Lower Bound Techniques for Statistical Estimation

Gregory Valiant and Paul Valiant

The Setting

Given independent samples from a distribution (of discrete support):

Estimate # species Estimate entropy Hypothesis testing: =D'? -- close to D'? Compare 2 distributions --many metrics

Why Lower Bounds?

Birthday Paradox

Task: distinguish U_n from U_{n/2} in k samples Which n/2? Random

Birthday paradox: for $k = o(\sqrt{n})$, same fingerprints w.h.p.

0

0

1-way 2-way

k

data

 •
 •
 •
 •
 •
 •
 •

 2
 2
 0
 0
 2
 1
 2
 1

histogram of data

"fingerprint" (histogram of histogram)

More Generally?

Characterize (and compare) fingerprint distributions

heads, # tails
given k=10 flips

heads, # tails
given Poi(10) flips

#occurrences of different elements are independent!!!

"Double Poissonization"

Introduced in [Raskhodnikova et al. '07], here as in [V '08]

Characterize (and compare) fingerprint distributions

"Fingerprint entries are distributed (almost) like independent Poisson processes"

Theorem: Moments Describe All (for low-weight distributions)

"Fingerprint entries are distributed (almost) like independent Poisson processes"

Poisson processes are characterized by their expectation

Fingerprint distributions are characterized by the expected number of 2-way collisions, 3-way $\approx \sum_{i=1}^{2} p_{i}^{2}$ collisions, etc. $\approx \sum_{i=1}^{2} p_{i}^{3}$

"moments"

Application: Entropy lower bounds (Theorem: Moments Don't Describe Anything)

high entropy

low entropy

Application: Entropy lower bounds (Theorem: Moments Don't Describe Anything)

high entropy

low entropy

edit a small portion of the distributions

entropy is \approx preserved by continuity

edit a small portion of the distributions entropy is ≈preserved by continuity

moments are dominated by those of the (arbitrary!) edits

left and right moments can be made to match

moments don't determine entropy, or any other continuous property!

"Double Poissonization"

Characterize (and compare) fingerprint distributions

"Fingerprint entries are distributed (almost) like independent Poisson processes"

Generalized Multinomial Distributions

Generalizes binomial, multinomial distributions, and any sums of such distributions. Parameterized by matrix

Generalized Multinomial Distributions

Generalizes binomial, multinomial distributions, and any sums of such distributions. Parameterized by matrix

Aim: Characterize these distributions so we can realize when two are close

So far: Characterization by Poissons in the "rare events" regime

Poisson vs ...?

Poi(λ) \approx # heads in 1000 λ coin flips, where 1/1000 prob. heads

 $\text{Poi}(\lambda_{_1\prime}\,\lambda_{_2\prime}\,\dots\,):$ produce each dimension separately

Each dimension is independent

New idea: multivariate Gaussian

Parameterized by matrix \rightarrow more degrees of freedom

Gaussian Characterization of Generalized Multinomial Distributions

 σ^2 min eigenvalue of Σ , G_d "Discretized" Gaussian

Characterizing Fingerprints

Fingerprint expectations + covariance similar very Dist. of fingerprints close

Richer characterization... too rich?

Nice Lemma: Fingerprint expectations *determine* fingerprint covariance

Lemma: Fingerprint expectations robustly *determine* fingerprint covariance

$$E[f_i] = \sum_{x:h(x)\neq o} Poi(kx,i) h(x)$$
$$Cov[f_i, f_j] = -\sum_{x:h(x)\neq o} Poi(kx,i) Poi(kx,j) h(x)$$

 $\mathsf{Poi}(\lambda,i) * \mathsf{Poi}(\lambda,j) = \mathsf{Poi}(2\lambda,i+j)\binom{i+j}{j} 2^{-(i+j)}$

Approximating "Thin" Poissons as Linear Combinations of Poissons

For fixed m but *all* λ , can we approximate Pr[Poi(2 λ)=m] as a linear combination over j of Pr[Poi(λ)=j]?

These look like Gaussians! Same answer as for Gaussians!

