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The Setting 
Given independent samples from a distribution 
(of discrete support): 
 

Estimate # species 
Estimate entropy 
Hypothesis testing: =D’? 
-- close to D’? 
Compare 2 distributions 
--many metrics 

D 

Algorithms: 
Practical, yet unexpected! 



Why Lower Bounds? 
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Impossibility 



Birthday Paradox 

Task: distinguish Un from Un/2 in k samples 
Which n/2? Random 

2 2 0 0 2 1 2 1 
(  ,  ,  ,  ,  ,  ,  ,  ,  ,  ) 1-way 2-way … 

2 4 0 

data “fingerprint” 
(histogram of histogram) 

histogram of data 

1-way 2-way … 

k 0 0 

Birthday paradox: for 𝑘 = 𝑜 𝑛 , 
same fingerprints w.h.p. 



More Generally? 

Characterize (and compare) fingerprint distributions 
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(  ,  ,  ,  ,  ,  ,  ,  ,  ,  ) 1-way 2-way … 
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“fingerprint” 
(histogram of histogram) 

1 

3 

2 

1 2 

3 

1 2 

3 1 2 

3 

1 2 

3 

1 2 

3 

!= = 
× Poi(k) × Poi(k) 

1-way 

2-way  
[Roos ’99] for  

low frequencies 

 # heads, # tails 
 given k=10 flips 

 # heads, # tails 
 given Poi(10) flips 

#occurrences of 
different elements 
are independent!!! 

data histogram of data 



“Double Poissonization” 

Characterize (and compare) fingerprint distributions 
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× Poi(k) × Poi(k) 

1-way 

2-way  
[Roos ’99] for  

low frequencies 

“Fingerprint entries are distributed (almost) 
like independent Poisson processes” 

data histogram of data 

Introduced in [Raskhodnikova et al. ‘07], here as in [V ‘08] 



Theorem: Moments Describe All 

“Fingerprint entries are distributed (almost) 
like independent Poisson processes” 

+ 
Poisson processes are characterized by their 

expectation 

Fingerprint distributions are characterized by 
the expected number of  2-way collisions, 3-way 

collisions, etc. 
 pi

2 
 pi

3, etc. 

“moments” 

(for low-weight distributions) 



high entropy low entropy 

(Theorem: Moments Don’t Describe Anything) 

Application: 
Entropy lower bounds 



Second moment: area 

high entropy low entropy 

(Theorem: Moments Don’t Describe Anything) 

Application: 
Entropy lower bounds 



Third moment: volume 

high entropy low entropy 

(Theorem: Moments Don’t Describe Anything) 

Application: 
Entropy lower bounds 



edit a small portion of the distributions 

entropy is preserved by continuity 

high entropy low entropy 

(Theorem: Moments Don’t Describe Anything) 

Application: 
Entropy lower bounds 



edit a small portion of the distributions 

entropy is preserved by continuity 

high entropy low entropy 

(Theorem: Moments Don’t Describe Anything) 

Application: 
Entropy lower bounds 



edit a small portion of the distributions 

entropy is preserved by continuity 

moments are dominated by those 
of the (arbitrary!) edits 

moments don’t determine entropy, 
or any other continuous property! 

left and right moments can 
be made to match 

high entropy low entropy 

(Theorem: Moments Don’t Describe Anything) 

Application: 
Entropy lower bounds 



“Double Poissonization” 

Characterize (and compare) fingerprint distributions 

2 2 0 0 2 1 2 1 
(  ,  ,  ,  ,  ,  ,  ,  ,  ,  ) 1-way 2-way … 

2 4 0 

data 
“fingerprint” 

(histogram of histogram) 
histogram of data 
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× Poi(k) × Poi(k) 

1-way 

2-way  
[Roos ’99] for  

“Fingerprint entries are distributed (almost) 
like independent Poisson processes” 

low frequencies 



Generalized Multinomial Distributions 
Generalizes binomial, multinomial  distributions, and any sums 
of such distributions.   
Parameterized by matrix: 0 1 

.3 .7 

.3 .7 

.3 .7 

.3 .7 

 1      3 



0 1 2 

.5 .3 .2 

.5 .3 .2 

.5 .3 .2 

.5 .3 .2 

Generalized Multinomial Distributions 
Generalizes binomial, multinomial  distributions, and any sums 
of such distributions.   
Parameterized by matrix: 

 1      2       1 

0 1 2 

.5 .3 .2 

.8 .1 .1 

.3 .3 .4 

.2 .8 0 

Aim: Characterize these distributions 
so we can realize when two are close 

So far: Characterization by Poissons 
in the “rare events” regime 



Poisson vs …? 

