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Lecture 3: Uniformity Testing
Lecturer: Ilias Diakonikolas Scribes: Nikos Zarifis

1 Introduction
In the testing setting, we want to test if a distribution has a global property. Properties
of interest include uniformity, identity, monotonicity, log-concavity, etc. In this lecture,
we are going to develop an algorithm that tests if a discrete distribution is the discrete
uniform distribution on its domain. Let [n] be the domain of the underlying distribution
p and Un denote the uniform distribution on [n]. Let p : [n]→ [0, 1] be the probability
mass function (pi ≥ 0 and ∑i pi = 1). So, we are looking for an algorithm that outputs
YES if the distribution is uniform with high probability else if p is far from Un, then
the algorithms output NO. More formally we have

Uniformity Testing Problem
Input: set of iid samples from unknown discrete distribution p supported on [n]
Output:

• YES if p = Un with probability 1− δ

• NO if dTV(p,Un) ≥ ε with probability 1− δ

2 Boosting confidence
Definition 1. Let S : N×R→ R be a function that given the number of elements and
ε > 0 outputs the number of samples that needed for a hypothesis testing problem with
parameter ε and with high constant probability.

In this section, we are going to show how to increase an algorithm’s constant success
probability. We are going to assume that A(S) be an algorithm that given input S
gives the correct answer with constant probability ≥ 1− c and the wrong with c < 1/2.
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Theorem 2. Let A be a testing algorithm that uses S(n, ε) samples and with probability
at most c < 1/2 gives the wrong answer. Then there is an Algorithm H that uses
O(S(n, ε) log(1/δ)) samples and outputs the wrong answer with probability less than δ

Proof. We construct H as follows : run A t times and let Xi be the result for each time
i. If we output the majority, then the probability of failure will be

Pr[H ] ≤
t/2∏
i

Pr[Xi ] ≤ ct/2 ≤ 2−t/2

By setting t = 2 log(1/δ) we have that Pr[H ] ≤ δ

3 Black Box Reduction
We are going to show how we can solve the uniformity testing problem using as a
black box routine the Density Estimation. From the previous lecture we know that the
Density Estimation given samples from a distribution p, returns an hypothesis ĥ such
as dTV

(
p, ĥ

)
≤ ε using O

(
n
ε2

)
samples.

Algorithm Uniformity Testing using density estimation
Input: set of iid samples from unknown discrete distribution p

1. Run Density Estimation on p and output hypothesis ĥ such as: dTV
(
p, ĥ

)
≤ ε/3

2. Output:

• YES if dTV
(
ĥ,Un

)
≤ ε/3

• NO if dTV
(
ĥ,Un

)
≥ ε/2

Analysis:

• Completeness: If p = Un then dTV
(
p, ĥ

)
≤ ε/3.

• Soundness: If dTV(p,Un) ≥ ε then dTV
(
ĥ,Un

)
≥ ε/2 (triangle inequality)

But Uniformity testing needs less information than learning the density of the distribu-
tion, so there must be a way to get our answer using fewer samples.
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4 Collision-based Uniformity Testing
The first question that we need to answer is what property of the uniform distribution
can help us develop an algorithm for Uniformity testing. For instance, if we have a
distribution that p1 = 1 and pk = 0 for all k (as in Figure 1) then it is easy to determine
that this distribution is not uniform as all the samples will be the first element. But
what are we going to do if the distribution is close to the uniform? If we have a
distribution with some pi = 1+ε

n
and some other with pi = 1−ε

n
, then the problem is

more difficult (Figure 2).
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So, it is clear that we need to find a statistic F (i1, i2, ..., is) that will be symmetric,
meaning that only the number of times each element appears matters (i.e., 0, 1, . . . , s
times). This means that the statistic needs to be invariant under permutations.

Let’s say we have two distributions: distribution A which is uniform (as in Figure
3) and distribution B which is supported on a set K that is created by selecting at
random half of the domain of A (as in Figure 4). We have that the dTV(A,B) = 1/2
but how many samples are needed to distinguish between these two? The event that
two samples drawn according to p are equal, is called collision. It’s clear that with high
probability we expect more collisions on distribution B than A for the same sample size.
Let our statistic F be the number of collisions. We argue that the Uniform minimizes
the number of collisions (see Fact 5). By the birthday paradox, we need at least c

√
n

samples to see the same element twice with high probability, thus we need at least
Ω(
√
n) samples to test even for ε = 1/2, using a collision tester.
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Algorithm Uniformity Testing using collisions
Input: s iid samples from unknown discrete distribution p on [n]

1. Let C ← # collisions

2. Let T (ε, n)← 1+ε2/2
n

(
s
2

)
3. Output:

• If C < T (ε, n) then output YES
• else output NO

Theorem 3. The Collision Testing algorithm, when given m = O(
√
n/ε4) samples

from p over [n] will, with probability at least 3/4, distinguish the case that p = Un from
the case that dTV(p,Un) ≥ ε/2.

Analysis: The analysis of our algorithm consists of three steps.

1. Analyze the Expected value of C.

2. Analyze the Variance of C.

3. Using 1,2 and Chebyshev inequality to complete our proof.

Let C = ∑s
i<j σij, where σij =

{
1 if i-th sample and j-th sample are equal
0 else
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Lemma 4. Let p be a discrete probability distribution and C defined as above, then
E[C] =

(
s
2

)
‖p‖2

2

Proof. We have that

E[C] =
∑
i<j

E[σij] =
∑
i<j

Pr[ ith sample = jth sample ]

=
∑
i<j

n∑
k=1

Pr[ ith sample = k, jth sample = k ]

=
∑
i<j

n∑
k=1

Pr[ ith sample = k ] Pr[ jth sample = k ]

=
∑
i<j

n∑
k=1

p2
k =

∑
i<j

‖p‖2
2 =

(
s

2

)
‖p‖2

2

It’s clear to see that the distribution that minimizes the expected value will be the one
that has the minimal ‖p‖2 value.

