A complexity theoretic perspective on density estimation

Rocco A. Servedio Columbia University

Anindya De UC Berkeley/IAS

Ilias Diakonikolas U. Edinburgh

STOC workshop May 31, 2014

Learning Probability Distributions

- Big topic in statistics literature ("density estimation") for decades
- Exciting work in the last decade+ in TCS, largely on learning continuous distributions (mixtures of Gaussians & more)
- This talk: distribution learning from a complexity theoretic perspective
 - What about distributions over the hypercube?
 - Can we formalize intuition that "simple distributions are easy to learn"?
 - Insights into classical density estimation questions

What do we mean by "learn a distribution"?

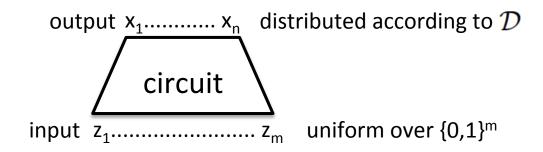
- Unknown target distribution ${\mathcal D}$
- Algorithm gets i.i.d. draws from ${\mathcal D}$
- With probability 9/10, must output (a sampler for a) distribution \mathcal{D}' such that **statistical distance** between \mathcal{D} and \mathcal{D}' is small:

$$d_{\mathrm{T}V}(\mathcal{D}, \mathcal{D}') = \frac{1}{2} \sum_{x} |\mathcal{D}(x) - \mathcal{D}'(x)| \leq \varepsilon$$

(Natural analogue of Boolean function learning.)

Previous work: [KRRSS94]

 Looked at learning distributions over {0,1}ⁿ in terms of n-output circuits that generate distributions:



 [AIKO4] showed it's hard to learn even very simple distributions from this perspective: already hard even if each output bit is a 4-junta of input bits.

This work: A different perspective

Our notion of a "simple" distribution over $\{0,1\}^n$: uniform distribution over satisfying assignments of a "simple" Boolean function.

What kinds of Boolean functions can we learn from their satisfying assignments?

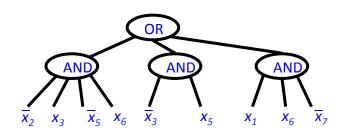
Want algorithms that have polynomial runtime and # of samples required.

What are "simple" functions?

Halfspaces:

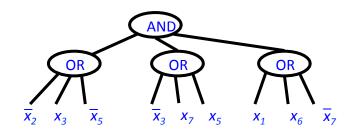
$$f(x) = \operatorname{sign}(w_1 x_1 + \dots + w_n x_n - \theta)$$

DNF formulas:

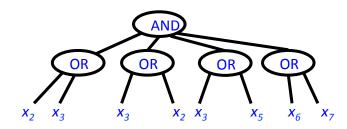


Simple functions, cont.

3-CNF formulas:



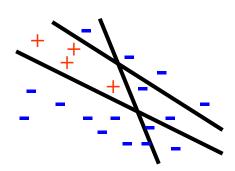
Monotone 2-CNF:



Yet more simple functions

Low-degree polynomial threshold functions:

Intersections of k halfspaces:



The model, more precisely

- Let C be a fixed class of Boolean functions over $\{0,1\}^n$
- There is some unknown $f \in \mathcal{C}$. Learning algorithm sees samples drawn uniformly from $f^{-1}(1)$. Target distribution: $U_{f^{-1}(1)}$.
- Goal : With probability 9/10, output a sampler for a hypothesis distribution \mathcal{D} such that

$$d_{\mathrm{T}V}(\mathcal{D}, U_{f^{-1}(1)}) \leq \varepsilon$$

We'll call this a **distribution learning algorithm for** \mathcal{C} .

Relation to function learning

Q: How is this different from learning C (function learning) under the uniform distribution?

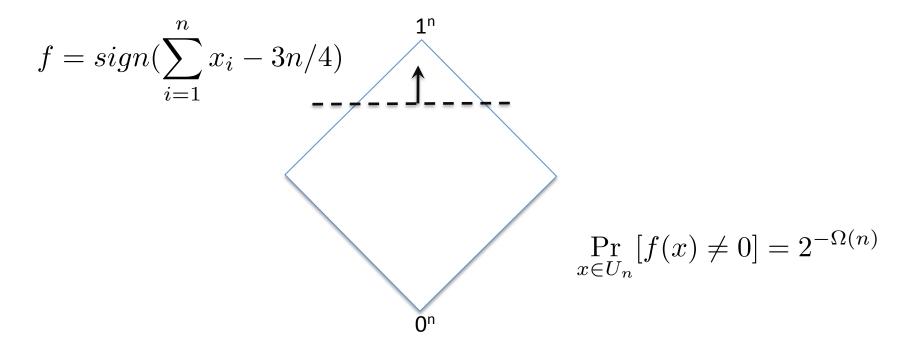
A: Only get positive examples. Some other ways:

- (not so major) Output a hypothesis *distribution* rather than a hypothesis *function*
- (really major) Much more demanding guarantee than usual uniform-distribution learning.

