is an explicitly given k-modal distribution q;
4. Approximate dTV (p, q) to within additive ε where q is available via sample access.

For each of these four problems we give sub-logarithmic sample algorithms, that we show are tight up to
additive poly(k) and multiplicative polylog log n + polylogk factors. Thus our bounds significantly improve
the previous results of [BKR04], which were for testing identity of distributions (items (1) and (2) above) in
the special cases k = 0 (monotone distributions) and k = 1 (unimodal distributions) and required O((log n)3)
samples.

As our main conceptual contribution, we introduce a new reduction-based approach for distribution-testing
problems that lets us obtain all the above results in a unified way. Roughly speaking, this approach enables us to
transform various distribution testing problems for k-modal distributions over {1, . . . , n} to the corresponding
distribution testing problems for unrestricted distributions over a much smaller domain {1, . . . , `} where ` =
O(k log n).
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1 Introduction

Given samples from a pair of unknown distributions, the problem of “identity testing”—that is, distinguishing
whether the two distributions are the same versus significantly different—and, more generally, the problem of
estimating the L1 distance between the distributions, is perhaps the most fundamental statistical task. Despite a
long history of study, by both the statistics and computer science communities, the sample complexities of these
basic tasks were only recently established. Identity testing, given samples from a pair of distributions of support [n],
can be done using Õ(n2/3) samples [BFR+00], and this upper bound is optimal up to polylog(n) factors [Val08a].
Estimating the L1 distance (“tolerant testing”) between distributions of support [n] requires Θ(n/ log n) samples,
and this is tight up to constant factors [VV11a, VV11b]. The variants of these problems when one of the two
distributions is explicitly given require Θ̃(

√
n) samples for identity testing [BFF+01] and Θ(n/ log n) samples for

L1 distance estimation [VV11a, VV11b] respectively.
While it is surprising that these tasks can be performed using a sublinear number of samples, for many real-

world applications using
√
n, n2/3, or n

logn samples is still impractical. As these bounds characterize worst-
case instances, one might hope that drastically better performance may be possible for many settings typically
encountered in practice. Thus, a natural research direction, which we pursue in this paper, is to understand how
structural properties of the distributions in question may be leveraged to yield improved sample complexities.

In this work we consider monotone, unimodal, and more generally k-modal distributions. Monotone, uni-
modal, and bimodal distributions abound in the natural world. The distribution of many measurements—heights
or weights of members of a population, concentrations of various chemicals in cells, parameters of many atmo-
spheric phenomena–often belong to this class of distributions. Because of their ubiquity, much work in the natural
sciences rests on the analysis of such distributions (for example, on November 1, 2011 a Google Scholar search for
the exact phrase “bimodal distribution” in the bodies of papers returned more than 90,000 hits). Though perhaps
not as pervasive, k-modal distributions for larger values of k commonly arise as mixtures of unimodal distributions
and are natural objects of study. On the theoretical side, motivated by the many applications, monotone, unimodal,
and k-modal distributions have been intensively studied in the probability and statistics literatures for decades, see
e.g. [Gre56, Rao69, BBBB72, CKC83, Gro85, Bir87a, Bir87b, Kem91, Fou97, CT04, JW09].

1.1 Our results. Our main results are algorithms, and nearly matching lower bounds, that give a complete picture
of the sample complexities of identity testing and estimating L1 distance for monotone and k-modal distributions.
We obtain such results in both the setting where the two distributions are given via samples, and the setting where
one of the distributions is given via samples and the other is described explicitly.

All our results have the nature of a reduction: performing these tasks on k-modal distributions over [n] turns
out to have almost exactly the same sample complexities as performing the corresponding tasks on arbitrary
distributions over [k log n]. For any small constant k (or even k = O((log n)1/3)) and arbitrarily small constant ε,
all our results are tight to within either polylog log n or polylog log log n factors. See Table 1 for the new sample
complexity upper and lower bounds for the monotone and k-modal tasks; see Section 2 for the (exponentially
higher) sample complexities of the general-distribution tasks on which our results rely. While our main focus is
on sample complexity rather than running time, we note that all of our algorithms run in poly(log n, k, 1/ε) bit
operations (note that even reading a single sample from a distribution over [n] takes log n bit operations).

We view the equivalence between the sample complexity of each of the above tasks on a monotone or unimodal
distribution of domain [n] and the sample complexity of the same task on an unrestricted distribution of domain
[log n] as a surprising result, because such an equivalence fails to hold for related estimation tasks. For example,
consider the task of distinguishing whether a distribution on [n] is uniform versus far from uniform. For general
distributions this takes Θ(

√
n) samples, so one might expect the corresponding problem for monotone distributions

to need
√

log n samples; in fact, however, one can test this with a constant number of samples, by simply comparing
the empirically observed probability masses of the left and right halves of the domain. An example in the other
direction is the problem of finding a constant additive estimate for the entropy of a distribution. On domains of
size [n] this can be done in n

logn samples, and thus one might expect to be able to estimate entropy for monotone

distributions on [n] using logn
log logn samples. Nevertheless, it is not hard to see that Ω(log2 n) samples are required.

1



Testing problem Our upper bound Our lower bound
p, q are both monotone:

Testing identity, q is known: O
(

(log n)1/2 (log log n) · ε−5/2
)

Ω
(

(log n)1/2
)

Testing identity, q is unknown: O
(

(log n)2/3 · (log log n) · ε−10/3
)

Ω

((
logn

log logn

)2/3)
Estimating L1 distance, q is known: O

(
logn

log logn · ε
−3
)

Ω
(

logn
log logn·log log logn

)
Estimating L1 distance, q is unknown: O

(
logn

log logn · ε
−3
)

Ω
(

logn
log logn·log log logn

)
p, q are both k-modal:

Testing identity, q is known: O
(
k2

ε4
+ (k logn)1/2

ε3
· log

(
k logn
ε

))
Ω
(

(k log n)1/2
)

Testing identity, q is unknown: O
(
k2

ε4
+ (k logn)2/3

ε10/3
· log

(
k logn
ε

))
Ω

((
k logn

log(k logn)

)2/3)
Estimating L1 distance, q is known: O

(
k2

ε4
+ k logn

log(k logn) · ε
−4
)

Ω
(

k logn
log(k logn)·log log(k logn)

)
Estimating L1 distance, q is unknown: O

(
k2

ε4
+ k logn

log(k logn) · ε
−4
)

Ω
(

k logn
log(k logn)·log log(k logn)

)
Table 1: Our upper and lower bounds for identity testing and L1 estimation. In the table we omit a “log(1/δ)” term
which is present in all our upper bounds for algorithms which give the correct answer with probability 1 − δ. For
the “testing identity” problems, our lower bounds are for distinguishing whether p = q versus dTV (p, q) > 1/2
with success probability 2/3. For estimating L1 distance, our bounds are for estimating dTV (p, q) to within ±ε,
for any k = O(n1/2), with the lower bounds corresponding to success probability 2/3.

The reduction-like techniques which we use to establish both our algorithmic results and our lower bounds
(discussed in more detail in Section 1.2 below) reveal an unexpected relationship between the class of k-modal
distributions of support [n] and the class of general distributions of support [k log n]. We hope that this reduction-
based approach may provide a framework for the discovery of other relationships that will be useful in future work
in the extreme sublinear regime of statistical property estimation and property testing.

Comparison with prior work. Our results significantly extend and improve upon the previous algorithmic results
of Batu et al [BKR04] for identity testing of monotone or unimodal (k = 1) distributions, which requiredO(log3 n)
samples. More recently, [DDS11] established the sample complexity of learning k-modal distributions to be
essentially Θ(k log(n)ε−3). Such a learning algorithm easily yields a testing algorithm with the same sample
complexity for all four variants of the testing problem (one can simply run the learner twice to obtain hypotheses
p̂ and q̂ that are sufficiently close to p and q respectively, and output accordingly).

While the [DDS11] result can be applied to our testing problems (though giving suboptimal results), we stress
that the ideas underlying [DDS11] and this paper are quite different. The [DDS11] paper learns a k-modal distri-
bution by using a known algorithm for learning monotone distributions [Bir87b] k times in a black-box manner;
the notion of reducing the domain size—which we view as central to the results and contributions of this paper—is
nowhere present in [DDS11]. By contrast, the focus in this paper is on introducing the use of reductions as a
powerful (but surprisingly, seemingly previously unused) tool in the development of algorithms for basic statistical
tasks on distributions, which, at least in this case, is capable of giving essentially optimal upper and lower bounds
for natural restricted classes of distributions.

1.2 Techniques. Our main conceptual contribution is a new reduction-based approach that lets us obtain all our
upper and lower bounds in a clean and unified way. The approach works by reducing the monotone and k-modal
distribution testing problems to general distribution testing and estimation problems over a much smaller domain,
and vice versa. For the monotone case this smaller domain is essentially of size log(n)/ε, and for the k-modal case
the smaller domain is essentially of size k log(n)/ε2. By solving the general distribution problems over the smaller
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domain using known results we get a valid answer for the original (monotone or k-modal) problems over domain
[n]. More details on our algorithmic reduction are given in Section A.

Conversely, our lower bound reduction lets us reexpress arbitrary distributions over a small domain [`] by
monotone (or unimodal, or k-modal, as required) distributions over an exponentially larger domain, while pre-
serving many of their features with respect to the L1 distance. Crucially, this reduction allows one to simulate
drawing samples from the larger monotone distribution given access to samples from the smaller distribution, so
that a known impossibility result for unrestricted distributions on [`] may be leveraged to yield a corresponding
impossibility result for monotone (or unimodal, or k-modal) distributions on the exponentially larger domain.

The inspiration for our results is an observation of Birgé [Bir87b] that given a monotone-decreasing probability
distribution over [n], if one subdivides [n] into an exponentially increasing series of consecutive sub-intervals, the
ith having size (1 + ε)i, then if one replaces the probability mass on each interval with a uniform distribution on
that interval, the distribution changes by only O(ε) in total variation distance. Further, given such a subdivision of
the support into log1+ε(n) intervals, one may essentially treat the original monotone distribution as essentially a
distribution over these intervals, namely a distribution of support log1+ε(n). In this way, one may hope to reduce
monotone distribution testing or estimation on [n] to general distribution testing or estimation on a domain of size
log1+ε(n), and vice versa. See Section B for details.

For the monotone testing problems the partition into subintervals is constructed obliviously (without drawing
any samples or making any reference to p or q of any sort) – for a given value of ε the partition is the same for all
non-increasing distributions. For the k-modal testing problems, constructing the desired partition is significantly
more involved. This is done via a careful procedure which uses k2 · poly(1/ε) samples1 from p and q and uses the
oblivious decomposition for monotone distributions in a delicate way. This construction is given in Section C.

2 Notation and Preliminaries

2.1 Notation. We write [n] to denote the set {1, . . . , n}, and for integers i ≤ j we write [i, j] to denote the set
{i, i+ 1, . . . , j}. We consider discrete probability distributions over [n], which are functions p : [n]→ [0, 1] such
that

∑n
i=1 p(i) = 1. For S ⊆ [n] we write p(S) to denote

∑
i∈S p(i). We use the notation P for the cumulative

distribution function (cdf) corresponding to p, i.e. P : [n]→ [0, 1] is defined by P (j) =
∑j

i=1 p(i).
A distribution p over [n] is non-increasing (resp. non-decreasing) if p(i+1) ≤ p(i) (resp. p(i+1) ≥ p(i)), for

all i ∈ [n−1]; p is monotone if it is either non-increasing or non-decreasing. Thus the “orientation” of a monotone
distribution is either non-decreasing (denoted ↑) or non-increasing (denoted ↓).

