A complexity theoretic
perspective on density estimation

Rocco A. Servedio
Columbia University

Anindya De llias Diakonikolas
UC Berkeley/IAS U. Edinburgh

STOC workshop
May 31, 2014



Learning Probability Distributions

Big topic in statistics literature (“density estimation”) for decades

Exciting work in the last decade+ in TCS, largely on learning
continuous distributions (mixtures of Gaussians & more)

This talk: distribution learning from a complexity theoretic
perspective

— What about distributions over the hypercube?

— Can we formalize intuition that “simple distributions are easy to
learn”?

— Insights into classical density estimation questions



What do we mean by
“learn a distribution™?

* Unknown target distribution D

Algorithm gets i.i.d. draws from D

* With probability 9/10, must output (a sampler for a)
distribution D’ such that statistical distance between

D and D’ is small:
drv(D,D') = %ZT D(z) —D'(x)] <¢

(Natural analogue of Boolean function learning.)



Previous work: [KRRSS94]

* Looked at learning distributions over {0,1}" in terms of
n-output circuits that generate distributions:

OUtPUL Xqeeveeerunens X, distributed according to D

=\

iINPUt Z;eoveeeeiiiiieeiee, z,, uniform over {0,1}™

. showed it’s hard to learn even very simple
distributions from this perspective: already hard even
if each output bit is a 4-junta of input bits.



This work: A different perspective

Our notion of a “simple” distribution over {0,1}":
uniform distribution over satisfying assignments of a
“simple” Boolean function.

What kinds of Boolean functions can we learn from
their satisfying assighments?

Want algorithms that have polynomial runtime and # of
samples required.



What are “simple” functions?

Halfspaces:

DNF formulas:

f(l’) = Sigll(’lb’lfl?l = Wy Ty — 9)

<>
CAND



Simple functions, cont.

(_AND)
3-CNF formulas: o) Qor) (o)

X; X3

x|
x|

3 X7 X5 X, X Xy

Monotone 2-CNF:



Yet more simple functions

Low-degree polynomial threshold
functions:

f(z) =sign(p(z1,...,2n))

Intersections of k halfspaces:




The model, more precisely

 Let C be a fixed class of Boolean functions over {0, 1}"

* There is some unknown f & C. Learning algorithm
sees samples drawn uniformly from f~*(1).
Target distribution: Uf—l(l) :

e Goal : With probability 9/10, output a sampler for a
hypothesis distribution 7D such that

dTv(D, (]f—l(l)) < ¢

We’'ll call this a distribution learning algorithm for C .

9



Relation to function learning

Q: How is this different from learning C (function
learning) under the uniform distribution?

A: Only get positive examples. Some other ways:

* (not so major) Output a hypothesis distribution
rather than a hypothesis function

e (really major) Much more demanding guarantee
than usual uniform-distribution learning.

10



Example: Halfspaces

Usual uniform-distribution model for learning functions:
Hypothesis § allowed to be wrong on £2" points in {0, 1}".

1n

f= sign(zn: r; —3n/4)
i=1 _

Pr [f(x) # 0] = 27

xzeU,

On

For highly biased target function like f, constant-0 function is
a fine hypothesis for any € = 1/poly(n).

11



A stronger requirement

Our distribution-learning model: “constant-0 hypothesis” is meaningless!

In this example, for U},-1(q) to be a good hypothesis distribution,
f7H(1)Ah=Y(1) mustbeonlya 2" fraction of {0, 1}".

On

Essentially, we require hypothesis function with multiplicative rather
than additive € -accuracy relative to f.

12



Usual function-

learning setting Our setting
Given: random labeled Given: draws from U¢-1(1), must
examples from {0, 1}", must Output: hypothesis D with the
Output: hypothesis / such that following guarantee :
xgl} f(z) #£ h(x)] <e€ drv(D,Uf-1(1)) < €

h must satisfy

If both regions are small, this A B




Brief motivational digressions:
(1) Real-world language learning

People typically learn new languages by being
exposed to correct utterances (positive
examples), which are a sparse subset of all
possible vocalizations (all examples).

Goal is to be able to generate new correct
utterances (generate draws from a distribution
similar to the one the samples came from).