Result: can approximate to within ε using coefficients at most $1/\varepsilon$

Application: Two Lower Bounds

Fingerprint expectations + covariance similar very Dist. of fingerprints close

Tool:

1. Explicit construction of distributions p^+ , p^- where p^+ is "close" to $U_{n/2}$, and p^- is "close" to U_n , that have very close k-sample expected fingerprints, for k=c n/log n

2. Too hard! Throw everything into a linear program and let linear programming do all the work for us

Lower Bound Construction

Goal: distributions p^+ , p^- where p^+ is "close" to $U_{n/2}$, and p^- is "close" to U_n , that have very close k-sample expected fingerprints, for k=c n/log n

For all j,
$$\Sigma_x(h^+(x) - h^-(x)) \xrightarrow{(kx)^j e^{-xk}}{j!} \approx o$$

So: $g(xk):=(h^+(x) - h^-(x))e^{-xk}$ orthogonal to low deg polys

We want a *signed measure* g on the positive reals that:

- Is orthogonal to low degree polynomials
- Decays exponentially fast
- Its positive portion has most of its mass at $\frac{2c}{\log n}$
- Its negative portion has most of its mass at $\frac{c}{\log n}$

Orthogonal to Polynomials

Fact: If P is a degree j polynomial with distinct real roots $\{x_i\}$, then the signed measure g_P having point mass $1/P'(x_i)$ at each root x_i is orthogonal to all polynomials of degree $\leq j-2$

Task: find P such that $P'(x_i)$ grows exponentially in x_i

LAGUERRE POLYNOMIALS

Application: Two Lower Bounds

Fingerprint expectations + covariance similar very Dist. of fingerprints close

Tool:

1. Explicit construction of distributions p^+ , p^- where p^+ is "close" to $U_{n/2}$, and p^- is "close" to U_n , that have very close k-sample expected fingerprints, for k=c n/log n

2. Too hard! Throw everything into a linear program and let linear programming do all the work for us

Dual to "Optimal" Estimator

 $\min_{\mathbf{z},\epsilon} \epsilon + k^{-c} \cdot \sum_{i} |\mathbf{z}(i)|$ s.t. for all dists. *p* over [*n*]

 $\left|\mathbb{E}\left[\mathbf{z}(p^k)\right] - \mathbf{H}(p)\right| \le \epsilon$

"Find estimator **z**: Minimize ε, s.t. expectation of estimator **z** applied to **k** samples from p is within ε of H(p)"

 $\max_{\mathbf{y}^+,\mathbf{y}^-} H(\mathbf{y}^+) - H(\mathbf{y}^-)$

 \rightarrow for y⁺,y⁻ dists. over [n]

s.t. for all *i*, $E[f_{i}^{+}] - E[f_{i}^{-}] \le k^{1-c}$

"Find lower bound instance y⁺,y⁻ Maximize H(y⁺)-H(y⁻) s.t. expected fingerprint entries given k samples from y⁺,y⁻ match to within k^{1-c} "

Take-home Ideas

Poissonization – crucial first step

"Fingerprints" capture all the information (for symmetric property testing)

 \rightarrow More generally, "forgetting" and reconstructing sample

Two general characterizations of the fingerprint distribution:

Poisson regime → domain elements each seen <<1 time in sample Tight characterization, can be leveraged even in extreme situations like >>1 distribution

Gaussian regime \rightarrow fingerprints have high variance in every direction Much more flexible, leads to tighter bounds, but more intricate

Fun with orthogonal polynomials! (Hermite, Laguerre, Chebyshev)

Approximating "Thin" Gaussians as Linear Combinations of Gaussians

What do we convolve a Gaussian with to approximate a thinner Gaussian?

(Other direction is easy, since convolving Gaussians adds their variances)

"Blurring is easy, unblurring is hard" \rightarrow can only do it approximately

How to analyze? Fourier transform! Convolution becomes multiplication

Now: what do we *multiply* a Gaussian with to approximate a *fatter* Gaussian?

 $e^{-x^{2}} \bullet ??? = e^{-x^{2}/2}$??? = $e^{x^{2}/2}$ Problem: blows up

Answer: approximate to within $\varepsilon =>$ truncate where $e^{-x^2/2} = \varepsilon$

Result: can approximate to within ε using coefficients at most $1/\varepsilon$