We call a nonempty interval I = [a, b] ⊆ [2, n − 1] a max-interval of p if p(i) = c for all i ∈ I and
max{p(a− 1), p(b+ 1)} < c. Analogously, a min-interval of p is an interval I = [a, b] ⊆ [2, n− 1] with p(i) = c
for all i ∈ I and min{p(a − 1), p(b + 1)} > c. We say that p is k-modal if it has at most k max-intervals and
min-intervals. We note that according to our definition, what is usually referred to as a bimodal distribution is a
3-modal distribution.

Let p, q be distributions over [n] with corresponding cdfs P,Q. The total variation distance between p and q
is dTV (p, q) := maxS⊆[n] |p(S)− q(S)| = (1/2)

∑
i∈[n] |p(i)− q(i)|. The Kolmogorov distance between p and q

is defined as dK(p, q) := maxj∈[n] |P (j)−Q(j)| . Note that dK(p, q) ≤ dTV (p, q).
Finally, a sub-distribution is a function q : [n]→ [0, 1] which satisfies

∑n
i=1 q(i) ≤ 1. For p a distribution over

[n] and I ⊆ [n], the restriction of p to I is the sub-distribution pI defined by pI(i) = p(i) if i ∈ I and pI(i) = 0
otherwise. Likewise, we denote by pI the conditional distribution of p on I , i.e. pI(i) = p(i)/p(I) if i ∈ I and
pI(i) = 0 otherwise.

2.2 Basic tools from probability. We will require the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality ([DKW56])
from probability theory. This basic fact says that O(1/ε2) samples suffice to learn any distribution within error ε
with respect to the Kolmogorov distance. More precisely, let p be any distribution over [n]. Given m independent

1Intuitively, the partition must be finer in regions of higher probability density; for non-increasing distributions (for example) this region
is at the left side of the domain, but for general k-modal distributions, one must draw samples to discover the high-probability regions.
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samples s1, . . . , sm drawn from p : [n]→ [0, 1], the empirical distribution p̂m : [n]→ [0, 1] is defined as follows:
for all i ∈ [n], p̂m(i) = |{j ∈ [m] | sj = i}|/m. The DKW inequality states that for m = Ω((1/ε2) · ln(1/δ)),
with probability 1 − δ the empirical distribution p̂m will be ε-close to p in Kolmogorov distance. This sample
bound is asymptotically optimal and independent of the support size.

Theorem 1 ([DKW56, Mas90]). For all ε > 0, it holds: Pr[dK(p, p̂m) > ε] ≤ 2e−2mε
2
.

Another simple result that we will need is the following, which is easily verified from first principles:

Observation 1. Let I = [a, b] be an interval and let uI denote the uniform distribution over I. Let pI denote a
non-increasing distribution over I . Then for every initial interval I ′ = [a, b′] of I , we have uI(I ′) ≤ pI(I ′).

2.3 Testing and estimation for arbitrary distribution Our testing algorithms work by reducing to known algo-
rithms for testing arbitrary distributions over an `-element domain. We will use the following well known results:

Theorem 2 (testing identity, known distribution [BFF+01]). Let q be an explicitly given distribution over [`]. Let
p be an unknown distribution over [`] that is accessible via samples. There is a testing algorithm TEST-IDENTITY-
KNOWN(p, q, ε, δ) that uses sIK(`, ε, δ) := O(`1/2 log(`)ε−2 log(1/δ)) samples from p and has the following
properties:

• If p ≡ q then with probability at least 1− δ the algorithm outputs “accept;” and

• If dTV (p, q) ≥ ε then with probability at least 1− δ the algorithm outputs “reject.”

Theorem 3 (testing identity, unknown distribution [BFR+10]). Let p and q both be unknown distributions over
[`] that are accessible via samples. There is a testing algorithm TEST-IDENTITY-UNKNOWN(p, q, ε, δ) that uses
sIU (`, ε, δ) := O(`2/3 log(`/δ)ε−8/3) samples from p and q and has the following properties:

• If p ≡ q then with probability at least 1− δ the algorithm outputs “accept;” and

• If dTV (p, q) ≥ ε then with probability at least 1− δ the algorithm outputs “reject.”

Theorem 4 (L1 estimation [VV11b]). Let p be an unknown distribution over [`] that is accessible via samples, and
let q be a distribution over [`] that is either explicitly given, or accessible via samples. There is an estimator L1-
ESTIMATE(p, q, ε, δ) that, with probability at least 1−δ, outputs a value in the interval (dTV (p, q)−ε, dTV (p, q)+

ε). The algorithm uses sE(`, ε, δ) := O
(

`
log ` · ε

−2 log(1/δ)
)

samples.

3 Testing and Estimating Monotone Distributions

3.1 Oblivious decomposition of monotone distributions Our main tool for testing monotone distributions is
an oblivious decomposition of monotone distributions that is a variant of a construction of Birgé [Bir87b]. As we
will see it enables us to reduce the problem of testing a monotone distribution to the problem of testing an arbitrary
distribution over a much smaller domain.

Before stating the decomposition, some notation will be helpful. Fix a distribution p over [n] and a partition of
[n] into disjoint intervals I := {Ii}`i=1. The flattened distribution (pf )I corresponding to p and I is the distribution
over [n] defined as follows: for j ∈ [`] and i ∈ Ij , (pf )I(i) =

∑
t∈Ij p(t)/|Ij |. That is, (pf )I is obtained from

p by averaging the weight that p assigns to each interval over the entire interval. The reduced distribution (pr)
I

corresponding to p and I is the distribution over [`] that assigns the ith point the weight p assigns to the interval
Ii; i.e., for i ∈ [`], we have (pr)

I(i) = p(Ii). Note that if p is non-increasing then so is (pf )I , but this is not
necessarily the case for (pr)

I .
The following simple lemma, proved in Section A, shows why reduced distributions are useful for us:

Definition 1. Let p be a distribution over [n] and let I = {Ii}`i=1 be a partition of [n] into disjoint intervals. We
say that I is a (p, ε, `)-flat decomposition of [n] if dTV (p, (pf )I) ≤ ε.
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Lemma 2. Let I = {Ii}`i=1 be a partition of [n] into disjoint intervals. Suppose that p and q are distributions over
[n] such that I is both a (p, ε, `)-flat decomposition of [n] and is also a (q, ε, `)-flat decomposition of [n]. Then∣∣dTV (p, q)− dTV ((pr)

I , (qr)
I)
∣∣ ≤ 2ε. Moreover, if p = q then (pr)

I = (qr)
I .

We now state our oblivious decomposition result for monotone distributions:

Theorem 5 ([Bir87b]). (oblivious decomposition) Fix any n ∈ Z+ and ε > 0. The partition I := {Ii}`i=1 of [n],
in which the jth interval has size b(1 + ε)jc has the following properties: ` = O ((1/ε) · log(ε · n+ 1)), and I is
a (p,O(ε), `)-flat decomposition of [n] for any non-increasing distribution p over [n].

There is an analogous version of Theorem 5, asserting the existence of an “oblivious” partition for non-
decreasing distributions (which is of course different from the “oblivious” partition I for non-increasing distri-
butions of Theorem 5); this will be useful later.

While our construction is essentially that of Birgé, we note that the version given in [Bir87b] is for non-
increasing distributions over the continuous domain [0, n], and it is phrased rather differently. Adapting the argu-
ments of [Bir87b] to our discrete setting of distributions over [n] is not conceptually difficult but requires some
care. For the sake of being self-contained we provide a self-contained proof of the discrete version, stated above,
that we require in Appendix E.

3.2 Efficiently testing monotone distributions Now we are ready to establish our upper bounds on testing
monotone distributions (given in the first four rows of Table 1). All of the algorithms are essentially the same:
each works by reducing the given monotone distribution testing problem to the same testing problem for arbitrary
distributions over support of size ` = O(log n/ε) using the oblivious decomposition from the previous subsection.
For concreteness we explicitly describe the tester for the “testing identity, q is known” case below, and then indicate
the small changes that are necessary to get the testers for the other three cases.

TEST-IDENTITY-KNOWN-MONOTONE

Inputs: ε, δ > 0; sample access to non-increasing distribution p over [n]; explicit description of non-increasing
distribution q over [n]

1. Let I := {Ii}`i=1, with ` = Θ(log(εn + 1)/ε), be the partition of [n] given by Theorem 5, which is a
(p′, ε/8, `)-flat decomposition of [n] for any non-increasing distribution p′.

2. Let (qr)
I denote the reduced distribution over [`] obtained from q using I as defined in Section A.

3. Draw m = sIK(`, ε/2, δ) samples from (pr)
I , where (pr)

I is the reduced distribution over [`] obtained
from p using I as defined in Section A.

4. Output the result of TEST-IDENTITY-KNOWN((pr)
I , (qr)

I , ε2 , δ) on the samples from Step 3.

We now establish our claimed upper bound for the “testing identity, q is known” case. We first observe that in
Step 3, the desired m = sIK(`, ε/2, δ) samples from (pr)

I can easily be obtained by drawing m samples from p
and converting each one to the corresponding draw from (pr)

I in the obvious way. If p = q then (pr)
I = (qr)

I ,
and TEST-IDENTITY-KNOWN-MONOTONE outputs “accept” with probability at least 1 − δ by Theorem 2. If
dTV (p, q) ≥ ε, then by Lemma 2, Theorem 5 and the triangle inequality, we have that dTV ((pr)

I , (qr)
I) ≥ 3ε/4,

so TEST-IDENTITY-KNOWN-MONOTONE outputs “reject” with probability at least 1 − δ by Theorem 2. For
the “testing identity, q is unknown” case, the the algorithm TEST-IDENTITY-UNKNOWN-MONOTONE is very
similar to TEST-IDENTITY-KNOWN-MONOTONE. The differences are as follows: instead of Step 2, in Step 3 we
draw m = sIU (`, ε/2, δ) samples from (pr)

I and the same number of samples from (qr)
I ; and in Step 4, we run

TEST-IDENTITY-UNKNOWN((pr)
I , (qr)

I , ε2 , δ) using the samples from Step 3. The analysis is exactly the same
as above (using Theorem 3 in place of Theorem 2).

We now describe the algorithm L1-ESTIMATE-KNOWN-MONOTONE for the “tolerant testing, q is known”
case. This algorithm takes values ε and δ as input, so the partition I defined in Step 1 is a (p′, ε/4, `)-flat de-
composition of [n] for any non-increasing p′. In Step 3 the algorithm draws m = sE(`, ε/2, δ) samples and
runs L1-ESTIMATE((pr)

I , (qr)
I , ε/2, δ) in Step 4. If dTV (p, q) = c then by the triangle inequality we have that
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dTV ((pr)
I , (qr)

I) ∈ [c− ε/2, c+ ε/2] and L1-ESTIMATE-KNOWN-MONOTONE outputs a value within the pre-
scribed range with probability at least 1−δ, by Theorem 4. The algorithmL1-ESTIMATE-UNKNOWN-MONOTONE

and its analysis are entirely similar.

4 From Monotone to k-modal

In this section we establish our main positive testing results for k-modal distributions, the upper bounds stated
in the final four rows of Table 1. In the previous section, we were able to use the oblivious decomposition to
yield a partition of [n] into relatively few intervals, with the guarantee that the corresponding flattened distribution
is close to the true distribution. The main challenge in extending these results to unimodal or k-modal distribu-
tions, is that in order to make the analogous decomposition, one must first determine–by taking samples from
the distribution–which regions are monotonically increasing vs decreasing. Our algorithm CONSTRUCT-FLAT-
DECOMPOSITION(p, ε, δ) performs this task with the following guarantee:

Lemma 3. Let p be a k-modal distribution over [n]. Algorithm CONSTRUCT-FLAT-DECOMPOSITION(p, ε, δ)
draws O(k2ε−4 log(1/δ)) samples from p and outputs a (p, ε, `)-flat decomposition of [n] with probability at least
1− δ, where ` = O(k log(n)/ε2).

