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Learning (Discrete) Distributions 

•  Learning problem defined by class C of distributions 
•  Target distribution p in C unknown to learner  
•  Learner given sample of i.i.d. draws from p 

Probability distributions on [N] = {1, …, N}  

Goal: w.p.  ≥ 9/10 output h satisfying 
 

dTV(h, p) := (1/2).||h-p||1 ≤ ε  
 



Agnostically Learning Distributions  
 

•  Learning problem defined by class C of distributions 
 
•  Target distribution p unknown to learner and let 

•  Learner given sample of i.i.d. draws from p 

Goal: w.p.  ≥ 9/10 output h satisfying 
 

 
for a constant          . 
 
Sample complexity and running time should depend only on C. 

 

OPT = infq!C dTV p,q( )

dTV h, p( ) ! c "OPT+ #
c !1



•  Class C of distributions 
•  Unknown target p in C 
•  Learner gets i.i.d. samples from p 
•  Output approximation h of p 

Analogies with PAC Learning Boolean 
Functions  

•  Class C of Boolean functions 
•  Unknown target f in C 
•  Learner gets labeled samples (x, f(x)) 
•  Output approximation  f’ of f  
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Minimize: 
•  sample size (sample complexity) 
•  computation time (computational complexity) 



Learning Arbitrary Discrete Distributions 

Let C = set of all distributions over [N] 
What is the best learning algorithm?     

                    

Simple answer (folklore): 

•  Algorithm with sample (and time) complexity O(N/ε2) 

•  Information theoretic lower bound of Ω(N/ε2) 



Learning Arbitrary Discrete Distributions:  
Upper Bound 

Theorem:  Let     be a distribution over      . Let      be empirical 
distribution over       obtained by drawing       samples from   .  Then 
 
 
   

So can learn to accuracy     from                  samples. 

•     For each             have 
 
   

•  Bound total error                                         (Cauchy-Schwarz) 
 

Proof: 

n	
  



Learning Arbitrary Discrete Distributions:  
Lower Bound 

Theorem: There exists a class H of distributions over [N] with the 
following property: Any algorithm that learns an arbitrary distribution in 
H to statistical distance ε requires Ω(N/ε2) samples. 
 
   

Proof: 
Let H be defined as follows: Partition the domain into N/2 pairs of points 
2i and 2i+1. For each pair, one point has mass (1+ε)/N and another has 
mass (1-ε)/N. 
                                                                                                or 

•  Need to learn at least half of the pairs. 
 
•  Learning each pair requires Ω(1/ε2) samples. 
 

n	
  



Learning Arbitrary Discrete Distributions 

Learning an arbitrary distribution over [N]:     
 Sample size Θ(N/ε2)  

necessary and sufficient                    

When can we do better?  
Which distributions are easy to learn, which are 

hard (and why)? 



Types of Structured Distributions 

bimodal	
  

log-­‐concave	
  

monotone	
  
•  Distributions with “shape restrictions” 

•  Simple combinations of simple distributions 

mixtures	
  of	
  Gaussians	
  

Mixtures of simple distributions 

Sums of simple distributions (talk by Costis) 

+ +	
  …	
  +	
  Poisson	
  Binomial	
  
Distribu9ons	
  



Structure and Density Estimation 

Main messages of this talk: 
 
•  We can exploit the underlying structure to do statistical 

estimation more efficiently. 
 
General recipe: 
1.  Given a “complex” class C of distributions: Prove that there exists a 

“simple” class of distributions C’ such that any distribution p in C 
can be well-approximated by a distribution in C’. 

2.  Use samples from p to agnostically learn it using C’.  

•  Histograms are not always sufficient to obtain (sample-) 
optimal results for statistical estimation problems. 

 
 



Statistics and Density Estimation 

Classical topic in statistics. Many generic methods: 
 
•  Histograms [Pearson, 1900] 
 
•  Kernel methods [M. Rosenblatt, 1956] 
 

•  Maximum Likelihood [Fischer, 1912] 
•  Metric Entropy [A.N. Kolmogorov, 1960] 
  
Many others: Nearest Neighbor, Orthogonal Series, 
 … 
 
Focus traditionally on sample size. 
 
