
Advanced Learning Theory CS880, Fall 2019

Problem Set 1: Basics of Distribution Learning and Testing
Due: Monday, October 7, by email

Please title your email “CS880 PS1”.

1. (Cover-Based Learning) Let D be a family of probability distributions and 0 < ε < 1. A
set of distributions Dε is called an ε-cover of D with respect to a metric d(·, ·) if for any
P ∈ D there exists P ′ ∈ Dε such that d(P, P ′) ≤ ε. In this problem, you will show that the
existence of a small cover for D under the total variation distance implies the existence of a
sample-efficient learning algorithm for D. More specifically, you will be guided through the
proof of the following theorem:

Theorem 1. Let D be a distribution family over a discrete domain. For ε > 0, let Dε be an
ε-cover of D of size M , under the total variation distance dTV(, ). There is an algorithm that
uses O(ε−2 logM) samples from an unknown distribution P ∈ D and, with probability at least
9/10, outputs a distribution Q ∈ Dε that satisfies dTV(P,Q) ≤ 6ε.

In parts (i)-(iv) you are asked to analyze an algorithm that establishes Theorem 1 and explore
its performance. In part (v), you are asked to apply Theorem 1 to obtain a sample-efficient
learning algorithm for a natural family of high-dimensional structured distributions.

(i) Consider the following subroutine to select between two candidate hypotheses:

Choose-Hypothesis(H1, H2, ε, δ)
Input: Sample access to discrete distribution P ; a pair of hypothesis distributions
(H1, H2); ε, δ > 0.

Let W be the support of P , W1 := {w ∈ W H1(w) > H2(w)}, and p1 = H1(W1),
p2 = H2(W1).

(a) If p1 − p2 ≤ 5ε, return either Hi. Otherwise:

(b) Draw m = 2log(1/δ)/ε2 samples s1, . . . , sm from P , and let τ = 1
m |{i | si ∈

W1}| be the fraction of samples that fall inside W1.

(c) If τ > p1 − 3
2ε, return H1; otherwise,

(d) if τ < p2 + 3
2ε, return H2; otherwise,

(e) return either Hi.

Suppose that dTV(P,H1) ≤ ε. Show that if dTV(P,H2) > 6ε, the probability that
Choose-Hypothesis(H1, H2, ε, δ) does not output H1 is O(δ).

(ii) Use subroutine Choose-Hypothesis for each pair of distributions in an ε-cover Dε of D
to prove Theorem 1. What is the running time of your algorithm?

(iii) Adapt your algorithm and its analysis so that it is robust to model misspecification.
Specifically, show that if P is OPT-close in total variation distance to some distribution
in D, then your algorithm outputs a hypothesis distribution Q that satisfies dTV(P,Q) =
O(OPT) + ε with probability at least 9/10.
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(iv) Is the sample complexity of the algorithm in Theorem 1 information-theoretically optimal
(within a constant factor)? Justify your answer.

(v) A binary product distribution is a probability distribution supported on {0, 1}n whose
probability mass function is a product of n independent Bernoulli random variables. A
mixture of k binary product distributions π1, π2, . . . , πk is a distribution π over {0, 1}n
such that for some w = (w1, . . . , wk) with wi ≥ 0 and

∑
iwi = 1 it holds π =

∑
iwiπi.

Show that the set of mixtures of binary product distributions can be learned to total
variation distance ε with confidence probability 9/10 using poly(n, k, 1/ε) samples. What
is the running time of your algorithm?

2. (Learning Discrete Distributions under Different Loss Functions) In class we studied learning
discrete distributions under the total variation distance metric. In this problem, we explore
distribution learning under different loss functions.

(i) The Kolmogorov distance between the probability mass functions p, q : [n] → [0, 1] is
defined as dK(p, q) := maxu∈[n] |p([1, u])− q([1, u])|, where p([1, u]) :=

∑u
k=1 p(k).

(a) Give an algorithm to learn an arbitrary distribution over [n] up to Kolmogorov
distance ε with probability 1 − δ using O((1/ε2) log(1/(εδ))) samples. How do you
explain the fact that your algorithm has sample complexity independent of the
domain size n?

(b) Show that any learning algorithm for the aforementioned learning problem requires
Ω((1/ε2) log(1/δ)) samples.