Example: Halfspaces

Usual uniform-distribution model for learning functions:

Hypothesis h allowed to be wrong on $\varepsilon 2^n$ points in $\{0,1\}^n$.



For highly biased target function like f, constant-0 function is a fine hypothesis for any $\varepsilon = 1/\mathrm{poly}(n)$.

A stronger requirement

Our distribution-learning model: "constant-0 hypothesis" is meaningless!

In this example, for $U_{h^{-1}(1)}$ to be a good hypothesis distribution, $f^{-1}(1)\Delta h^{-1}(1)$ must be only a $2^{-\Omega(n)}$ fraction of $\{0,1\}^n$.

$$f = sign(\sum_{i=1}^{n} x_i - 3n/4)$$

$$\Pr_{x \in U_n}[f(x) \neq 0] = 2^{-\Omega(n)}$$

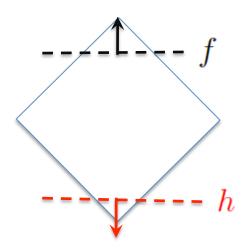
Essentially, we require hypothesis function with **multiplicative** rather than **additive** ε -accuracy relative to f.

Usual functionlearning setting

Given: random labeled examples from $\{0,1\}^n$, must

Output: hypothesis h such that

$$\Pr_{x \in U_n}[f(x) \neq h(x)] \le \epsilon$$



If both regions are small, this *h* is fine!

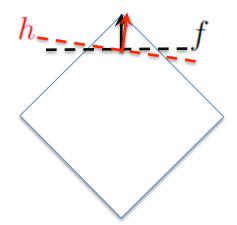
Our setting

Given: draws from $U_{f^{-1}(1)}$, must

Output: hypothesis \mathcal{D} with the

following guarantee:

$$d_{\mathrm{T}V}(\mathcal{D}, U_{f^{-1}(1)}) \leq \varepsilon$$



h must satisfy

$$\Pr_{x \in U_n}[f(x) \neq h(x)] \leq \epsilon \Pr_{x \in U_n}[f(x) = 1]$$

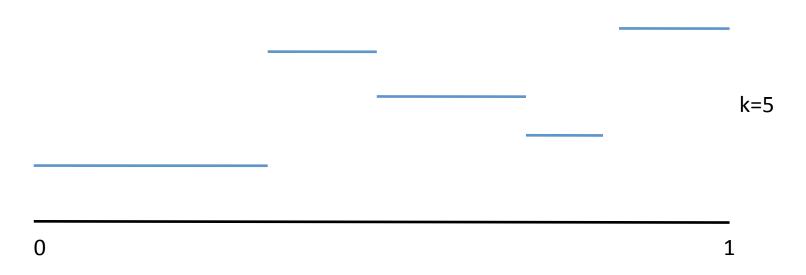
Brief motivational digressions: (1) Real-world language learning

People typically learn new languages by being exposed to correct utterances (positive examples), which are a sparse subset of all possible vocalizations (all examples).

Goal is to be able to **generate new correct utterances** (generate draws from a distribution similar to the one the samples came from).

(2) Connection to continuous density estimation questions

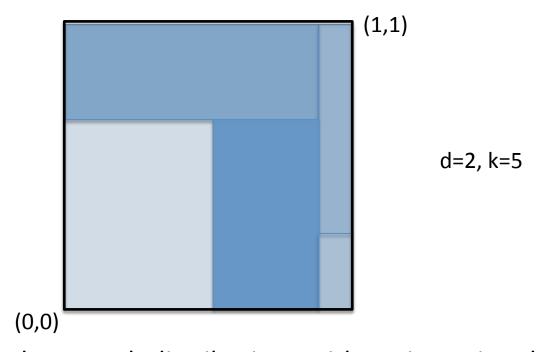
A basic question in continuous 1-dimensional density estimation: Target distribution (say over [0,1]) is a "k-bin histogram" -- pdf is piecewise constant with k pieces.