The bulk of our work in Section C is to describe CONSTRUCT-FLAT-DECOMPOSITION(p, ε, δ) and prove
Lemma 3, but first we show how Lemma 3 yields our claimed testing results for k-modal distributions. As in the
monotone case all four algorithms are essentially the same: each works by reducing the given k-modal distribution
testing problem to the same testing problem for arbitrary distributions over [`]. One slight complication is that
the partition obtained for distribution p will generally differ from that for q. In the monotone distribution setting,
the partition was oblivious to the distributions, and thus this concern did not arise. Naively, one might hope that
the flattened distribution corresponding to any refinement of a partition will be at least as good as the flattened
distribution corresponding to the actual partition. This hope is easily seen to be strictly false, but we show that it is
true up to a factor of 2, which suffices for our purposes.

The following terminology will be useful: Let I = {Ii}ri=1 and I ′ = {I ′i}si=1 be two partitions of [n] into r
and s intervals respectively. The common refinement of I and I ′ is the partition J of [n] into intervals obtained
from I and I ′ in the obvious way, by taking all possible nonempty intervals of the form Ii ∩ I ′j . It is clear that J is
both a refinement of I and of I ′ and that the number of intervals |J | in J is at most r+ s. We prove the following
lemma in Section A:

Lemma 4. Let p be any distribution over [n], let I = {Ii}ai=1 be a (p, ε, a)-flat decomposition of [n], and let
J = {Ji}bi=1 be a refinement of I. Then J is a (p, 2ε, b)-flat decomposition of [n].

We describe the TEST-IDENTITY-KNOWN-KMODAL algorithm below.

TEST-IDENTITY-KNOWN-KMODAL

Inputs: ε, δ > 0; sample access to k-modal distributions p, q over [n]

1. Run CONSTRUCT-FLAT-DECOMPOSITION(p, ε/2, δ/4) and let I = {Ii}`i=1, ` = O(k log(n)/ε2),
be the partition that it outputs. Run CONSTRUCT-FLAT-DECOMPOSITION(p, ε/2, δ/4) and let I ′ =
{I ′i}`

′
i=1, `

′ = O(k log(n)/ε2), be the partition that it outputs. Let J be the common refinement of I and
I and let `J = O(k log(n)/ε2) be the number of intervals in J .

2. Let (qr)
J denote the reduced distribution over [`J ] obtained from q using J as defined in Section A.

3. Draw m = sIK(`J , ε/2, δ/2) samples from (pr)
J , where (pr)

J is the reduced distribution over [`J ]
obtained from p using J as defined in Section A.

4. Run TEST-IDENTITY-KNOWN((pr)
J , (qr)

J , ε2 ,
δ
2) using the samples from Step 3 and output what it

outputs.
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We note that Steps 2, 3 and 4 of TEST-IDENTITY-KNOWN-KMODAL are the same as the corresponding steps
of TEST-IDENTITY-KNOWN-MONOTONE. For the analysis of TEST-IDENTITY-KNOWN-KMODAL, Lemmas 3
and 4 give us that with probability 1−δ/2, the partition J obtained in Step 1 is both a (p, ε, `J )-flat and (q, ε, `J )-
flat decomposition of [n]; we condition on this going forward. From this point on the analysis is essentially
identical to the analysis for TEST-IDENTITY-KNOWN-MONOTONE and is omitted.

The modifications required to obtain algorithms TEST-IDENTITY-UNKNOWN-KMODAL, L1-ESTIMATE-
KNOWN-KMODAL and L1-ESTIMATE-UNKNOWN-KMODAL, and the analysis of these algorithms, are completely
analogous to the modifications and analyses of Section 3.2 and are omitted.

4.1 The CONSTRUCT-FLAT-DECOMPOSITION algorithm. We present CONSTRUCT-FLAT-DECOMPOSITION(p, ε, δ)
followed by an intuitive explanation. Note that it employs a procedure ORIENTATION(p̂, I), which uses no sam-
ples and is presented and analyzed in Section 4.2.

CONSTRUCT-FLAT-DECOMPOSITION

INPUTS: ε, δ > 0; sample access to k-modal distribution p over [n]

1. Initialize I := ∅.
2. Fix τ := ε2/(20000k). Draw r = Θ(log(1/δ)/τ2) samples from p and let p̂ denote the resulting

empirical distribution (which by Theorem 1 has dK(p̂, p) ≤ τ with probability at least 1− δ).

3. Greedily partition the domain [n] into α atomic intervals {Ii}αi=1 as follows: I1 := [1, j1], where j1 :=
min{j ∈ [n] | p̂([1, j]) ≥ ε/(100k)}. For i ≥ 1, if ∪ij=1Ij = [1, ji], then Ii+1 := [ji + 1, ji+1], where
ji+1 is defined as follows: If p̂([ji + 1, n]) ≥ ε/(100k), then ji+1 := min{j ∈ [n] | p̂([ji + 1, j]) ≥
ε/(100k)}, otherwise, ji+1 := n.

4. Construct a set of nm moderate intervals, a set of nh heavy points, and a set of nn negligible intervals as
follows: For each atomic interval Ii = [a, b],

(a) if p̂([a, b]) ≤ 3ε/(100k) then Ii is declared to be a moderate interval;
(b) otherwise we have p̂([a, b]) > 3ε/(100k) and we declare b to be a heavy point. If a < b then we

declare [a, b− 1] to be a negligible interval.

For each interval I which is a heavy point, add I to I. Add each negligible interval I to I.
5. For each moderate interval I , run procedure ORIENTATION(p̂, I); let ◦ ∈ {↑, ↓,⊥} be its output.

If ◦ = ⊥ then add I to I.
If ◦ =↓ then let JI be the partition of I given by Theorem 5 which is a (p′, ε/4, O(log(n)/ε))-flat
decomposition of I for any non-increasing distribution p′ over I. Add all the elements of JI to I.
If ◦ =↑ then let JI be the partition of I given by the dual version of Theorem 5, which is a
(p′, ε/4, O(log(n)/ε))-flat decomposition of I for any non-decreasing distribution p′ over I. Add all
the elements of JI to I.

6. Output the partition I of [n].

Roughly speaking, when CONSTRUCT-FLAT-DECOMPOSITION constructs a partition I, it initially breaks [n]
up into two types of intervals. The first type are intervals that are “okay” to include in a flat decomposition, either
because they have very little mass, or because they consist of a single point, or because they are close to uniform.
The second type are intervals that are “not okay” to include in a flat decomposition – they have significant mass
and are far from uniform – but the algorithm is able to ensure that almost all of these are monotone distributions
with a known orientation. It then uses the oblivious decomposition of Theorem 5 to construct a flat decomposition
of each such interval. (Note that it is crucial that the orientation is known in order to be able to use Theorem 5.)

In more detail, CONSTRUCT-FLAT-DECOMPOSITION(p, ε, δ) works as follows. The algorithm first draws a
batch of samples from p and uses them to construct an estimate p̂ of the CDF of p (this is straightforward using
the DKW inequality). Using p̂ the algorithm partitions [n] into a collection of O(k/ε) disjoint intervals in the
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following way:

• A small collection of the intervals are “negligible”; they collectively have total mass less than ε under p.
Each negligible interval I will be an element of the partition I.
• Some of the intervals are “heavy points”; these are intervals consisting of a single point that has mass Ω(ε/k)

under p. Each heavy point I will also be an element of the partition I.
• The remaining intervals are “moderate” intervals, each of which has mass Θ(ε/k) under p.

It remains to incorporate the moderate intervals into the partition I that is being constructed. This is done as
follows: using p̂, the algorithm comes up with a “guess” of the correct orientation (non-increasing, non-decreasing,
or close to uniform) for each moderate interval. Each moderate interval where the “guessed” orientation is “close to
uniform” is included in the partition I. Finally, for each moderate interval I where the guessed orientation is “non-
increasing” or “non-decreasing”, the algorithm invokes Theorem 5 on I to perform the oblivious decomposition for
monotone distributions, and the resulting sub-intervals are included in I. The analysis will show that the guesses
are almost always correct, and intuitively this should imply that the I that is constructed is indeed a (p, ε, `)-flat
decomposition of [n].

4.2 The ORIENTATION algorithm. The ORIENTATION algorithm takes as input an explicit distribution of a
distribution p̂ over [n] and an interval I ⊆ [n]. Intuitively, it assumes that p̂I is close (in Kolmogorov distance) to
a monotone distribution pI , and its goal is to determine the orientation of pI : it outputs either ↑, ↓ or ⊥ (the last of
which means “close to uniform”). The algorithm is quite simple; it checks whether there exists an initial interval
I ′ of I on which p̂I ’s weight is significantly different from uI(I

′) (the weight that the uniform distribution over I
assigns to I ′) and bases its output on this in the obvious way. A precise description of the algorithm (which uses
no samples) is given below.

ORIENTATION

INPUTS: explicit description of distribution p̂ over [n]; interval I = [a, b] ⊆ [n]

1. If |I| = 1 (i.e. I = {a} for some a ∈ [n]) then return “⊥”, otherwise continue.

2. If there is an initial interval I ′ = [a, j] of I that satisfies uI(I ′)− (p̂)I(I
′) > ε

7 then halt and output “↑”.
Otherwise,

3. If there is an initial interval I ′ = [a, j] of I that satisfies uI(I ′) − (p̂)I(I
′) < − ε

7 then halt and output
“↓”. Otherwise,

4. Output “⊥”.

We proceed to analyze ORIENTATION. We show that if pI is far from uniform then ORIENTATION outputs
the correct orientation for it. We also show that whenever ORIENTATION does not output “⊥”, whatever it outputs
is the correct orientation of pI . The proof is given in Section C.3.

Lemma 5. Let p be a distribution over [n] and let interval I = [a, b] ⊆ [n] be such that pI is monotone. Suppose
p(I) ≥ 99ε/(10000k), and suppose that for every interval I ′ ⊆ I we have that |p̂(I ′)− p(I ′)| ≤ ε2

10000k . Then

1. If pI is non-decreasing and pI is ε/6-far from the uniform distribution uI over I , then ORIENTATION(p̂, I)
outputs “↑”;

2. if ORIENTATION(p̂, I) outputs “↑” then pI is non-decreasing;

3. if pI is non-increasing and pI is ε/6-far from the uniform distribution uI over I , then ORIENTATION(p̂, I)
outputs “↓”;

4. if ORIENTATION(p̂, I) outputs “↓” then pI is non-increasing.
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5 Lower Bounds

Our algorithmic results follow from a reduction which shows how one can reduce the problem of testing properties
of monotone or k-modal distributions to the task of testing properties of general distributions over a much smaller
support. Our approach to proving lower bounds is complementary; we give a canonical scheme for transforming
“lower bound instances” of general distributions to related lower bound instances of monotone distributions with
much larger supports.

A generic lower bound instance for distance estimation has the following form: there is a distribution D over
pairs of distributions, (p, p′), with the information theoretic guarantee that, given s independent samples from
distributions p and p′, with (p, p′) ← D, it is impossible to distinguish the case that dTV (p, p′) ≤ ε1 versus
dTV (p, p′) > ε2 with any probability greater than 1 − δ, where the probability is taken over both the selection of
(p, p′)← D and the choice of samples. In general, such information theoretic lower bounds are difficult to prove.
Fortunately, as mentioned above, we will be able to prove lower bounds for monotone and k-modal distributions
by leveraging the known lower bound constructions in a black-box fashion.

