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THE STATISTICAL LEARNING PROBLEM

• Input: sample generated by a probabilistic model with unknown
• Goal: estimate parameters    so that  

Question 1: Is there an efficient learning algorithm?

Unknown 
θ* samples ✓

✓⇤

✓ ✓ ⇡ ✓⇤

Main performance criteria:
• Sample size
• Running time
• Robustness

Question 2: Are there tradeoffs between these criteria?



OUTLINE

Part I: Computational Limits to Robust Estimation
• Statistical Query Learning Model
• Our Results
• Generic Lower Bound Technique
• Applications: Robust Mean Estimation & Learning GMMs

• Part II: Future Directions



OUTLINE

Part I: Computational Limits to Robust Estimation
• Statistical Query Learning Model
• Our Results
• Generic Lower Bound Technique
• Applications: Robust Mean Estimation & Learning GMMs

• Part II: Future Directions



STATISTICAL QUERIES [KEARNS’93]
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STATISTICAL QUERIES [KEARNS’93]
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POWER OF SQ LEARNING ALGORITHMS

• Restricted Model: Hope to prove unconditional computational lower bounds.

• Powerful Model: Wide range of algorithmic techniques in ML are implementable using SQs*:

• PAC Learning: AC0, decision trees, linear separators, boosting.

• Unsupervised Learning: stochastic convex optimization, moment-based methods, k-means 
clustering, EM, …
[Feldman-Grigorescu-Reyzin-Vempala-Xiao/JACM’17]

• Only known exception: Gaussian elimination over finite fields (e.g., learning parities).

• For all problems in this talk, strongest known algorithms are SQ.



METHODOLOGY FOR PROVING SQ LOWER BOUNDS

Statistical Query Dimension:

• Fixed-distribution PAC Learning 
[Blum-Furst-Jackson-Kearns-Mansour-Rudich’95; …]

• General Statistical Problems
[Feldman-Grigorescu-Reyzin-Vempala-Xiao’13, …, Feldman’16]

• Pairwise correlation between D1 and D2 with respect to D:

• Fact: Suffices to construct a large set of distributions that are nearly uncorrelated. 



OUTLINE

Part I: Computational Limits to Robust Estimation
• Statistical Query Learning Model
• Our Results
• Generic Lower Bound Technique
• Applications: Robust Mean Estimation & Learning GMMs

• Part II: Future Directions



GENERIC SQ LOWER BOUND CONSTRUCTION

General Technique for SQ Lower Bounds:
Leads to Tight Lower Bounds 

for a range of High-dimensional Estimation Tasks

Concrete Applications of our Technique:

• Robustly Learning Mean and Covariance

• Learning Gaussian Mixture Models (GMMs)

• Statistical-Computational Tradeoffs (e.g., sparsity)

• Robustly Testing a Gaussian



SQ LOWER BOUND FOR ROBUST MEAN ESTIMATION

Theorem: Suppose                                     Any SQ algorithm that learns an    - corrupted 

Gaussian              in the strong contamination model within error

requires either:

• SQ queries of accuracy 

or

• At least                   many SQ queries.

Take-away: Any asymptotic improvement in error guarantee over prior work requires super-

polynomial time.



SQ LOWER BOUNDS FOR LEARNING SEPARATED GMMS

Theorem: Suppose that                        . Any SQ algorithm that learns separated k-GMMs over       
to constant error requires either:
• SQ queries of accuracy
or
• At least                            many SQ queries.

Take-away: Computational complexity of learning GMMs is inherently exponential in number of 
components.



APPLICATIONS: CONCRETE SQ LOWER BOUNDS

Learning Problem Upper Bound SQ Lower Bound

Robust Gaussian Mean
Estimation

Error:

[DKKLMS’16]

Runtime Lower Bound:

for factor M improvement in 
error.

