Lower Bound Techniques for Statistical Estimation

Gregory Valiant and Paul Valiant

The Setting

Given independent samples from a distribution (of discrete support):

D

> Estimate \# species
> Estimate entropy
> Hypothesis testing: =D'?
> -- close to D'?
> Compare 2 distributions
> --many metrics

Algorithms:

Practical, yet unexpected!

Why Lower Bounds?

Birthday Paradox

Task: distinguish U_{n} from $U_{n / 2}$ in k samples Which $\mathrm{n} / 2$? Random

1-way	2-way	\ldots
k	0	0

Birthday paradox: for $k=o(\sqrt{n})$, same fingerprints w.h.p.

More Generally?

Characterize (and compare) fingerprint distributions

"Double Poissonization"

Introduced in [Raskhodnikova et al. '07], here as in [V '08]
Characterize (and compare) fingerprint distributions
"Fingerprint entries are distributed (almost)
like independent Poisson processes"

Theorem: Moments Describe All

 (for low-weight distributions)"Fingerprint entries are distributed (almost)
like independent Poisson processes"

Poisson processes are characterized by their expectation

Fingerprint distributions are characterized by the expected number of 2-way collisions, 3-way collisions, etc.

Application:

 Entropy lower bounds

 Entropy lower bounds}
(Theorem: Moments Don't Describe Anything)
high entropy
low entropy

Application: Entropy lower bounds

(Theorem: Moments Don't Describe Anything)
high entropy

low entropy

Application:

 Entropy lower bounds

 Entropy lower bounds}
(Theorem: Moments Don't Describe Anything)
high entropy
low entropy

Entropy lower bounds

(Theorem: Moments Don't Describe Anything)

high entropy
edit a small portion of the distributions entropy is \approx preserved by continuity

edit a small portion of the distributions
entropy is \approx preserved by continuity

Application: Entropy lower bounds

 (Theorem: Moments Don't Describe Anything)high entropy
edit a small portion of the distributions entropy is \approx preserved by continuity
low entropy

Application: Entropy lower bounds

 (Theorem: Moments Don't Describe Anything)high entropy
low entropy
moments are dominated by those of the (arbitrary!) edits
left and right moments can be made to match

```
moments don't determine entropy,
or any other continuous property!
```


"Double Poissonization"

Characterize (and compare) fingerprint distributions
"Fingerprint entries are distributed (almost)
like independent Poisson processes"

Generalized Multinomial Distributions

Generalizes binomial, multinomial distributions, and any sums of such distributions.
Parameterized by matrix

Generalized Multinomial Distributions

Generalizes binomial, multinomial distributions, and any sums of such distributions.
Parameterized by matrix

Aim: Characterize these distributions so we can realize when two are close

So far: Characterization by Poissons in the "rare events" regime

Poisson vs ...?

$\operatorname{Poi}(\lambda) \approx \#$ heads in 1000λ coin flips, where 1/1000 prob. heads
$\operatorname{Poi}\left(\lambda_{1}, \lambda_{2}, \ldots\right)$: produce each dimension separately

New idea: multivariate_Gaussian discretized
Parameterized by matrix \rightarrow more degrees of freedom

Gaussian Characterization of

Generalized Multinomial Distributions

Convolution/Deconvolution

Earthmover CLT

Unimodality [Gurvitz 2008]

Thm: Given multinomial distribution M with n rows, j columns, mean μ covariance Σ :
$d_{T V}\left(M, G^{\text {disc }}(\mu, \Sigma)\right) \leq \frac{j^{4 / 3}}{\sigma^{1 / 3}} \cdot 2.2 \cdot(3.1+0.83 \log n)^{2 / 3}$,
σ^{2} min eigenvalue of $\Sigma_{l} \quad G_{d}$ "Discretized" Gaussian

Characterizing Fingerprints

Fingerprint expectations

+ re:. äiunre similar

Dist. of fingerprints close

Richer characterization... too rich?

Nice Lemma:
Fingerprint expectations
determine fingerprint covariance

Expectations \rightarrow Covariance

Lemma: Fingerprint expectations robustly determine fingerprint covariance

$$
\begin{aligned}
E\left[f_{i}\right] & =\sum_{x: h(x) \neq 0} \operatorname{Poi}(k x, i) h(x) \\
\operatorname{Cov}\left[f_{i}, f_{j}\right] & =-\sum_{x: h(x) \neq 0} \operatorname{Poi}(k x, i) \operatorname{Poi}(k x, j) h(x)
\end{aligned}
$$

$\operatorname{Poi}(\lambda, i) * \operatorname{Poi}(\lambda, j)=\operatorname{Poi}(2 \lambda, i+j)\left(\frac{i+j}{j}\right) 2^{-(i+j)}$

Approximating "Thin" Poissons as Linear Combinations of Poissons

For fixed m but all λ, can we approximate $\operatorname{Pr}[\operatorname{Poi}(2 \lambda)=m]$ as a linear combination over j of $\operatorname{Pr}[\operatorname{Poi}(\lambda)=j]$?

These look like Gaussians! Same answer as for Gaussians!

