Beyond Histograms: Structure and Distribution Estimation

Ilias Diakonikolas University of Edinburgh

STOC'14 Workshop New York, May 2014

Learning (Discrete) Distributions

Probability distributions on $[N] = \{1, ..., N\}$

- Learning problem defined by class C of distributions
- Target distribution p in C unknown to learner
- Learner given sample of i.i.d. draws from p

Goal: w.p. \geq 9/10 output *h* satisfying

$$d_{TV}(h, p) := (1/2) \cdot ||h-p||_1 \le \varepsilon$$

Agnostically Learning Distributions

- Learning problem defined by class C of distributions
- Target distribution p unknown to learner and let

$$OPT = \inf_{q \in \mathbf{C}} d_{TV}(p, q)$$

Learner given sample of i.i.d. draws from p

Goal: w.p. \geq 9/10 output *h* satisfying

$$d_{TV}(h,p) \le c \cdot \text{OPT} + \varepsilon$$

for a constant $c \ge 1$.

Sample complexity and running time should depend only on C.

Analogies with PAC Learning Boolean Functions

x	$\int f(x)$
10101010010	1
10111111110	1
10101010000	0
:	:

- Class C of distributions
- Unknown target p in C
- Learner gets i.i.d. samples from p
- Output approximation h of p

- Class C of Boolean functions
- Unknown target f in C
- Learner gets **labeled samples** (x, f(x))
- Output approximation f' of f

Minimize:

- sample size (sample complexity)
- computation time (computational complexity)

Learning Arbitrary Discrete Distributions

Let **C** = set of all distributions over [*N*] What is the best learning algorithm?

Simple answer (folklore):

- Algorithm with sample (and time) complexity $O(N/\varepsilon^2)$
- Information theoretic lower bound of $\Omega(N/\varepsilon^2)$

Learning Arbitrary Discrete Distributions: Upper Bound

Theorem: Let p be a distribution over [N]. Let \hat{p} be empirical distribution over [N] obtained by drawing m samples from p. Then

$$\mathbf{E}[d_{TV}(\hat{p}, p)] \le \sqrt{N/m}.$$

Proof:

- For each $i \in [N]$ have $\mathbf{E}[|p(i) \hat{p}(i)| \le \sqrt{p(i)(1-p(i))/m}$
- Bound total error $\mathbf{E}[d_{TV}(\hat{p},p)] \leq \sqrt{N/m}$ (Cauchy-Schwarz)

So can learn to accuracy ε from $O(N/\varepsilon^2)$ samples.

Learning Arbitrary Discrete Distributions: Lower Bound

Theorem: There exists a class **H** of distributions over [*N*] with the following property: Any algorithm that learns an arbitrary distribution in **H** to statistical distance ε requires $\Omega(N/\varepsilon^2)$ samples.

Proof:

Let **H** be defined as follows: Partition the domain into N/2 pairs of points 2i and 2i+1. For each pair, one point has mass $(1+\varepsilon)/N$ and another has mass $(1-\varepsilon)/N$.

or

- Need to learn at least half of the pairs.
- Learning each pair requires $\Omega(1/\varepsilon^2)$ samples.

Learning Arbitrary Discrete Distributions

Learning an *arbitrary* distribution over [N]: Sample size $\Theta(N/\epsilon^2)$

necessary and sufficient

When can we do better?

Which distributions are easy to learn, which are hard (and why)?

Types of Structured Distributions monotone **Distributions with "shape restrictions"** bimodal log-concave Simple combinations of simple distributions Mixtures of simple distributions mixtures of Gaussians

Sums of simple distributions (talk by Costis)

Poisson Binomial Distributions

Structure and Density Estimation

Main messages of this talk:

 We can exploit the underlying structure to do statistical estimation more efficiently.

General recipe:

- Given a "complex" class C of distributions: Prove that there exists a "simple" class of distributions C' such that any distribution p in C can be well-approximated by a distribution in C'.
- 2. Use samples from *p* to agnostically learn it using **C**'.
- Histograms are not always sufficient to obtain (sample-) optimal results for statistical estimation problems.

Statistics and Density Estimation

Classical topic in statistics. Many generic methods:

- Histograms [Pearson, 1900]
- Kernel methods [M. Rosenblatt, 1956]

- Maximum Likelihood [Fischer, 1912]
- Metric Entropy [A.N. Kolmogorov, 1960]

Many others: Nearest Neighbor, Orthogonal Series,

Focus traditionally on sample size.

Histograms

- "The oldest and most widely used method" [Silverman '86]
- Goes back to Karl Pearson (1900).