Definitions 2 and 3, given below, define a two-stage transformation of a generic distribution into a related
k-modal distribution over a much larger support. This transformation preserves total variation distance: for any
pair of distributions, the variation distance between their transformations is identical to the variation distance
between the original distributions. Additionally, we ensure that given access to s independent samples from an
original input distribution, one can simulate drawing s samples from the related k-modal distribution yielded by
the transformation. Given any lower–bound constructionD for general distributions, the above transformation will
yield a lower–bound instance Dk for (k− 1)-modal distributions (so monotone distributions correspond to k = 1)
defined by selecting a pair of distributions (p, p′)← D, then outputting the pair of transformed distributions. This
transformed ensemble of distributions is a lower–bound instance, for if some algorithm could successfully test
pairs of (k−1)-modal distributions from Dk, then that algorithm could be used to test pairs from D, by simulating
samples drawn from the transformed versions of the distributions. The following proposition, proved in Section D,
summarizes the above discussion:

Proposition 6. Let D be a distribution over pairs of distributions supported on [n] such that given s samples from
distributions p, p′ with (p, p′)← D, no algorithm can distinguish whether dTV (p, p′) ≤ ε1 versus dTV (p, p′) > ε2
with probability greater than 1− δ (over both the draw of (p, p′) from D and the draw of samples from p, p′). Let
pmax, pmin be the respective maximum and minimum probabilities with which any element arises in distributions
that are supported in D. Then there exists a distribution Dk over pairs of (k − 1)-modal distributions supported
on [N ] = [4ke

8n
k
(1+log(pmax/pmin))] such that no algorithm, when given s samples from distributions pk, p′k, with

(pk, p
′
k) ← Dk, can distinguish whether dTV (pk, p

′
k) ≤ ε1 versus dTV (pk, p

′
k) > ε2 with success probability

greater than 1− δ.

Before proving this proposition, we state various corollaries which result from applying the Proposition to
known lower-bound constructions for general distributions. The first is for the “testing identity, q is unknown”
problem:

Corollary 7. There exists a constant c such that for sufficiently large N and 1 ≤ k = O(logN), there is a
distribution Dk over pairs of 2(k − 1)-modal distributions (p, p′) over [N ], such that no algorithm, when given

c
(
k logN
log logN

)2/3
samples from a pair of distributions (p, p′) ← D, can distinguish the case that dTV (p, p′) = 0

from the case dTV (p, p′) > .5 with probability at least .6.

This Corollary gives the lower bounds stated in lines 2 and 6 of Table 1. It follows from applying Proposition 6
to a (trivially modified) version of the lower bound construction given in [BFR+00, Val08b], summarized by the
following theorem:

Theorem 6 ([BFR+00, Val08b]). There exists a constant c such that for sufficiently large n, there is a distribution
D over pairs of distributions (p, p′) over [n], such that for any (p, p′) ← D, the maximum probability with which
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any element occurs in p or p′ is 1
n2/3 , and the minimum probability is 1

2n . Additionally, no algorithm, when given
cn2/3 samples from (p, p′) ← D, can distinguish whether dTV (p, p′) = 0, from dTV (p, p′) > .5 with probability
at least .6.

Our second corollary is for L1 estimation, in the case that one of the distributions is explicitly given. This
trivially also yields an equivalent lower bound for the setting in which both distributions are given via samples.

Corollary 8. For any a, b with 0 < a < b < 1/2, there exists a constant c > 0, such that for any sufficiently large
N and 1 ≤ k = O(logN), there exists a 2(k − 1)-modal distribution q of support [N ], and a distribution Dk

over 2(k− 1)-modal distributions over [N ], such that no algorithm, when given c k logN
log logN ·log log logN samples from

a distribution p← D, can distinguish the case that dTV (p, q) < a versus dTV (p, p′) > b with probability at least
.6.

This Corollary gives the lower bounds claimed in lines 3, 4, 7 and 8 of Table 1. It follows from applying
Proposition 6 to the lower bound construction given in [VV11a], summarized by the following theorem:

Theorem 7 ([VV11a]). For any a, b with 0 < a < b < 1/2, there exists a constant c > 0, such that for
any sufficiently large n, there is a distribution D over distributions with support [n], such that for any p ← D,

the maximum probability with which any element occurs in p is O
(
logn
n

)
, and the minimum probability is 1

2n .
Additionally, no algorithm, when given c n

logn samples from p ← D can distinguish whether dTV (p, un) < a
versus dTV (p, un) > b with probability at least .6, where un denotes the uniform distribution over [n].

Note that the above theorem can be expressed in the language of Proposition 6 by defining the distribution D′

over pairs of distributions which chooses a distribution according to D for the first distribution of each pair, and
always selects un for the second distribution of each pair.

Our third corollary, which gives the lower bounds claimed in lines 1 and 5 of Table 1, is for the “testing identity,
q is known” problem:

Corollary 9. For any ε ∈ (0, 1/2], there is a constant c such that for sufficiently large N and 1 ≤ k = O(logm),
there is a k-modal distribution p with support [N ], and a distribution D over 2(k − 1)-modal distributions of
support [N ] such that no algorithm, when given c(k logm)1/2 samples from a distribution p′ ← D, can distinguish
the case that dTV (p, p′) = 0 from the case dTV (p, p′) > ε with probability at least .6.

The above corollary follows from applying Proposition 6 to the following trivially verified lower bound con-
struction:

Fact 10. Let D be the ensemble of distributions of support n defined as follows: with probability 1/2, p ← D
is the uniform distribution on support n, and with probability 1/2, p ← D assigns probability 1/2n to a random
half of the domain elements, and probability 3/2n to the other half of the domain elements. No algorithm, when
given fewer than n1/2/100 samples from a distribution p ← D can distinguish between dTV (p, un) = 0 versus
dTV (p, un) ≥ .5 with probability greater than .6.

As noted previously (after Theorem 7), this fact can also be expressed in the language of Proposition 6.

6 Conclusions

We have introduced a simple new approach for tackling distribution testing problems for restricted classes of
distributions, by reducing them to general-distribution testing problems over a smaller domain. We applied this
approach to get new testing results for a range of distribution testing problems involving monotone and k-modal
distributions, and established lower bounds showing that all our new algorithms are essentially optimal.

A general direction for future work is to apply our reduction method to obtain near-optimal testing algorithms
for other interesting classes of distributions. This will involve constructing flat decompositions of various types
of distributions using few samples, which seems to be a natural and interesting algorithmic problem. A specific
goal is to develop a more efficient version of our CONSTRUCT-FLAT-DECOMPOSITION algorithm for k-modal
distributions; is it possible to obtain an improved version of this algorithm that uses o(k) samples?
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For simplicity, the appendix consists of a slightly expanded and self-contained version of the exposition
in the body of the paper, following the “Notation and Preliminaries” section.

A Shrinking the domain size: Reductions for distribution-testing problems

In this section we present the general framework of our reduction-based approach and sketch how we instantiate
this approach for monotone and k-modal distributions.

We denote by |I| the cardinality of an interval I ⊆ [n], i.e. for I = [a, b] we have |I| = b − a + 1. Fix a
distribution p over [n] and a partition of [n] into disjoint intervals I := {Ii}`i=1. The flattened distribution (pf )I

corresponding to p and I is the distribution over [n] defined as follows: for j ∈ [`] and i ∈ Ij , (pf )I(i) =∑
t∈Ij p(t)/|Ij |. That is, (pf )I is obtained from p by averaging the weight that p assigns to each interval over the

entire interval. The reduced distribution (pr)
I corresponding to p and I is the distribution over [`] that assigns

the ith point the weight p assigns to the interval Ii; i.e., for i ∈ [`], we have (pr)
I(i) = p(Ii). Note that if p is

non-increasing then so is (pf )I , but this is not necessarily the case for (pr)
I .

Definition 1. Let p be a distribution over [n] and let I = {Ii}`i=1 be a partition of [n] into disjoint intervals. We
say that I is a (p, ε, `)-flat decomposition of [n] if dTV (p, (pf )I) ≤ ε.

The following useful lemma relates closeness of p and q to closeness of the reduced distributions:

Lemma 2 Let I = {Ii}`i=1 be a partition of [n] into disjoint intervals. Suppose that p and q are distributions over
[n] such that I is both a (p, ε, `)-flat decomposition of [n] and is also a (q, ε, `)-flat decomposition of [n]. Then∣∣dTV (p, q)− dTV ((pr)

I , (qr)
I)
∣∣ ≤ 2ε. Moreover, if p = q then (pr)

I = (qr)
I .

Proof. The second statement is clear by the definition of a reduced distribution. To prove the first statement, we
first observe that for any pair of distributions p, q and any partition I of [n] into disjoint intervals, we have that
dTV ((pr)

I , (qr)
I) = dTV ((pf )I , (qf )I). We thus have that

∣∣dTV (p, q)− dTV ((pr)
I , (qr)

I)
∣∣ is equal to∣∣dTV (p, q)− dTV ((pf )I , (qf )I)

∣∣ = dTV (p, q)− dTV ((pf )I , (qf )I) ≤ dTV (p, (pf )I) + dTV (q, (qf )I),

where the equality above is equivalent to dTV (p, q) ≥ dTV ((pf )I , (qf )I) (which is easily verified by considering
each interval Ii ∈ I separately and applying triangle inequality) and the inequality is the triangle inequality. Since
I is both a (p, ε, `)-flat decomposition of [n] and a (q, ε, `)-flat decomposition of [n], we have that dTV (p, (pf )I) ≤
ε and dTV (q, (qf )I) ≤ ε. The RHS above is thus bounded by 2ε and the lemma follows.

Lemma 2, while simple, is at the heart of our reduction-based approach; it lets us transform a distribution-
testing problem over the large domain [n] to a distribution-testing problem over the much smaller “reduced” domain
[`]. At a high level, all our testing algorithms will follow the same basic approach: first they run a procedure which,
with high probability, constructs a partition I of [n] that is both a (p, ε, `)-flat decomposition of [n] and a (q, ε, `)-
flat decomposition of [n]. Next they run the appropriate general-distribution tester over the `-element distributions
(pr)

I , (qr)
I and output what it outputs; Lemma 2 guarantees that the distance between (pr)

I and (qr)
I faithfully

reflects the distance between p and q, so this output is correct.
We now provide a few more details that are specific to the various different testing problems that we consider.

For the monotone distribution testing problems the construction of I is done obliviously (without drawing any
samples or any reference to p or q of any sort) and there is no possibility of failure – the assumption that p and q
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are both (say) non-decreasing guarantees that the I that is constructed is both a (p, ε, `)-flat decomposition of [n]
and a (q, ε, `)-flat decomposition of [n]. We describe this decomposition procedure in Section 3.1 and present our
monotone distribution testing algorithms that are based on it in Section 3.2.

For the k-modal testing problems it is not so straightforward to construct the desired decomposition I. This is
done via a careful procedure which uses k2 ·poly(1/ε) samples from p and q. This procedure has the property that
with probability 1−δ/2, the I it outputs is both a (p, ε, `)-flat decomposition of [n] and a (q, ε, `)-flat decomposition
of [n], where ` = O(k log(n)/ε2). Given this, by running a testing algorithm (which has success probability
1− δ/2) on the pair (pr)

I , (qr)
I of distributions over [`], we will get an answer which is with probability 1− δ a

legitimate answer for the original testing problem. The details are given in Section C.
We close this section with a result about partitions and flat decompositions which will be useful later. Let

I = {Ii}ai=1, I ′ = {I ′j}bj=1 be two partitions of [n]. We say that I ′ is a refinement of I if for every i ∈ [a] there is
a subset Si of [b] such that ∪j∈SiI ′j = Ii (note that for this to hold we must have a ≤ b). Note that {Si}ai=1 forms
a partition of [b]. We prove the following useful lemma:

Lemma 4. Let p be any distribution over [n], let I = {Ii}ai=1 be a (p, ε, a)-flat decomposition of [n], and let
J = {Ji}bi=1 be a refinement of I. Then J is a (p, 2ε, b)-flat decomposition of [n].

