Robust List Decoding

Daniel M. Kane

Departments of CS/Math
University of California, San Diego
dakane@ucsd.edu

June 23rd, 2019
Outline

- Problem Setup
- Multifilter Idea
- Basic Algorithm
- Application: Mixtures of Spherical Gaussians
Robust Mean Estimation

- Gaussian \(G = N(\mu, I) \subset \mathbb{R}^n \)
Robust Mean Estimation

- Gaussian $G = N(\mu, I) \subset \mathbb{R}^n$
- $X = (1 - \epsilon)G + \epsilon E$ for small ϵ
Robust Mean Estimation

- Gaussian $G = N(\mu, I) \subset \mathbb{R}^n$
- $X = (1 - \epsilon)G + \epsilon E$ for small ϵ
- Given m independent samples x_i of X
Robust Mean Estimation

- Gaussian $G = N(\mu, I) \subset \mathbb{R}^n$
- $X = (1 - \epsilon)G + \epsilon E$ for small ϵ
- Given m independent samples x_i of X
- Learn Approximation to μ
Very Robust Mean Estimation

- Gaussian $G = \mathcal{N}(\mu, I) \subset \mathbb{R}^n$
Very Robust Mean Estimation

- Gaussian $G = N(\mu, I) \subset \mathbb{R}^n$
- $X = \alpha G + (1 - \alpha)E$ for small α
Very Robust Mean Estimation

- Gaussian \(G = N(\mu, I) \subset \mathbb{R}^n \)
- \(X = \alpha G + (1 - \alpha)E \) for small \(\alpha \)
- Given \(m \) independent samples \(x_i \) of \(X \)
Very Robust Mean Estimation

- Gaussian $G = N(\mu, I) \subset \mathbb{R}^n$
- $X = \alpha G + (1 - \alpha)E$ for small α
- Given m independent samples x_i of X
- Learn Approximation to μ
Problem

What if $X = \sum_i \alpha_i G_i$? Which is the “real” G?
Problem

What if $X = \sum_i \alpha_i G_i$? Which is the “real” G?

List decoding: return several hypotheses h_i with guarantee that at least one is close.
Problem

What if \(X = \sum_i \alpha_i G_i \)? Which is the “real” \(G \)?

List decoding: return several hypotheses \(h_i \) with guarantee that at least one is close. Considered by [Charikar-Steinhardt-Valiant ’17].
Lower Bounds

- Suppose $X = N(0, I)$.
Lower Bounds

- Suppose $X = N(0, I)$.
- Any $\alpha N(\mu, I)$ with $|\mu| \leq \sqrt{\log(1/\alpha)} / C$ nearly hides under X (up to $\alpha^{\Omega(C)}$ error).
Lower Bounds

- Suppose $X = \mathcal{N}(0, I)$.
- Any $\alpha \mathcal{N}(\mu, I)$ with $|\mu| \leq \sqrt{\log(1/\alpha)}/C$ nearly hides under X (up to $\alpha^{\Omega(C)}$ error).
- Adding a bit to X, can hide $\alpha^{-\Omega(C)}$ such Gaussians.
Proposition

There is no algorithm that returns \(\text{poly}(1/\alpha) \) many hypothesis so that with at least 2/3 probability, at least one is within \(o(\sqrt{\log(1/\alpha)}) \) of the true mean.

- Let \(X \) be the slightly modified Gaussian.
- There are \(\alpha^{-\Omega(C)} \) possibilities, no two within \(\sqrt{\log(1/\alpha)}/C \).
- Algorithm cannot tell which possibility is correct, and must return a hypothesis for each.
Lower Bounds

Proposition

There is no algorithm that returns $\text{poly}(1/\alpha)$ many hypothesis so that with at least $2/3$ probability, at least one is within $o(\sqrt{\log(1/\alpha)})$ of the true mean.

- Let X be the slightly modified Gaussian.
- There are $\alpha^{-\Omega(C)}$ possibilities, no two within $\sqrt{\log(1/\alpha)}/C$.
- Algorithm cannot tell which possibility is correct, and must return a hypothesis for each.

