Beyond Berry-Esseen: Structure and Learning Sums of Random Variables

Constantinos Daskalakis EECS, MIT

Distribution Learning Problem

• **Input:** - Sample access to distribution over {0,1,...,n}

$$-\varepsilon > 0$$

Goal:

$$\frac{\frac{1}{2} \sum_{i=0}^{n} |P(i) - Q(i)|}{|P(i) - Q(i)|}$$

- Find some Q s.t. $d_{TV}(P, Q) \le \varepsilon$
- (proper learn) Find $Q \in F$ s.t. $d_{TV}(P, Q) \le \varepsilon$
- Minimize number of samples, computation time

• Refresher:

– Arbitrary distribution over $\{0,...,n\}$ requires time and sample complexity of $\Theta(n/\epsilon^2)$ (folklore)

Refresher:

- Arbitrary distribution over $\{0,...,n\}$ requires time and sample complexity of $\Theta(n/\epsilon^2)$ (folklore)
- Monotone distributions over $\{0,...,n\}$ require time and sample complexity of $\Theta(\log n/\epsilon^3)$ [Birgé 1987]

Refresher:

- Arbitrary distribution over $\{0,...,n\}$ requires time and sample complexity of $\Theta(n/\epsilon^2)$ (folklore)
- Monotone distributions over $\{0,...,n\}$ require time and sample complexity of $\Theta(\log n/\epsilon^3)$ [Birgé 1987]
- k-modal distributions over $\{0,...,n\}$ can be learned from $O\left(\frac{k\log n}{\epsilon^3} + \frac{k^3\log k/\epsilon}{\epsilon^3}\right)$ samples in time $\operatorname{poly}(k\log n/\epsilon)$ [D-Diakonikolas-Servedio 2012]

Refresher:

- Arbitrary distribution over $\{0,...,n\}$ requires time and sample complexity of $\Theta(n/\epsilon^2)$ (folklore)
- Monotone distributions over $\{0,...,n\}$ require time and sample complexity of $\Theta(\log n/\epsilon^3)$ [Birgé 1987]
- k-modal distributions over $\{0,...,n\}$ can be learned from $O\left(\frac{k\log n}{\epsilon^3} + \frac{k^3\log k/\epsilon}{\epsilon^3}\right)$ samples in time $\operatorname{poly}(k\log n/\epsilon)$ [D-Diakonikolas-Servedio 2012]
- Log-concave distributions $P(i)^2 > P(i-1) P(i+1)$ can be learned from $\tilde{O}(1/\epsilon^{2.5})$ samples

[Chan-Diakonikolas-Servedio-Sun 2014]

Focus of This Talk: PBDs and SIIRVs

- Def 1: A Poisson Binomial Distribution (PBD) is
 - the distribution of the sum $X = \sum X_i$ of n independent r.v.'s $X_i \in \{0,1\}$
 - support: {0,1,...,n}

Sharp structural results

- **Def 2:** A *k*-SIIRV is
 - the distribution of the sum $X = \sum X_i$ of n independent r.v.'s $X_i \in \{0,...,k-1\}$
 - support: $\{0,1,...,n\cdot(k-1)\}$

Learning from $\Theta(1/\epsilon^2)$ / respectively $\operatorname{poly}(k/\epsilon)$ samples

· Objectives: Structure and Learning

Menu

- Refresher
- Objectives for this talk
- PBD Structure and Learning
- k-SIIRV Structure and Learning

Menu

- Refresher
- Objectives for this talk
- PBD Structure and Learning
- k-SIIRV Structure and Learning

- Unimodal; in fact log-concave distributions
 - so can be (non-properly) learned from $\tilde{O}(1/\epsilon^{2.5})$ samples

[Berry 1941, Esseen 1942]: If X_1, \dots, X_n are independent and

bounded then

bounded then
$$d_K\left(\sum_i X_i, \mathcal{N}(\mu, \sigma^2)\right) \leq C \frac{\sum_i \mathbb{E}[|X_i|^3]}{\sigma^3}$$

$$d_K(P, Q) = \max_i |P(\leq i) - Q(\leq i)| \quad \mu = \mathbb{E}\left[\sum_i X_i\right], \sigma^2 = \mathrm{Var}\left[\sum_i X_i\right]$$

