Robust Sparse Statistics

Daniel M. Kane

Departments of CS/Math University of California, San Diego dakane@ucsd.edu

June 23rd, 2019

D, Kane (UCSD)

< □ > < 同 > < 回 > < 回 > < 回 >

Overview

- Sparse Estimation
- Robust Version
- Convex Relaxation
- Further Directions

< ⊒ >

- (日)

Sparse Mean Estimation

- Given $X \sim N(\mu, I) \subset \mathbb{R}^d$ it takes $O(d/\epsilon^2)$ samples to learn μ to error ϵ .
- What if extra information is known about μ ? Can we do better?
 - In particular, what if μ is known to be sparse?

Sparse Mean Estimation

- Given $X \sim N(\mu, I) \subset \mathbb{R}^d$ it takes $O(d/\epsilon^2)$ samples to learn μ to error ϵ .
- What if extra information is known about μ ? Can we do better?
 - In particular, what if μ is known to be sparse?

If $|\mu|_0 \leq k$, then with $O(k \log(d)/\epsilon^2)$ samples suffices:

- Sample mean learns each coordinate to error $\epsilon/2\sqrt{k}$.
- Truncating to k largest coordinates $(\hat{\mu}_k)$ gives error ϵ .
- For $k \ll d$, this is a substantial improvement.

Robust Sparse Mean Estimation

What if we want to do this robustly? Can we learn μ up to error $\tilde{O}(\epsilon)$ in the presence of adversarial errors with o(d) samples?

Robust Sparse Mean Estimation

- What if we want to do this robustly? Can we learn μ up to error $O(\epsilon)$ in the presence of adversarial errors with o(d) samples?
- First considered by [Balakrishnan-Du-Li-Singh '17].

Non-Sparse Robust Mean Estimation:

- $\hat{\mu} ~\approx \mu$ unless there is a $|v|_2 = 1$ with $v \cdot (\hat{\mu} \mu)$ large.
- If such v exists, $Var(v \cdot X)$ large.
- Determine if there is a v with $|v|_2 = 1$ and $v^T \text{Cov}(X)v$ large.
 - If not, return $\hat{\mu}$
 - If so, filter on $v \cdot X$ and repeat

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Sparse Robust Mean Estimation:

- $\hat{\mu} \approx \mu$ unless there is a $|v|_2 = 1$ with $v \cdot (\hat{\mu} \mu)$ large.
- If such v exists, $Var(v \cdot X)$ large.
- Determine if there is a v with $|v|_2 = 1$ and $v^T \text{Cov}(X)v$ large.
 - If not, return $\hat{\mu}$
 - If so, filter on $v \cdot X$ and repeat

• = • •

Sparse Robust Mean Estimation:

- $\hat{\mu}_{k} \approx \mu$ unless there is a $|v|_{2} = 1$ with $v \cdot (\hat{\mu} \mu)$ large.
- If such v exists, $Var(v \cdot X)$ large.
- Determine if there is a v with $|v|_2 = 1$ and $v^T \text{Cov}(X)v$ large.
 - If not, return $\hat{\mu}$
 - If so, filter on $v \cdot X$ and repeat

• = • •

Sparse Robust Mean Estimation:

- $\hat{\mu}_{k} \approx \mu$ unless there is a 2*k*-sparse $|v|_{2} = 1$ with $v \cdot (\hat{\mu} \mu)$ large.
- If such v exists, $Var(v \cdot X)$ large.
- Determine if there is a v with $|v|_2 = 1$ and $v^T \text{Cov}(X)v$ large.
 - If not, return $\hat{\mu}$
 - If so, filter on $v \cdot X$ and repeat

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Sparse Robust Mean Estimation:

- $\hat{\mu}_{k} \approx \mu$ unless there is a 2*k*-sparse $|v|_{2} = 1$ with $v \cdot (\hat{\mu} \mu)$ large.
- If such v exists, $Var(v \cdot X)$ large.
- Determine if there is a 2*k*-sparse *v* with $|v|_2 = 1$ and $v^T \text{Cov}(X)v$ large.
 - If not, return $\hat{\mu}$
 - If so, filter on $v \cdot X$ and repeat

• = • •

Sparse Robust Mean Estimation:

- $\hat{\mu}_{k} \approx \mu$ unless there is a 2*k*-sparse $|v|_{2} = 1$ with $v \cdot (\hat{\mu} \mu)$ large.
- If such v exists, $Var(v \cdot X)$ large.
- Determine if there is a 2*k*-sparse *v* with $|v|_2 = 1$ and $v^T \text{Cov}(X)v$ large.
 - If not, return $\hat{\mu}_{\mathbf{k}}$
 - If so, filter on $v \cdot X$ and repeat

A = A

Sample Complexity

We need our good set of points to have:

- $v \cdot (\hat{\mu} \mu)$ small for $v \ 2k$ -sparse.
- $Var(v \cdot X) \approx 1$ for $v \ 2k$ -sparse.
- $v \cdot X$ to have appropriate tails for $v \ 2k$ -sparse.