Easy to learn such a distribution with poly(k,1/e) samples and runtime.

Multi-dimensional histograms

Target distribution over $[0,1]^d$ is specified by k hyper-rectangles that cover $[0,1]^d$; pdf is constant within each rectangle.



Question: Can we learn such distributions without incurring the "curse of dimensionality"? (Don't want runtime, # samples to be exponential in d)

Connection with our problem

Our "learning from satisfying assignments" problem for the class $C = \{all \ k\text{-leaf decision trees over d Boolean variables} \}$ is a (very) special case of learning k-bin d-dimensional histograms.

One of the k hyper-rectangles

set of inputs reaching one of the k decision tree leaves

Rectangle with 0 weight in the distribution

decision tree leaf that's labeled 0

For this special case, we beat the "curse of dimensionality" and achieve runtime d^{O(log k)}.

Results

Positive results

Theorem 1: We give an efficient distribution learning algorithm for \mathcal{C} = { halfspaces }. Runtime is $\operatorname{poly}(n,1/\varepsilon)$.

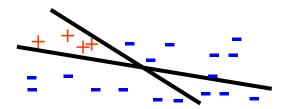
Theorem 2: We give a (pretty) efficient distribution learning algorithm for
$$\mathcal{C} = \{ \text{poly(n)-term DNFs} \}.$$
Runtime is $\operatorname{quasipoly}(n,1/\varepsilon)$.

Both results obtained via a **general approach**, plus \mathcal{C} -specific work.

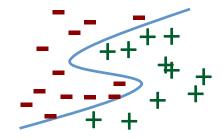
Negative results

Assuming crypto-hardness (essentially RSA), there are no efficient distribution learning algorithms for:

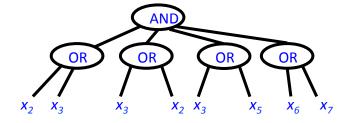
Intersections of two halfspaces



Degree-2 polynomial threshold functions



Monotone 2-CNFs



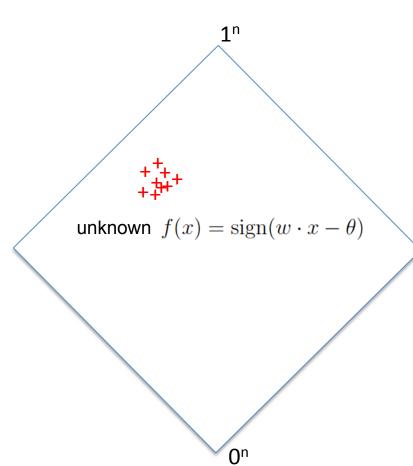
Rest of talk

Positive results

General approach, illustrated through specific case of halfspaces

Touch on DNFs

Learning halfspace distributions

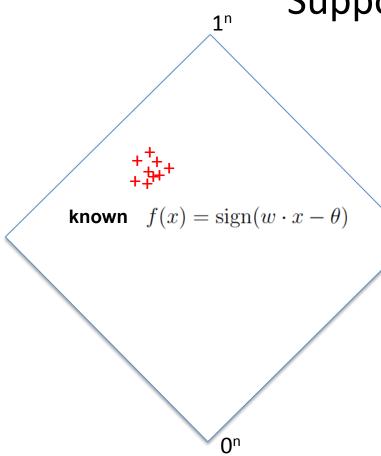


Given positive examples drawn uniformly from $f^{-1}(1)$ for some unknown halfspace f,

We need to (whp) output a sampler for a distribution that's close to $U_{f^{-1}(1)}$.

Let's fantasize

Suppose somebody gave us f.



Even then, we need to output a **sampler** for a distribution close to uniform over $f^{-1}(1)$.

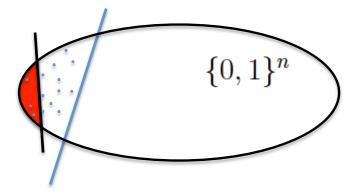
Is this doable?

Yes.