Proof. Fix any i ∈ [`] and let Si ⊆ [b] be such that Ii = ∪j∈SiJj . To prove the lemma it suffices to show that

2
∑
t∈Ii
|p(t)− (pf )I(t)| ≥

∑
j∈S

∑
t∈Jj
|p(t)− (pf )J (t)|, (1)

since the sum on the LHS is the contribution that Ii makes to dTV (p, (pf )I) and the sum on the RHS is the
corresponding contribution Ii makes to dTV (p, (pf )J ). It may seem intuitively obvious that the sum on the LHS
(which corresponds to approximating the sub-distribution pIi using a “global average”) must be smaller than the
sum on the RHS (which corresponds to using separate “local averages”). However, this intuition is not quite
correct, and it is necessary to have the factor of two. To see this, consider a distribution p over [n] such that
p(1) = (1/2) · (1/n); p(i) = 1/n for i ∈ [2, n − 1]; and p(n) = (3/2) · (1/n). Taking I1 = [1, n/2] and
I2 = [n/2 + 1, n], it is easy to check that inequality (1) is essentially tight (up to a o(1) factor).

We now proceed to establish (1). Let T ⊆ [n] and consider a partition of T into k nonempty sets Ti, i ∈ [k].

Denote µ def
= p(T )/|T | and µi

def
= p(Ti)/|Ti|. Then, (1) can be re-expressed as follows

2
∑
t∈T
|p(t)− µ| ≥

k∑
i=1

∑
t∈Ti
|p(t)− µi|. (2)

We shall prove the above statement for all sequences of numbers p(1), . . . , p(n). Since adding or subtracting
the same quantity from each number p(t) does not change the validity of (2), for the sake of convenience we may
assume all the numbers average to 0, that is, µ = 0. Consider the i-th term on the right hand side,

∑
t∈Ti |p(t)−µi|.

We can bound this quantity from above as follows:∑
t∈Ti
|p(t)− µi| ≤

∑
t∈Ti
|p(t)|+ |Ti| · |µi| =

∑
t∈Ti
|p(t)|+ |p(Ti)| = 2

∑
t∈Ti
|p(t)| = 2

∑
t∈Ti
|p(t)− µ|,

where the inequality follows from the triangle inequality (applied term by term), the first equality is by the defini-
tion of µi, the second equality is trivial, and the final equality uses the assumption that µ = 0. The lemma follows
by summing over i ∈ [k], using the fact that the Ti’s form a partition of T .

B Efficiently Testing Monotone Distributions

B.1 Oblivious decomposition of monotone distributions Our main tool for testing monotone distributions is
an oblivious decomposition of monotone distributions that is a variant of a construction of Birgé [Bir87b]. As we
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will see it enables us to reduce the problem of testing a monotone distribution to the problem of testing an arbitrary
distribution over a much smaller domain. The decomposition result is given below:

Theorem 5 ([Bir87b]). (oblivious decomposition) Fix any n ∈ Z+ and ε > 0. The partition I := {Ii}`i=1

of [n] described below has the following properties: ` = O ((1/ε) · log(ε · n+ 1)), and for any non-increasing
distribution p over [n], I is a (p,O(ε), `)-flat decomposition of [n].

There is a dual version of Theorem 5, asserting the existence of an “oblivious” partition for non-decreasing
distributions (which is of course different from the “oblivious” partition I for non-increasing distributions of
Theorem 5); this will be useful later.

While our construction is essentially that of Birgé, we note that the version given in [Bir87b] is for non-
increasing distributions over the continuous domain [0, n], and it is phrased rather differently. Adapting the argu-
ments of [Bir87b] to our discrete setting of distributions over [n] is not conceptually difficult but requires some
care. For the sake of being self-contained we provide a self-contained proof of the discrete version, stated above,
that we require in Appendix E.

B.2 Efficiently testing monotone distributions Now we are ready to establish our upper bounds on testing
monotone distributions (given in the first four rows of Table 1). All of the algorithms are essentially the same:
each works by reducing the given monotone distribution testing problem to the same testing problem for arbitrary
distributions over support of size ` = O(log n/ε) using the oblivious decomposition from the previous subsection.
For concreteness we explicitly describe the tester for the “testing identity, q is known” case below, and then indicate
the small changes that are necessary to get the testers for the other three cases.

TEST-IDENTITY-KNOWN-MONOTONE

Inputs: ε, δ > 0; sample access to non-increasing distribution p over [n]; explicit description of non-increasing
distribution q over [n]

1. Let I := {Ii}`i=1, with ` = Θ(log(εn + 1)/ε), be the partition of [n] given by Theorem 5, which is a
(p′, ε/8, `)-flat decomposition of [n] for any non-increasing distribution p′.

2. Let (qr)
I denote the reduced distribution over [`] obtained from q using I as defined in Section A.

3. Draw m = sIK(`, ε/2, δ) samples from (pr)
I , where (pr)

I is the reduced distribution over [`] obtained
from p using I as defined in Section A.

4. Run TEST-IDENTITY-KNOWN((pr)
I , (qr)

I , ε2 , δ) using the samples from Step 3 and output what it
outputs.

We now establish our claimed upper bound for the “testing identity, q is known” case. We first observe that in
Step 3, the desired m = sIK(`, ε/2, δ) samples from (pr)

I can easily be obtained by drawing m samples from p
and converting each one to the corresponding draw from (pr)

I in the obvious way. If p = q then by Lemma 2 we
have that (pr)

I = (qr)
I , and TEST-IDENTITY-KNOWN-MONOTONE outputs “accept” with probability at least

1− δ by Theorem 2. If dTV (p, q) ≥ ε, then by Lemma 2 and Theorem 5 we have that dTV ((pr)
I , (qr)

I) ≥ 3ε/4,
so TEST-IDENTITY-KNOWN-MONOTONE outputs “reject” with probability at least 1 − δ by Theorem 2. For
the “testing identity, q is unknown” case, the the algorithm TEST-IDENTITY-UNKNOWN-MONOTONE is very
similar to TEST-IDENTITY-KNOWN-MONOTONE. The differences are as follows: instead of Step 2, in Step 3 we
draw m = sIU (`, ε/2, δ) samples from (pr)

I and the same number of samples from (qr)
I ; and in Step 4, we run

TEST-IDENTITY-UNKNOWN((pr)
I , (qr)

I , ε2 , δ) using the samples from Step 3. The analysis is exactly the same
as above (using Theorem 3 in place of Theorem 2).

We now describe the algorithm L1-ESTIMATE-KNOWN-MONOTONE for the “tolerant testing, q is known”
case. This algorithm takes values ε and δ as input, so the partition I defined in Step 1 is a (p′, ε/4, `)-flat decom-
position of [n] for any non-increasing p′. In Step 3 the algorithm draws m = sE(`, ε/2, δ) samples and runs L1-
ESTIMATE((pr)

I , (qr)
I , ε/2, δ) in Step 4. If dTV (p, q) = c then by Lemma 2 we have that dTV ((pr)

I , (qr)
I) ∈
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[c−ε/2, c+ε/2] and L1-ESTIMATE-KNOWN-MONOTONE outputs a value within the prescribed range with prob-
ability at least 1− δ, by Theorem 4. The algorithm L1-ESTIMATE-UNKNOWN-MONOTONE case and its analysis
are entirely similar.

C Efficiently Testing k-modal Distributions

In this section we establish our main positive testing results for k-modal distributions, the upper bounds stated in the
final four rows of Table 1. The key to all these results is an algorithm CONSTRUCT-FLAT-DECOMPOSITION(p, ε, δ).
We prove the following performance guarantee about this algorithm:

Lemma 3. Let p be a k-modal distribution over [n]. Algorithm CONSTRUCT-FLAT-DECOMPOSITION(p, ε, δ)
draws O(k2ε−4 log(1/δ)) samples from p and outputs a (p, ε, `)-flat decomposition of [n] with probability at least
1− δ, where ` = O(k log(n)/ε2).

The bulk of our work in Section C is to describe CONSTRUCT-FLAT-DECOMPOSITION(p, ε, δ) and prove
Lemma 3, but first we show how Lemma 3 easily yields our claimed testing results for k-modal distributions.
As in the monotone case all four algorithms are essentially the same: each works by reducing the given k-modal
distribution testing problem to the same testing problem for arbitrary distributions over [`]. We describe the TEST-
IDENTITY-KNOWN-KMODAL algorithm below, and then indicate the necessary changes to get the other three
testers.

The following terminology will be useful: Let I = {Ii}ri=1 and I ′ = {I ′i}si=1 be two partitions of [n] into r
and s intervals respectively. The common refinement of I and I ′ is the partition J of [n] into intervals obtained
from I and I ′ in the obvious way, by taking all possible nonempty intervals of the form Ii ∩ I ′j . It is clear that J
is both a refinement of I and of I ′ and that the number of intervals |J | in J is at most r + s.

TEST-IDENTITY-KNOWN-KMODAL

Inputs: ε, δ > 0; sample access to k-modal distributions p, q over [n]

1. Run CONSTRUCT-FLAT-DECOMPOSITION(p, ε/2, δ/4) and let I = {Ii}`i=1, ` = O(k log(n)/ε2),
be the partition that it outputs. Run CONSTRUCT-FLAT-DECOMPOSITION(p, ε/2, δ/4) and let I ′ =
{I ′i}`

′
i=1, `

′ = O(k log(n)/ε2), be the partition that it outputs. Let J be the common refinement of I and
I and let `J = O(k log(n)/ε2) be the number of intervals in J .

2. Let (qr)
J denote the reduced distribution over [`J ] obtained from q using J as defined in Section A.

3. Draw m = sIK(`J , ε/2, δ/2) samples from (pr)
J , where (pr)

J is the reduced distribution over [`J ]
obtained from p using J as defined in Section A.

4. Run TEST-IDENTITY-KNOWN((pr)
J , (qr)

J , ε2 ,
δ
2) using the samples from Step 3 and output what it

outputs.

We note that Steps 2, 3 and 4 of TEST-IDENTITY-KNOWN-KMODAL are the same as the corresponding steps
of TEST-IDENTITY-KNOWN-MONOTONE. For the analysis of TEST-IDENTITY-KNOWN-KMODAL, Lemmas 3
and 4 give us that with probability 1−δ/2, the partition J obtained in Step 1 is both a (p, ε, `J )-flat and (q, ε, `J )-
flat decomposition of [n]; we condition on this going forward. From this point on the analysis is essentially
identical to the analysis for TEST-IDENTITY-KNOWN-MONOTONE and is omitted.

The modifications required to obtain algorithms TEST-IDENTITY-UNKNOWN-KMODAL, L1-ESTIMATE-
KNOWN-KMODAL and L1-ESTIMATE-UNKNOWN-KMODAL, and the analysis of these algorithms, are completely
analogous to the modifications and analyses of Appendix B.2 and are omitted.

C.1 The CONSTRUCT-FLAT-DECOMPOSITION algorithm. We present CONSTRUCT-FLAT-DECOMPOSITION(p, ε, δ)
followed by an intuitive explanation. Note that it employs a procedure ORIENTATION(p̂, I), which uses no sam-
ples and is presented and analyzed in Section 4.2.
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CONSTRUCT-FLAT-DECOMPOSITION

INPUTS: ε, δ > 0; sample access to k-modal distribution p over [n]

1. Initialize I := ∅.
2. Fix τ := ε2/(20000k). Draw r = Θ(log(1/δ)/τ2) samples from p and let p̂ denote the resulting

empirical distribution (which by Theorem 1 has dK(p̂, p) ≤ τ with probability at least 1− δ).

3. Greedily partition the domain [n] into α atomic intervals {Ii}αi=1 as follows: I1 := [1, j1], where j1 :=
min{j ∈ [n] | p̂([1, j]) ≥ ε/(100k)}. For i ≥ 1, if ∪ij=1Ij = [1, ji], then Ii+1 := [ji + 1, ji+1], where
ji+1 is defined as follows: If p̂([ji + 1, n]) ≥ ε/(100k), then ji+1 := min{j ∈ [n] | p̂([ji + 1, j]) ≥
ε/(100k)}, otherwise, ji+1 := n.

