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Basic Problem

Consider G = N(0,Σ) ⊂ Rn.

Given N samples, ε-fraction adversarially corrupted.

Learn approximation to Σ.
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Error Metric

How closely can we expect to learn Σ?

Can’t learn G to better than ε total variation.

dTV (N(0,Σ),N(0,Σ′)) = Θ(min(1, ‖Σ−1/2Σ′Σ−1/2 − I‖F )),

where
‖A‖2F =

∑
i ,j

A2
i ,j .

Hope get estimate Σ̂ so that:

‖Σ−1/2Σ̂Σ−1/2 − I‖F = Õ(ε).
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Basic Technique

Learning the mean of a Gaussian is equivalent to

Learning E[L(G )] for degree-1 polynomials L.

Learning the first moments of G .

Learning the covariance of a mean 0 Gaussian is equivalent to:

Learning E[p(G )] for even, degree-2 polynomials p.

Learning the second moments of G .

Learning E[GGT ].

We will use the last of these formulations.
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Robust Mean Estimation

We have reduced the problem to robustly estimating the mean of the
n2-dimensional random variable X = GGT . Since Cov(G ) = Σ = E[X ].

Let Σ = Cov(X ). If Σ� In2 , can learn E[X ] to L2 error (and thus, Σ to
Frobenius error) O(

√
ε).

So, what is Σ?
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Computing Σ

Suppose that yi are an orthonormal basis of linear functions of G .
I Cov(yi , yj ) = δi,j

yiyj (i 6= j) and (y2i − 1)/
√

2 form an orthonormal basis for even
degree-2 polynomials of G .

For matrix A,

AflatΣAflat = Var(A · X ) = Var(GTAG )

= 2

∥∥∥∥Σ1/2

(
A + AT

2

)
Σ1/2

∥∥∥∥2
F

.

So, for example, if Σ ≤ I , Σ� I .
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Bootstrapping

To learn Σ, need to learn E[X ] robustly.

Can learn E[X ] robustly, if we have an upper bound on Σ.

Can find Σ if we know Σ.

Bootstrap better and better approximations to Σ!
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Upper Bounds

Critical Point: If Σ ≤ Σ0, then Σ ≤ Σ0, i.e.

2

∥∥∥∥Σ1/2

(
A + AT

2

)
Σ1/2

∥∥∥∥2
F

≤ 2

∥∥∥∥Σ
1/2
0

(
A + AT

2

)
Σ
1/2
0

∥∥∥∥2
F

for all A.

So if Σ ≤ Σ0, then Cov(Σ
−1/2
0 XΣ

−1/2
0 )� In2 . Can get estimate Σ̂ with∥∥∥Σ

−1/2
0

(
Σ̂− Σ

)
Σ
−1/2
0

∥∥∥
F

= O(
√
ε).

So Σ̂ = Σ + O(
√
ε)Σ0.
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Iteration

Start with some upper bound Σ0 ≥ Σ (twice the sample covariance
works with high probability).

Get approximation Σ̂0.

Use Σ1 = Σ̂0 + C
√
εΣ0 as new upper bound.

Get approximation Σ̂1.

Use Σ2 = Σ̂1 + C
√
εΣ1 as new upper bound.

. . .

Have Σi+1 ≤ Σ + O(
√
ε)Σi . Eventually get Σ∞ ≤ Σ(1 + O(

√
ε)), and Σ̂

with
‖Σ−1/2Σ̂Σ−1/2 − I‖F = O(

√
ε).
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Error Idea

Have error O(
√
ε).

I Best possible using only bounds on Cov(X ).

Hope to do better given:
I Accurate approximation to Cov(X ).
I Tail bounds for X .

Simplifying Assumption: Σ ≈ I .
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Concentration

Standard Result: If p is a degree-2 polynomial with Var(p(G )) = O(1),
then

Pr(|p(G )− E[p(G )]| > T ) = O(exp(−Ω(T ))).

Therefore, X has exponential concentration about its mean in any
direction.
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Setup

Know Σ to error O(δ) in Frobenius norm

Compute Σ to error O(δ) in operator norm

Compute Σ to error O(
√
εδ + ε log(1/ε)) in Frobenius norm

Iterate to get error O(ε log(1/ε))
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Combine

Last Talk: If Σ = I , robustly learn µ.

This Talk: If µ = 0, robustly learn Σ.

Question: What if neither Σ nor µ is known?
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Trick

Consider differences of pairs of samples G2i − G2i+1.

Distributed as N(0, 2Σ), with 2ε error.

Use to learn Σ̂, an approximation to Σ with O(ε log(1/ε)) error.

Σ̂−1/2G ≈ N(Σ̂−1/2µ, I )
I Treat difference as O(ε log(1/ε)) adversarial error.
I Use to learn approximation to µ.

Final result: Learn distribution for G to Õ(ε) error in total variational
distance.
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Conclusion

We can learn the mean and covariance of an unknown Gaussian robustly.
In order to do so, we need to consider the 2nd and 4th moments of the
distribution in question. Later we will look into cases where even higher
moments are useful.
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