14



(2) Connection to continuous density
estimation questions

A basic question in continuous 1-dimensional density estimation:
Target distribution (say over [0,1]) is a “k-bin histogram” -- pdf is
piecewise constant with k pieces.

k=5

0 1

Easy to learn such a distribution with poly(k,1/e) samples and runtime.

15



Multi-dimensional histograms

Target distribution over [0,1]9 is specified by k hyper-rectangles that
cover [0,1]9; pdf is constant within each rectangle.

(1,1)

d=2, k=5

(0,0)

Question: Can we learn such distributions without incurring the
“curse of dimensionality”? (Don’t want runtime, # samples to be
exponential in d)

16



Connection with our problem

Our “learning from satisfying assignments” problem for the class
C = {all k-leaf decision trees over d Boolean variables} is a (very)
special case of learning k-bin d-dimensional histograms.

One of the k hyper- G Set of inputs reaching one of
rectangles the k decision tree leaves

Rectangle with 0 weight < decision tree leaf that’s
in the distribution labeled 0

For this special case, we beat the “curse of dimensionality” and
achieve runtime d©(logk),

17



Results



Positive results

Theorem 1: We give an efficient distribution learning algorithm for
C = { halfspaces }.
Runtime is poly(n, 1/¢). < ot

Theorem 2: We give a (pretty) efficient distribution learning algorithm for

(C = { poly(n)-term DNFs }. <«
Runtime is quasipoly(n, 1/¢). Gy Cad e

X, X3 Xs X X3 Xs X, X¢ X,

Both results obtained via a general approach, plus (C -specific
work.




Negative results

Assuming crypto-hardness (essentially RSA), there are
no efficient distribution learning algorithms for:

Intersections of two halfspaces =

Degree-2 polynomial threshold functions

CAND)
3—CNFs, Cord  Cor) <«
oreven // |

X, X3 Xs X3 X; Xg X, X X,

C_AND)
Monotone 2-CNFs Cor) Cor) Cor) CORY

X; X3 X3 X3 X3 Xs X Xy 20




Rest of talk

 Positive results

* General approach, illustrated through specific
case of halfspaces

e Touch on DNFs

21



Learning halfspace distributions

1n

Given positive examples drawn
uniformly from f~*(1) for
some unknown halfspace f,

+
+7
+
+3

unknown f(z) = sign(w - x — )

We need to (whp) output a
sampler for a distribution
that’s close to Uf—l(l)-

On

22



Let’s fantasize

Suppose somebody gave us .

Even then, we need to
output a sampler for a
distribution close to
uniform over f~1(1).

+74

+
+3

known f(x) = sign(w -z —6)

0" Is this doable? Yes.

23



Approximate sampling
for halfspaces

Theorem: Given f(z) = sign(w - x — 6) over {0,1}",

[MorrisSinclair99]. sophisticated MCMC analysis

[Dyer03]. elementary randomized
algorithm & analysis using
“dart throwing”

can return a uniform point from f~*(1) in time
poly(n,log(1/¢)) (with failure probability <)

Of course, in our setting we are not given f.

But, we should expect to use (at least) this machinery

for our general problem. 24




A potentially easier case...?

For approximate sampling problem (where we'’re given f ),
problem is much easier if p =|f~%(1)|/2" is large: sample
uniformly & do rejection sampling.

\

{0,1}"

Maybe our problem is easier too in this case?

In fact, yes. Let's consider this case first.

25



Halfspaces: the high-density case

- Let p=[~(1)]/2"

* We will first consider the case that p > n™°.

 We'll solve this case using Statistical Query
learning & hypothesis testing for distributions.

26



First Ingredient for the
high-density case: SQ

Statistical Query (SQ) learning model:

o SQoracle Oy p(-) given poly-time computable
x - {0,1}" x {0,1} — {0, 1}, outputs

E..p[x(z, f(z))] £ 7 where 7 = n= ),

o An algorithm A is said to be a SQ learner for
C (under distribution D) if A canlearn f given

accessto O p(-)

27



SQ learning for halfspaces

Good news: [BlumFriezeKannanVempala97] gave an
efficient SQ learning algorithm for halfspaces.

o—

Of course, to run it, need access to oracle for O p(+)
for the unknown halfspace f.