 
 



Histograms 

•  “The oldest and most widely used method” [Silverman ’86] 
•  Goes back to Karl Pearson (1900). 
 
Main Idea:  
 
Approximation of the  
unknown density by 
a piecewise constant  
distribution 



Shape Restricted Density Estimation 
•  Nonparametric Density Estimation under “shape restrictions” 
 
--   Long line of work in statistics since the 1950’s  
      [Gre’56, Rao69, Weg70, Gro85, Bir87,…] 
 
      Shape restrictions studied in early work: monotonicity, unimodality,  
      concavity, convexity, Lipschitz continuity. 
 
--   Still very active research area: log-concavity, k-monotonicity, … 
 
      Recent survey by Walther: 

http://statweb.stanford.edu/~gwalther/logconcave.pdf 
 

-- Standard tool in these settings: MLE 
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Basic problem: Learning Histograms 

Goal:  learn an unknown k-flat distribution p over [N]. 
 

 
•  Simple setting: Intervals I1, …, Ik are known: 

§  Sample and time complexity Θ (k/ε2) 
 
 

•  What if the intervals are unknown?  
 
   

I1 I2 I3 I4 I5 I6 
I7 



Learning Histograms: Known Partition (I) 

Goal:  learn an unknown k-flat distribution p over [N]. 
 

Known intervals I1, …, Ik 
Definition: Given a distribution    over [N] and a partition I = {I1, …, Ik},  
of [N] into k intervals, the flattened distribution      is the distribution over 
[N] that is uniform within each Ij and satisfies  

 
Algorithm: 
•  Draw                        samples from   ; let        be the empirical 

distribution. 
•  Output the flattened empirical distribution       over I1, …, Ik. 
 

 
   

I1 I2 I3 I4 I5 I6 
I7 

p
p

 p(Ij) = p(Ij)

pm =O k ! 2( ) p̂m

p̂m



Learning Histograms: Known Partition (II) 

Known intervals I1, …, Ik 
Algorithm: 
•  Draw                        samples from   ; let       be the empirical 

distribution. 
•  Output the flattened empirical distribution       over I1, …, Ik. 
 

Analysis: We have that                                               
 
 
Problem reduces to that of learning a distribution over the k intervals. n 
 
Note: Algorithm is agnostic with constant          , i.e.,  
if                                                 then    
 
 
 
   

pm =O k ! 2( ) p̂m

dTV p, p̂m( ) = p(Ij)! p̂m (Ij)
j=1

k

"

c = 2
OPT =minq! k"flat( ) dTV p,q( )

dTV p, p̂m( ) ! 2 "OPT+ #

p̂m



Application: Learning Monotone Distributions (I) 

Informal Structural Lemma: Monotone distributions are well-
approximated by “oblivious” histograms with “few” pieces. 
 
•  Consider class of non-increasing distributions over [N]. 
•  Decompose [N] into                                 intervals whose “widths” 

increase as powers of            . Call these the oblivious buckets. 

… … 

! =O (1 ! ) ! logN( )
1+ !( )



Application: Learning Monotone Distributions (II) 

Lemma:  [Birge’87] For any monotone distribution p, we have  
 

  
 
 
 
 
 
 
 
Corollary: The class of monotone distributions over [N] can be 
efficiently learned to error ε using                           samples. 
 
[Birge’85] Information-theoretic lower bound of  
   

… … 

               true pdf  
 flattened version  

… 
… 

dTV p, p( ) ! !

! =O (1 ! ) ! logN( )

O (1 ! 3) " logN( )

! (1 ! 3) " logN( )



Learning Histograms: Unknown Partition 

Goal:  learn an unknown k-flat distribution p over [N]. 
 

Easy if we know the k intervals I1, …, Ik :  
•  Sample and time complexity Θ(k/ε2). 
 