(c) [Optional] Show that the upper bound of part (a) can be improved toO((1/ε2) log(1/δ)).

(ii) The chi-squared loss between distributions p and q supported on [n], is defined as

χ2(p, q) :=
∑n

i=1
(pi−qi)2

qi
. Note that the chi-squared loss is not a metric.

(a) Give a learning algorithm A with the following performance guarantee: Given iid
samples from an unknown arbitrary distribution p over [n], A outputs a hypothesis
distribution q that satisfies χ2(p, q) ≤ ε with probability at least 9/10. Analyze the
sample complexity and runtime of your algorithm.

(b) Prove a sample complexity lower bound for the corresponding learning problem, i.e.,
a lower bound on the sample complexity of any algorithm for the problem. Is the
sample complexity of your algorithm in (a) above information-theoretically optimal,
within a constant factor?

(iii) A distribution p on the ordered domain [n] is called k-piecewise affine if there exists a
partition Ik of [n] into k intervals I1 = [1, i1], I2 = [i1 + 1, i2], . . . , Ik = [ik−1 + 1, n] such
that the probability mass function p is an affine function within each interval Ij , j ∈ [k].
That is, for each j ∈ [k], there exist parameters aj , bj ∈ R such that pi = aji + bj , for
all i ∈ Ij .
(a) Suppose that the partition Ik is fixed and known. Give an algorithm that learns an

arbitrary k-piecewise affine distribution with respect to Ik under the total variation
distance. Show that the sample complexity of your algorithm is optimal, within a
constant factor.

(b) Suppose that k is known but the partition Ik is unknown. Prove an upper bound on
the sample complexity of learning an arbitrary k-piecewise affine distribution under
the total variation distance. Is your upper bound best possible?
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3. (Testing Families of Distributions) In this problem, we will explore the complexity of testing
simple distribution properties under structural assumptions.

(i) Let p : [n]→ [0, 1] be a probability mass function that is promised to be monotone non-
increasing in its ordered domain, i.e., pi+1 ≤ pi for all i ∈ [n − 1]. Design a uniformity
tester for p, i.e., an algorithm that distinguishes with probability at least 1− δ between
the cases that p = Un and dTV(p, Un) ≥ ε. Show that your algorithm is sample-optimal,
up to constant factors.

(ii) Let p : [n] → [0, 1] be a probability mass function with the property that each pi is an
integer multiple of 1/n. Give a uniformity tester for p and a matching sample complexity
lower bound.

(iii) Let p : [n] → [0, 1] be a probability mass function. We want to test whether p is
monotone non-increasing over its ordered domain. In more detail, letMn be the family
of all monotone non-increasing distributions over [n]. We want to design an algorithm
that distinguishes with probability at least 9/10 between the cases that p ∈ Mn and
dTV(p,Mn) ≥ ε. Prove a sample complexity lower bound for this testing problem.
[Extra credit for matching upper bound.]

(iv) Let Binn be the family of Binomial distributions on [n]. Give a tester for the prop-
erty Binn, i.e., an algorithm that distinguishes between the case that p ∈ Binn and
dTV(p,Binn) ≥ ε with probability at least 2/3. Prove a matching sample complexity
lower bound.

4. (Distribution Testing Under Different Loss Functions) In this problem, we explore distribution
testing under different losses.

(i) Let p, q : [n] → [0, 1] be two unknown k-piecewise affine distributions over the known
partitions Ik and Jk respectively. Give a tester and a matching sample complexity
lower bound for the problem of testing equivalence between p and q (in total variation
distance).

(ii) The KL-divergence between the probability mass functions p, q : [n] → [0, 1] is defined
as dKL(p, q) :=

∑n
i=1 pi ln(pi/qi). Determine the sample complexity of identity testing

between an unknown distribution p and a known distribution q with respect to KL-
divergence.

(iii) The Hellinger distance between the probability mass functions p, q : [n]→ [0, 1] is defined

as dH(p, q) := (1/
√

2)
√∑n

i=1(
√
pi −

√
qi)2.

(a) Determine the sample complexity of uniformity testing with respect to the Hellinger
distance. That is, give a uniformity testing algorithm and a lower bound on the
sample complexity matching that of your algorithm.

(b) [Optional] Determine the sample complexity of equivalence testing (between two
unknown discrete distributions) with respect to the Hellinger distance.
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