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1 Introduction
In this lecture, we give the optimal algorithm for tolerant `2-equivalence testing and
present another application of the flattening technique for the problem of `1-equivalence
testing with unequal sized samples. This kind of tester comes in handy when taking
samples from one of the distributions is more expensive than the other.

For distributions p and q over [n] with max{‖p‖2, ‖q‖2} ≤ b, our `2-tester distin-
guishes the case that ‖p− q‖2 ≤ ε from the case that ‖p− q‖2 ≥ 2ε, with probability
at least 3

4 with O
(√

b
ε2

)
samples.

Note that tolerant testing under the `2-norm has no dependence on the domain size.
On the other hand, as will see later in the course, tolerant testing under the `1-norm
requires an almost linear number of samples. Roughly speaking, the reason for the
latter is that the `1-norm cannot be approximated by a low-degree polynomial in the
parameters.

2 `2-Distance Estimator
In this section, we will show the following:

Theorem 1. Let p, q : [n] → [0, 1] be two unknown distributions to which we have
sample access. If b = max{‖p‖2, ‖q‖2}, we can distinguish between ‖p− q‖2 ≤ ε versus
‖p− q‖2 ≥ 2ε with O(

√
b
ε2

) samples.

Proof. We build an estimator for ‖p − q|2. Let m be the sample size. Draw Poi(m)
samples independently from p and q. Let Xi and Yi be the number of samples from p
and q respectively. Now we define:

Z =
n∑
i=1

(Xi − Yi)2 −Xi − Yi .
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Note that taking Poisson samples will not affect the complexity of sample size because
the Poisson distribution is concentrated around its mean. If Zi = (Xi − Yi)2 −Xi − Yi,
then we have Z = ∑n

i=1 Zi. We have:

E[Zi] = E
[
X2
i

]
+ E

[
Y 2
i

]
− 2E[Xi] E[Yi]− E[Xi]− E[Yi] (1)

As Xi ∼ Poi(mpi) and Yi ∼ Poi(mqi), we have:

E[Xi] = mpi,E[Yi] = mqi, E
[
X2
i

]
= Var[Xi] + E[Xi]2 = mpi + (mpi)2

So we get:

E[Zi] = mpi(1 +mpi) +mqi(1 +mqi)− 2mpimqi −mpi −mqi
= m2p2

i +m2q2
i − 2m2piqi

= m2(pi − qi)2

E[Z] =
n∑
i=1

E[Zi]

= m2‖p− q‖2

(2)

With some computations, we can get the value of Var[Z]:

Var[Z] =
n∑
i=1

4m3(pi − qi)2(pi + qi) + 2m2(pi + qi)2

Now by Cauchy-Shwarz inequality, since ∑n
i=1(pi + qi)2 ≤ 4b, we have:

n∑
i=1

(pi − qi)2(pi + qi) ≤
√√√√ n∑
i=1

(pi − qi)4
n∑
i=1

(pi + qi)2 ≤ 2‖p− q‖2
4
√
b

Thus:
Var[Z] ≤ 8m3

√
b‖p− q‖2

4 + 8m2b

Lemma 2. If m ≥ x+ y, then m2 ≥ mx+ y2, for any x, y ≥ 0.

Proof. We have m ≥ x+ y so (m− x)2 ≥ y2. Moreover, as m ≥ x+ y and y ≥ 0 then
m ≥ x and mx ≥ x2. So m2 ≥ y2 − x2 + 2mx and so m2 ≥ y2 +mx.

Now by Chebyshev’s inequality, the returned estimate of ‖p− q‖2 will be accurate
to within ±ε with probability at least 3

4 provided

ε2m2 ≥ 2
√

8m3
√
b‖p− q‖2

4 + 8m2b
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Using (2), this holds whenever

m ≥ 6
√
b

ε2 + 32
√
b‖p− q‖2

4
ε4

Remark 1. Note that the statistic ∑n
i=1(Xi − Yi)2 is close to the number of pairwise

collisions. In fact, we get useful information only from elements which have been seen at
least twice in the sample. In defining Z, we subtracted Xi and Yi from each term. The
reason for this was two-fold. First, if we didn’t make this alteration, we wouldn’t get
an unbiased estimator for ‖p− q‖2. More importantly, the variance of that estimator
would have been larger than what we would like. In particular, if we had not subtracted
these terms, we would see m4 in the variance instead of m3, which would affect the
sample complexity of our tester.

Remark 2. The first sample-optimal tester for `1-equivalence testing was given and
analyzed in [1], based on the statistic:

n∑
i=1

(Xi − Yi)2 −Xi − Yi
Xi + Yi

.

Analyzing such a tester is somewhat more cumbersome, as it is a rational function of
the Xi, Yi.

3 `1-Equivalence Testing with Unequal Sized Sam-
ples

The motivation for this testing problem is that in many situations gathering samples
from one of the distributions we are dealing with is more expensive. The most extreme
case is when we know one of the two distributions exactly.
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Algorithm Testing Closeness with Unequal Sample Size
Input: Sample access to distributions p and q supported on [n] and ε > 0
Output: “YES” with probability at least 2

3 if p = q
“NO” with probability at least 2

3 if ‖p− q‖1 ≥ ε.

1- Let k = min(n,m1).
2- Define a multiset S by taking Poi(k) samples from q.
3- Use the `1-tester from last lecture on pS, qS to distinguish between pS = qS
versus ‖pS − qS‖1 ≥ ε using at most O

(
bn
ε2

)
samples.

Theorem 3. Let p, q : [n]→ [0, 1] be two unknown distributions. We are given m1 +m2
samples from q and m2 samples from p. One can distinguish between p = q versus
‖p − q‖1 ≥ ε with probability greater than 9

10 with m2 = O
(
max{

√
n
ε2
, n
ε2

√
m1
}
)

using
Algorithm 3.

Proof. This algorithm uses the flattening technique [2]. The main idea is to take samples
from the less expensive distribution and use them for flattening both distributions.
Here we have assumed q is the less expensive distribution as we have more samples
from it.

First, note that with high probability, say 19
20 , we have |S| = O(n). Therefore, the

new domain size would be n+ |S| = O(n). Furthermore, by a lemma from the previous
lecture, it follows that E[‖qS‖2] ≤ O

(
1√
k

)
. Also note that we have ‖p−q‖1 = ‖pS−qS‖1.

To bound the sample complexity, we have

m2 = O( n
√
m1ε2 +

√
n

ε2 ) .

This gives us the sample complexity desired, as we consider maximum of the sum we
are dealing with order.

Remark 3. As m1 increases, m2 decreases, which is consistent with out intuition.
Furthermore, if we set m1 = m2, meaning we take twice as samples from q than we do
from p, then the sample complexity would be

max{n
2
3

ε
4
3
,
n

1
2

ε2 } ,

i.e., the sample complexity of vanilla `1-equivalence testing.
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