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*Review & Regularization
* Forward/backwards Pass, Views, L1/L2 Effects

*Other Forms of Regularization
* Data Augmentation, Noise, Early Stopping, Dropout

*Convolutional Neural Networks
* Convolution Operation, Intuition



Outline

*Review & Regularization
* Forward/backwards Pass, Views, L1/L2 Effects



Review: Backprop

*Forward pass:

L(fnetwork (Jj) y y)

*Let’s unwrap this:

Wk k— 1(Wk 1 (W2 1 Wl )) ))’y)

Y H

Activation Linear
function  transformation,
Layer k Layer k

Activation Linear
function  transformation,
Layer 1 Layer 1



Review: Forward/Backward Passes

*Forward pass:

L (WrrE=H (Wh=t (W2 (Wha)) ), )
*For convenience,
o) = (Wiri= Y (WI=t o2 (W2t (W) - )
= WY (W2 (W2 (W) - - )



Review: Backward Pass

*Backward pass. Say we compute gradient w.r.t. x

OL Oa* 0zF 0Oaf—1 9zF1 Oat 021
dak 0zk Oak—1 Ozk—1 Qak—2 0zl Ox

e Can write this with matrix notation
* Writing it forward, this is equivalent

VoL = (WY () (AT () (4 T

Linear Activation function
derivative derivative



Review: Backpropagation

*Backward pass. Say we compute gradient w.r.t. x

me _ (Wl)T(Tl)/ o (Wk_l)T(T‘k_l)/(Wk)T(Tk)/vakL
*Let’s write this recursively:

57 = (17 (W) (WD (R (W) () e L

. T Easy to set up a recursion (start at k, go down) :

Start atj

layer here 6]—1 — (Tj_l)/(Wj)Téj



Review: Backpropagation

*Let’s write this recursively:
5 = (1) (WHT oo (W T (L) (W) (1) e L
* Easy to set up a recursion (start at k, go down) :

571 — (Tj—l)/(Wj)T(;j

*How do we get our gradients for weights?

Vs L = 67 (a7 )T



Review: Regularization, Bayesian Prior View

*Recall our MAP version of training. Bayes law:

p(0)p({x;, y:}10)
p({xi, yi})

p(0 | {x;,yi}) =
*MAP:
maxlogp(6 | {x; y;}) = min—logp(8) —logp(ix;, yi} | 6)

\_Y_;\_Y_I

Regularization MLE loss

*L2: Corresponds to normal p(x |y, 8), normal prior p(0)



Choice of View?

*Typical choice for optimization: soft-constraint

min Lr(8) =L(6) + AR(6)

*Hard constraint / Bayesian view: conceptual / for derivation

*Hard-constraint preferred if
* Know the explicit bound R(6) < r

*Bayesian view preferred if
* Domain knowledge easy to represent as a prior




Examples: L2 Regularization

* Again,

~ . A
mgn Lp(0) = L(6) +E 16115

e Questions: what are the

* Effects on (stochastic) gradient descent? \

* Effects on the optimal solution? o

0.00
100 445




L2 Regularization: Effect on GD

*Gradient of regularized objective
VL,(8) = VL(O) + A6

*Gradient descent update
0«6 —nVLis(0)=60—nVL(O) —nlo

= (1-nA)8 —n VL(6)

*In words, weight decay



L2 Regularization: Effect on Optimal Solution

*Consider a quadratic approximation around 8°

£(8) ~ L(6") + (0 — 09)TVL(6") +% (0 — 99TH(O — 6%

*Since 8* is optimal, VL(6*) = 0
- " 1
L(8) =~ L(6%) +§ 6 —6")'H(6 — 6%)

VL(0) ~ H(B —6*)



L2 Regularization: Effect on Optimal Solution

*Gradient of regularized objective: VL, (0) ~ H(6 — 6*) + 16

*On the optimal 8;: 0 = VLp(0;) ~ H(6; — 0*) + 16,
0: ~ (H + AI)"1HO*
*H has eigendecomp. H = QAQT, assume (A + AI) ™1 exists:

05 ~ (H + A)"1HO* = Q(A + AI)"1AQTH*

*Effect: rescale along eigenvectors of H



L2 Regularization: Effect on Optimal Solution

Effect: rescale along eigenvectors of H

Visual Example: /
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Figure from Deep Learning,
Goodfellow, Bengio and Courville



L1 Regularization: Effect on GD

m@in Lr(0) = L(6) + A|10]]1

* Effect on (stochastic) gradient descent:
*Gradient of regularized objective
VL,(0) = VL(O) + Asign(6)
where sign applies to each elementin 6
*Gradient descent update

6«6 —nVLy(0) =60 —nVL(B) — nisign(6)



L1 Regularization: Effect on Optimal Solution
* Again,
L(0) =~ L(6%) +% 6—-0")TH(O —06%)

*Further assume that H is diagonal and positive (H;;> 0, Vi)
*not true in general but assume for getting some intuition

*The regularized objective is (ignoring constants)

] 1 *
Lr(0) ~ ZEHU(Qi —0,)% + 1|6;]
i



L1 Regularization: Effect on Optimal Solution

* The regularized objective is (ignoring constants)

] 1 *
Lr(0) = 25 H;;(6; — 6)* + 216;]
i

*The optimal 6

( A
max{@lfk ——,O} if 6; =20
" Hi;
(HR)i o y)
min{@i*+—,0} if 6; <0
\ Hj;

* Compact expression for the optimal 6

A
(6r); = sign(6;) max{|6;| T 0}
i



L1 Regularization: Effect on Optimal Solution

*The optimal 65

r k A L] *k
max{@i ——,O} if 6; =0
) H;;
(HR)i R S pl
min 9-*+—,0} if 8 <0
& { ' Hii !

* Effect: induces sparsity /
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Q1-2: Which of the following statement(s) is(are) TRUE about regularization
parameter A ?

A. Ais the tuning parameter that decides how much we want to penalize the flexibility of
our model.

B. Ais usually set using cross validation.

1. True, True
2. True, False
3. False, True

4. False, False



Q1-2: Which of the following statement(s) is(are) TRUE about regularization
parameter A ?

A. Ais the tuning parameter that decides how much we want to penalize the flexibility of
our model.

B. Ais usually set using cross validation.

« The optimization problem can be viewed as
following:

1. True, True _ minimize(Loss(Data|Model) + A complexity(Model))

2. True, False o If the regularization parameter is large then it

3. False, True requires a small model complexity

« We have learned how to use cross validate to
set hyperparameters including regularization
parameters.

4. False, False



Q2-1: Select the correct option about regression with L2 regularization (also called
Ridge Regression).

A.  Ridge regression technique prevents coefficients from rising too high.
B. AsA—>eo, the impact of the penalty grows, and the ridge regression coefficient estimates

will approach infinity.

1. Both statements are true.
2. Both statements are false.
3. Statement A is true, Statement B is false.

4. Statement B is true, Statement A is false.



Q2-1: Select the correct option about regression with L2 regularization (also called
Ridge Regression).

A.

Ridge regression technique prevents coefficients from rising too high.

As Ao, the impact of the penalty grows, and the ridge regression coefficient estimates

will approach infinity.

Both statements are true.

Both statements are false.

Statement A is true, Statement B is false.

Statement B is true, Statement A is false.

As A>oo, the impact of the
penalty grows, and the ridge
regression coefficient estimates
will approach zero.