Approximate sampling for halfspaces

Theorem: Given $f(x) = \operatorname{sign}(w \cdot x - \theta)$ over $\{0,1\}^n$, can return a uniform point from $f^{-1}(1)$ in time $\operatorname{poly}(n, \log(1/\varepsilon))$ (with failure probability ε)

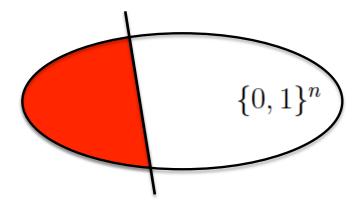
- [MorrisSinclair99]: sophisticated MCMC analysis
- [Dyer03]: elementary randomized algorithm & analysis using "dart throwing"



Of course, in our setting we are not given f. But, we should expect to use (at least) this machinery for our general problem.

A potentially easier case...?

For approximate sampling problem (where we're given f), problem is much easier if $p = |f^{-1}(1)|/2^n$ is large: sample uniformly & do rejection sampling.



Maybe our problem is easier too in this case?

In fact, yes. Let's consider this case first.

Halfspaces: the high-density case

• Let $p = |f^{-1}(1)|/2^n$.

• We will first consider the case that $p \ge n^{-c}$.

 We'll solve this case using Statistical Query learning & hypothesis testing for distributions.

First Ingredient for the high-density case: SQ

Statistical Query (SQ) learning model:

- o SQ oracle $\mathcal{O}_{f,D}(\cdot)$: given poly-time computable $\chi:\{0,1\}^n\times\{0,1\}\to\{0,1\},$ outputs $\mathbf{E}_{x\sim D}[\chi(x,f(x))]\pm \tau$ where $\tau=n^{-O(1)}$.
- \circ An algorithm $\mathcal A$ is said to be a SQ learner for $\mathcal C$ (under distribution D) if $\mathcal A$ can learn f given access to $\mathcal O_{f,D}(\cdot)$.

SQ learning for halfspaces

Good news: [BlumFriezeKannanVempala97] gave an efficient SQ learning algorithm for halfspaces.

Outputs halfspace hypotheses!

Of course, to run it, need access to oracle for $\mathcal{O}_{f,D}(\cdot)$ for the unknown halfspace f .

So, we need to simulate this given our examples from $U_{f^{-1}(1)}$.

The high-density case: first step

Lemma: Given access to uniform random samples from $U_{f^{-1}(1)}$ and \widehat{p} such that $|\widehat{p}-p|\leq \tau$, queries to \mathcal{O}_{f,U_n} can be simulated up to error 2τ in time $poly(n/\tau)$.

Proof sketch: $\mathbf{E}_{x\sim D}\left[\chi(x,f(x))\right] =$

$$\underbrace{\mathbf{E}_{x\sim D}\left[\chi(x,-1)\right]}_{p} + \underbrace{\mathbf{E}_{x\sim D_{f,+}}\left[\chi(x,1) - \chi(x,-1)\right]}_{p} \cdot \underbrace{\mathbf{Pr}_{x\sim D}[f(x)=1]}_{p}.$$

Estimate using samples from $\{0,1\}^n$

Estimate using samples from $U_{f^{-1}(1)}$

The high-density case: first step

Lemma: Given access to uniform random samples from $U_{f^{-1}(1)}$ and \widehat{p} such that $|\widehat{p}-p|\leq \tau$, queries to \mathcal{O}_{f,U_n} can be simulated up to error 2τ in time $poly(n/\tau)$.

Recall promise:
$$p \ge n^{-c}$$
 $(p = |f^{-1}(1)|/2^n)$

Additionally, we assume that we have \widehat{p} = $p \pm n^{-2c}$.

A halfspace!

Lemma lets us use the halfspace SQ-learner to get h such that

$$\Pr_{x \in U_n}[h(x) \neq f(x)] \le n^{-2c}$$

Handling the high-density case

- Since $\Pr_{x \in U_n}[h(x) \neq f(x)] \leq n^{-2c}$, have that
 - $\circ d_{TV}(U_{h^{-1}(1)}, U_{f^{-1}(1)}) \le n^{-c}$
 - $|h^{-1}(1)| \ge (1/2) \cdot n^{-c} \cdot 2^{-n}$
- Hence using rejection sampling, we can easily sample $U_{h^{-1}(1)}$.

Caveat : We don't actually have an estimate \hat{p} for $|f^{-1}(1)|/2^n$.