Application: Two Lower Bounds

Tool:

Fingerprint expectations
 + re:. üiture similar
 Dist. of fingerprints close

1. Explicit construction of distributions $\mathrm{p}^{+}, \mathrm{p}^{-}$where p^{+} is "close" to $U_{n / 2}$, and p is "close" to U_{n}, that have very close k -sample expected fingerprints, for $\mathrm{k}=\mathrm{c} \mathrm{n} / \log \mathrm{n}$
2. Too hard! Throw everything into a linear program and let linear programming do all the work for us

Lower Bound Construction

Goal: distributions $\mathrm{p}^{+}, \mathrm{p}^{-}$where p^{+}is "close" to $\mathrm{U}_{\mathrm{n} / 2}$, and $p^{\text {- }}$ is "close" to U_{n}, that have very close k-sample expected fingerprints, for $\mathrm{k}=\mathrm{c} \mathrm{n} / \log \mathrm{n}$

For all $\mathrm{j}, \Sigma_{\mathrm{x}}\left(\mathrm{h}^{+}(\mathrm{x})-\mathrm{h}^{-}(\mathrm{x})\right) \frac{(\mathrm{kx})^{j} \mathrm{e}^{-\mathrm{xk}}}{\mathrm{j}!} \approx 0$
So: $g(x k):=\left(h^{+}(x)-h^{-}(x)\right) e^{-x k}$ orthogonal to low deg polys
We want a signed measure g on the positive reals that:

- Is orthogonal to low degree polynomials
- Decays exponentially fast
- Its positive portion has most of its mass at $\frac{2 c}{\log n}$
- Its negative portion has most of its mass at $\frac{c}{\log n}$

Orthogonal to Polynomials

Fact: If P is a degree j polynomial with distinct real roots $\left\{X_{\}}\right\}$, then the signed measure g_{p} having point mass $1 / P^{\prime}\left(x_{i}\right)$ at each root x_{i} is orthogonal to all polynomials of degree $\leq j-2$

Task: find P such that $P^{\prime}\left(x_{i}\right)$ grows exponentially in x_{i}

LAGUERRE POLYNOMIALS

Application: Two Lower Bounds

Tool:

Fingerprint expectations
 + re:. üiture similar
 Dist. of fingerprints close

1. Explicit construction of distributions $\mathrm{p}^{+}, \mathrm{p}^{-}$where p^{+} is "close" to $U_{n / 2}$, and p is "close" to U_{n}, that have very close k -sample expected fingerprints, for $\mathrm{k}=\mathrm{c} \mathrm{n} / \log \mathrm{n}$
2. Too hard! Throw everything into a linear program and let linear programming do all the work for us

Dual to "Optimal" Estimator

$\min _{\mathrm{Z}, \epsilon} \epsilon+k^{-c} \cdot \sum_{i}|z(i)|$
"Find estimator z :
s.t. for all dists. p over [n]
$\left|\mathbb{E}\left[z\left(p^{k}\right)\right]-H(p)\right| \leq \epsilon$

Minimize ε, s.t.
expectation of estimator z applied to
k samples from p is within ε of $H(p)$ "
$\max _{\mathrm{y}^{+}, \mathrm{y}^{-}} H\left(y^{+}\right)-H\left(y^{-}\right)$
\rightarrow for y^{+}, y^{-}dists. over [$\left.n\right]$
s.t. for all $i, E\left[f^{+}\right]-E\left[f^{-}\right] \leq k^{1-c}$
"Find lower bound instance $\mathrm{y}^{+}, \mathrm{y}^{-}$ Maximize $\mathrm{H}\left(\mathrm{y}^{+}\right)-\mathrm{H}\left(\mathrm{y}^{-}\right)$s.t. expected fingerprint entries given k samples from y^{+}, y^{-} match to within $\mathrm{k}^{1-\mathrm{c}}$ "

Take-home Ideas

Poissonization - crucial first step
"Fingerprints" capture all the information (for symmetric property testing)
\rightarrow More generally, "forgetting" and reconstructing sample
Two general characterizations of the fingerprint distribution:
Poisson regime \rightarrow domain elements each seen $\ll 1$ time in sample Tight characterization, can be leveraged even in extreme situations like >>1 distribution

Gaussian regime \rightarrow fingerprints have high variance in every direction Much more flexible, leads to tighter bounds, but more intricate

Fun with orthogonal polynomials! (Hermite, Laguerre, Chebyshev)

Approximating "Thin" Gaussians as Linear Combinations of Gaussians

What do we convolve a Gaussian with to approximate a thinner Gaussian?
(Other direction is easy, since convolving Gaussians adds their variances)
"Blurring is easy, unblurring is hard" \rightarrow can only do it approximately How to analyze? Fourier transform! Convolution becomes multiplication

Now: what do we multiply a Gaussian with to approximate a fatter Gaussian?

$$
\begin{aligned}
& \mathrm{e}^{-\mathrm{x}^{\wedge} 2} \bullet ? ? ?=\mathrm{e}^{-x^{\wedge} 2 / 2} \\
& ? ? ?=\mathrm{e}^{\mathrm{e}^{\wedge} 2 / 2}
\end{aligned}
$$

Problem: blows up

Answer: approximate to within $\varepsilon=>$ truncate where $\mathrm{e}^{-x^{\wedge} 2 / 2}=\varepsilon$

Result: can approximate to within ε using coefficients at most $1 / \varepsilon$