4. Construct a set of nm moderate intervals, a set of nh heavy points, and a set of nn negligible intervals as
follows: For each atomic interval Ii = [a, b],

(a) if p̂([a, b]) ≤ 3ε/(100k) then Ii is declared to be a moderate interval;
(b) otherwise we have p̂([a, b]) > 3ε/(100k) and we declare b to be a heavy point. If a < b then we

declare [a, b− 1] to be a negligible interval.

For each interval I which is a heavy point, add I to I. Add each negligible interval I to I.
5. For each moderate interval I , run procedure ORIENTATION(p̂, I); let ◦ ∈ {↑, ↓,⊥} be its output.

If ◦ = ⊥ then add I to I.
If ◦ =↓ then let JI be the partition of I given by Theorem 5 which is a (p′, ε/4, O(log(n)/ε))-flat
decomposition of I for any non-increasing distribution p′ over I. Add all the elements of JI to I.
If ◦ =↑ then let JI be the partition of I given by the dual version of Theorem 5, which is a
(p′, ε/4, O(log(n)/ε))-flat decomposition of I for any non-decreasing distribution p′ over I. Add all
the elements of JI to I.

6. Output the partition I of [n].

Roughly speaking, when CONSTRUCT-FLAT-DECOMPOSITION constructs a partition I, it initially breaks [n]
up into two types of intervals. The first type are intervals that are “okay” to include in a flat decomposition, either
because they have very little mass, or because they consist of a single point, or because they are close to uniform.
The second type are intervals that are “not okay” to include in a flat decomposition – they have significant mass
and are far from uniform – but the algorithm is able to ensure that almost all of these are monotone distributions
with a known orientation. It then uses the oblivious decomposition of Theorem 5 to construct a flat decomposition
of each such interval. (Note that it is crucial that the orientation is known in order to be able to use Theorem 5.)

In more detail, CONSTRUCT-FLAT-DECOMPOSITION(p, ε, δ) works as follows. The algorithm first draws a
batch of samples from p and uses them to construct an estimate p̂ of the CDF of p (this is straightforward using
the DKW inequality). Using p̂ the algorithm partitions [n] into a collection of O(k/ε) disjoint intervals in the
following way:

• A small collection of the intervals are “negligible”; they collectively have total mass less than ε under p.
Each negligible interval I will be an element of the partition I.
• Some of the intervals are “heavy points”; these are intervals consisting of a single point that has mass Ω(ε/k)

under p. Each heavy point I will also be an element of the partition I.
• The remaining intervals are “moderate” intervals, each of which has mass Θ(ε/k) under p.

It remains to incorporate the moderate intervals into the partition I that is being constructed. This is done as
follows: using p̂, the algorithm comes up with a “guess” of the correct orientation (non-increasing, non-decreasing,
or close to uniform) for each moderate interval. Each moderate interval where the “guessed” orientation is “close to
uniform” is included in the partition I. Finally, for each moderate interval I where the guessed orientation is “non-
increasing” or “non-decreasing”, the algorithm invokes Theorem 5 on I to perform the oblivious decomposition for
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monotone distributions, and the resulting sub-intervals are included in I. The analysis will show that the guesses
are almost always correct, and intuitively this should imply that the I that is constructed is indeed a (p, ε, `)-flat
decomposition of [n].

C.2 Performance of CONSTRUCT-FLAT-DECOMPOSITION: Proof of Lemma 3. The claimed sample bound
is obvious from inspection of the algorithm, as the only step that draws any samples is Step 2. The bound on
the number of intervals in the flat decomposition follows directly from the upper bounds on the number of heavy
points, negligible intervals and moderate intervals shown below, using also Theorem 5. It remains to show that the
output of the algorithm is a valid flat decomposition of p. First, by the DKW inequality (Theorem 1) we have that
with probability at least 1− δ it is the case that

|p̂(I)− p(I)| ≤ ε2

10000k
, for every interval I ⊆ [n]. (3)

We make some preliminary observations about the weight that p has on the intervals constructed in Steps 4
and 5. Since every atomic interval Ii constructed in Step 4 has p̂(I) ≥ ε/(100k) (except potentially the rightmost
one), it follows that the number α of atomic intervals constructed in Step 3 satisfies

α ≤ d100k/εe.

We now establish bounds on the probability mass that p assigns to the moderate intervals, heavy points, and
negligible intervals that are constructed in Step 4. Using (3), each interval Ii that is declared to be a moderate
interval in Step 4(a) must satisfy

99ε/(10000k) ≤ p([a, b]) ≤ 301ε/(10000k) (for all moderate intervals [a, b]). (4)

By virtue of the greedy process that is used to construct atomic intervals in Step 3, each point b that is declared
to be a heavy point in Step 4(b) must satisfy p̂(b) ≥ 2ε/(100k) and thus using (3) again

p(b) ≥ 199ε/(10000k) (for all heavy points b). (5)

Moreover, each interval [a, b− 1] that is declared to be a negligible interval must satisfy p̂([a, b− 1]) < ε/(100k)
and thus using (3) again

p([a, b− 1]) ≤ 101ε/(10000k) (for all negligible intervals [a, b− 1]). (6)

It is clear that nm (the number of moderate intervals) and nh (the number of heavy points) are each at most α.
Next we observe that the number of negligible intervals nn satisfies

nn ≤ k.

This is because at the end of each negligible interval [a, b−1] we have (observing that each negligible interval must
be nonempty) that p(b − 1) ≤ p([a, b− 1]) ≤ 101ε/(10000k) while p(b) ≥ 199ε/(10000k). Since p is k-modal,
there can be at most d(k + 1)/2e ≤ k points b ∈ [n] satisfying this condition. Since each negligible interval I
satisfies p(I) ≤ 101ε/(10000k) we have that the total probability mass under p of all the negligible intervals is at
most 101ε/10000.

Thus far we have built a partition of [n] into a collection of nm ≤ d100k/εe moderate intervals (which we
denote M1, . . . ,Mnm), a set of nh ≤ d100k/εe heavy points (which we denote h1, . . . , hnh) and a set of nn ≤ k
negligible intervals (which we denote N1, . . . , Nnn). Let A ⊆ {1, . . . , nm} denote the set of those indices i
such that ORIENTATION(p̂,Mi) outputs ⊥ in Step 6. The partition I that CONSTRUCT-FLAT-DECOMPOSITION

constructs consists of {h1}, . . . , {hnh}, N1, . . . , Nnn , {Mi}i∈A, and
⋃
i∈([nm]\A) JMi . We can thus write p as

p =
nh∑
j=1

p(hj) · 1hj +
nn∑
j=1

p(Nj)pNj +
∑
j∈A

p(Mj)pMj +
∑

j∈([nm]\A)

∑
I∈JMj

p(I)pI . (7)

17



Using Lemma 15 (proved in Appendix F) we can bound the total variation distance between p and (pf )I by

dTV (p, (pf )I) ≤ 1

2

nh∑
j=1
|p(hj)− (pf )I(hj)|+

1

2

nn∑
j=1
|p(Nj)− (pf )I(Nj)|+

nn∑
j=1

p(Nj) · dTV (pNj , ((pf )I)Nj )

+
1

2

∑
j∈A
|p(Mj)− (pf )I(Mj)|+

∑
j∈A

p(Mj) · dTV (pMj , ((pf )I)Mj )

+
1

2

∑
j∈([nm]\A)

∑
I∈JMj

|p(I)− (pf )I(I)|+
∑

j∈([nm]\A)

∑
I∈JMj

p(I) · dTV (pI , ((pf )I)I). (8)

Since p(I) = (pf )I(I) for every I ∈ I, this simplifies to

dTV (p, (pf )I) ≤
nn∑
j=1

p(Nj) · dTV (pNj , ((pf )I)Nj ) +
∑
j∈A

p(Mj) · dTV (pMj , ((pf )I)Mj )

+
∑

j∈([nm]\A)

∑
I∈JMj

p(I) · dTV (pI , ((pf )I)I). (9)

which we now proceed to bound.
Recalling from (6) that p(Nj) ≤ 101ε/(10000k) for each negligible interval Nj , and recalling that nn ≤ k,

the first summand in (9) is at most 101ε/10000.
To bound the second summand, fix any j ∈ A soMj is a moderate interval such that ORIENTATION(p̂,Mj) re-

turns⊥. If pMj is non-decreasing then by Lemma 5 it must be the case that dTV (pMj , ((pf )I)Mj ) ≤ ε/6 (note that
((pf )I)Mj is just uMj , the uniform distribution overMj). Lemma 5 gives the same bound if pMj is non-increasing.
If pMj is neither non-increasing nor non-decreasing then we have no nontrivial bound on dTV (pMj , ((pf )I)Mj ),
but since p is k-modal there can be at most k such values of j in A. Recalling (4), overall we have that

∑
j∈A

p(Mj) · dTV (pMj , ((pf )I)Mj ) ≤
301εk

10000k
+
ε

6
≤ 1968ε

10000
,

and we have bounded the second summand.
It remains to bound the final summand of (9). For each j ∈ ([nm] \ A), we know that ORIENTATION(p̂,Mj)

outputs either ↑ or ↓. If pMj is monotone, then by Lemma 5 we have that the output of ORIENTATION(p̂,Mj)
gives the correct orientation of pMj . Consequently JMj is a (pMj , ε/4, O(log(n)/ε))-flat decomposition of Mj ,
by Theorem 5. This means that dTV (pMj , ((pf )I)Mj ) ≤ ε/4, which is equivalent to

1

p(Mj)

∑
I∈JMj

p(I)dTV (pI , ((pf )I)I) ≤
ε

4
, i.e.

∑
I∈JMj

p(I)dTV (pI , ((pf )I)I) ≤ p(Mj) ·
ε

4
.

Let B ⊂ [nm] \A be such that, for all j ∈ B, pMj is monotone. Summing the above over all j ∈ B gives:∑
j∈B

∑
I∈JMj

p(I)dTV (pI , ((pf )I)I) ≤
∑
j∈B

p(Mj) ·
ε

4
≤ ε

4
.

Given that p is k-modal, the cardinality of the set [nm] \ (A ∪B) is at most k. So we have the bound:

∑
j∈[nm]\(A∪B)

∑
I∈JMj

p(I)dTV (pI , ((pf )I)I) ≤
∑

j∈[nm]\(A∪B)

p(Mj) ≤
301εk

10000k
.

So the third summand of (9) is at most ε/4 + 301ε/10000, and overall we have that (9) ≤ ε
2 . Hence, we have

shown that I is a (p, ε, `)-flat decomposition of [n], and Lemma 3 is proved.
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C.3 The ORIENTATION algorithm. The ORIENTATION algorithm takes as input an explicit distribution of a
distribution p̂ over [n] and an interval I ⊆ [n]. Intuitively, it assumes that p̂I is close (in Kolmogorov distance) to
a monotone distribution pI , and its goal is to determine the orientation of pI : it outputs either ↑, ↓ or ⊥ (the last of
which means “close to uniform”). The algorithm is quite simple; it checks whether there exists an initial interval
I ′ of I on which p̂I ’s weight is significantly different from uI(I

′) (the weight that the uniform distribution over I
assigns to I ′) and bases its output on this in the obvious way. A precise description of the algorithm (which uses
no samples) is given below.