Main Idea:

Approximation of the unknown density by a piecewise constant distribution

Shape Restricted Density Estimation

- Nonparametric Density Estimation under "shape restrictions"
- -- Long line of work in statistics since the 1950's [Gre'56, Rao69, Weg70, Gro85, Bir87,...]

Shape restrictions studied in early work: monotonicity, unimodality, concavity, convexity, Lipschitz continuity.

-- Still very active research area: log-concavity, k-monotonicity, ...

Recent survey by Walther:

http://statweb.stanford.edu/~gwalther/logconcave.pdf

-- Standard tool in these settings: MLE

References for this Talk

- Learning k-modal distributions via testing [Daskalakis-D-Servedio, SODA'12]
- Approximating and Testing k-histogram distributions in sublinear time [Indyk-Levi-Rubinfeld, PODS'12]
- Learning Poisson Binomial Distributions [Daskalakis-D-Servedio, STOC'12]
- Learning Mixtures of Structured Distributions over Discrete Domains [Chan-D-Servedio-Sun, SODA'13]
- Testing k-modal Distributions: Optimal Algorithms via Reductions [Daskalakis-D-Servedio-Valiant², SODA'13]
- Learning Sums of Independent Integer Random Variables [Daskalakis-D-O'Donnell-Servedio-Tan, FOCS'13]
- Efficient Density Estimation via Piecewise Polynomial Approximation [Chan-D-Servedio-Sun, STOC'14, Tuesday morning]

Basic problem: Learning Histograms

Goal: learn an unknown *k*-flat distribution *p* over [*M*].

- Simple setting: Intervals I₁, ..., I_k are known:
 - Sample and time complexity $\Theta(k/\varepsilon^2)$
- What if the intervals are unknown?

Learning Histograms: Known Partition (I)

Goal: learn an unknown *k*-flat distribution *p* over [*N*].

Known intervals $I_1, ..., I_k$

Definition: Given a distribution p over [N] and a partition $I = \{I_1, ..., I_k\}$, of [N] into k intervals, the flattened distribution \overline{p} is the distribution over [N] that is uniform within each I_j and satisfies $p(I_j) = \overline{p}(I_j)$

Algorithm:

- Draw $m = O(k/\varepsilon^2)$ samples from p; let \hat{p}_m be the empirical distribution.
- Output the flattened empirical distribution $\overline{\hat{p}}_m$ over $\mathbf{I}_1, ..., \mathbf{I}_k$.

Learning Histograms: Known Partition (II)

Known intervals $I_1, ..., I_k$

Algorithm:

- Draw $m = O\left(k/\varepsilon^2\right)$ samples from p; let \hat{p}_m be the empirical distribution.
- Output the flattened empirical distribution $\overline{\hat{p}}_m$ over $I_1, ..., I_k$.

Analysis: We have that

$$d_{TV}\left(p,\overline{\hat{p}}_{m}\right) = \sum_{j=1}^{k} \left| p(\mathbf{l}_{j}) - \hat{p}_{m}(\mathbf{l}_{j}) \right|$$

Problem reduces to that of learning a distribution over the *k* intervals. ■

Note: Algorithm is agnostic with constant c=2, i.e.,

if
$$OPT = \min_{q \in (k-flat)} d_{TV}(p,q)$$
 then

$$d_{TV}(p,\overline{\hat{p}}_m) \leq 2 \cdot \text{OPT} + \varepsilon$$

Application: Learning Monotone Distributions (I)

Informal Structural Lemma: Monotone distributions are well-approximated by "oblivious" histograms with "few" pieces.

- Consider class of non-increasing distributions over [N].
- Decompose [N] into $\ell = O((1/\varepsilon) \cdot \log N)$ intervals whose "widths" increase as powers of $(1+\varepsilon)$. Call these the *oblivious buckets*.

Application: Learning Monotone Distributions (II)

Lemma: [Birge'87] For any monotone distribution p, we have

$$d_{TV}\left(p,\overline{p}\right) \leq \varepsilon$$
 true pdf p flattened version \overline{p}
$$\ell = O\left((1/\varepsilon) \cdot \log N\right)$$
 ...
$$I_{\ell}$$

Corollary: The class of monotone distributions over [*N*] can be efficiently learned to error ε using $O((1/\varepsilon^3) \cdot \log N)$ samples.

[Birge'85] Information-theoretic lower bound of $\Omega((1/\varepsilon^3) \cdot \log N)$

Learning Histograms: Unknown Partition

Goal: learn an unknown *k*-flat distribution *p* over [*N*].

Easy if we know the k intervals $I_1, ..., I_k$:

• Sample and time complexity $\Theta(k/\varepsilon^2)$.