What if the intervals are unknown?  
 
Naïve approaches: 
•  Guessing them exactly:  very inefficient Nk 
•  Guessing them approximately:  not too great either (1/ε)k 

   

I1 I2 I3 I4 I5 I6 
I7 



Unknown Partition: A first approach 

Break up [N] into               many intervals: 
 

      is not constant for at most k of the intervals 
 
So, outputting uniform (sub-)distribution on each interval will usually 
give a good answer. 

… 



First approach in more detail 

1.  Divide [N] into                    intervals                    such that  
 
 
 
2.  Draw                         samples from p and output the flattened 

empirical distribution over the intervals  

 
 

m =O ! ! 2( )

 ! = 10k !

p I j( ) ! ! 10k



First approach: Sketch of Analysis 

 
Analysis:  
 
•  The unknown p is not constant in at most k of the intervals                     
 
•  Call such intervals “bad”. The total mass of those intervals is at most  

 

•  The flattened empirical distribution gives ε-accuracy on the 
remaining intervals. 

 
 
 
 

 

m =O ! ! 2( )
 ! = 10k !

p I j( ) ! ! 10k
1.  Divide [N] into                    intervals                    such that  

2.  Draw                         samples from p and output the flattened 
empirical distribution over the intervals  

k ! !
10k

= !
10



Improving the sample complexity ? 

•  Sample complexity of                 came from the fact that  we 
partitioned the domain into                intervals, instead of just k.  

 
•  Not clear whether sample size of                 suffices information-

theoretically… 
 
Alternate approach? Metric Entropy  
Definition:  For a class C the ε-metric entropy (Kolmogorov entropy) is: 
 
 
Theorem: [Devroye-Lugosi’ 01]  For any class C of distributions  
suppose there exists an ε-cover for C of size M. There is an algorithm  
that learns an arbitrary distribution from C to accuracy ε using                              
 
draws from the distribution. (The running time of the algorithm is Ω(M).)  
  
 

Ent C( ) = inf log2 M( ), where M  is an !-cover of C{ }

O 1 ! 2( ) ! logM( )

O k ! 3( )
O k !( )

O k ! 2( )



Improving the sample complexity:  
Metric Entropy Bounds 

Theorem: [DL‘01] For any class C suppose there exists an ε-cover of  
size M. There is an algorithm that learns an arbitrary distribution from C  
to error ε using                             draws from the distribution.  
 
Claim: There exists an ε-cover for k-flat distributions of size  
  
Corollary: The class of k-flat distributions is learnable to accuracy ε  
with sample size 
  
 
Main Caveat: Not a computationally efficient algorithm.  
 

Can we obtain a computationally efficient algorithm  
with optimal sample complexity? 

  
 

O 1 ! 2( ) ! logM( )
k !( )O k( )

 
!O k ! 2( )



Towards a computationally efficient sample-optimal 
algorithm 

Proposed Algorithm: 
 
•  Make                          draws from p and let        be the empirical 

distribution 
•  Find a hypothesis h that minimizes the variation distance from 
 
 
Fails badly… 
 
Also fails if we additionally require the hypothesis h to be k-flat  
  
 

m = !O k ! 2( ) p̂m
p̂m



The VC-inequality 

Recall the definition of statistical distance. For two distributions p,  
q over [N] we have that 
 
 
The VC inequality relates the empirical and the true distribution under a  
weaker metric.  
 
Definition: Let       be the collection of unions of at most k intervals in  
[N]. We define the       -distance between p and q by 
 
  
 
Theorem (VC inequality): Let  p be an arbitrary distribution over [N]. 
We have that 

 

dTV p,q( ) !maxA"[N ] p A( )# q A( )

 Ak

E dAk p, p̂m( )!" #$ =O
k
m

%
&'

(
)*

dAk p,q( ) !maxA"Ak p A( )# q A( )
 Ak



Optimally Learning k-histograms:   
Upper Bound (I) 

Theorem (VC inequality): Let  p be an arbitrary distribution over [N]. 
We have that 
 
Corollary: After                          samples with probability at least 9/10,  
we have  
 
 
Note that                           ! 
 
