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Sparse Mean Estimation

Given X ∼ N(µ, I ) ⊂ Rd it takes O(d/ε2) samples to learn µ to error
ε.

What if extra information is known about µ? Can we do better?
I In particular, what if µ is known to be sparse?

If |µ|0 ≤ k, then with O(k log(d)/ε2) samples suffices:

Sample mean learns each coordinate to error ε/2
√
k.

Truncating to k largest coordinates (µ̂k) gives error ε.

For k � d , this is a substantial improvement.
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Robust Sparse Mean Estimation

What if we want to do this robustly? Can we learn µ up to error Õ(ε) in
the presence of adversarial errors with o(d) samples?

First considered by [Balakrishnan–Du–Li–Singh ’17].
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Basic Algorithm

Non-Sparse Robust Mean Estimation:

µ̂k ≈ µ unless there is a 2k-sparse |v |2 = 1 with v · (µ̂− µ) large.

If such v exists, Var(v · X ) large.

Determine if there is a 2k-sparse v with |v |2 = 1 and vTCov(X )v
large.

I If not, return µ̂k

I If so, filter on v · X and repeat
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Sample Complexity

We need our good set of points to have:

v · (µ̂− µ) small for v 2k-sparse.

Var(v · X ) ≈ 1 for v 2k-sparse.

v · X to have appropriate tails for v 2k-sparse.

Can cover 2k-sparse vectors with cover of size
( d
2k

)
2O(k). Need

O(k log(d)/ε2) samples.
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Problem

To find directions of large variance need to solve:

sup
|v |2≤1,|v |0≤2k

vTMv

with M = Cov(X ).

This is NP-Hard in general!
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Convex Relaxation

Instead solve a relaxation.

If v is 2k-sparse, |v |1 ≤
√

2k .

|vvT |1 ≤ 2k and vvT · Cov(X ) large.

Solve
sup

H≥0,|H|1≤2k,tr(H)=1
H · Cov(X ). (1)

If solution is small, µ̂k ≈ µ.

If not, filter?
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Good Samples

Assuming that we took Ω(k2 log(d)/ε2) samples, with high probability
each entry of Σ̂− Σ is O(ε/k).

If so, for any H with |H|1 ≤ 2k, and tr(H) = 1

H · Σ̂ = H · Σ + O(ε) = 1 + O(ε).

If H · Σ̂ is much larger, discrepancy due to bad samples.

Filter entries where (x − µ̂)H(x − µ̂) is large (or add to convex
program).
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Upshot

Have an algorithm where if µ is known to be k-sparse, learn µ to error
Õ(ε) with ε adversarial error with O(k2 log(d)/ε2) samples in polynomial
time.
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Further Extensions

[BDLS] Also give robust sparse estimation algorithms for:

Estimating Σ = I + Ω when |Ω|0 ≤ k.

Estimating Σ = I + ρvvT when v is k-sparse.

Linear regressions y ≈ x · β when β is k-sparse.

Recent work by [Diakonikolas–Kane–Karmalkar–Price] does much of this
using spectral techniques instead of convex programs.
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