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Distribution Learning Problem

* Input: - Sample access to distribution over {0,1,...,n}

unknown P >
\1, 2,2,0,3,... |

I
ind. samples from P

e LS PG - Q) )
* Goal: Lf/zo

* Find some Q s.t. d (P, Q) <¢
* (proper learn) Find Qe F s.t. d (P, Q) <€
* Minimize number of samples, computation time

(from some family F')




Distribution Learning Problem (cont’d)

 Refresher:

— Arbitrary distribution over {0,...,n} requires time and
sample complexity of ©(n/e*) (folklore)




Distribution Learning Problem (cont’d)

 Refresher:

— Arbitrary distribution over {0,...,n} requires time and
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Distribution Learning Problem (cont’d)

 Refresher:

— Arbitrary distribution over {0,...,n} requires time and
sample complexity of ©(n/e*) (folklore)

— Monotone distributions over {0,...,n} require time and
sample complexity of ©(logn/e®) [Birgé 1987]
— k-modal distributions over {0,...,n} can be learned from
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a 3-modal distribution




Distribution Learning Problem (cont’d)

 Refresher:

— Arbitrary distribution over {0,...,n} requires time and
sample complexity of ©(n/e*) (folklore)

— Monotone distributions over {0,...,n} require time and
sample complexity of ©(logn/e®) [Birgé 1987]

— k-modal distributions over {0,...,n} can be learned from
O (klogg” | kK 10%’“/6) samples in time poly(klogn/e)

) ) [D-Diakonikolas-Servedio 2012]

— Log-concave distributions P(i)>>P(i-1) P(i+1) can be

learned from O(1/€%%) samples
[Chan-Diakonikolas-Servedio-Sun 2014]




Focus of This Talk: PBDs and SIIRVs

* Def 1: A Poisson Binomial Distribution (PBD) is

— the distribution of the sum X = 2 X, of n independent
r.v.’s X, €{0,1}

— support: {0,1,...,n
PP { } Sharp structural results

* Def 2: A k-SIIRV is

— the distribution of the sumyX = X X of n independent
rv.’s X, €40,...,k-1}

— support: {0,1,...,n"(k-1 respectively poly(k/€) samples

Learning from ©(1/€2)/

* Objectives: SZr«cZzere and Zed/w//y
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Structure of PBDs

« Unimodal; in fact log-concave distributions
» so can be (non-properly) learned from O(1/¢%*°) samples

« [Berry 1941, Esseen 1942]: If X,,...,X, are independent and
bounded then

E[X;]3

(ZXZ-, N(W)) < S EIXP

dx -
zXz-]

[dK(P, Q) = max |P(< i) —Q(< )| | # 7 E ZX] ,0° = Var

[Esseen 1956] 0.4097 < C' < 0.5600 [Shevtsova 2010]




Structure of PBDs

Unimodal; in fact log-concave distributions
» so can be (non-properly) learned from O(1/¢%*°) samples

[Berry 1941, Esseen 1942]: If X,,...,X, are independent and
bounded then

E[X;]3

i (ZXZ-, N(W)) < o ZEIXl

o3
specializing to PBDs: dx (Z Xi, N(p, 02)) < C%
e.g. ‘ 1

quality of bound decays with n-p — poor if, eg, p =1/n




Structure of PBDs

[Berry 1941, Esseen 1942]: dx <Z Xi, N(u, 02)) <C a

o3
1
Vip(L — p)ts

[Le Cam 1960]: drv (Z X, POiSSOH(M)) < ZP?

e.g. drv(B(n,p),Poisson(np)) < np? ‘ pi = E[X]] \

good when, e.g., p =1/n

e.g. dg(B(n,p),N(np,np(l—p)) <C




Structure of PBDs

: p
* [Berry 1941, Esseen 1942]: dk <Z X;, N(u, 02)> <ol

. [Le Cam 1960]: dtv <ZXZ,P01SSOI1 ) Z
)<

[;@N( ,J)J

* [Chen-Goldstein-Shao 2011]: drv (




Structure of PBDs

[Berry 1941, Esseen 1942]: dx <Z Xi, N(u, 02)> < C%

[Le Cam 1960]: drv (Z X, Poisson(u)> <>
)

[Chen-Goldstein-Shao 2011]: drv (Z Xi, Z(p

[Réllin 2007]: drvy (ZXZ,TP(,LL, 2)

Poisson(c” + {u — o?}) + [u — o7 J

TP stands for “translated Poisson”




Structure of PBDs

[Berry 1941, Esseen 1942]: dx (Z X, N(pu, 02)> < ot

1

[Le Cam 1960]: drv (Z X, POiSSOH(M)) < ZP?