[Esseen 1956] $0.4097 \le C \le 0.5600$ [Shevtsova 2010]

- Unimodal; in fact log-concave distributions
 - so can be (non-properly) learned from $\tilde{O}(1/\epsilon^{2.5})$ samples

[Berry 1941, Esseen 1942]: If X_1, \ldots, X_n are independent and

bounded then

$$d_K\left(\sum_i X_i, \mathcal{N}(\mu, \sigma^2)\right) \le C \frac{\sum_i \mathbb{E}[|X_i|^3]}{\sigma^3}$$

- specializing to PBDs: $d_K\left(\sum_i X_i, N(\mu, \sigma^2)\right) \leq C \frac{\mu}{\sigma^3}$ e.g. $d_K(B(n,p), \mathcal{N}(np, np(1-p)) \leq C \frac{1}{\sqrt{np}(1-p)^{1.5}}$

quality of bound decays with $n \cdot p$ – poor if, eg, p = 1/n

- [Berry 1941, Esseen 1942]: $d_K\left(\sum_i X_i, N(\mu, \sigma^2)\right) \leq C\frac{\mu}{\sigma^3}$
- e.g. $d_K(B(n,p), \mathcal{N}(np, np(1-p)) \le C \frac{1}{\sqrt{np}(1-p)^{1.5}}$
- [Le Cam 1960]: $d_{\mathrm{TV}}\left(\sum_{i}X_{i}, \mathrm{Poisson}(\mu)\right) \leq \sum_{i}p_{i}^{2}$
- e.g. $d_{\mathrm{TV}}(B(n,p), \mathrm{Poisson}(np)) \leq np^2$
- good when, e.g., p = 1/n

- [Berry 1941, Esseen 1942]: $d_K \left(\sum_i X_i, N(\mu, \sigma^2) \right) \leq C \frac{\mu}{\sigma^3}$
- [Le Cam 1960]: $d_{\mathrm{TV}}\left(\sum_{i} X_{i}, \mathrm{Poisson}(\mu)\right) \leq \sum_{i} p_{i}^{2}$ [Chen-Goldstein-Shao 2011]: $d_{\mathrm{TV}}\left(\sum_{i} X_{i}, Z(\mu, \sigma^{2})\right) \leq \frac{O(1)}{\sigma}$
- rounded $\mathcal{N}(\mu,\sigma^2)$

- [Berry 1941, Esseen 1942]: $d_K\left(\sum_i X_i, N(\mu, \sigma^2)\right) \leq C\frac{\mu}{\sigma^3}$
- [Le Cam 1960]: $d_{\mathrm{TV}}\left(\sum_{i}X_{i}, \mathrm{Poisson}(\mu)\right) \leq \sum_{i \in I}p_{i}^{2}$
- [Chen-Goldstein-Shao 2011]: $d_{\mathrm{TV}}\left(\sum_{i}^{}X_{i},Z(\mu,\sigma^{2})\right) \leq \frac{O(1)}{\sigma}$
- [Röllin 2007]: $d_{\mathrm{TV}}\left(\sum_{i} X_{i}, TP(\mu, \sigma^{2})\right) \leq \frac{1}{\sigma} + \frac{2}{\sigma^{2}}$ $\mathrm{Poisson}(\sigma^{2} + \{\mu \sigma^{2}\}) + \lfloor \mu \sigma^{2} \rfloor$

TP stands for "translated Poisson"

