Homework 1

Instructions: This is a background self-test on the type of math we will encounter in class. If you find many questions intimidating, we suggest you drop 760 and take it again in the future when you are more prepared.

1 Vectors and Matrices [6 pts]

Consider the matrix X and the vectors \mathbf{y} and \mathbf{z} below:

$$X = \begin{pmatrix} 3 & 2 \\ -7 & -5 \end{pmatrix} \qquad \mathbf{y} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \qquad \mathbf{z} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

1. Compute $\mathbf{y}^T X \mathbf{z}$.

2. Is X invertible? If so, give the inverse, and if no, explain why not.

2 Calculus [3 pts]

1. If $y = e^{-x} + \arctan(z)x^{6/z} - \ln \frac{x}{x+1}$, what is the partial derivative of y with respect to x?

3 Probability and Statistics [10 pts]

Consider a sequence of data S = (1, 1, 1, 0, 1) created by flipping a coin x five times, where 0 denotes that the coin turned up heads and 1 denotes that it turned up tails.

- 1. (2.5 pts) What is the probability of observing this data, assuming it was generated by flipping a biased coin with p(x = 1) = 0.6?
- 2. (2.5 pts) Note that the probability of this data sample could be greater if the value of p(x = 1) was not 0.6, but instead some other value. What is the value that maximizes the probability of S? Please justify your answer.
- 3. (5 pts) Consider the following joint probability table where both A and B are binary random variables:

Α	В	P(A,B)
0	0	0.3
0	1	0.1
1	0	0.1
1	1	0.5

- (a) What is P(A = 0|B = 1)?
- (b) What is $P(A = 1 \lor B = 1)$?

4 Big-O Notation [6 pts]

For each pair (f, g) of functions below, list which of the following are true: f(n) = O(g(n)), g(n) = O(f(n)), both, or neither. Briefly justify your answers.

1.
$$f(n) = \ln(n), g(n) = \log_2(n).$$

2.
$$f(n) = \log_2 \log_2(n), g(n) = \log_2(n).$$

3.
$$f(n) = n!, g(n) = 2^n$$
.

5 Probability and Random Variables

5.1 Probability [12.5 pts]

State true or false. Here Ω denotes the sample space and A^c denotes the complement of the event A.

- 1. For any $A, B \subseteq \Omega$, P(A|B)P(A) = P(B|A)P(B).
- 2. For any $A, B \subseteq \Omega$, $P(A \cup B) = P(A) + P(B) P(B \cap A)$.
- 3. For any $A, B, C \subseteq \Omega$ such that $P(B \cup C) > 0$, $\frac{P(A \cup B \cup C)}{P(B \cup C)} \ge P(A|B \cup C)P(B)$.
- 4. For any $A, B \subseteq \Omega$ such that $P(B) > 0, P(A^c) > 0, P(B|A^C) + P(B|A) = 1$.
- 5. If A and B are independent events, then A^c and B^c are independent.

5.2 Discrete and Continuous Distributions [12.5 pts]

Match the distribution name to its probability density / mass function. Below, |x| = k.

(f)
$$f(\boldsymbol{x}; \boldsymbol{\Sigma}, \boldsymbol{\mu}) = \frac{1}{\sqrt{(2\pi)^k \det(\boldsymbol{\Sigma})}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{x} - \boldsymbol{\mu})\right)$$

(g) $f(\boldsymbol{x}; n, \alpha) = \binom{n}{x} \alpha^x (1 - \alpha)^{n-x}$ for $\boldsymbol{x} \in \{0, \dots, n\}; 0$

otherwise
(h)
$$f(x; b, \mu) = \frac{1}{2b} \exp\left(-\frac{|x-\mu|}{b}\right)$$

(a) Gamma

(b) Multinomial

(i)
$$f(\boldsymbol{x}; n, \boldsymbol{\alpha}) = \frac{n!}{\prod_{i=1}^{k} x_i!} \prod_{i=1}^{k} \alpha_i^{x_i}$$
 for $x_i \in \{0, \dots, n\}$ and $\sum_{i=1}^{k} x_i = n$: 0 otherwise