How to proceed?  
•  Compute a k-flat distribution h that minimizes 
•  Output h 

Why does this work? 
 
 

 

E dAk p, p̂m( )!" #$ =O k m( )
m =O k ! 2( )

 
dAk

p, p̂m( ) ! " 2

dTV p, p̂m( ) !1

dAk h, p̂m( )



Optimally Learning k-histograms:   
Upper Bound (II) 

 
Corollary: After                          samples with probability at least 9/10,  
we have  
 
Algorithm: 
•  Compute a k-flat distribution h that minimizes 
•  Output h 

Analysis: Note that                              , hence 
 
But since h and p are both k-flat                                     .   n 
 

 
 

m =O k ! 2( )
dAk p, p̂m( ) ! ! 2

dAk h, p̂m( )

dAk h, p̂m( ) ! ! 2 dAk h, p( ) ! !

 
dTV h, p( ) = dAk

h, p( )



Optimally Learning k-histograms:   
Upper Bound (III) 

Essentially same argument works for agnostic case. Let p be an 
arbitrary distribution over [N] and let   

 
 
“Non-constructive” algorithm: 
•  Draw                             samples from p. 
•  Compute a k-flat distribution h that minimizes 
•  Output h 

Theorem: Above algorithm outputs a distribution h that with probability 
at least 9/10 satisfies 
 
 
Main Issue: How to efficiently implement the second step? 
 
 

 

dAk h, p̂m( )

OPT = infq! k"flat( ) dTV p,q( )

m =O k ! 2( )

dTV h, p( ) ! 3"OPT+ #



Optimally Learning k-histograms:   
Upper Bound (IV) 

•  Draw                             samples from p. 
•  Compute a k-flat distribution h that minimizes 
•  Output h 
 
Second step can be done in time                   by an appropriate DP. 
Main Idea:  
 
Fact: 
 
 
Can we learn k-histograms with optimal sample size and  
in near-linear time?   
Yes  [Chan-D-Servedio-Sun ’14b] 
 
 

 

m =O k ! 2( )

!O k3 ! 2( )

 
dAk

p,q( ) J!K( ) "max0"l"k dAl
p,q( ) J( ) + dAl

p,q( )Al#k+1

K( ){ }



Application: Learning Structured distributions (I) 

Hazard rate of p over [N]:  
 
Consider the class of Monotone Hazard Rate (MHR) Distributions. 
(Important in reliability, economics, etc.) 
 
Lemma: Every MHR distribution over [N] is ε-close to being k-flat for 
 
 
Corollary: MHR distributions over [N] are efficiently learnable with  
sample complexity  
 
Note: The above bound is best possible:                                samples  
are information-theoretically required to learn MHR Distributions 

H i( ) = p(i) p j( )
j!i
"

k =O 1 !( ) ! logn( )

O 1 ! 3( ) " logn( )
! 1 ! 3( ) " logn( )



Application: Learning Structured distributions (II) 

 
 
 
 
 
 
 
Upper (and lower) bounds immediately generalize to mixtures. 
 
Another application:  
Learning Sums of Independent Integer random variables  
[Daskalakis-D-O’Donnell-Servedio-Tan, FOCS’13]  
 
 

Distribu9on	
  Class	
  	
   Sample	
  Complexity	
  
Upper	
  Bound	
  

Sample	
  Complexity	
  
Lower	
  Bound	
  

Monotone	
   Matching	
  	
  

t-­‐modal	
   Matching	
  

MHR	
   Matching	
  

Log-­‐concave	
  

O 1 ! 3( ) " logn( )
O t ! 3( ) ! log n t( )( )
O 1 ! 3( ) " logn( )

O 1 ! 3( )( ) ! 1 " 5 2( )( )



Case Study: Log-concave (LC) Distributions  

Fact: Every LC distribution can be ε-approximated by a piecewise 
constant distribution with O(1/ε) pieces. 
 