So, we need to simulate this given our examples from

U1

28



The high-density case: first step

Lemma: Given access to uniform random samples from
Uf—l(l) and ﬁ such that |p — p\ < T, queries to Of,Un
can be simulated up to error 27 in time poly(n/T) .

Proof sketch: E..p[x(z, f(z))] =

Exer [X(Iv _1)] + Ea:NDde [X(I: 1) o X(mv _1)] ' EPIND[f(m) - 1] B

Estimate using samples , _ D=
i Estimate using samples
from{0, 1}
from Uf—1(1)

29




The high-density case: first step

Lemma: Given access to uniform random samples from
Uf—l(l) and ﬁ such that |p — p\ < T, queries to Of,Un
can be simulated up to error 27 in time poly(n/7) .

Recall promise: p > n~ © (p = ‘f_1(1)|/2n)

2c

Additionally, we assume that we have p =p £ n"~

[ A halfsp%J

Lemma lets us use the halfspace SQ-learner to get h such

that xlejll}n[h(x) # f(il?)] < n—2c

30




Handling the high-density case

e Since P(IJ‘ (h(z) # f(z)] <n °°, have that
O dTv(Uh 1), Up-1(1)) <n”™°
° 1) > (1/2) 27"

* Hence using rejection sampling, we can easily
sample Up-1(1).

Caveat : We don’t actually have an estimate p
for |f=1(1)]/2"™.

31



Ingredient #2: Hypothesis testing

Try all possible values of P in a sufficiently fine

multiplicative grid 1 1
P gria L5 - -

We will get a list of candidate distributions

Uhl_l(l), .., Up -1y such that at least one of
them is e-close to Uys-1(y).

Run a “distribution hypothesis tester” to return
Uhi—l(l) which is O¢e- close to Uf—l(l) :

32



Distribution hypothesis testing

Theorem: Given

e Sampler for target distribution l/j

* Approximate samplers for distributions D, ..., D,,

* Approximate evaluation oracles for Dy, ..., D,,
» Promise: Ji € [m] dpy(D;, D) < e

Hypothesis tester guarantee: Outputs D), such that
dryv(Dj, D) < 6e intime poly(m, 1/¢)

Having evaluators as well as samplers for the
hypotheses is crucial for this. 33




Distribution hypothesis testing, cont.

We need samplers & evaluators for our hypothesis
distributions Uy -1 4,

All our hypotheses are dense, so can do approximate |
counting easily (rejection sampling) to estimate \hi—l(l)\

/IR if h(w) =1
0 if hi(x) =0

So we get the required (approximate) evaluators.

Note that Uh.._l(l)<x) —

\

Similarly, (approximate) samples are easy via rejection
sampling.

34



Recap

So we handled the high-density case using

e SQ learning (for halfspaces)
* Hypothesis testing (generic).

(Also used approximate sampling & counting, but
they were trivial because we were in the dense
case.)

Now let’s consider the low-density case (the
interesting case).



Low density case: A new ingredient

New ingredient for the low-density case:
A new kind of algorithm called a densifier.

* Input: psuchthat p/p € [1 —¢,1+ €], and
samples from Ujz—1(q)

* Output: A function g_such that:

- Pr o g(z) #1] <e :
zef~1(1) For simplicity, assume that

c e C (like 1)
- Prlgl@)=1<ns.p | IECM

xelU,,

36



Densifier illustration

Pr |(g(z) # 1] <e:
:cef—l(l)[ () 71 f71(1)\ g (1) is tiny compared to f~*(1)

Samples from

Up-101)

Good estimate f?\

P — 1] < n-p: D
xegn[g(iv) ] <n®-p

g (1) is not too large compared to f~'(1)

37



Low-density case (cont.)

To solve the low-density case, we need approximate
sampling and approximate counting algorithms for the
class C.

This, plus previous ingredients (SQ learning, hypothesis
testing, & densifier) suffices: given all these
ingredients, we get a distribution learning algorithm

for (.

38



How does it work?

The overall algorithm: (recall that f cC)

| Needs good estimate p of p]

2. Use approximate sampling algorithm for g to get samples
from Ug—l(l)

3. Run SQ-learner for { under distribution U,-1(1) to get
hypothesis /i for f

4. Sample from U 1) till get & such that h(x) = 1;outp

\ this .