Q3-1: Following figure shows 3-norm sketches: | |x| |,<1 forp=1, 2, o,
Recall that | | x| |. = max{|x;| for all i}

15 15¢ 15¢
ﬁ:- 05F
A: 540 205 L 05,10 15 C:.i5 0 -0s 05 10 15
-05} -05
-15 -15¢ -15t

1. A:1,B:2,C: oo
2. A:2,B:1,C:o0
3. A:2,B:oo,C:1
4. A:o0,B:2,C:1



Q3-1: Following figure shows 3-norm sketches: | |x| |,<1 forp=1, 2, o,
Recall that | | x| |. = max{|x;| for all i}

15 15¢ 15¢
K)j- 05}
A: 540 205 L 05,10 15 C:.i5 0 -0s 05 10 15
-05} -05
- '.8
15 15t 15t

1. A:1,B:2,C:eo
2. A:2,B:1,C:o0 _
3. A:2,B:oo,C:1
4. A:o0,B:2,C:1



Outline

*Other Forms of Regularization
* Data Augmentation, Noise, Early Stopping, Dropout



Data Augmentation

Augmentation: transform + add new samples to dataset
*Transformations: based on domain

*ldea: build invariances into the model
*Ex: if all images have same alignment, model learns to use it

*Keep the label the same!




Data Augmentation: Examples

Examples of transformations for images

*Crop (and zoom)

*Color (change contrast/brightness)
*Rotations+ (translate, stretch, shear, etc)
Many more possibilities. Combine as well!

Q: how to deal with this at test time?
*A: transform, test, average




Combining & Automating Transformations

One way to automate the process:
*Apply every transformation and combinations
*Downside: most don’t help...

Want a good policy, ie, 2 =2 = =2 =

*Active area of research: search for good
policies | | -
1. Ratner et al: “Learning to Compose Domain-Specific
Transformations for Data Augmentation”
2. Cubuk et al: “AutoAugment: Learning Augmentation
Strategies from Data”




Data Augmentation: Other Domains

Not just for image data. For example, on text:

 Substitution
*E.g., “Itis a great day” = “It is a wonderful day”
» Use a thesaurus for particular words
* Or, use a model. Pre-trained word embeddings, language models

e Back-translation

* “Given the low budget and production limitations, this movie is very good.” =
“There are few budget items and production limitations to make this film a

really good one”

Xie et al: “Unsupervised Data Augmentation for
Consistency Training”



Adding Noise

*What if we have many solutions?

Class -1




Adding Noise

*Adding some amount of noise helps us pick solution:

Class -1

Prefer w, (higher confidence)



Adding Noise

*Too much: hurts instead

Too much noise leads
to data points cross

] u the boundary
B p
. .
Class +1 O
H m o
O ® »

O

O o ® Class -1

® O
[ o

Prefer w, (higher confidence)



Adding Noise: Equivalence to Weight Decay

*Suppose the hypothesisis f(x) = wlx, noise is e~N (0, Al)
* After adding noise, the loss is

L(f) = [Ex,y,e[f(x +€) — y]z = [Exye[f(x) +wle — Y]Z

L(f) ZIEx,y,e[f(x) — y]z T+ ZIEx,y,e[WTE(f(x) — y)] T+ IEx,y,e[WTE]Z

L(f) =Eyy  [f () — ¥1% + 4| Iwl|*



Early Stopping

*ldea: don’t train the network to too small training error

* Larger the hypothesis class, easier to find a hypothesis that fits the
difference between the two

*So: do not push the hypothesis too much; use validation error to
decide when to stop

Learning curves
| I | |
—e Training set loss

0.20

0.15 —— Validation set loss

1

0.10

0.05

Loss (negative log likelihood)

0.00 - . -
0 50 100 150 200 250

Time (epochs) Figure from Deep Learning,

Goodfellow, Bengio and Courville



Early Stopping

*Practically: when training, also output validation error
* Every time validation error improved, store a copy of the weights
* When validation error not improved for some time, stop
* Return the copy of the weights stored

wo

-
v =//’\\
LI ;/ I
N T ,/
A /
~ 7z /7

w1

Figure from Deep Learning,
Goodfellow, Bengio and Courville



Dropout

*Basic idea: randomly select weights to update

*In each update step
* Randomly sample a different binary mask to all the input and
hidden units
* Multiply the mask bits with the units and do the update as usual