What if the intervals are *unknown*?

Naïve approaches:

- Guessing them exactly: very inefficient N^k
- Guessing them approximately: not too great either $(1/\varepsilon)^k$

Unknown Partition: A first approach

Break up [N] into $\ell \gg k$ many intervals:

 p_{I_i} is not constant for at most \emph{k} of the intervals I_1, \ldots, I_ℓ

So, outputting uniform (sub-)distribution on each interval will usually give a good answer.

First approach in more detail

1. Divide [*N*] into $\ell = 10k/arepsilon$ intervals I_1, \dots, I_ℓ such that

$$p(I_j) \cong \varepsilon/10k$$

2. Draw $m = O(\ell/\varepsilon^2)$ samples from p and output the flattened empirical distribution over the intervals I_1, \ldots, I_ℓ

First approach: Sketch of Analysis

- 1. Divide [N] into $\ell=10k/\varepsilon$ intervals I_1,\ldots,I_ℓ such that $p(I_j)\cong \varepsilon/10k$ 2. Draw $m=O(\ell/\varepsilon^2)$ samples from p and output the flattened empirical distribution over the intervals I_1,\ldots,I_ℓ

Analysis:

- The unknown p is not constant in at most k of the intervals I_1, \ldots, I_ℓ
- Call such intervals "bad". The total mass of those intervals is at most

$$k \cdot \frac{\varepsilon}{10k} = \frac{\varepsilon}{10}$$

The flattened empirical distribution gives ε -accuracy on the remaining intervals.

Improving the sample complexity?

- Sample complexity of $O(k/\varepsilon^3)$ came from the fact that we partitioned the domain into $O(k/\varepsilon)$ intervals, instead of just k.
- Not clear whether sample size of $O(k/\epsilon^2)$ suffices information-theoretically...

Alternate approach? Metric Entropy

Definition: For a class \mathbf{C} the ε -metric entropy (Kolmogorov entropy) is:

Ent(
$$\mathbf{C}$$
) = inf $\{\log_2(|\mathcal{M}|), \text{ where } \mathcal{M} \text{ is an } \varepsilon\text{-cover of } \mathbf{C}\}$

Theorem: [Devroye-Lugosi' 01] For any class ${\bf C}$ of distributions suppose there exists an ε -cover for ${\bf C}$ of size M. There is an algorithm that learns an arbitrary distribution from ${\bf C}$ to accuracy ε using $O\left((1/\varepsilon^2)\cdot \log M\right)$

draws from the distribution. (The running time of the algorithm is $\Omega(M)$.)

Improving the sample complexity: Metric Entropy Bounds

Theorem: [DL'01] For any class C suppose there exists an ε -cover of size M. There is an algorithm that learns an arbitrary distribution from C to error ε using $O((1/\varepsilon^2) \cdot \log M)$ draws from the distribution.

Claim: There exists an ϵ -cover for k-flat distributions of size $\left(k/\epsilon\right)^{O(k)}$

Corollary: The class of k-flat distributions is learnable to accuracy ε with sample size $\tilde{O}(k/\varepsilon^2)$

Main Caveat: Not a computationally efficient algorithm.

Can we obtain a **computationally efficient algorithm** with optimal sample complexity?

Towards a computationally efficient sample-optimal algorithm

Proposed Algorithm:

- Make $m = \tilde{O}(k/\varepsilon^2)$ draws from p and let \hat{p}_m be the empirical distribution
- Find a hypothesis h that minimizes the variation distance from $\hat{p}_{\scriptscriptstyle m}$

Fails badly...

Also fails if we additionally require the hypothesis *h* to be *k*-flat

The VC-inequality

Recall the definition of statistical distance. For two distributions p, q over [N] we have that

$$d_{TV}(p,q) \equiv \max_{A \subseteq [N]} |p(A) - q(A)|$$

The VC inequality relates the empirical and the true distribution under a weaker metric.

Definition: Let \mathcal{A}_k be the collection of unions of at most k intervals in [N]. We define the \mathcal{A}_k -distance between p and q by

$$d_{\mathcal{A}_k}(p,q) \equiv \max_{A \in \mathcal{A}_k} |p(A) - q(A)|$$

Theorem (VC inequality): Let p be an arbitrary distribution over [M].