Ingredient #2: Hypothesis testing

- Try all possible values of \widehat{p} in a sufficiently fine multiplicative grid $1, \frac{1}{1+\gamma}, \frac{1}{(1+\gamma)^2}, \ldots$
- We will get a list of candidate distributions $U_{h_1^{-1}(1)}, \ldots, U_{h_m^{-1}(1)}$ such that at least one of them is ϵ -close to $U_{f^{-1}(1)}$.
- Run a "distribution hypothesis tester" to return $U_{h_i^{-1}(1)}$ which is 6ϵ close to $U_{f^{-1}(1)}$.

Distribution hypothesis testing

Theorem: Given

- Sampler for target distribution $\widehat{\cal D}$
- Approximate samplers for distributions D_1, \ldots, D_m
- Approximate evaluation oracles for D_1, \ldots, D_m
- Promise: $\exists i \in [m] \ d_{TV}(D_i, \widehat{D}) \leq \epsilon$

Hypothesis tester guarantee: Outputs D_j such that $d_{TV}(D_j, \widehat{D}) \leq 6\epsilon$ in time $poly(m, 1/\epsilon)$

Having **evaluators** as well as samplers for the hypotheses is crucial for this.

Distribution hypothesis testing, cont.

We need samplers & evaluators for our hypothesis distributions $U_{h_i^{-1}(1)}$

All our hypotheses are dense, so can do **approximate** counting easily (rejection sampling) to estimate $|h_i^{-1}(1)|$

Note that
$$U_{h_i^{-1}(1)}(x) = \begin{cases} 1/|h_i^{-1}(1)| & \text{if } h_i(x) = 1\\ 0 & \text{if } h_i(x) = 0 \end{cases}$$

So we get the required (approximate) evaluators.

Similarly, (approximate) samples are easy via rejection sampling.

Recap

So we handled the high-density case using

- SQ learning (for halfspaces)
- Hypothesis testing (generic).

(Also used approximate sampling & counting, but they were trivial because we were in the dense case.)

Now let's consider the low-density case (the interesting case).

Low density case: A new ingredient

New ingredient for the low-density case: A new kind of algorithm called a **densifier**.

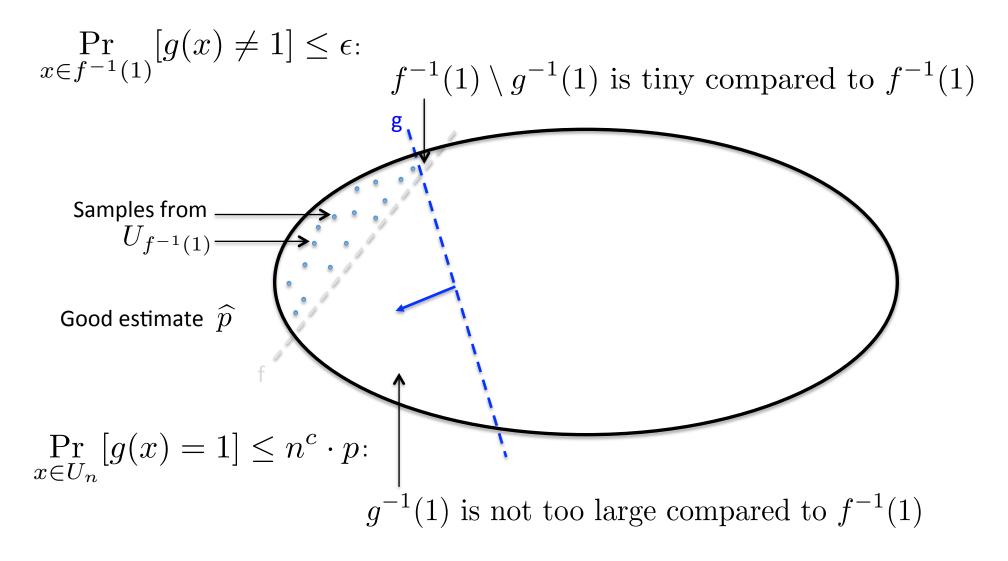
- Input: \widehat{p} such that $\widehat{p}/p \in [1-\epsilon, 1+\epsilon]$, and samples from $U_{f^{-1}(1)}$
- **Output:** A function *g* such that:

$$-\Pr_{x \in f^{-1}(1)}[g(x) \neq 1] \leq \epsilon$$

$$- \Pr_{x \in U_n}[g(x) = 1] \le n^c \cdot p$$

For simplicity, assume that $g \in \mathcal{C}$ (like f)

Densifier illustration



Low-density case (cont.)

To solve the low-density case, we need **approximate** sampling and approximate counting algorithms for the class C.