(c) Laplace(d) Poisson

(e) Dirichlet

- $\sum_{i=1}^{k} x_i = n; 0 \text{ otherwise}$ (j) $f(x; \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha 1} e^{-\beta x}$ for $x \in (0, +\infty); 0$ otherwise
- (k) $f(\boldsymbol{x}; \boldsymbol{\alpha}) = \frac{\Gamma(\sum_{i=1}^{k} \alpha_i)}{\prod_{i=1}^{k} \Gamma(\alpha_i)} \prod_{i=1}^{k} x_i^{\alpha_i 1}$ for $x_i \in (0, 1)$ and $\sum_{i=1}^{k} x_i = 1; 0$ otherwise

(1)
$$f(x; \lambda) = \lambda^x \frac{e^{-\lambda}}{x!}$$
 for all $x \in Z^+$; 0 otherwise

5.3 Mean and Variance [10 pts]

- 1. Consider a random variable which follows a Binomial distribution: $X \sim \text{Binomial}(n, p)$.
 - (a) What is the mean of the random variable?

- (b) What is the variance of the random variable?
- 2. Let X be a random variable and $\mathbb{E}[X] = 1$, Var(X) = 1. Compute the following values:
 - (a) $\mathbb{E}[5X]$
 - (b) Var(5X)
 - (c) Var(X+5)

5.4 Mutual and Conditional Independence [12 pts]

- 1. (3 pts) If X and Y are independent random variables, show that $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$.
- 2. (3 pts) If X and Y are independent random variables, show that Var(X + Y) = Var(X) + Var(Y). Hint: Var(X + Y) = Var(X) + 2Cov(X, Y) + Var(Y)
- 3. (6 pts) If we roll two dice that behave independently of each other, will the result of the first die tell us something about the result of the second die?

If, however, the first die's result is a 1, and someone tells you about a third event — that the sum of the two results is even — then given this information is the result of the second die independent of the first die?

5.5 Central Limit Theorem [3 pts]

Prove the following result.

1. Let $X_i \sim \mathcal{N}(0,1)$ and $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$, then the distribution of \bar{X} satisfies

$$\sqrt{n}\bar{X} \stackrel{n \to \infty}{\longrightarrow} \mathcal{N}(0,1)$$

6 Linear algebra

6.1 Norms [5 pts]

Draw the regions corresponding to vectors $\mathbf{x} \in \mathbb{R}^2$ with the following norms:

- 1. $||\mathbf{x}||_1 \le 1$ (Recall that $||\mathbf{x}||_1 = \sum_i |x_i|$)
- 2. $||\mathbf{x}||_2 \le 1$ (Recall that $||\mathbf{x}||_2 = \sqrt{\sum_i x_i^2}$)
- 3. $||\mathbf{x}||_{\infty} \leq 1$ (Recall that $||\mathbf{x}||_{\infty} = \max_i |x_i|$)

For $M = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 3 \end{pmatrix}$, Calculate the following norms.

4. $||M||_2$ (L2 norm)

5. $||M||_F$ (Frobenius norm)

6.2 Geometry [10 pts]

Prove the following. Provide all steps.

- 1. The smallest Euclidean distance from the origin to some point \mathbf{x} in the hyperplane $\mathbf{w}^T \mathbf{x} + b = 0$ is $\frac{|b|}{||\mathbf{w}||_2}$. You may assume $\mathbf{w} \neq 0$.
- 2. The Euclidean distance between two parallel hyperplane $\mathbf{w}^T \mathbf{x} + b_1 = 0$ and $\mathbf{w}^T \mathbf{x} + b_2 = 0$ is $\frac{|b_1 b_2|}{||\mathbf{w}||_2}$ (Hint: you can use the result from the last question to help you prove this one).

7 Programming Skills [10 pts]

Sampling from a distribution. For each question, submit a scatter plot (you will have 2 plots in total). Make sure the axes for all plots have the same ranges.

- 1. Make a scatter plot by drawing 100 items from a two dimensional Gaussian $N((1, -1)^T, 2I)$, where I is an identity matrix in $\mathbb{R}^{2 \times 2}$.
- 2. Make a scatter plot by drawing 100 items from a mixture distribution $0.3N\left((5,0)^T, \begin{pmatrix} 1 & 0.25\\ 0.25 & 1 \end{pmatrix}\right) +$

$$0.7N\left((-5,0)^T, \begin{pmatrix} 1 & -0.25\\ -0.25 & 1 \end{pmatrix}\right).$$