We have that
$$\mathbf{E}\left[d_{\mathcal{A}_k}(p,\hat{p}_m)\right] = O\left(\sqrt{\frac{k}{m}}\right)$$

Optimally Learning k-histograms: Upper Bound (I)

Theorem (VC inequality): Let p be an arbitrary distribution over [N]. We have that $\mathbf{E} \Big[d_{\mathcal{A}} \left(p, \hat{p}_m \right) \Big] = O \Big(\sqrt{k/m} \Big)$

Corollary: After $m=O\left(k/\varepsilon^2\right)$ samples with probability at least 9/10, we have $d_{\mathcal{A}_k}(p,\hat{p}_{\scriptscriptstyle m})\!\leq\!\varepsilon/2$

Note that $d_{TV}(p,\hat{p}_m) \approx 1!$

How to proceed?

- Compute a **k-flat** distribution h that minimizes $d_{\mathcal{A}}\left(h,\hat{p}_{\scriptscriptstyle{m}}\right)$
- Output h

Why does this work?

Optimally Learning k-histograms: Upper Bound (II)

Corollary: After $m=O\left(k/\varepsilon^2\right)$ samples with probability at least 9/10, we have $d_{\mathcal{A}}\left(p,\hat{p}_{\scriptscriptstyle m}\right) \leq \varepsilon/2$

Algorithm:

- Compute a **k-flat** distribution h that minimizes $d_{\mathcal{A}}\left(h,\hat{p}_{\scriptscriptstyle{m}}\right)$
- Output h

Analysis: Note that $d_{\mathcal{A}_{\!k}}\!\left(h,\hat{p}_{\scriptscriptstyle m}\right)\!\leq\!\mathcal{E}/2$, hence $d_{\mathcal{A}_{\!k}}\!\left(h,p\right)\!\leq\!\mathcal{E}$

But since h and p are both k-flat $d_{TV}(h,p) = d_{\mathcal{A}_k}(h,p)$.

Optimally Learning k-histograms: Upper Bound (III)

Essentially same argument works for agnostic case. Let *p* be an arbitrary distribution over [*N*] and let

$$OPT = \inf_{q \in (k-\text{flat})} d_{TV}(p,q)$$

"Non-constructive" algorithm:

- Draw $m = O(k/\varepsilon^2)$ samples from p.
- Compute a **k-flat** distribution h that minimizes $d_{\mathcal{A}_k}ig(h,\hat{p}_{\scriptscriptstyle m}ig)$
- Output h

Theorem: Above algorithm outputs a distribution *h* that with probability at least 9/10 satisfies

$$d_{TV}(h,p) \leq 3 \cdot \text{OPT} + \varepsilon$$

Main Issue: How to efficiently implement the second step?

Optimally Learning k-histograms: Upper Bound (IV)

- Draw $m = O(k/\varepsilon^2)$ samples from p.
- Compute a k-flat distribution h that minimizes
- Output h

Second step can be done in time $\tilde{O}(k^3/\varepsilon^2)$ by an appropriate DP. Main Idea:

Fact:
$$d_{\mathcal{A}_{k}}(p,q)^{(J \cup K)} \le \max_{0 \le l \le k} \left\{ d_{\mathcal{A}_{k}}(p,q)^{(J)} + d_{\mathcal{A}_{k}}(p,q)^{(K)} \right\}$$

Can we learn *k*-histograms with optimal sample size and in near-linear time?

Yes [Chan-D-Servedio-Sun '14b]

Application: Learning Structured distributions (I)

Hazard rate of
$$p$$
 over [N]: $H(i) = p(i) / \sum_{j \ge i} p(j)$

Consider the class of *Monotone Hazard Rate* (MHR) Distributions. (Important in reliability, economics, etc.)

Lemma: Every MHR distribution over [N] is ε -close to being k-flat for $k = O((1/\varepsilon) \cdot \log n)$

Corollary: MHR distributions over [N] are efficiently learnable with sample complexity $O((1/\varepsilon^3) \cdot \log n)$

Note: The above bound is best possible: $\Omega((1/\varepsilon^3) \cdot \log n)$ samples are information-theoretically required to learn MHR Distributions

Application: Learning Structured distributions (II)

Distribution Class	Sample Complexity Upper Bound	Sample Complexity Lower Bound
Monotone	$O((1/\varepsilon^3) \cdot \log n)$	Matching
<i>t</i> -modal	$O((t/\varepsilon^3) \cdot \log(n/t))$	Matching
MHR	$O((1/\varepsilon^3) \cdot \log n)$	Matching
Log-concave	$Oig(ig(1/arepsilon^3ig)ig)$	$\Omega((1/arepsilon^{5/2}))$

Upper (and lower) bounds immediately generalize to mixtures.

Another application:

Learning Sums of Independent Integer random variables [Daskalakis-**D**-O'Donnell-Servedio-Tan, FOCS'13]

Case Study: Log-concave (LC) Distributions

Fact: Every LC distribution can be ε -approximated by a piecewise constant distribution with $O(1/\varepsilon)$ pieces.