1

1
[Chen-Goldstein-Shao 2011]: drv (Z Xi, Z(u, 02)> < o)

[R6llin 2007]: drv (Z Xi,TP(M,U2)> <12

o o

Bounds only use first two moments

* Question 1: Bounds for arbitrary approximation accuracy ¢ ?

* Question 2: Distance of two PBDs with same first two moments?
Approximating distributions are from a different family

* Question 3: Are there meaningful proper approximations?



The first log(1/€)-moments suffice

ﬂ)-Papadimitriou '09]: Let X =) X, and Y =) . Y] be\
two PBDs s.t.E[X;] < 1/2 and E[Y;] < 1/2 for all i.

If EX‘=E[YY,W=1,...,d
then: drv(X,Y) < 9—Sd)

Corollary: For all €50, agreement in the first log(1/€) moments
suffices for variation distance ¢.

\_ /




The Structure of PBDs

g-cover S, € S, of size:

VP € S,,3Q € Sy s.t. drv(P,Q) <€

which suffices given that:

Sne| < n%+m-(1/e)OUos"(1/9)

X

Naive upper bound for cover size: |5, | < (2)"

ﬁ: set of all PBDs on n variables \
- [D-Papadimitriou '09]: For all € > 0, there exists a proper

integer multiple

- obtained by discretizing every X; so that its expectation is oc =

drv(2_; Xi, 22, Yi) < 30 drv(Xe, Ys) = ), [E[XG] — E[Yi]|




The Structure of PBDs

° In

Sn,e

Y

\_

ﬁ: set of all PBDs on n variables \
 [D-Papadimitriou '09]: For all € > 0, there exists a proper

g-cover S, € S, of size:

Snel <2 +n - (1/€)C00s"(1/€)

only keep subset of these with

pa rticular: different log(1/¢) first moments
¢~ shifted-sparse PBDs ™
~ ' ' ™
B.mom:als o Zl/e
— Bin(n’, p) L)
W' <n and poc%) n’ <n and E[Y}]oceQ,Vi
\. J
2-parameter distributions 0(1/63)—|§l‘1pp0ﬂ

..... _/




The Structure of PBDs

ﬁ: set of all PBDs on n variables \
 [D-Papadimitriou '09]: For all € > 0, there exists a proper
g-cover S, € S, of size:

Snel <2 +n - (1/€)C00s"(1/€)

only keep subset of these with

e In particular' different log(1/¢) first moments
shifted-sparse PBDs
" Binomials A 4 : 1/6 A
. /
Sn.e = Bin(n’, p) L) n'+ L
\<n and pocij n' <n and E[K;]oceQ,Vi
\. )

 Corollary: For all €>0, every PBD on n variables is either
e-close to a Binomial or e-close to a shifted PBD on 1/¢&3
variables.




Implications to Learning

[é—[)iakonikolas-Servedioﬂ2]: Let P be an unknown PBD in\Sn.

» [Properly Learning PBDs] Given O(1/¢2) independent draws
from P and computation time

(l)0(10g2 1/6) . logn

€

can compute a PBD Q such that d,, (P, Q) < €.

» Any algorithm requires Q(1/e*) samples (even for n=1).

\_ /




Proof of Learning Result (Attempt 1)

- Use a cover based approach

- [D-Kamath’14, Acharya et al’14]: Suppose F, is an g-cover (in TV
distance) of a family of distributions F.

Then can learn any P € F' to within O(¢)-distance using O (%)
samples from P, in time O (!Xl 1]y )

- How? Setup tournament among distributions in F, whose winner
cannot be too far from P,

- Improves long line of similar algorithms [Devroyé-Lugosi’01, etc]
quadratically in the runtime by designing a better tournament

- In our PBD context: Exists cover of size n? + n - (1/¢)0Uog"(1/¢)

= sample complexity of problem is O (106%”)

- Fell short from our goal of O(1/€?).