Poi(λ)  # heads in 1000λ coin flips, 
where 1/1000 prob. heads 

Nice features: 

Variance = mean 

Each dimension is independent 

Poi(λ1, λ2, … ) : produce each dimension separately 

New idea: multivariate Gaussian 

Parameterized by matrix   more degrees of freedom 

discretized ^ 



Gaussian Characterization of 
Generalized Multinomial Distributions 

Earthmover CLT 

Convolution/Deconvolution 

Unimodality  
[Gurvitz 2008] 

Thm: Given multinomial distribution M with n 
rows, j columns, mean  covariance :  

𝑑𝑇𝑉 𝑀,𝐺𝑑𝑖𝑠𝑐 𝜇, Σ ≤
𝑗4/3

𝜎1/3
⋅ 2.2 ⋅ 3.1 + 0.83 log 𝑛 2/3,  

2 min eigenvalue of ,   Gd “Discretized” Gaussian 



Characterizing Fingerprints 

Fingerprint expectations  
+ covariance similar 

 
Dist. of fingerprints close 

Nice Lemma:  
             Fingerprint expectations  
             determine fingerprint covariance   

Richer characterization… too rich? 

very ^ 



ExpectationsCovariance 

Lemma: Fingerprint expectations  
           determine fingerprint covariance 
 

 E[fi]  =  x:h(x)≠0Poi(kx,i) h(x) 

      Cov[fi, fj] = - x:h(x)≠0Poi(kx,i) Poi(kx,j) h(x) 
 
 

Poi(l,i)*Poi(l,j) = Poi(2l,i+j)(  ) 2-(i+j) 

 
 
   

i+j 
j 

robustly 



Approximating “Thin” Poissons as 
Linear Combinations of Poissons 

For fixed m but all l, can we approximate Pr[Poi(2l)=m] 
as a linear combination over j of Pr[Poi(l)=j]? 

These look like Gaussians! Same answer as for Gaussians! 

Result: can approximate to within e using coefficients at most 1/e       



Application: Two Lower Bounds 

Fingerprint expectations  
+ covariance similar 

 
Dist. of fingerprints close 

very ^ Tool: 

1. Explicit construction of distributions p+, p- where p+ 

is “close” to Un/2 , and p- is “close” to Un , that have very 
close k-sample expected fingerprints, for k=c n/log n 
  
2. Too hard! Throw everything into a linear program 

and let linear programming do all the work for us 



Lower Bound Construction 

Goal: distributions p+, p- where p+ is “close” to Un/2 , and 
p- is “close” to Un , that have very close k-sample 

expected fingerprints, for k=c n/log n 

We want a signed measure g on the positive reals that: 
• Is orthogonal to low degree polynomials 
• Decays exponentially fast 

• Its positive portion has most of its mass at 
2𝑐

log 𝑛
 

• Its negative portion has most of its mass at 
𝑐

log 𝑛
 

For all j,  x(h+(x) - h-(x))                     ≈ 0 
 
So:  g(xk):=(h+(x) - h-(x))e-xk  orthogonal to low deg polys 

(kx)j e-xk 

     j! 



Orthogonal to Polynomials 

Fact: If P is a degree j polynomial with distinct real roots {xi}, 
then the signed measure gP having point mass 1/P’(xi) at 
each root xi is orthogonal to all polynomials of degree ≤j-2 

Task: find P such that P’(xi) grows exponentially in xi 

LAGUERRE POLYNOMIALS 



Application: Two Lower Bounds 

Fingerprint expectations  
+ covariance similar 

 
Dist. of fingerprints close 

very ^ Tool: 

1. Explicit construction of distributions p+, p- where p+ 

is “close” to Un/2 , and p- is “close” to Un , that have very 
close k-sample expected fingerprints, for k=c n/log n 
  
2. Too hard! Throw everything into a linear program 

and let linear programming do all the work for us 



“Find lower bound instance y+,y- 
Maximize H(y+)-H(y-)  s.t. 
expected fingerprint entries 
given k samples from y+,y- 
match to within k1-c “” 

for y+,y- dists. over [n] 

Dual to “Optimal” Estimator 

s.t. for all dists. p over [n] 

“Find estimator z:  
Minimize ε, s.t.  
expectation of estimator z applied to  

k samples from p is within ε of H(p)” 

s.t.  for all i,  E[f+
i] – E[f-

i] ≤ k1-c  



Take-home Ideas 

“Fingerprints” capture all the information (for symmetric 
property testing) 

 More generally, “forgetting” and reconstructing sample 

Poissonization – crucial first step  

Two general characterizations of the fingerprint distribution: 

Poisson regime  domain elements each seen <<1 time in sample 
Tight characterization, can be leveraged even in extreme situations 
like >>1 distribution 

Gaussian regime  fingerprints have high variance in every direction 

Much more flexible, leads to tighter bounds, but more intricate 

Fun with orthogonal polynomials! (Hermite, Laguerre, Chebyshev) 





Approximating “Thin” Gaussians as 
Linear Combinations of Gaussians 

What do we convolve a Gaussian with to approximate a thinner Gaussian? 

(Other direction is easy, since convolving Gaussians adds their variances) 

“Blurring is easy, unblurring is hard”  can only do it approximately 

How to analyze? Fourier transform! Convolution becomes multiplication 

Now: what do we multiply a Gaussian with 
to approximate a fatter Gaussian? 

Problem: blows up 
e-x^2 ??? =e-x^2/2 
??? = ex^2/2 

Answer: approximate to within e => truncate where e-x^2/2=e  

Result: can approximate to within e using coefficients at most 1/e       