Corollary 1: The class of LC distributions can be efficiently learned with $O(1/\varepsilon^3)$ samples.

Above fact is quantitatively tight.

Lower bound of $\Omega((1/\varepsilon^{5/2}))$ considers piecewise *linear* distributions.

Lemma: Every LC distribution can be ε -approximated by a piecewise linear distribution with $O(1/\sqrt{\varepsilon})$ pieces.

Can we agnostically learn piecewise *linear* distributions?

Piecewise polynomial distributions

Distribution p is t-piecewise degree-d if there exists a partition of the domain into t-intervals such that within each interval, the PDF of p is a degree-d polynomial.

Learning distributions that are close to t-piecewise degree-d

Informal Theorem:

(with Chan, Servedio, Sun, STOC'14 Tuesday morning)

There is a **computationally efficient** learning algorithm that finds a hypothesis distribution which approximates **any** unknown distribution *p*

"almost as well"

as the best *t*-piecewise degree-*d* distribution does.

Learning with Piecewise Polynomials

Theorem: Let *p* be an arbitrary distribution and

OPT =
$$\inf_{q \in (t - \text{piecewise degree} - d)} d_{TV}(p,q)$$

There is an algorithm that uses $\tilde{O}(t \cdot d/\varepsilon^2)$ samples from p, runs in time $\operatorname{poly}(t, d, 1/\varepsilon)$ and outputs a hypothesis distribution h such that

$$d_{TV}(h,p) \leq 3 \cdot \text{OPT} + \varepsilon$$

Moreover, sample complexity of $\Omega(t \cdot d/\varepsilon^2)$ is information-theoretically necessary even for OPT = 0.

Why Piecewise Polynomials?

Three main justifications:

- Analogy with PAC learning of Boolean functions (Linial-Mansour-Nisan'93)
- Common heuristic: fitting splines to the data
- Gives sample optimal efficient estimators for wide range of distribution classes

Applications: Learning with Piecewise Polynomials

High-level description of Algorithm:

- Linear Programming within Each "piece"
 (Analysis requires polynomial approximation theory)
- Dynamic Programming to "discover" the "correct partition"

Sample optimal bounds for essentially all previously studied shape constrained density estimation problems.

Distribution Class	Sample Complexity Upper Bound	Sample Complexity Lower Bound
Log-concave	$ ilde{O}ig(1/arepsilon^{5/2}ig)$	Matching
Mixture of k Gaussians	$ ilde{O}(k/arepsilon^2)$	Matching
k-monotone	$\tilde{O}\!\left(k\!\left/arepsilon^{2+1\!\!/\!k} ight)$	

Goals for future work

Better accuracy? What is the optimal constant c such that

$$d_{TV}(h,p) \le c \cdot \text{OPT} + \varepsilon$$

(using same sample size)?

- -- Our upper bound c=3. No better than 2 possible [CDSS'14b].
- Better running time. Can we do near-linear time?
- -- For k-flat distributions, YES [CDSS'14b]. General case? OPEN
- Proper algorithms? e.g., k-GMMs
- Higher dimensions?
- Property Testing? Some preliminary progress [DDSVV'13]

Multi-dimensional histograms

Target distribution over $[0,1]^d$ is specified by k hyper-rectangles that cover $[0,1]^d$; pdf is constant within each rectangle.

Question: Can we learn such distributions without incurring the "curse of dimensionality"? (Don't want runtime to be exponential in *d*)

Higher dimensions

- Learning multi-dimensional histograms:
- Sample size well-understood: $O(k \cdot d/\varepsilon^2)$
- Computational complexity?
- -- At least as hard as learning *k*-leaf decision trees over *d* variables.
- -- Bottleneck: $k^{\Omega(\log d)}$
- -- Can we get such an algorithm?

References

- Learning k-modal distributions via testing [Daskalakis-D-Servedio, SODA'12]
- Approximating and Testing k-histogram distributions in sublinear time [Indyk-Levi-Rubinfeld, PODS'12]
- Learning Poisson Binomial Distributions [Daskalakis-D-Servedio, STOC'12]
- Learning Mixtures of Structured Distributions over Discrete Domains [Chan-D-Servedio-Sun, SODA'13]
- Testing k-modal Distributions: Optimal Algorithms via Reductions [Daskalakis-D-Servedio-Valiant², SODA'13]
- Learning Sums of Independent Integer Random Variables [Daskalakis-D-O'Donnell-Servedio-Tan, FOCS'13]
- Efficient Density Estimation via Piecewise Polynomial Approximation [Chan-D-Servedio-Sun, STOC'14, Tuesday morning]

Thank you