Corollary 1: The class of LC distributions can be efficiently learned 
with O(1/ε3) samples. 
 
Above fact is quantitatively tight.  
 
Lower bound of                    considers piecewise linear distributions. 
 
Lemma: Every LC distribution can be ε-approximated by a piecewise 
linear distribution with O(1/√ε) pieces. 
 

Can we agnostically learn piecewise linear distributions? 
 
 

! 1 " 5 2( )( )



Piecewise polynomial distributions 

Distribution p is t-piecewise degree-d if there exists a partition of the 
domain into t-intervals such that within each interval, the PDF of  p is a 
degree-d polynomial. 

0 1 



Learning distributions that are  
close to t-piecewise degree-d 

Informal Theorem:  
(with Chan, Servedio, Sun, STOC’14 Tuesday morning) 
 
 
There is a computationally efficient  learning algorithm  
that finds a hypothesis distribution which approximates  
any unknown distribution p 
 

   “almost as well”  
 
as the best t-piecewise degree-d distribution does. 



Learning with Piecewise Polynomials 

Theorem: Let p be an arbitrary distribution and  
 
 
 
There is an algorithm that uses                    samples from p, 
runs in time                             and outputs a hypothesis  
distribution h such that 
 
 
Moreover, sample complexity of                      is  
information-theoretically necessary even for                .  
 
 
 
 

OPT = infq! t " piecewise degree " d( ) dTV p,q( )

!O t !d ! 2( )
poly t,  d,  1 !( )

dTV h, p( ) ! 3"OPT+ #
! t "d # 2( )

OPT = 0



Why Piecewise Polynomials? 

Three main justifications: 
 
•  Analogy with PAC learning of Boolean functions (Linial-Mansour-

Nisan’93) 
 
•  Common heuristic: fitting splines to the data 
 
•  Gives sample optimal efficient estimators for wide range of 

distribution classes 



Applications: Learning with Piecewise Polynomials 

High-level description of Algorithm:  
•  Linear Programming within Each “piece” 
     (Analysis requires polynomial approximation theory) 
•  Dynamic Programming to “discover” the “correct partition” 
 
Sample optimal bounds for essentially all previously studied shape 
constrained density estimation problems. 
 
 
 

Distribu9on	
  Class	
   Sample	
  Complexity	
  
Upper	
  Bound	
  

Sample	
  Complexity	
  
Lower	
  Bound	
  

Log-­‐concave	
  
	
  

Matching	
  

Mixture	
  of	
  k	
  
Gaussians	
  

Matching	
  

k-­‐monotone	
  
	
  

!O 1 ! 5 2( )

 
!O k ! 2( )
!O k ! 2+

1
k( )



Goals for future work 

•     Better running time. Can we do near-linear time?  
-- For k-flat distributions, YES [CDSS’14b].  General case? OPEN 
 
•  Proper algorithms? e.g., k-GMMs  
 
•  Higher dimensions? 
 
•  Property Testing? Some preliminary progress [DDSVV’13] 

•     Better accuracy? What is the optimal constant c such that 
 

(using same sample size)? 
-- Our upper bound c=3. No better than 2 possible [CDSS’14b]. 

dTV h, p( ) ! c "OPT+ !



Multi-dimensional histograms 

Target distribution over [0,1]d is specified by k hyper-rectangles that  
cover [0,1]d; pdf is constant within each rectangle.   
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Question:  Can we learn such distributions without incurring the  
“curse of dimensionality”?  
(Don’t want runtime to be exponential in d)  

41	
  

(0,0) 

(1,1) 

d=2, k=5 



Higher dimensions 

•  Learning multi-dimensional histograms: 

•  Sample size well-understood:  

•  Computational complexity?  
 
--   At least as hard as learning k-leaf decision trees over d variables. 
 
--  Bottleneck: 
 
-- Can we get such an algorithm?  

O k !d ! 2( )

k! logd( )
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Thank you 