We will show $\tilde{O}(1/\sqrt{\alpha})$ error. Next talk: near optimal error.
Moderately Robust Algorithm

With few errors algorithm looks like:

1. Compute Covariance
2. If large eigenvalue produce filter and repeat
3. Return sample mean
Moderately Robust Algorithm

With few errors algorithm looks like:

1. Compute Covariance
2. If large eigenvalue produce filter and repeat
3. Return sample mean

Would like to do the same thing in the high noise case. It *almost* works.
Multifilters

If $\alpha < 1/2$, might not be able to tell where the real samples are.
Multifilters

If $\alpha < 1/2$, might not be able to tell where the real samples are.

Split into several overlapping sets of samples S_i
Multifilters

If $\alpha < 1/2$, might not be able to tell where the real samples are.

Split into several overlapping sets of samples S_i so that:

- At least one S_i has higher fraction of good samples than S
- $\sum |S_i|^2 \leq |S|^2$
Split into cases

- **Case 1:** Almost all of the samples are in the same small interval.
- **Case 2:** There are clusters of samples far apart from each other.
Filter Case

Suppose that there is an interval I containing all but an $\alpha/3$-fraction of samples.
Filter Case

Suppose that there is an interval I containing all but an $\alpha/3$-fraction of samples.

- With high probability, true mean in I.
Filter Case

Suppose that there is an interval I containing all but an $\alpha/3$-fraction of samples.

- With high probability, true mean in I.
- All but a tiny fraction of good samples within $O(\sqrt{\log(1/\alpha)})$ of I.
Filter Case

Suppose that there is an interval I containing all but an $\alpha/3$-fraction of samples.

- With high probability, true mean in I.
- All but a tiny fraction of good samples within $O(\sqrt{\log(1/\alpha)})$ of I.
- Unless variance is $O(|I|^2 + \log(1/\alpha))$, at most an α^2-fraction of removed samples were good.
Multifilter Case

Suppose that there is an interval I with at least an $\alpha/6$-fraction of samples on either side of it.
Suppose that there is an interval I with at least an $\alpha/6$-fraction of samples on either side of it.

- Find some x, let $S_1 = \{\text{samples } \leq x + 10 \sqrt{\log(1/\alpha)}\}$, $S_2 = \{\text{samples } \geq x - 10 \sqrt{\log(1/\alpha)}\}$.

All but an α^2-fraction of removed samples (on the correct side) are bad:

- If $\mu \geq x$, all but α^3-fraction of good samples in S_2.
- If $\mu \leq x$, all but α^3-fraction in S_1.
- Always throw away at least $\alpha/6$ samples.

Need:

$|S_1|^2 + |S_2|^2 \leq |S|^2$.

D, Kane (UCSD)
List Decoding
June, 2019
Suppose that there is an interval I with at least an $\alpha/6$-fraction of samples on either side of it.

- Find some x, let $S_1 = \{\text{samples } \leq x + 10\sqrt{\log(1/\alpha)}\}$, $S_2 = \{\text{samples } \geq x - 10\sqrt{\log(1/\alpha)}\}$.

- All but an α^2-fraction of removed samples (on the correct side) are bad:
 - If $\mu \geq x$, all but α^3-fraction of good samples in S_2.
 - If $\mu \leq x$, all but α^3-fraction in S_1.
 - Always throw away at least $\alpha/6$ samples.
Multifilter Case

Suppose that there is an interval I with at least an $\alpha/6$-fraction of samples on either side of it.

- Find some x, let $S_1 = \{\text{samples} \leq x + 10\sqrt{\log(1/\alpha)}\}$, $S_2 = \{\text{samples} \geq x - 10\sqrt{\log(1/\alpha)}\}$.
- All but an α^2-fraction of removed samples (on the correct side) are bad:
 - If $\mu \geq x$, all but α^3-fraction of good samples in S_2.
 - If $\mu \leq x$, all but α^3-fraction in S_1.
 - Always throw away at least $\alpha/6$ samples.