ORIENTATION

INPUTS: explicit description of distribution p̂ over [n]; interval I = [a, b] ⊆ [n]

1. If |I| = 1 (i.e. I = {a} for some a ∈ [n]) then return “⊥”, otherwise continue.

2. If there is an initial interval I ′ = [a, j] of I that satisfies uI(I ′)−(p̂)I(I
′) > ε

7 then halt and output
“↑”. Otherwise,

3. If there is an initial interval I ′ = [a, j] of I that satisfies uI(I ′) − (p̂)I(I
′) < − ε

7 then halt and
output “↓”. Otherwise,

4. Output “⊥”.

We proceed to analyze ORIENTATION. We show that if pI is far from uniform then ORIENTATION outputs
the correct orientation for it. We also show that whenever ORIENTATION does not output “⊥”, whatever it outputs
is the correct orientation of pI . For ease of readability, for the rest of this subsection we use the following notation:

∆ :=
ε2

10000k

Lemma 5. Let p be a distribution over [n] and let interval I = [a, b] ⊆ [n] be such that pI is monotone. Suppose
p(I) ≥ 99ε/(10000k), and suppose that for every interval I ′ ⊆ I we have that

|p̂(I ′)− p(I ′)| ≤ ∆. (10)

Then

1. If pI is non-decreasing and pI is ε/6-far from the uniform distribution uI over I , then ORIENTATION(p̂, I)
outputs “↑”;

2. if ORIENTATION(p̂, I) outputs “↑” then pI is non-decreasing;

3. if pI is non-increasing and pI is ε/6-far from the uniform distribution uI over I , then ORIENTATION(p̂, I)
outputs “↓”;

4. if ORIENTATION(p̂, I) outputs “↓” then pI is non-increasing.

Proof. Let I ′ = [a, j] ⊆ I be any initial interval of I. We first establish the upper bound

|pI(I ′)− (p̂)I(I
′)| ≤ ε/49 (11)

as this will be useful for the rest of the proof. Using (10) we have

pI(I
′)− (p̂)I(I

′) =
p(I ′)

p(I)
− p̂(I ′)

p̂(I)
≥ p(I ′)

p(I)
− p(I ′) + ∆

p(I)−∆

= −∆ · p(I ′) + p(I)

p(I)(p(I)−∆)
. (12)
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Now using the fact that p(I ′) ≤ p(I) and p(I) ≥ 99ε/(10000k), we get that (12) is at least

−∆ · 2p(I)

(98/99)p(I)2
= −2 · 99∆

98p(I)
≥ −2 · 99∆ · 10000k

98 · 99ε
= − ε

49
.

So we have established the lower bound pI(I ′)− (p̂)I(I
′) ≥ −ε/49. For the upper bound, similar reasoning gives

pI(I
′)− (p̂)I(I

′) ≤ ∆ · p(I ′) + p(I)

p(I)(p(I) + ∆)
≤ ∆ · 2p(I)

p(I)2 · (100/99)

≤ ∆ · 2 · 10000k · 99

99ε · 100
=

ε

50

and so we have shown that |pI(I ′)− (p̂)I(I
′)| ≤ ε/49 as desired. Now we proceed to prove the lemma.

We first prove Part 1. Suppose that pI is non-decreasing and dTV (pI , uI) > ε/6. Since pI is monotone and
uI is uniform and both are supported on I , we have that the pdfs for pI and uI have exactly one crossing. An
easy consequence of this is that dK(pI , uI) = dTV (pI , uI) > ε/6. By the definition of dK and the fact that pI is
non-decreasing, we get that there exists a point j ∈ I and an interval I ′ = [a, j] which is such that

dK(pI , uI) = uI(I
′)− pI(I ′) >

ε

6
.

Using (11) we get from this that
uI(I

′)− (p̂)I(I
′) >

ε

6
− ε

49
>
ε

7

and thus ORIENTATION outputs “↑” in Step 3 as claimed.
Now we turn to Part 2 of the lemma. Suppose that ORIENTATION(p̂, I) outputs “↑”. Then it must be the

case that there is an initial interval I ′ = [a, j] of I that satisfies uI(I ′) − (p̂)I(I
′) > ε

7 . By (11) we have that
uI(I

′) − pI(I ′) > ε
7 −

ε
49 = 6ε

49 . But Observation 1 tells us that if pI were non-increasing then we would have
uI(I

′)− pI(I ′) ≤ 0; so pI cannot be non-increasing, and therefore it must be non-decreasing.
For Part 3, suppose that pI is non-increasing and dTV (pI , uI) > ε/6. First we must show that ORIENTATION

does not output “↑” in Step 3. Since pI is non-increasing, Observation 1 gives us that uI(I ′)−pI(I ′) ≤ 0 for every
initial interval I ′ of I . Inequality (11) then gives uI(I ′) − (p̂)I(I

′) ≤ ε/49, so ORIENTATION indeed does not
output “↑” in Step 3 (and it reaches Step 4 in its execution). Now arguments exactly analogous to the arguments
for part 1 (but using now the fact that pI is non-increasing rather than non-decreasing) give that there is an initial
interval I ′ such that (p̂)I(I

′) − uI(I ′) > ε
6 −

ε
49 >

ε
7 , so ORIENTATION outputs “↓” in Step 4 and Part 3 of the

lemma follows.
Finally, Part 4 of the lemma follows from analogous arguments as Part 2.

D Proof of Proposition 6

We start by defining the transformation, and then prove the necessary lemmas to show that the transformation
yields k-modal distributions with the specified increase in support size, preserves L1 distance between pairs, and
has the property that samples from the transformed distributions can be simulated given access to samples from
the original distributions.

The transformation proceeds in two phases. In the first phase, the input distribution p is transformed into
a related distribution f with larger support; f has the additional property that the ratio of the probabilities of
consecutive domain elements is bounded. Intuitively the distribution f corresponds to a “reduced distribution”
from Section A. In the second phase, the distribution f is transformed into the final 2(k − 1)-modal distribution
g. Both stages of the transformation consist of subdividing each element of the domain of the input distribution
into a set of elements of the output distribution; in the first stage, the probabilities of each element of the set are
chosen according to a geometric sequence, while in the second phase, all elements of each set are given equal
probabilities.

We now define this two-phase transformation and prove Proposition 6.
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Definition 2. Fix ε > 0 and a distribution p over [n] such that pmin ≤ p(i) ≤ pmax for all i ∈ [n]. We define
the distribution fp,ε,pmax,pmin in two steps. Let q be the distribution on support [c] with c = 1 + dlog1+ε pmax −
log1+ε pmine that is defined by q(i) = (1 + ε)i−1 ε

(1+ε)c−1 . The distribution fp,ε,pmax,pmin has support [cn], and for
i ∈ [n] and j ∈ [c] it assigns probability p(i)q(j) to domain element c(i− 1) + j.

It is convenient for us to view the mod r operator as giving an output in [r], so that “r mod r” equals r.

Definition 3. We define the distribution gk,p,ε,pmax,pmin from distribution fp,ε,pmax,pmin of support [m] via the
following process. Let r = dmk e, and let a1 := 1, and for all i ∈ {2, . . . , r}, let ai := d(1 + ε)ai−1e. For

each i ∈ [m], we assign probability fp,ε,pmax,pmin (i)

ai mod r
to each of the aj support elements in the set {1 + t, 2 +

t, . . . , ai mod r + t}, where t =
∑i−1

`=1 a(` mod r).

Lemma 11. Given ε, pmin, pmax, and access to independent samples from distribution p, one can generate inde-
pendent samples from fp,ε,pmax,pmin and from gk,p,ε,pmax,pmin .

Proof. To generate a sample according to fp,ε,pmax,pmin , one simply takes a sample i ← p and then draws j ∈ [c]
according to the distribution q as defined in Definition 2 (note that this draw according to q only involves ε, pmin
and pmax). We then output the value c(i − 1) + j. It follows immediately from the above definition that the
distribution of the output value is fp,ε,pmax,pmin .

To generate a sample according to gk,p,ε,pmax,pmin given a sample i ← fp,ε,pmax,pmin , one simply outputs (a
uniformly random) one of the a(i mod r) support elements of gk,p,ε,pmax,pmin corresponding to the element i of
fp,ε,pmax,pmin . Specifically, if the support of fp,ε,pmax,pmin is [m], then we output a random element of the set
{1 + t, 2 + t, . . . , ai mod r + t}, where t =

∑i−1
`=1 a(` mod r), with aj as defined in Definition 3, and r = dmk e.

Lemma 12. If pmin ≤ p(i) ≤ pmax for all i ∈ [n], then the distribution fp,ε,pmax,pmin of Definition 2, with density
f : [cn]→ R, has the property that f(i)

f(i−1) ≤ 1+ε for all i > 1, and the distribution gk,p,ε,pmax,pmin of Definition 3
is 2(k − 1)-modal.

Proof. Note that the distribution q, with support [c] as defined in Definition 2, has the property that q(i)/q(i−1) =
1 + ε for all i ∈ {2, . . . , c}, and thus f(`)/f(`− 1) = 1 + ε for any ` satisfying (` mod c) 6= 1. For values ` that
are 1 mod c, we have

f(`)

f(`− 1)
=

p(i+ 1)

p(i)(1 + ε)c−1
≤ p(i+ 1)pmin

p(i)pmax
≤ 1.

Given this property of fp,ε,pmax,pmin , we now establish that gk,p,ε,pmax,pmin is monotone decreasing on each of
the k equally sized contiguous regions of its domain. First consider the case k = 1; given a support element j, let
i be such that j ∈ {1 +

∑i−1
`=1 a`, . . . , ai +

∑i−1
`=1 a`}. We thus have that

g1,p,ε,pmax,pmin(j) =
fp,ε,pmax,pmin(i)

ai
≤ (1 + ε)fp,ε,pmax,pmin(i− 1)

ai
≤ fp,ε,pmax,pmin(i− 1)

ai−1
≤ g1,p,ε,pmax,pmin(j−1),

and thus g1,p,ε,pmax,pmin is indeed 0-modal since it is monotone non-increasing. For k > 1 the above arguments
apply to each of the k equally-sized contiguous regions of the support, so there are 2(k − 1) modes, namely the
local maxima occurring at the right endpoint of each region, and the local minima occurring at the left endpoint of
each region.

Lemma 13. For any distributions p, p′ with support [n], and any ε, pmax, pmin, we have that

dTV (p, p′) = dTV
(
fp,ε,pmax,pmin , fp′,ε,pmax,pmin

)
= dTV

(
gk,p,ε,pmax,pmin , gk,p′,ε,pmax,pmin

)
.
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Proof. Both equalities follow immediately from the fact that the transformations of Definitions 2 and 3 partition
each element of the input distribution in a manner that is oblivious to the probabilities. To illustrate, letting
c = 1 + dlog1+ε pmax − log1+ε pmine, and letting q be as in Definition 2, we have the following:

dTV
(
fp,ε,pmax,pmin , fp′,ε,pmax,pmin

)
=

∑
i∈[n],j∈[c]

q(j)|p(i)− p′(i)|

=
∑
i∈[n]
|p(i)− p′(i)|.

Lemma 14. If p has support [n], then for any ε < 1/2, the distribution gk,p,ε,pmax,pmin is supported on [N ], where

N is at most k e
8n
k (1+log(pmax/pmin))

ε2
.

Proof. The support of fp,ε,pmax,pmin is n(1 + dlog1+ε pmax − log1+ε pmine) ≤ n
(

2 + log(pmax/pmin)
log(1+ε)

)
. Letting

a1 := 1 and b1 := d1ε e, and defining ai := dai−1(1 + ε)e, and bi := dbi−1(1 + ε)e, we have that ai ≤ bi for all i.
Additionally, bi+1/bi ≤ 1+2ε, since all bi ≥ 1/ε, and thus the ceiling operation can increase the value of (1+ ε)bi
by at most εbi. Putting these two observations together, we have

m∑
i=1

ai ≤
m∑
i=1

bi ≤
(1 + 2ε)m+1

2ε2
.