This, plus previous ingredients (**SQ learning**, **hypothesis testing**, & **densifier**) suffices: given all these ingredients, we get a distribution learning algorithm for \mathcal{C} .

How does it work?

The overall algorithm: (recall that $f \in \mathcal{C}$)

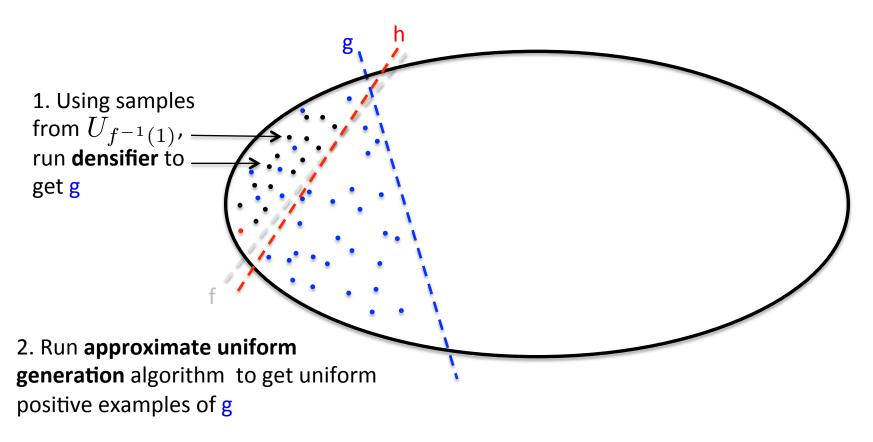
Needs good estimate \widehat{p} of p

- 1. Run **densifier** to get $g \in \mathcal{C}$
- 2. Use approximate sampling algorithm for g to get samples from $U_{q^{-1}(1)}$
- 3. Run **SQ-learner** for f under distribution $U_{g^{-1}(1)}$ to get hypothesis h for f
- 4. Sample from $\,U_{g^{-1}(1)}\,$ till get $\,x\,$ such that $\,h(x)=1\,$; output this $\,x\,$.

Repeat with different guesses for \widehat{p} , & use **hypothesis testing** to choose $U_{h_i^{-1}(1)}$ that's close to $U_{f^{-1}(1)}$

A picture of one stage

Note: This all assumed we have a good estimate \hat{p}



- 3. Run **SQ-learner** on distribution $U_{g^{-1}(1)}$ to get high-accuracy hypothesis **h** for f (under $U_{q^{-1}(1)}$)
- 4. Sample from $\,U_{g^{-1}(1)}\,$ till get point $\,x\,$ where $\,h(x)=1$, and output it.

How it works, cont.

Recall that to carry out hypothesis testing, we need samplers & evaluators for our hypothesis distributions $U_{h_i^{-1}(1)}$ Now some hypotheses h_i may be very sparse...

• Use approximate counting to estimate $|h_i^{-1}(1)|$

As before,
$$U_{h_i^{-1}(1)}(x) = \begin{cases} 1/|h_i^{-1}(1)| & \text{if } h_i(x) = 1 \\ 0 & \text{if } h_i(x) = 0 \end{cases}$$

so we get (approximate) evaluator.

• Use **approximate sampling** to get samples from $h_i^{-1}(1)$.

Recap: a general method

Theorem: Let C be a class of Boolean functions such that:

- (i) C is **efficiently SQ-learnable**;
- (ii) $\mathcal C$ has a densifier with an output in $\mathcal C$; and
- (iii) C has **efficient approximate counting** and **sampling** algorithms.

Then there is an **efficient distribution learning** ${f algorithm}$ for ${\cal C}$.

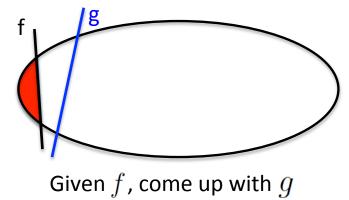
Back to halfspaces: what have we got?

- Saw earlier we have SQ learning [BlumFriezeKannanVempala97]
- [MorrisSinclair99, Dyer03] give approximate counting and sampling.

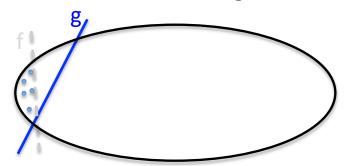
So we have all the necessary ingredients....except a densifier.