- **Need:** $|S_1|^2 + |S_2|^2 \leq |S|^2$.
• Let $f(x)$ be the fraction of samples less than x.

...
Let $f(x)$ be the fraction of samples less than x. Need $x \in I$ so that $(1 - f(x))^2 + f(x + 20 \sqrt{\log(1/\alpha)})^2 \leq 1$.
Analysis

- Let $f(x)$ be the fraction of samples less than x.
- Need $x \in I$ so that $(1 - f(x))^2 + f(x + 20\sqrt{\log(1/\alpha)})^2 \leq 1$.
- Happens unless $f(x + 20\sqrt{\log(1/\alpha)}) \gg f(x)^{1/2}$.
Analysis

- Let \(f(x) \) be the fraction of samples less than \(x \).
- Need \(x \in I \) so that \((1 - f(x))^2 + f(x + 20\sqrt{\log(1/\alpha)})^2 \leq 1\).
- Happens unless \(f(x + 20\sqrt{\log(1/\alpha)}) \gg f(x)^{1/2} \).
- Good unless \(f(x + 20t\sqrt{\log(1/\alpha)}) \gg \alpha^{1/2^t} \), only works for \(t \ll \log \log(1/\alpha) \).
Let $f(x)$ be the fraction of samples less than x.

Need $x \in I$ so that $(1 - f(x))^2 + f(x + 20\sqrt{\log(1/\alpha)})^2 \leq 1$.

Happens unless $f(x + 20\sqrt{\log(1/\alpha)}) \gg f(x)^{1/2}$.

Good unless $f(x + 20t\sqrt{\log(1/\alpha)}) \gg \alpha^{1/2t}$, only works for $t \ll \log \log(1/\alpha)$.

Can find such sets unless $|I| = O(\sqrt{\log(1/\alpha)} \log \log(1/\alpha))$.
General Situation

Can create a filter or multifilter if either:

- No interval I of length $O(\sqrt{\log(1/\alpha) \log \log(1/\alpha)})$ contains all but an $\alpha/3$-fraction of samples.
- An interval I of length $O(\sqrt{\log(1/\alpha) \log \log(1/\alpha)})$ contains all but an $\alpha/3$-fraction of samples, and the variance is $\Omega(|I|^2)$.

Proposition

If the variance in some direction is more than a sufficient multiple of $\log(1/\alpha)$ (with a slight refinement of the argument) then we can find at most two sets of samples S_i so that:

1. For some i, at most an $\alpha/2$-fraction of $S \setminus S_i$ is good samples.
2. $\sum_i |S_i|^2 \leq |S|^2$.

D, Kane (UCSD)
List Decoding
June, 2019
14 / 21
General Situation

Can create a filter or multifilter if either:

- No interval I of length $O(\sqrt{\log(1/\alpha) \log \log(1/\alpha)})$ contains all but an $\alpha/3$-fraction of samples.
- An interval I of length $O(\sqrt{\log(1/\alpha) \log \log(1/\alpha)})$ contains all but an $\alpha/3$-fraction of samples, and the variance is $\Omega(|I|^2)$.

Proposition

If the variance in some direction is more than a sufficient multiple of $\log(1/\alpha)$ (with a slight refinement of the argument) then we can find at most two sets of samples S_i so that

1. For some i, at most an α^2-fraction of $S \setminus S_i$ is good samples.
2. $\sum_i |S_i|^2 \leq |S|^2$.
Basic Multifilter Algorithm

1. Maintain several sets S_i of samples
2. For each i, compute empirical covariance matrix $\hat{\Sigma}_i$
3. If some $\hat{\Sigma}_i$ has a large eigenvalue
 - Create multifilter
 - Apply to S_i
 - Replace S_i by resulting sets in list
 - Go to step 2.
4. Return list of all μS_i
Analysis

At each step:

- At least one S_i has an α-fraction of good samples (in fact at least half of the total good samples)
- $\sum |S_i|^2 \leq |S|^2$
Analysis

At each step:

- At least one S_i has an α-fraction of good samples (in fact at least half of the total good samples)
- $\sum |S_i|^2 \leq |S|^2$

When return if:

- S_i has α-fraction of good samples AND
- $\hat{\Sigma}_i$ has no large eigenvalues
Analysis

At each step:

- At least one S_i has an α-fraction of good samples (in fact at least half of the total good samples)
- $\sum |S_i|^2 \leq |S|^2$

When return if:

- S_i has α-fraction of good samples AND
- $\hat{\Sigma}_i$ has no large eigenvalues

Then for all $|v| = 1$,

$$\log(1/\alpha) \gg \text{Var}(v \cdot S_i) \geq \alpha [v \cdot (\mu_{S_i} - \mu)]^2,$$

so

$$|\mu_{S_i} - \mu| = O(\alpha^{-1/2} \sqrt{\log(1/\alpha)}).$$
Learning Mixtures of Spherical Gaussians

Application: Let \(X = \frac{1}{k} \sum_{i=1}^{k} G_i \) with each \(G_i \sim N(\mu_i, I) \).
Learning Mixtures of Spherical Gaussians

Application: Let $X = 1/k \sum_{i=1}^{k} G_i$ with each $G_i \sim N(\mu_i, I)$. Want to learn the μ_i.
[Regev-Vijayraghavan ’17] show information-theoretically impossible to learn the means unless have separation $\Omega(\sqrt{\log(k)})$.

[Vempala-Wang ‘02] give algorithm with separation $\Omega(k^{1/4})$.

Question: How much separation is actually needed?
[Regev-Vijayraghavan ’17] show information-theoretically impossible to learn the means unless have separation $\Omega(\sqrt{\log(k)})$.

[Regev-Vijayraghavan ’17] show how to improve a rough approximation to μ_i to a precise one.
History

- [Regev-Vijayraghavan ’17] show information-theoretically impossible to learn the means unless have separation $\Omega(\sqrt{\log(k)})$.
- [Regev-Vijayraghavan ’17] show how to improve a rough approximation to μ_i to a precise one.
- [Vempala-Wang ’02] Give algorithm with separation $\Omega(k^{1/4})$.

Question: How much separation is actually needed?
[Regev-Vijayraghavan ’17] show information-theoretically impossible to learn the means unless have separation $\Omega(\sqrt{\log(k)})$.

[Regev-Vijayraghavan ’17] show how to improve a rough approximation to μ_i to a precise one.

[Vempala-Wang ’02] Give algorithm with separation $\Omega(k^{1/4})$.

Question: How much separation is actually needed?
Run list decoding algorithm. Since X is a noisy version of each G_i, our list contains approximations to all means with error D.

![Diagram showing circles and crosses representing list decoding process]
Clustering

Round samples to nearest hypothesis. With high probability samples round to one of hypotheses within $O(D)$ of the mean.

Cluster used hypotheses.

Recover original Gaussians to estimate means.
Clustering

Round samples to nearest hypothesis. With high probability samples round to one of hypotheses within $O(D)$ of the mean.
Clustering

Round samples to nearest hypothesis. With high probability samples round to one of hypotheses within $O(D)$ of the mean. Cluster used hypotheses.
Clustering

Round samples to nearest hypothesis. With high probability samples round to one of hypotheses within $O(D)$ of the mean.
Cluster used hypotheses.
Recover original Gaussians to estimate means.
If we can do list decoding with $\alpha = 1/k$ and error D, we can learn equal mixtures of k Gaussians with separation $\Omega(D)$.
Results

If we can do list decoding with $\alpha = 1/k$ and error D, we can learn equal mixtures of k Gaussians with separation $\Omega(D)$.

This Talk: We showed how to do this with $D \approx k^{1/2}$.
Next talk: We will show how to achieve $D = k^\epsilon$.