*Typical dropout prob: 0.2 for input and 0.5 for hidden units



Dropout

*Closely related to bagging: HDlol ol
* Ensembling many models @ t|(m) ()| (m)
oto e oflicfe
(+) OlQ |0
ONNOXO® (%)
° ° @) ) @@ @
GloNF: ©

k)| (1)

o< cllc
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©

Figure from Deep Learning, Goodfellow, Bengio and Courville



Batch Normalization

*|f outputs of earlier layers are uniform or change greatly on
one round for one mini-batch, then neurons at next levels
can’t keep up: they output all high (or all low) values

*Next layer doesn’t have ability to change its outputs with
learning-rate-sized changes to its input weights

*We say the layer has “saturated”



Batch Normalization

* Algorithm:

* (i)-(iii) like standardization of input
data, but w.r.t. only the data in mini-
batch. Can take derivative and
incorporate the learning of last step
parameters into backpropagation.

* Note last step can completely un-do
previous 3 steps

* But if so this un-doing is driven by
the later layers, not the earlier

IaKers; later layers get to “choose”
whether they want standard normal
inputs or not

Input: Values of x over a mini-batch: B = {1 };
Parameters to be learned: v,
Output: {y; = BN, g(z;)}

1 m
<— — xT;
“B mi;

1 m
0F p > (xi = ps)?
1=1

// mini-batch mean

// mini-batch variance

Li — 1B
VO3 + €

y; < 7Z; + 8 = BN, 5(x;)

ZTi // normalize

// scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.
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Q2-2: Are these statements true or false?

(A) We need validation data to decide when to early stop.

(B) We can think early stopping as a regularization to limit the
volume of parameter space reachable from the initial parameter.

1. True, True

2. True, False
3. False, True
4. False, False



Q2-2: Are these statements true or false?

(A) We need validation data to decide when to early stop.

(B) We can think early stopping as a regularization to limit the
volume of parameter space reachable from the initial parameter.

1. True, True_

2. True, False
3. False, True
4. False, False

(A) As is shown in the lecture.

(B) That’s true. Early stopping will
limit the training time and thus
potentially limit the space the
training can search.



Outline

*Convolutional Neural Networks
* Convolution Operation, Intuition



Images as Input?

*We could use the feed-forward fully-connected layers we
have so far...
* Kind of big though...
* Also, if our images move, should the weights change?

i (O TR TR T TR
nm (L0 (R T T
i n
finin

i
K




Convolution Operation

*Given array u; and wg, their convolution is a function s;

+ 00

St = § UgWi_q

a=—0oo

*Writtenass = (u*w) or s;=(u*w),
*When u; or w; is not defined, assumed to be 0



Convolution Operation

*Example:

w=[z,y,x]
xa+yb+zc u=[alblcldlelf]

—T

T [ T I T



Convolution Operation

*Example:

w=[z,y,x]
xb+yc+zd u= [al br C, d; e, f]

i wi

a2 b e o d e f



Convolution Operation

*Example:

xc+yd+ze

i

2 b e d e



Convolution Operation

*Example:

xd+ye+zf

e



Convolution Operation

*Stride: # of positions we move per step

xa+yb+zc

—T

xc+yd+ze

i

Stride =2



Convolution Operation

e Matrix version: KerneI/F|Iter

R ;?E Donn

wa + bx +
ey + fz

]

Input

N

Feature Map



Convolution Operation

*All the units used the same set of weights (kernel)
*The units detect the same “feature” but at different locations

first hidden layer

O
000000

[Figure from neuralnetworksanddeeplearning.com]



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,

Yingyu Liang, Volodymyr Kuleshov, Sharon Li, Fred Sala >