- [Berry 1941, Esseen 1942]: $d_K\left(\sum_i X_i, N(\mu, \sigma^2)\right) \leq C\frac{\mu}{\sigma^3}$
- [Le Cam 1960]: $d_{\mathrm{TV}}\left(\sum_{i}X_{i}, \mathrm{Poisson}(\mu)\right) \leq \sum_{i}p_{i}^{2}$ [Chen-Goldstein-Shao 2011]: $d_{\mathrm{TV}}\left(\sum_{i}X_{i}, Z(\mu, \sigma^{2})\right) \leq \frac{O(1)}{\sigma}$
- [Röllin 2007]: $d_{\text{TV}}\left(\sum_{i} X_i, TP(\mu, \sigma^2)\right) \leq \frac{1}{\sigma} + \frac{2}{\sigma^2}$
- Bounds only use first two moments
 - Question 1: Bounds for arbitrary approximation accuracy ε ?
 - Question 2: Distance of two PBDs with same first two moments?
- Approximating distributions are from a different family
 - Question 3: Are there meaningful *proper* approximations?

The first $log(1/\epsilon)$ -moments suffice

[D-Papadimitriou '09]: Let $X = \sum_i X_i$ and $Y = \sum_i Y_i$ be two PBDs s.t. $\mathbb{E}[X_i] \leq 1/2$ and $\mathbb{E}[Y_i] \leq 1/2$ for all *i*.

If
$$\mathbb{E}[X^\ell] = \mathbb{E}[Y^\ell], \forall \ell = 1, \dots, d$$

then: $d_{\mathrm{TV}}(X,Y) \leq 2^{-\Omega(d)}$.

Corollary: For all ε >0, agreement in the first log(1/ ε) moments suffices for variation distance ε .

The Structure of PBDs

- S_n : set of all PBDs on n variables
- [D-Papadimitriou '09]: For all $\varepsilon > 0$, there exists a *proper* ε -cover $S_{n,\varepsilon} \subseteq S_n$ of size:

$$|S_{n,\epsilon}| \le n^2 + n \cdot (1/\epsilon)^{O(\log^2(1/\epsilon))}$$

 \propto : integer multiple

$$\forall P \in S_n, \exists Q \in S_{n,\epsilon} \text{ s.t. } d_{\text{TV}}(P,Q) \leq \epsilon$$

Naïve upper bound for cover size: $|S_{n,\epsilon}| \leq (\frac{n}{\epsilon})^n$

- obtained by discretizing every X_i so that its expectation is $\propto \frac{\epsilon}{n}$ which suffices given that:

$$d_{\text{TV}}(\sum_{i} X_i, \sum_{i} Y_i) \leq \sum_{i} d_{\text{TV}}(X_i, Y_i) = \sum_{i} |\mathbb{E}[X_i] - \mathbb{E}[Y_i]|$$

The Structure of PBDs

- S_n : set of all PBDs on n variables
- [D-Papadimitriou '09]: For all $\varepsilon > 0$, there exists a **proper** ε -cover $S_{n,\varepsilon} \subseteq S_n$ of size:

$$|S_{n,\epsilon}| \le n^2 + n \cdot (1/\epsilon)^{O(\log^2(1/\epsilon))}$$

In particular:

$$S_{n,\epsilon} = \begin{pmatrix} \text{Binomials} \\ \text{Bin}(n',p) \\ n' \leq n \text{ and } p \propto \frac{1}{n} \end{pmatrix} \quad \bigcup \quad \begin{cases} \text{sinted-sparse PBDS} \\ n' + \sum_{i=1}^{1/\epsilon^3} Y_i \\ n' \leq n \text{ and } \mathbb{E}[Y_i] \propto \epsilon^2, \forall i \end{cases}$$

2-parameter distributions

only keep subset of these with different $log(1/\epsilon)$ first moments

shifted-sparse PBDs

$$n' + \sum_{i=1}^{1/\epsilon^3} Y_i$$

 $n' \le n \text{ and } \mathbb{E}[Y_i] \propto \epsilon^2, \forall i$

$$O(1/\epsilon^3)$$
—support

The Structure of PBDs

- S_n : set of all PBDs on n variables
- [D-Papadimitriou '09]: For all $\varepsilon > 0$, there exists a proper ε -cover $S_{n,\varepsilon} \subseteq S_n$ of size:

$$|S_{n,\epsilon}| \le n^2 + n \cdot (1/\epsilon)^{O(\log^2(1/\epsilon))}$$

In particular:

$$S_{n,\epsilon} = \begin{pmatrix} \text{Binomials} \\ \text{Bin}(n',p) \\ n' \leq n \text{ and } p \propto \frac{1}{n} \end{pmatrix} \quad \bigcup \quad \begin{cases} n' + \sum_{i=1}^{1/\epsilon^3} Y_i \\ n' \leq n \text{ and } \mathbb{E}[Y_i] \propto \epsilon^2, \forall i \end{cases}$$

only keep subset of these with different $log(1/\epsilon)$ first moments

shifted-sparse PBDs

$$n' + \sum_{i=1}^{1/\epsilon^3} Y_i$$

 $n' \le n \text{ and } \mathbb{E}[Y_i] \propto \epsilon^2, \forall i$

• Corollary: For all $\varepsilon > 0$, every PBD on *n* variables is either ε -close to a Binomial or ε -close to a shifted PBD on $1/\varepsilon^3$ variables.

Implications to Learning

[D-Diakonikolas-Servedio'12]: Let P be an unknown PBD in S_n .

• [Properly Learning PBDs] Given $\tilde{O}(1/\epsilon^2)$ independent draws from ${\it P}$ and computation time

$$\left(\frac{1}{\epsilon}\right)^{O(\log^2 1/\epsilon)} \cdot \log n$$

can compute a PBD \boldsymbol{Q} such that $d_{TV}(\boldsymbol{P}, \boldsymbol{Q}) < \varepsilon$.

• Any algorithm requires $\Omega(1/\epsilon^2)$ samples (even for n=1).

Proof of Learning Result (Attempt 1)

- Use a cover based approach
- [D-Kamath'14, Acharya et al'14]: Suppose F_{ε} is an ε -cover (in TV distance) of a family of distributions F.

Then can learn any $P \in F$ to within $O(\varepsilon)$ -distance using $O\left(\frac{\log |F_{\epsilon}|}{\epsilon^2}\right)$ samples from P, in time $O(\frac{|F_{\epsilon}|\log |F_{\epsilon}|}{\epsilon^2})$.

- How? Setup tournament among distributions in F_{ε} whose winner cannot be too far from P.
- Improves long line of similar algorithms [Devroyé-Lugosi'01, etc] quadratically in the runtime by designing a better tournament
- In our PBD context: Exists cover of size $n^2 + n \cdot (1/\epsilon)^{O(\log^2(1/\epsilon))}$
 - ightharpoonup sample complexity of problem is $\tilde{O}\left(\frac{\log n}{\epsilon^2}\right)$
- Fell short from our goal of $\tilde{O}(1/\epsilon^2)$.

Proof of Learning Result (Attempt 2)

- Exploit not just the size of the cover, but also its structure.
- We know that every PBD $X = \sum_i X_i$ is ε -close to
 - A binomial: Bin(n', p), $n' \le n$
 - OR a shifted PBD on $1/\epsilon^2$ variables: $n' + \sum_{i=1}^{1/\epsilon^3} Y_i$, $n' \leq n$
 - 1. Using $O(1/\epsilon^2)$ samples estimate mean and variance of X.
 - 2. Find Binomial distribution D_1 matching learned mean and variance.
 - 3. In this case, all but ε probability mass of X is on support of length $1/\varepsilon^3$.
 - 4. With $\tilde{O}(1/\epsilon^2)$ samples:
 - i. Find the support of 1- ε mass of X. This gives estimate of shift n'.
 - ii. Run tournament on ε -subcover of shifted by $\approx n'$ PBDs on $1/\varepsilon^3$ variables
 - iii. Let D_2 be the winner of the tournament.
 - 5. Run tournament between D_1 and D_2 .