Fact 5. For a distribution p we have that: ‖p‖2 ≥ 1/n and the minimum is attained
by the uniform distribution.

Proof. Applying the Cauchy-Schwartz inequality, we have that

n‖p‖2
2 ≥ (

∑
i

pi)2 = 1⇒ ‖p‖2
2 ≥

1
n

which holds with equality when all the values of pi are equal, which means that the
uniform distribution minimizes the expected value.

Analyzing each case of output we get

• In the YES case we have that : E[C] = (s
2)
n

.

• In the NO case we have that : ‖p− Un‖1 ≥ ε⇒ ‖p− Un‖2
2 ≥ ε2/n and using that

‖p‖2
2 = ‖Un‖2

2 + ‖p− Un‖2
2 we get ‖p‖2

2 ≥
1+ε2
n

which lead us to E[C] ≥ 1+ε2
n

(
s
2

)
We need to choose the T value in a way that it will separate the YES and the NO case,
we let T = 1+ε2/2

n

(
s
2

)
.
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Lemma 6. Let p be a discrete probability distribution, and C as defined above, then
Var[C] ≤ s2‖p‖2

2 + s3‖p‖3
3

Proof. We have that

Var[C] = E
[
C2
]
− E[C]2

So we need to bound the E[C2] value.

E
[
C2
]

= E

(
∑
i<j

σij)2

 = E

∑
i<j

σ2
ij +

∑
i1>j1
i2>j2

σi1j1σi2j2


We have that E

[
σ2
ij

]
= ‖p‖2

2. For calculating the E[σi1j1σi2j2 ] we distinguish between
the following two cases:

1. If the i1, i2, j1, j2 have all different values, then we are in the independent case, so

E[σi1j1σi2j2 ] = E[σi1j1 ]E[σi2j2 ] = ‖p‖4
2

2. If in i1, i2, j1, j2 two elements have then same value then we are in the dependent
case and wlog assume j1 = i2. Then

E[σi1j1σj1j2 ] = Pr[ i1th sample = j1th sample = j2th sample ]

=
n∑
k=1

Pr[ i1th sample = k, j1th sample = k, j2th sample = k ]

=
n∑
k=1

Pr[ i1th sample = k ] Pr[ j1th sample = k ] Pr[ j2th sample = k ]

=
n∑
k=1

p3
k = ‖p‖3

3

Putting everything together, we have that

Var[C] ≤
(
s

2

)
‖p‖2

2 + 6
(
s

4

)
‖p‖4

2 + 6
(
s

3

)
‖p‖3

3 −
(
s

2

)2

‖p‖4
2 ≤ s2‖p‖2

2 + s3‖p‖3
3
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Proposition 7. We have that: Var[C] ≤ 2s3‖p‖3
2

Proof.
Var[C] ≤ s2‖p‖2

2 + s3‖p‖3
3 ≤ s2‖p‖2

2 + s3‖p‖3
2 ≤ 2s3‖p‖3

2

Now we are going to bound the sample size that is needed so with probability at least
3/4 we output YES when the distribution is uniform. We have:

Pr
[
|C − E[C]| ≥ 2

√
Var[C]

]
≤ 1/4

Which means that with probability at least 3/4 we have

C ≤ E[C] + 2
√

Var[C]

And we need C < T when p = Un (completeness), so we have:

C < T ⇒ E[C] + 2
√

Var[C] < T ⇒ cs3‖p‖3
2 <

s4ε4

n2

⇒ c
n2

ε4n3/2 < s

⇒ c

√
n

ε4 < s

We will now deal with the case where dTV(p,Un) ≥ ε (soundness). We have ‖p‖2
2 ≥

1+ε2
n

,
so we can assume that ‖p‖2

2 = 1+ε2+α
n

for α ≥ 0.
Using Chebyshev as above, we get that with probability at least 3/4 we have

C ≥ E[C]− 2
√

Var[C]

We need C > T , so we have

T < C ⇒ E[C]− 2
√

Var[C] < T ⇒ c
s3(1 + ε2 + α)3/2

n3/2 ≤ s4(ε2/2 + α)2

n2

⇒ c

√
n(1 + ε2 + α)3/2

(ε2/2 + α)2 ≤ s
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Using basic calculus we can show that
√
n(1+ε2+α)3/2

(ε2/2+α)2 is maximized for α = 0. So we
have:

s ≥ c

√
n

ε4

Thus, we need O
(√

n
ε4

)
samples which completes the proof of theorem 3.

5 Further Reading
• In [1] one can find the main theorem and the proof of this lecture.

• In [2] the author proves the information theoretic lower bound Ω(
√
n
ε2

) and provides
a different algorithm that needs O(

√
n/ε2) samples but only works when ε =

Ω(n−1/4).

• In [3] the authors prove that in fact the collision based testing algorithms are
optimal up to constant factors by doing a new more tight analysis.

• Amplifying the success probability of testing uniformity to 1− δ can be done via
standard arguments that result in a sample complexity of O(

√
n/ε2 log(1/δ)) (see

2). In [4] the authors show that this dependence of δ is not optimal and prove
that with O

(
1
ε2

(√
n log(1/δ) + log(1/δ)

))
samples, we can get confidence 1− δ.

Considering that
√
n is usually large this difference in the multiplicative factor

may be substantial.
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