Robust Gaussian 
Covariance Estimation

Error:

[DKKLMS’16]

Learning k-GMMs 
(without noise)

Runtime:

[MV’10, BS’10]

Runtime Lower Bound:

Robust k-Sparse Mean 
Estimation

Sample size:

[BDLS’17]

If sample size is 
runtime lower bound:

Robust Covariance
Estimation in Spectral 

Norm

Sample size: 

[DKKLMS’16]

If sample size is 
runtime lower bound:
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GENERAL RECIPE FOR SQ LOWER BOUNDS

• Step #1: Construct distribution       that is standard Gaussian 
in all directions except   .   

• Step #2: Construct the univariate projection in the    direction
so that it matches the first m moments of 

� Step #3: Consider the family of instances 

Non-Gaussian Component Analysis [Blanchard et al. 2006]



HIDDEN DIRECTION DISTRIBUTION

Definition: For a unit vector v and a univariate distribution 
with density A, consider the high-dimensional distribution 

Example:



GENERIC SQ LOWER BOUND

Definition: For a unit vector v and a univariate distribution 

with density A, consider the high-dimensional distribution 

Proposition: Suppose that: 

• A matches the first m moments of  

• We have                                      as long as v, v’ are 

nearly orthogonal.

Then any SQ algorithm that learns an unknown       within 

error    requires either queries of accuracy           or            

many queries.



WHY IS FINDING A HIDDEN DIRECTION HARD

Observation: Low-Degree Moments do not help.

• A matches the first m moments of
• The first m moments of         are identical to those of
• Degree-(m+1) moment tensor has              entries. 

Claim: Random projections do not help.

• To distinguish between       and              , would need 
exponentially many random projections.  



1-D PROJECTIONS ARE ALMOST STANDARD GAUSSIANS

Key Lemma: Let Q be the distribution of            , where              .                
Then, we have that:



PROOF OF KEY LEMMA (I)



PROOF OF KEY LEMMA (I)



PROOF OF KEY LEMMA (II)

where is the operator over                       

Gaussian Noise (Ornstein-Uhlenbeck)
Operator



EIGEN-DECOMPOSITION OF ORNSTEIN-UHLENBECK OPERATOR

Linear Operator acting on functions

Fact (Mehler’66):

• denotes the degree-i Hermite polynomial.
• Note that                                             are orthonormal with respect to 

the inner product



GENERIC SQ LOWER BOUND

Definition: For a unit vector v and a univariate distribution 

with density A, consider the high-dimensional distribution 

Proposition: Suppose that: 

• A matches the first m moments of  

• We have                                  as long as v, v’ are nearly
orthogonal.

Then any SQ algorithm that learns an unknown       within 

error    requires either queries of accuracy          or            

many queries.



OUTLINE

Part I: Computational Limits to Robust Estimation
• Statistical Query Learning Model
• Our Results
• Generic Lower Bound Technique
• Applications: Robust Mean Estimation & Learning GMMs

• Part II: Future Directions



SQ LOWER BOUND FOR ROBUST MEAN ESTIMATION (I)

Proposition: Suppose that: 
• A matches the first m moments of  
• We have                                      as long as v, v’ are nearly

orthogonal.

Then any SQ algorithm that learns an unknown       within error    
requires either queries of accuracy          or            many queries.

Theorem: Any SQ algorithm that learns an    - corrupted Gaussian              
in the strong contamination model within error
requires either SQ queries of accuracy                    or
at least                   many SQ queries

Want to show:

by using our generic proposition:



SQ LOWER BOUND FOR ROBUST MEAN ESTIMATION (II)

Proposition: Suppose that: 

• A matches the first m moments of  

• We have                                      as long as v, v’ are nearly orthogonal.

Then any SQ algorithm that learns an unknown       within error    requires 

either queries of accuracy           or            many queries.

Lemma: There exists a univariate distribution A that is    - close to 

such that:

• A agrees with               on the first M moments.

• We have that 

• Whenever v and v’ are nearly orthogonal 



Proposition: Suppose that: 
• A matches the first m moments of  
• We have                                      as long as v, v’ are nearly

orthogonal.