For any ε ≤ 1/2, we have that the support of gk,p,1/2,pmax,pmin is at most

k
(1 + 2ε)

⌈
n
k

(
2+

log(pmax/pmin)

log(1+ε)

)⌉
ε2

≤ k
(1 + 2ε)

2n
k

(
2+4

log(pmax/pmin)

2ε

)
ε2

≤ k
(1 + 2ε)

1
2ε(

8n
k
(1+log(pmax/pmin)))

ε2

≤ k
e

8n
k
(1+log(pmax/pmin))

ε2
.

Proof of Proposition 6. The proof is now a simple matter of assembling the above parts. Given a distribution
D over pairs of distributions of support [n], as specified in the proposition statement, the distribution Dk is
defined via the process of taking (p, p′) ← D, then applying the transformation of Definitions 2 and 3 with
ε = 1/2 and to yield a pair

(
gk,p,1/2,pmax,pmin , gk,p′,1/2,pmax,pmin

)
. We claim that this Dk satisfies all the prop-

erties claimed in the proposition statement. Specifically, Lemmas 12 and 14, respectively, ensure that every dis-
tribution in the support of Dk has at most 2(k − 1) modes, and has support size at most 4ke

8n
k
(1+log(pmax/pmin)).

Additionally, Lemma 13 guarantees that the transformation preserves L1 distance, namely, for two distributions
p, p′ with support [n], we have L1(p, p

′) = L1(gk,p,1/2,pmax,pmin , gk,p′,1/2,pmax,pmin). Finally, Lemma 11 guar-
antees that, given s independent samples from p, one can simulate drawing s independent samples according
to gk,p,1/2,pmax,pmin . Assuming for the sake of contradiction that one had an algorithm that could distinguish
whether L1(gk,p,1/2,pmax,pmin , gk,p′,1/2,pmax,pmin) is less than ε1 versus greater than ε2 with the desired probability
given s samples, one could take s samples from distributions (p, p′) ← D, simulate having drawn them from
gk,p,1/2,pmax,pmin and gk,p′,1/2,pmax,pmin , and then run the hypothesized tester algorithm on those samples, and out-
put the answer, which will be the same for (p, p′) as for (gk,p,1/2,pmax,pmin , gk,p′,1/2,pmax,pmin). This contradicts
the assumption that no algorithm with these success parameters exists for (p, p′)← D.
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E Proof of Theorem 5

We first note that we can assume that ε > 1/n. Otherwise, the decomposition of [n] into singleton intervals
Ii = {i}, i ∈ [n], trivially satisfies the statement of the theorem. Indeed, in this case we have that (1/ε) · log n > n
and pf ≡ p.

We first describe the oblivious decomposition and then show that it satisfies the statement of the theorem.
The decomposition I will be a partition of [n] into ` nonempty consecutive intervals I1, . . . , I`. In particular, for
j ∈ [`], we have Ij = [nj−1 + 1, nj ] with n0 = 0 and n` = n. The length of interval Ii, denoted by li, is defined
to be the cardinality of Ii, i.e., li = |Ii|. (Given that the intervals are disjoint and consecutive, to fully define them
it suffices to specify their lengths.)

We can assume wlog that n and 1/ε are each at least sufficiently large universal constants. The interval lengths
are defined as follows. Let ` ∈ Z+ be the smallest integer such that

∑̀
i=1
b(1 + ε)ic ≥ n.

For i = 1, 2, . . . , `− 1 we define
li := b(1 + ε)ic.

For the `-th interval, we set

l` := n−
`−1∑
i=1

li.

It follows from the aforementioned definition that the number ` of intervals in the decomposition is at most

O ((1/ε) · log(1 + ε · n)) .

Let p be any non-increasing distribution over [n]. We will now show that the above described decomposition
satisfies

dTV (pf , p) = O(ε)

where pf is the flattened distribution corresponding to p and the partition I = {Ii}`i=1. We can write

dTV (pf , p) = (1/2) ·
n∑
i=1
|pf (i)− p(i)| =

∑̀
j=1

dTV
(
(pf )Ij , pIj

)
where pI denotes the (sub-distribution) restriction of p over I .

Let Ij = [nj−1 + 1, nj ] with lj = |Ij | = nj − nj−1. Then we have that

dTV
(
(pf )Ij , pIj

)
= (1/2) ·

nj∑
i=nj−1+1

|pf (i)− p(i)| .

Recall that pf is by definition constant within each Ij and in particular equal to p̄jf =
∑nj

i=nj−1+1 p(i)/lj . Also

recall that p is non-increasing, hence p(nj−1) ≥ p(nj−1 + 1) ≥ p̄jf ≥ p(nj). Therefore, we can bound from above
the variation distance within Ij as follows

dTV
(
(pf )Ij , pIj

)
≤ lj · (p(nj−1 + 1)− p(nj)) ≤ lj · (p(nj−1)− p(nj)) .

So, we have

dTV (pf , p) ≤
∑̀
j=1

lj · (p(nj−1)− p(nj)) . (13)

To bound the above quantity we analyze summands with lj < 1/ε and with lj ≥ 1/ε separately.
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Formally, we partition the set of intervals I1, . . . , I` into “short” intervals and “long intervals” as follows:
If any interval Ij satisfies lj ≥ 1/ε, then let j0 ∈ Z+ be the largest integer such that lj0 < 1/ε; otherwise
we have that every interval Ij satisfies lj < 1/ε, and in this case we let j0 = `. If j0 < ` then we have that
j0 = Θ((1/ε) · log2(1/ε)). Let S = {Ii}j0i=1 denote the set of short intervals and let L denote its complement
L = I \ S.

Consider the short intervals and cluster them into groups according to their length; that is, a group contains all
intervals in S of the same length. We denote by Gi the ith group, which by definition contains all intervals in S
of length i; note that these intervals are consecutive. The cardinality of a group (denoted by | · |) is the number of
intervals it contains; the length of a group is the number of elements it contains (i.e. the sum of the lengths of the
intervals it contains).

Note thatG1 (the group containing all singleton intervals) has |G1| = Ω(1/ε) (this follows from the assumption
that 1/ε < n). Hence G1 has length Ω(1/ε). Let j∗ < 1/ε be the maximum length of any short interval in S.
It is easy to verify that each group Gj for j ≤ j∗ is nonempty, and that for all j ≤ j∗ − 1, we have |Gj | =
Ω ((1/ε) · (1/j)), which implies that the length of Gj is Ω(1/ε).

To bound the contribution to (13) from the short intervals, we consider the corresponding sum for each group,
and use the fact that G1 makes no contribution to the error. In particular, the contribution of the short intervals is

j∗∑
l=2

l ·
(
p−l − p

+
l

)
(14)

where p−l (resp. p+l ) is the probability mass of the leftmost (resp. rightmost) point in Gl. Given that p is non-
increasing, we have that p+l ≥ p

−
l+1. Therefore, we can upper bound (14) by

2 · p+1 +
j∗−1∑
l=2

p+l − j
∗ · p+j∗ .

Now note that p+1 = O(ε) · p(G1), since G1 has length (total number of elements) Ω(1/ε) and p is non-increasing.
Similarly, for l < j∗, we have that p+l = O(ε) · p(Gl), since Gl has length Ω(1/ε). Therefore, the above quantity
can be upper bounded by

O(ε) · p(G1) +O(ε) ·
j∗−1∑
l=2

p(Gl)− j∗ · p+j∗ = O(ε) · p(S)− j∗ · p+j∗ . (15)

We consider two cases: The first case is that L = ∅. In this case, we are done because the above expression (15) is
O(ε). The second case is that L 6= ∅ (we note in passing that in this case the total number of elements in all short
intervals is Ω(1/ε2), which means that we must have ε = Ω(1/

√
n)). In this case we bound the contribution of the

long intervals using the same argument as Birgé. In particular, the contribution of the long intervals is

∑̀
j=j0+1

lj · (p(nj−1)− p(nj)) ≤ (j∗ + 1) · p+j∗ +
`−1∑

j=j0+1
(lj+1 − lj) · p(nj). (16)

Given that lj+1 − lj ≤ (2ε) · lj and
∑

j lj · p(nj) ≤ p(L), it follows that the second summand in (16) is at
most O(ε) · p(L). Therefore, the total variation distance between p and pf is at most (15) + (16), i.e.

O(ε) · p(S) +O(ε) · p(L) + p+j∗ . (17)

Finally, note that p(L) + p(S) = 1 and p+j∗ = O(ε). (The latter holds because p+j∗ is the probability mass of the
rightmost point in S; recall that S has length at least 1/ε and p is decreasing.) This implies that (17) is at most
O(ε), and this completes the proof of Theorem 5.
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F Bounding variation distance

As noted above, our tester will work by decomposing the interval [n] into sub-intervals. The following lemma will
be useful for us; it bounds the variation distance between two distributions p and q in terms of how p and q behave
on the sub-intervals in such a decomposition.

Lemma 15. Let [n] be partitioned into I1, . . . , Ir. Let p, q be two distributions over [n]. Then

dTV (p, q) ≤ 1

2

r∑
j=1
|p(Ij)− q(Ij)|+

r∑
j=1

p(Ij) · dTV (pIj , qIj ). (18)

Proof. Recall that dTV (p, q) = 1
2

∑n
i=1 |p(i)− q(i)|. To prove the claim it suffices to show that

1

2

∑
i∈I1
|p(i)− q(i)| ≤ 1

2
|p(I1)− q(I1)|+ p(I1) · dTV (pI1 , qI1). (19)

We assume that p(I1) ≤ q(I1) and prove (19) under this assumption. This gives the bound in general since if
p(I1) > q(I1) we have

1

2

∑
i∈I1
|p(i)− q(i)| ≤ |p(I1)− q(I1)|+ q(I1) · dTV (pI1 , qI1) < |p(I1)− q(I1)|+ p(I1) · dTV (pI1 , qI1)

where the first inequality is by (19). The triangle inequality gives us

|p(i)− q(i)| ≤
∣∣∣∣p(i)− q(i) · p(I1)q(I1)

∣∣∣∣+

∣∣∣∣q(i) · p(I1)q(I1)
− q(i)

∣∣∣∣ .
Summing this over all i ∈ I1 we get

1

2

∑
i∈I1
|p(i)− q(i)| ≤ 1

2

∑
i∈I1

∣∣∣∣p(i)− q(i) · p(I1)q(I1)

∣∣∣∣+
1

2

∑
i∈I1

∣∣∣∣q(i) · p(I1)q(I1)
− q(i)

∣∣∣∣ .
We can rewrite the first term on the RHS as

1

2

∑
i∈I1

∣∣∣∣p(i)− q(i) · p(I1)q(I1)

∣∣∣∣ = p(I1) ·
1

2

∑
i∈I1

∣∣∣∣ p(i)p(I1)
− q(i)

q(I1)

∣∣∣∣ = p(I1) ·
1

2

∑
i∈I1
|pI1(i)− qI1(i)|

= p(I1) · dTV (pI1 , qI1)

so to prove the desired bound it suffices to show that

1

2

∑
i∈I1

∣∣∣∣q(i) · p(I1)q(I1)
− q(i)

∣∣∣∣ ≤ |p(I1)− q(I1)|. (20)

We have ∣∣∣∣q(i) · p(I1)q(I1)
− q(i)

∣∣∣∣ = q(i) ·
∣∣∣∣p(I1)q(I1)

− 1

∣∣∣∣
and hence we have

1

2

∑
i∈I1

∣∣∣∣q(i) · p(I1)q(I1)
− q(i)

∣∣∣∣ =
1

2

∑
i∈I1

q(i) ·
∣∣∣∣p(I1)q(I1)

− 1

∣∣∣∣ =
1

2
q(I1) ·

∣∣∣∣p(I1)q(I1)
− 1

∣∣∣∣ =
1

2
|p(I1)− q(I1)|.

So we indeed have (20) as required, and the lemma holds.
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