Proof of Learning Result (Attempt 2)

- Exploit not just the s/.ze of the cover, but also its sZrwcZacre.
- We know that every PBD X = ) . X, is e-close to

— - Abinomial: Bin(n’, p),n’ <n

- OR a shifted PBD on 1/¢2 variables: n’ + 2/ Y, \n/ <n

1. Using O(1/e*) samples estimate mean and variance of X.
2. Find Binomial distribution D, matching learned mean and variance.

\

3. In this case, all but € probability mass of X is on support of length 1/&3.
4. With O(1/€%) samples:
i. Find the support of 1-¢ mass of X. This gives estimate of shift n’.

ii. Run tournament on g-subcover of shifted by =n’ PBDs on 1/&3-
variables
iii. Let D, be the winner of the tournament.

5. Run tournament between D, and D..
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Terminology

k-IRV: Integer-valued Random Variable supported on {0,1,...,k — 1}

01 = 5
2-IRV 6-IRV

01

k-SIIRV: Sum of n Independent (not necessarily identical) k-IRVs

2-SIIRV

Structure v Learning from O(1/¢?) samples v k-SIIRV
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from 2 to k- SIIRVs a whole new baII game
Even just 3-SIIRVs have significantly richer structure than 2-SIIRVs

‘ “ » [ ’, '
(i, o 0 G g n% () =

2-SlIRVs : unimodal, log-concave Th

3-SIIRVs : - .

()(1)-far from k-modal _rrm_m-'“ -I-I-h-,‘_
(2(1)-far from log-concave

it o
Y +2-Z, where: Y ~ Bernoulli(1/3) and Z ~ Bin(64,1/2)




Structure of k-SIIRVs

« [Berry 1941, Esseen 1942]: If X,,...,X, are independent and
bounded then

i (Z X, N(u,02)> < o ZEIXL)

o3

- ey
Y +2-Z, where: Y ~ Bernoulli(1/3) and Z ~ Bin(64,1/2)




Structure of k-SIIRVs

« [Berry 1941, Esseen 1942]: If X,,...,X, are independent and

bounded then \
El|X;
di (ZXi,N(u,02)> < o2z HIAT]

o3

+ Clearly, in general: drv (>, X, Z(p,02)) = Q(1)
- Conditions under which drv (3, Xs, Z(p,0%)) = o(1) ?

2 - Z,where: Z ~ Bin(n, 1/2)



Structure of k-SIIRVs

[Berry 1941, Esseen 1942]: If X,,...,X, are independent and

bounded then \
El|X;
di (in,N(MQ)) < o2z HIAT]

o3

Clearly, in general: drv (>, Xi, Z(u, 02)) = Q(1)
Conditions under which drv (>, X;, Z(p,0%)) = o(1) ?

[Chen-Goldstein-Shao 2011]: If X,,...,X, are independent k-IRVs and
drv (Zj;ﬁi X, Zj;ﬁi Xj+ 1) <9,Vi

NN ey (X Xa, Z(u, 02)) = O(k) (L + )
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[DDOST’13]: Let X be a k-SIIRV with Var|X| > poly(k/e).

Then X is &-closeto cZ + Y, where
» ce{1,2,...,k—1}
= 7 =discretized normal Y, Z: independent
k = Y =c-IRV

~

' N
Ly = S
- 0
3 S~
-
. 2 ’ N C
i
L] . & A
"
2

structured = =
global component

\

arbitrary

local component
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Structure of k-SIIRVs

[DDOST’13]: Let X be a k-SIIRV with Var|X]| > poly(k/e). \
Then X is &-closeto cZ + Y, where

» ce{1,2,...,k—1}

= 7 =discretized normal Y, Z: independent

= Y =c-IRV /

Y4

Corollary: Let X be an arbitrary k-SIIRV. For all €>0, X is &- \
close to:

= a poly(k/e)- IRV

= ORcZ+Y, where:
oce{l,..., k-1}
o Z=discretized normal

o Y =cIRV /




Proof of Structural Theorem

X + + +
[T 1 =l ] =
012345 012345 012345
X1 X Xn
Z Heavy numbers: Z?:l Pr|[X; = b] large
structured global
component + + +
¢ = ged(heavy numbersB 9 3 5 3 95
Y Light numbers: 2?21 PI‘[XZ' = b] small
arbitrary local + + +
MR m | I e =L
012 4 012 4 012 4



Special case: all numbers heavy
+

X — + ..+

012345 012345 012345

Intuition: No “mod structure” in X

Use [Chen-Goldstein-Shao 2011]
limit theorem to establish
closeness to discretized normal




General Case: indirect sampling procedure

X

light or
heavy?