Reminiscent of [Dyer03] "dart throwing" approach to approximate counting – but in that setting, we are given f

Approximate counting setting:



Densifier setting:



Can we come up with a suitable g given only samples from $U_{f^{-1}(\Phi)}$?

A densifier for halfspaces

Theorem: There is an algorithm running in time $poly(n/\epsilon)$ such that for any halfspace f, if the algorithm gets as input \widehat{p} such that $\widehat{p}/p \in [1-\epsilon, 1+\epsilon]$ and access to $U_{f^{-1}(1)}$, it outputs a halfspace g with the following properties:

1.
$$\Pr_{x \in f^{-1}(1)}[g(x) \neq 1] \leq \epsilon$$
, and

2.
$$\Pr_{x \in U_n}[g(x) = 1] \le n^{10} \cdot p$$

Getting a densifier for halfspaces

Key ingredients:

- Online learner of [MaassTuran90]
- Approximate sampling for halfspaces [MorrisSinclair,Dyer03]

Towards a densifier for halfspaces

Recall our goals: 1.
$$\Pr_{x \in f^{-1}(1)}[g(x) \neq 1] \leq \epsilon$$

2.
$$\Pr_{x \in U_n}[g(x) = 1] \le n^{10} \cdot p$$

Fact: Let $S_+ \subseteq_R f^{-1}(1)$ be of size n^3/ϵ . Then, with probability $1-2^{-\Omega(n)}$, condition (1) holds for any halfspace g such that $S_+ \subseteq g^{-1}(1)$.

Proof: If (1) fails for a halfspace g, then $\Pr[S_+ \subseteq g^{-1}(1)] < (1-\epsilon)^{|S_+|}$. Fact follows from union bound over all (at most 2^{n^2} many) halfspaces g . \blacksquare

So ensuring (1) is easy – choose $S_+ \subseteq_R f^{-1}(1)$ and ensure S_+ is consistent with g.

How to ensure (2)?

Online learning as a two-player game

Imagine a two player game in which Alice has a halfspace f and Bob wants to learn f:

- i. Bob initializes S to the empty set
- ii. Bob runs a (specific polytime) algorithm $\mathcal A$ on the set S and returns halfspace h consistent with S
- iii. Alice either says "yes, $h \equiv f$ " or else returns an $x \in \{0,1\}^n$ such that $h(x) \neq f(x)$
- iv. Bob adds (x, f(x)) to S and returns to step (ii).

Guarantee of the game

Theorem: [MaassTuran90] There is a specific algorithm \mathcal{A} that Bob can run so that the game terminates in at most $O(n^5)$ rounds. At the end, either $h \equiv f$ or Bob can certify that there is no halfspace meeting all the constraints.

(Algorithm \mathcal{A} is essentially the ellipsoid algorithm.)

Q: How is this helpful for us?

A: Bob seems to have a powerful strategy ⁽²⁾ We will exploit it.

Using the online learner

- Choose S_+ as defined earlier. Start with $S=\phi$.
- "Bob" simulation: i^{th} stage Run Bob's strategy and return h_i consistent with S.
- "Alice" simulation: If $h_i(x) = 0$ for some $x \in S_+$, then return x.
 - Else, if $|h_i^{-1}(1)| \le n^{10} \cdot \widehat{p} \cdot 2^n$ (approx counting) then we are done and return h_i .
 - Else use **approx sampling** to randomly choose a point $x \in h_i^{-1}(1)$ and return x.

Why is the simulation correct?

- If $h_i(x) = 0$ for $x \in S_+$, then the simulation step is indeed correct.
- The other case in which Alice returns a point is that $|h_i^{-1}(1)| \ge n^{10}|f^{-1}(1)|$. This means that the simulation at every step is correct with probability $1-n^{-10}$.
- Since the simulation lasts $O(n^5)$ steps, all the steps are correct with probability $1-n^{-5}$.

Finishing the algorithm

• Provided the simulation is correct, h_i which gets returned always satisfies the conditions:

1.
$$\Pr_{x \in f^{-1}(1)}[g(x) \neq 1] \leq \epsilon$$

2.
$$\Pr_{x \in U_n}[g(x) = 1] \le n^{10} \cdot p$$

So, we have a densifier – and a distribution learning algorithm – for halfspaces.

DNFs

Recall general result:

Theorem: Let C be a class of Boolean functions such that:

- (i) C is **efficiently SQ-learnable**;
- (ii) $\mathcal C$ has a **densifier** with an output in $\mathcal C$; and
- (iii) \mathcal{C} has **efficient approximate counting** and **sampling** algorithms.