/1. Run densifier to get ¢ € C \

ut

/

Repeat with different guesses for D, & use hypothesis testing to

choose Uh_—l(l) that’s close to Uf—l(l)

39



A picture of one stage

Note: This all assumed we have a good estimate P

1. Using samples
from Uf—l(l),
run densifier to
getg

2. Run approximate uniform -
generation algorithm to get uniform '

positive examples of g

3. Run SQ-learner on distribution Ug_1 1 4. Sample from Ug—l(l) till get point =
to get high-accuracy hypothesis h for f where h(;p) — 1, and output it.

(Under Ug_l(l) ) 40



How It works, cont.

Recall that to carry out hypothesis testing, we need samplers &
evaluators for our hypothesis distributions U L(1)

Now some hypotheses /; may be very sparse...

 Use approximate counting to estimate ]hz_l(l)|
/IR L)) hi(a)
0 if h;(x)

so we get (approximate) evaluator.

As before, Uh._l(l)(x) =

* Use approximate sampling to get samples from h;l(l) :

41



Recap: a general method

Theorem: Let C be a class of Boolean functions
such that:

(i) Cis efficiently SQ-learnable;
(ii) C has a densifier with an output in C; and

(iii) C has efficient approximate counting and
sampling algorithms.

Then there is an efficient distribution learning
algorithm for C .




Back to halfspaces: what have we got?

* Saw earlier we have SQ learning [BlumFriezeKannanVempala97]

 [MorrisSinclair99,Dyer03] give approximate counting and
sampling.

So we have all the necessary ingredients....except a densifier.

Reminiscent of [Dyer03] “dart throwing” approach to approximate
counting — but in that setting, we are given f

Approximate counting setting: Densifier setting:
f | > | >
Given f, come up with ¢ Can we come up with a suitable g

given only samples from Uf_l () ?



A densifier for halfspaces

Theorem: There is an algorithm running in time
pOly(n/e) such that for any halfspace f, if the
algorithm gets as input p such that

p/p € [1 —e,1+ €| and access to Uf_1<1> it
outputs a halfspace g with the following
properties :

1'xeﬁ11<1>[9<x) +1] <, and

_ 10 |
2. xglj‘n[g(x) =1]<n" -p




Getting a densifier for halfspaces

Key ingredients:

o Online learner of [MaassTuran90]

o Approximate sampling for halfspaces
[MorrisSinclair,Dyer03]

45



Towards a densifier for halfspaces

Recall ourgoals: 1. Pr lol)#1<e

2. xgx}n[g(x) =1]<n'"p

Fact: Let 5, Cp f_lgl)) be of size ’72..,3/6 . Then, with
probability 1 — 27 *(") condition (1) holds for any
halfspace ¢ suchthat S, C ¢~ *(1).

Proof: If (1) fails for a halfspace g, then Pr[S Q)g/_l(l)] < (1—e)+l,

Fact follows from union bound over all (at most 2" many) halfspaces §.

So ensuring (1) is easy — choose S. Cr f~'(1) and ensure S is
consistent with g.
How to ensure (2)? 46




Online learning as a two-player game

Imagine a two player game in which Alice has a
halfspace f and Bob wants to learn f:

i. Bobinitializes S to the empty set

ii. Bob runs a (specific polytime) algorithm A
on the set S and returns halfspace i
consistent with S

iii. Alice either says “yes, h = f“ or else returns
an © € {0, 1}" such that h(z) # f(x)

iv. Bobadds(z, f(z)) toS andreturnsto
step (ii).

47



Guarantee of the game

Theorem: [VlaassTuran90| There is a specific algorithm
A that Bob can run so that the game terminates in at
most O(n°) rounds. At the end, either i = | or Bob
can certify that there is no halfspace meeting all the

constraints.

(Algorithm A is essentially the ellipsoid algorithm.)

Q: How is this helpful for us ?
A: Bob seems to have a powerful strategy © We will

exploit it.




Using the online learner

Choose S as defined earlier. Start with.S = ¢.

“Bob” simulation: i!"stage — Run Bob’s strategy
and return h; consistent with S.

“Alice” simulation: If h;(x) = 0 for some
r € Sy then return .

— Else, if |h; H(1)] < n'' - p- 2" (approx counting)
then we are done and return h;.

— Else use approx sampling to randomly choose a
point € h; '(1) and return z.