Menu

- Refresher
- Objectives for this talk
- PBD Structure and Learning
- k-SIIRV Structure and Learning

Terminology

k-IRV: Integer-valued Random Variable supported on $\{0, 1, \dots, k-1\}$

k-SIIRV: Sum of **n** Independent (not necessarily identical) k-IRVs

Structure \checkmark Learning from $\tilde{O}(1/\epsilon^2)$ samples \checkmark

k-SIIRV

from 2 to k-SIIRVs: a whole new ball game

Even just 3-SIIRVs have significantly richer structure than 2-SIIRVs

[Berry 1941, Esseen 1942]: If X₁,...,X_n are independent and bounded then

$$d_K\left(\sum_i X_i, \mathcal{N}(\mu, \sigma^2)\right) \le C \frac{\sum_i \mathbb{E}[|X_i|^3]}{\sigma^3}$$

[Berry 1941, Esseen 1942]: If X₁,...,X_n are independent and bounded then

$$d_K\left(\sum_i X_i, \mathcal{N}(\mu, \sigma^2)\right) \le C \frac{\sum_i \mathbb{E}[|X_i|^3]}{\sigma^3}$$

- Clearly, in general: $d_{\mathrm{TV}}\left(\sum_{i} X_{i}, Z(\mu, \sigma^{2})\right) = \Omega(1)$
- Conditions under which $d_{\mathrm{TV}}\left(\sum_{i} X_{i}, Z(\mu, \sigma^{2})\right) = o(1)$?

[Berry 1941, Esseen 1942]: If X₁,...,X_n are independent and bounded then

$$d_K\left(\sum_i X_i, \mathcal{N}(\mu, \sigma^2)\right) \le C \frac{\sum_i \mathbb{E}[|X_i|^3]}{\sigma^3}$$

- Clearly, in general: $d_{\mathrm{TV}}\left(\sum_{i} X_{i}, Z(\mu, \sigma^{2})\right) = \Omega(1)$
- Conditions under which $d_{\mathrm{TV}}\left(\sum_{i} X_{i}, Z(\mu, \sigma^{2})\right) = o(1)$?
- [Chen-Goldstein-Shao 2011]: If $X_1, ..., X_n$ are independent k-IRVs and

$$d_{\text{TV}}\left(\sum_{j\neq i} X_j, \sum_{j\neq i} X_j + 1\right) \leq \delta, \forall i$$

then

$$d_{\text{TV}}\left(\sum_{i} X_{i}, Z(\mu, \sigma^{2})\right) = O(k)\left(\frac{1}{\sigma} + \delta\right)$$

[Daskalakis-Diakonikolas-O'Donnel-Servedio-Tan]

[DDOST'13]: Let X be a k-SIIRV with $\mathrm{Var}[X] \geq \mathrm{poly}(k/\epsilon)$.

Y, Z: independent

Then X is ε -close to cZ + Y, where

- $c \in \{1, 2, \dots, k-1\}$
- Z = discretized normal
- Y = c-IRV

[DDOST'13]: Let X be a k-SIIRV with $\mathrm{Var}[X] \geq \mathrm{poly}(k/\epsilon)$.

Then X is ε -close to cZ + Y, where

- $c \in \{1, 2, \dots, k-1\}$
- Z =discretized normal Y, Z:independent
- Y = c-IRV

Corollary: Let X be an arbitrary k-SIIRV. For all ε >0, X is ε -close to:

- a $\operatorname{poly}(k/\epsilon)$ IRV
- *OR c Z* + *Y*, where:
 - $c \in \{1, ..., k-1\}$
 - Z = discretized normal
 - \circ Y = c-IRV

Proof of Structural Theorem

Special case: all numbers heavy

General Case: indirect sampling procedure

{3, 5} **heavy**, {0,1,2,4} **light**

- whether outcome will be heavy or light.
- Draw either \mathbf{X}_i^h or \mathbf{X}_i^ℓ according to respective conditional distributions.