Then there is an **efficient distribution learning algorithm** for $\mathcal C$.

Get (iii) from [KarpLubyMadras89]. What about densifier and SQ learning?

Sketch of the densifier for DNFs

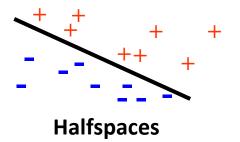
- Consider a DNF $f = T_1 \lor \cdots \lor T_s$. For concreteness, suppose each $|T_i| = \sqrt{n}$.
- Key observation: for each i, $\Pr_{x \sim U_{f^{-1}(1)}}[T_i(x) = 1] \geq 1/s$.
 - So $\Pr[2 \log n]$ consecutive samples from $U_{f^{-1}(1)}$ all satisfy same T_i] is $\geq 1/s^{2 \log n} = 1/n^{2 \log s}$.
- If this happens, whp these $2\log n$ samples completely identify T_i
- The densifier finds candidate terms in this way, outputs OR of all candidate terms.

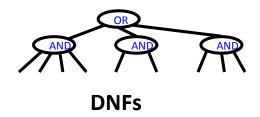
SQ learning for DNFs

- Unlike halfspaces, no efficient SQ algorithm for learning DNFs under arbitrary distributions is known; best known runtime is $2^{\tilde{O}(n^{1/3})}$.
- But: our densifier identifies $n^{2\log s}$ "candidate terms" such that f is (essentially) an OR of at most s of them.
- Can use noise-tolerant SQ learner for sparse disjunctions, applied over $n^{2\log s}$ "metavariables" (the candidate terms).
- Running time is poly(# metavariables).

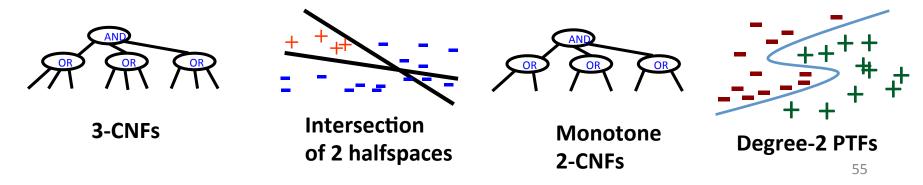
Summary of talk

- New model: Learning distribution $\,U_{f^{-1}(1)}\,$
- "Multiplicative accuracy" learning
- Positive results:





Negative results:



Future work

Extensions to agnostic / semi-agnostic setting?

Other formalizations of "simple distributions"?

 Beating the "curse of dimensionality" for ddimensional histogram distributions?

Thank you!

Hardness results

Secure signature schemes

- G: (randomized) key generation algorithm; produces (pk, sk)key pairs
- S: signing algorithm; $\sigma = S(m, sk)$ is signature for skmessage $V \text{ using secret key } \cdot V(m,pk,\sigma) = 1$ • $\sigma = S(m,sk)$ algorithm;

Security guarantee: Given signed mess
$$(m',\sigma')$$
 $V(m',pk,\sigma')=1$ thm can pr m' ce such that for a new

Connection with our problem

Intuition: View $U_{f^{-1}(1)}$ as uniform distribution over **signed** messages S(m,sk).

If, given signed messages, you can (approximately) sample from $U_{f^{-1}(1)}$, this means you can generate new signed messages – contradicts security guarantee!

Need to work with a refinement of signature schemes – unique signature schemes [MicaliRabinVadhan99] – for intuition to go through.

Unique signature schemes known to exist under various crypto assumptions (RSA', Diffie-Hellman', etc.)

Signature schemes + Cook-Levin

Lemma: For any secure signature scheme, there is a secure signature scheme with the same security where the verification algorithm is a 3-CNF.

 $f^{-1}(1)$ corresponds to $V^{-1}(1)$, so security of signature scheme \rightarrow no distribution learning algorithm for 3-CNF.

More hardness

Same approach yields hardness for intersections of 2 halfspaces & degree-2 PTFs. (Require parsimonious reductions, efficiently computable/invertible maps between sat. assignments of \mathcal{C} and sat. assignments of 3-CNF.)

For **monotone 2CNFs**: use the "Blow-up" reduction used in proving hardness of approximate counting for monotone-2-SAT. Roughly, most sat. assignments of monotone-2-CNF correspond to sat. assignments of 3-CNF.