49



Why is the simulation correct?

* If h;(x) =0 for x € Sy, then the simulation
step is indeed correct.

 The other case in which Alice returns a point
is that |h; " (1)] > n'°|f~1(1)|. This means
that the simulation at every step is correct
with probability 1 — n~19.

e Since the simulation lasts O(n”) steps, all the
steps are correct with probabilityl — n=°.

50



Finishing the algorithm

* Provided the simulation is correct, i, which gets
returned always satisfies the conditions:

1. Pr x) £ 1| <e
wef_l(l)[g( ) # 1] <

2. P — 1] < nlo.
JPrgle) =1 <n"-p

So, we have a densifier —and a distribution learning
algorithm — for halfspaces.

51



DNFs

Recall general result:

Theorem: Let C be a class of Boolean functions such that:
(i) C is efficiently SQ-learnable;
(i) C has a densifier with an output in C ; and

(iii) C has efficient approximate counting and sampling
algorithms.

Then there is an efficient distribution learning algorithm for C.

Get (iii) from [KarpLubyMadras89].
What about densifier and SQ learning?




Sketch of the densifier for DNFs

Considera DNF f =1}V ---V 1. For concreteness,
suppose each |T;| = \/n.

Key observation: for each i, PI}z:NUf_l(l)[T«z:(flf) =1]>1/s.

So Pr[2]logn consecutive samples from U1 (4 all
satisfy same 7} Jis > 1/s2le" = | /p2loss,

I this happens, whp these 2logn samples completely
identify 7;

The densifier finds candidate terms in this way, outputs OR
of all candidate terms.

53



SQ learning for DNFs

Unlike halfspaces, no efficient SQ algorithm for learning

DNFs under arbitrary distributions is known; best known
~ 1/3

runtime is 20("""%)

But: our densifier identifies n2!°¢% “candidate terms” such
that f is (essentially) an OR of at most S of them.

Can use noise-tolerant SQ learner for sparse disjunctions,
applied over n?°8s “metavariables” (the candidate

terms).

54

Running time is poly(# metavariables).



Summary of talk

New model: Learning distribution U;-1q)

“Multiplicative accuracy” learning

Positive results:

+
+ +
- ++

Halfspaces

Negative results:

Ty

AN +
Cornd Coro Cory —

3-CNFs

Intersection
of 2 halfspaces

Monotone
2-CNFs

+ o+

Degree-2 PTFs
55



Future work

* Extensions to agnostic / semi-agnostic setting?
* Other formalizations of “simple distributions”?

* Beating the “curse of dimensionality” for d-
dimensional histogram distributions?



Thank you!

57



Hardness results



Secure signature schemes

« (§: (randomized) key generation algorithm; produces(pk, sk)
key pairs

* S signing algorithm; o = S(m, sk) is signature for
massage sk
|/ using secret key . V(m p/{ (7) — 1

* 0 = S(m, sk)algorithm; o if

Security guarantee: Given signed mess(m/’, o)
V(m', pk,o’) = 1thm can pran’ice such that
for a new

59



Connection with our problem

Intuition: View U ¢-1(1y as uniform distribution over signed
messages S(m, sk ).

If, given signed messages, you can (approximately) sample from
Uf—1(1), this means you can generate new signed messages —
contradicts security guarantee!

Need to work with a refinement of signature schemes — unique
signature schemes [MicaliRabinVadhan99] — for intuition to go
through.

Unique signature schemes known to exist under various crypto
assumptions (RSA’, Diffie-Hellman’, etc.)

60



Signhature schemes + Cook-Levin

Lemma: For any secure signature scheme, there is
a secure signature scheme with the same security
where the verification algorithm is a 3-CNF.

f~1(1) corresponds to V(1) so security of
signature scheme = no distribution learning
algorithm for 3-CNF.




More hardness

Same approach yields hardness for intersections of 2
halfspaces & degree-2 PTFs. (Require parsimonious
reductions, efficiently computable/invertible maps
between sat. assignments of C and sat. assignments
of 3-CNF.)

For monotone 2CNFs: use the “Blow-up” reduction
used in proving hardness of approximate counting for
monotone-2-SAT. Roughly, most sat. assignments of
monotone-2-CNF correspond to sat. assignments of
3-CNF.