Analysis

Every outcome O of Stage 1 induces distribution

$$\mathbf{S}_{\mathcal{O}} = \sum_{i \in \text{heavy}(\mathcal{O})} \mathbf{X}_{i}^{h} + \sum_{j \in \text{light}(\mathcal{O})} \mathbf{X}_{j}^{\ell}$$

$${\bf S}$$
 = mixture of 2^n many ${\bf S_{\mathcal{O}}}'s$

Key technical lemma:

With high probability over outcomes O

$$\sum_{i \in \text{heavy}(\mathcal{O})} \mathbf{X}_i^h \approx c \, \mathbf{Z}$$

where \mathbf{Z} = disc. norm. *independent* of O.

- Proof uses "all numbers heavy" special case
- $c = \gcd(\text{heavy numbers})$

[DDOST'13]: Let X be a k-SIIRV with $\mathrm{Var}[X] \geq \mathrm{poly}(k/\epsilon)$.

Then X is ε -close to cZ + Y, where

- $c \in \{1, 2, \dots, k-1\}$
- Z =discretized normal Y, Z:independent
- Y = c-IRV

Corollary: Let X be an arbitrary k-SIIRV. For all ε >0, X is ε -close to:

- a $\operatorname{poly}(k/\epsilon)$ IRV
- *OR c Z* + *Y*, where:
 - $c \in \{1, ..., k-1\}$
 - Z = discretized normal
 - \circ Y = c-IRV

Learning *k*-SIIRVs

[DDOST'13]: Let $S_{n,k}$ be the class of k-SIIRVs, *i.e.* all distributions of a sum $X = \sum_{i=1}^{n} X_i$ of n independent k-IRVs.

There is an algorithm that learns an arbitrary $P \in S_{n,k}$ with time and sample complexity $\operatorname{poly}(k/\epsilon)$, independent of n.

Recall: $\Omega(k/\epsilon^2)$ samples necessary even for a single k-IRV

Proof of Learning Result for k-SIIRVs

Corollary: Let X be an arbitrary k-SIIRV. For all ε >0, X is ε -close to:

- lacksquare a $\operatorname{poly}(k/\epsilon)$ IRV
- *OR c Z* + *Y*, where:
 - \circ $c \in \{1, ..., k-1\}$
 - \circ Z = discretized normal
 - \circ Y = c-IRV
- If **X** is ϵ -close to $\mathrm{poly}(k/\epsilon)$ IRV: easy to learn from $\mathrm{poly}(k/\epsilon)$ samples
- Else: guess $c \in \{1, ..., k-1\}$.
- Learn Z from conditional distribution on integers: 0 mod k
- Learn Y as the appropriate mixing distribution
- Run tournament to choose among (k+1) distributions generated.

Summary

- Ilias discussed how shape restrictions on a distribution (monotonicity, k-modality, log-concavity) permit faster learning algorithms
- 2. I discussed how *syntactic* restrictions on a distribution permit even faster learning:
- PBDs on n variables have support $\{0,...,n\}$ but can be learned from $\tilde{O}(1/\epsilon^2)$ samples
- k-SIIRVS on n variables have support $\{0,...,n\ (k-1)\}$ but can be learned from $\operatorname{poly}(k/\epsilon)$ samples
- 3. In turn, finding these improved algorithms requires stronger limit theorems, and tighter structural results for these distributions.
- **4.** Take-away 1: Every PBD on n variables is ε -close to a Binomial or ε -close to a shifted PBD on $1/\varepsilon^3$ variables.

Summary

5. Take-away 2: Every k-SIIRV X on n variables is ε -close to a distribution of support poly(k/ε) OR

Future Directions

6. Super Concrete Open Problems:

- Properly Learn PBDs from $1/\varepsilon^2$ samples in polynomial time (our algorithm was quasi-polynomial)
- Maybe further improve PBD cover size to $poly(n/\epsilon)$
- Properly learn k-SIIRVs (our learner outputs a poly(k/ε)-SIIRV)
- Proper covers of *k*-SIIRVs

7. Multi-dimensional Case:

- Learn d-dimensional k-flat distributions, in poly($d k/\varepsilon$) time. Possible from poly($d k/\varepsilon$) samples (information theoretically)
- Generalize structural/learning results to Poisson Multinomial Distributions
 Preliminary results with Kamath and Tzamos

Thanks!