< ∃ ►

Sample Complexity

We need our good set of points to have:

- $v \cdot (\hat{\mu} \mu)$ small for $v \ 2k$ -sparse.
- $Var(v \cdot X) \approx 1$ for $v \ 2k$ -sparse.
- $v \cdot X$ to have appropriate tails for $v \ 2k$ -sparse.

Can cover 2k-sparse vectors with cover of size $\binom{d}{2k} 2^{O(k)}$. Need $O(k \log(d)/\epsilon^2)$ samples.

Problem

To find directions of large variance need to solve:

 $\sup_{|v|_2 \le 1, |v|_0 \le 2k} v^T M v$

with $M = \operatorname{Cov}(X)$.

< □ > < 同 > < 回 > < 回 > < 回 >

Problem

To find directions of large variance need to solve:

 $\sup_{|v|_2 \le 1, |v|_0 \le 2k} v^T M v$

with $M = \operatorname{Cov}(X)$.

This is NP-Hard in general!

・ 何 ト ・ ヨ ト ・ ヨ ト

Convex Relaxation

Instead solve a relaxation.

- If v is 2k-sparse, $|v|_1 \leq \sqrt{2k}$.
- $|vv^{T}|_{1} \leq 2k$ and $vv^{T} \cdot Cov(X)$ large.

★ ∃ →

Convex Relaxation

Instead solve a relaxation.

$$\sup_{H \ge 0, |H|_1 \le 2k, \operatorname{tr}(H) = 1} H \cdot \operatorname{Cov}(X).$$
(1)

イロト イヨト イヨト イヨト

Convex Relaxation

Instead solve a relaxation.

• If
$$v$$
 is $2k$ -sparse, $|v|_1 \le \sqrt{2k}$.
• $|vv^T|_1 \le 2k$ and $vv^T \cdot \operatorname{Cov}(X)$ large.
Solve
 $\sup H \cdot \operatorname{Cov}(X)$. (1)

$$\sup_{\substack{H \ge 0, |H|_1 \le 2k, \operatorname{tr}(H) = 1}} H \cdot \operatorname{Cov}(X).$$

- If solution is small, $\hat{\mu}_k \approx \mu$.
- If not, filter?

★ Ξ →

Good Samples

Assuming that we took $\Omega(k^2 \log(d)/\epsilon^2)$ samples, with high probability each entry of $\hat{\Sigma} - \Sigma$ is $O(\epsilon/k)$.

・ 同 ト ・ ヨ ト ・ ヨ

Good Samples

Assuming that we took $\Omega(k^2 \log(d)/\epsilon^2)$ samples, with high probability each entry of $\hat{\Sigma} - \Sigma$ is $O(\epsilon/k)$.

If so, for any H with $|H|_1 \leq 2k$, and $\operatorname{tr}(H) = 1$

$$H\cdot\hat{\Sigma}=H\cdot\Sigma+O(\epsilon)=1+O(\epsilon).$$

< □ > < 同 > < 回 > < 回 > < 回 >

Good Samples

Assuming that we took $\Omega(k^2 \log(d)/\epsilon^2)$ samples, with high probability each entry of $\hat{\Sigma} - \Sigma$ is $O(\epsilon/k)$.

If so, for any H with $|H|_1 \leq 2k$, and $\operatorname{tr}(H) = 1$

$$H \cdot \hat{\Sigma} = H \cdot \Sigma + O(\epsilon) = 1 + O(\epsilon).$$

- If $H \cdot \hat{\Sigma}$ is much larger, discrepancy due to bad samples.
- Filter entries where $(x \hat{\mu})H(x \hat{\mu})$ is large (or add to convex program).

Upshot

Have an algorithm where if μ is known to be k-sparse, learn μ to error $\tilde{O}(\epsilon)$ with ϵ adversarial error with $O(k^2 \log(d)/\epsilon^2)$ samples in polynomial time.

• • = • •

Further Extensions

[BDLS] Also give robust sparse estimation algorithms for:

- Estimating $\Sigma = I + \Omega$ when $|\Omega|_0 \leq k$.
- Estimating $\Sigma = I + \rho v v^T$ when v is k-sparse.
- Linear regressions $y \approx x \cdot \beta$ when β is *k*-sparse.

Further Extensions

[BDLS] Also give robust sparse estimation algorithms for:

- Estimating $\Sigma = I + \Omega$ when $|\Omega|_0 \leq k$.
- Estimating $\Sigma = I + \rho v v^T$ when v is k-sparse.
- Linear regressions $y \approx x \cdot \beta$ when β is k-sparse.

Recent work by [Diakonikolas–Kane–Karmalkar–Price] does much of this using spectral techniques instead of convex programs.