Then any SQ algorithm that learns an unknown       within error    
requires either queries of accuracy          or            many queries.

SQ LOWER BOUND FOR LEARNING GMMS (I)

Theorem: Any SQ algorithm that learns separated k-GMMs over       to 
constant error requires either SQ queries of accuracy
or at least                               many SQ queries. 

Want to show:

by using our generic proposition:



SQ LOWER BOUND FOR LEARNING GMMS (II)

Proposition: Suppose that: 
• A matches the first m moments of  
• We have                                      as long as v, v’ are nearly orthogonal.

Then any SQ algorithm that learns an unknown       within error    requires 
either queries of accuracy           or            many queries.

Lemma: There exists a univariate distribution A that is a k-GMM with 
components Ai such that:
• A agrees with               on the first 2k-1 moments.
• Each pair of components are separated.
• Whenever v and v’ are nearly orthogonal 



SQ LOWER BOUND FOR LEARNING GMMS (III)

Lemma: There exists a univariate distribution A that is a k-GMM with 
components Ai such that:
• A agrees with               on the first 2k-1 moments.
• Each pair of components are separated.
• Whenever v and v’ are nearly orthogonal 



SQ LOWER BOUND FOR LEARNING GMMS (IV)

High-Dimensional Distributions       look like “parallel 
pancakes”:  

Efficiently learnable for k=2. [Brubaker-Vempala’08]
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FUTURE DIRECTIONS: COMPUTATIONAL LOWER BOUNDS

• General Technique to Prove SQ Lower Bounds

• Robustness can make high-dimensional estimation harder 

computationally and information-theoretically.

Future Directions:

• Further Applications of our Framework 

List-Decodable Mean Estimation [D-Kane-Stewart’18]

Robust Regression [D-Kong-Stewart’18] 

Adversarial Examples [Bubeck-Price- Razenshteyn’18]

Discrete Distributions [D-Gouleakis-Kane-Stewart’19]

• Alternative Evidence of Computational Hardness?

v SoS Lower Bounds

v Reductions from Average-Case Problems (e.g., Planted Clique, R-3SAT)

v Reductions from Worst-case Problems? First step: [Hopkins-Li, COLT’19]



FUTURE DIRECTIONS: ALGORITHMS

• Pick your favorite high-dimensional probabilistic model for 
which a (non-robust) efficient learning algorithm is known. 

• Make it robust!



CONCRETE ALGORITHMIC OPEN PROBLEMS

Spherical components: [Diakonikolas-Kane-Stewart’18, Hopkins-Li’18, Kothari-
Steinhardt’18] 

Open Problem 1: Robustly Estimating Gaussian CovarianceWithin Error
in Additive Contamination Model (Huber’s Model)

Currently Best Known Algorithm [DKKLMS’18] runs in time 

Open Problem 2: Robustly Learn a Mixture of 2 Arbitrary Gaussians



FAST / NEAR-LINEAR TIME ALGORITHMS

Filtering for robust mean estimation is practical, but runtime is super-linear

Question: Can we design near-linear time algorithms? 

• Robust Mean Estimation: 
v [Cheng-D-Ge,  SODA’19] 
v [Depersin-Lecue, Arxiv-June 2019]
v [Dong-Hopkins-Li, upcoming]

• How about more general estimation tasks?
v [Cheng-D-Ge-Woodruff, COLT’19]
v Robust Sparse Estimation?
v List-Decodable Learning?



BROADER RESEARCH DIRECTIONS

Broader Challenges:
• Richer Families of Problems and Models

• Connections to Non-convex Optimization, Adversarial Examples, GANs, …

• Relation to Related Notions of Algorithmic Stability

(Differential Privacy, Adaptive Data Analysis)

• Further Applications (ML Security, Computer Vision, …)

• Other notions of robustness?

General Algorithmic Theory of Robustness

How can we robustly learn rich representations of data, based on natural hypotheses about 

the structure in data?

Can we robustly test our hypotheses about structure in data before learning?

Thank you! 
Questions?