012345

¢\

[ | =
3 5 012 4

Lo

x heavy x light

L 1

{3, 5} heavy, {0,1,2,4} light

-
+ ...+
—
0174\5 01/2345
i ml
3 5 012 4 3 5 012 4

1. Decide independently for each X,

whether outcome will be heavy or light.

2. Draw either X? or Xf according to

respective conditional distributions.



X

(=
012345

light or
heavy?

xheavy s light

L 1

Analysis

Every outcome O of Stage 1 induces distribution
o= Y X+ Y X,
i€heavy(O) j€E€light(O)

S = mixture of 2" many SO S

Key technical lemma:
With high probability over outcomes O

Z X?%cz

t€heavy (O)

where Zi = disc. norm. independent of O.

=  Proof uses “all numbers heavy” special case
= ¢ = gcd(heavy numbers)



Structure of k-SIIRVs

[DDOST’13]: Let X be a k-SIIRV with Var|X]| > poly(k/e). \
Then X is &-closeto cZ + Y, where

» ce{1,2,...,k—1}

= 7 =discretized normal Y, Z: independent

= Y =c-IRV /

Y4

Corollary: Let X be an arbitrary k-SIIRV. For all €>0, X is &- \
close to:

= a poly(k/e)- IRV

= ORcZ+Y, where:
oce{l,..., k-1}
o Z=discretized normal

o Y =cIRV /




Learning k-SIIRVs

/[DDOST’13]: Let S, , be the class of k-SIIRVs, i.e. all distributionx
ofasum X =) ., X; of nindependent k-IRVs.

There is an algorithm that learns an arbitrary P € S, , with time
and sample complexity poly(k/¢), independent of n.

Recall: Q(k/e?) samples

\ necessary even for a single k-IRV /




Proof of Learning Result for k-SIIRVs

/ Corollary: Let X be an arbitrary k-SIIRV. For all e>0, X is &- \

\_

close to:

= a poly(k/e)- IRV
= ORcZ+Y, where:

oce{l,..., k-1}
o Z=discretized normal
o Y =c-IRV

/

If X is e-close to poly (k/€) - IRV: easy to learn from poly(k/€) samples

Else: guess c€ {1,..., k-1}.

Learn Z from conditional distribution on integers: 0 mod k

Learn Y as the appropriate mixing distribution

Run tournament to choose among (k+1) distributions generated.



£

Summary

llias discussed how shape restrictions on a distribution (monotonicity,
k-modality, log-concavity) permit faster learning algorithms

| discussed how syntactic restrictions on a distribution permit even
faster learning:

PBDs on n variables have support {0,...,n} but can be learned from
O(1/€®) samples

k-SIIRVS on n variables have support {0,..,n (k-1)} but can be learned
from poly(k/€) samples

In turn, finding these improved algorithms requires stronger limit
theorems, and tighter structural results for these distributions.

Take-away 1: Every PBD on n variables is e-close to a Binomial or &-
close to a shifted PBD on 1/&3 variables.



Summary

5. Take-away 2: Every k-SIIRV X on n variables is e-close to a
distribution of support poly(k/e) OR

structured
global component

arbitrary
local component




Future Directions

6. Super Concrete Open Problems:

* Properly Learn PBDs from 1/€? samples in polynomial time
(our algorithm was quasi-polynomial)

 Maybe further improve PBD cover size to poly(n/e)

* Properly learn k-SIIRVs (our learner outputs a poly(k/g)-SIIRV)

 Proper covers of k-SIIRVs

7. Multi-dimensional Case:

* Learn d-dimensional k-flat distributions, in poly(d k/g) time.
Possible from poly(d k/€) samples (information theoretically)

e Generalize structural/learning results to Poisson Multinomial Distributions
Preliminary results with Kamath and Tzamos

Thanks!



