
CS 760: Machine Learning
Convolutional Neural Networks

Ilias Diakonikolas
University of Wisconsin-Madison

October 20, 2022

Announcements

•Logistics:
•HW 2 grades released, proposal feedback returned
•Coming up: HW 4 released, midterm review, midterm

Outline

•Review & Convolution Operator
•Experimental setup, convolution definition, vs. dense layers
•CNN Components & Layers

•Padding, stride, channels, pooling layers
•CNN Tasks & Architectures

• MNIST, ImageNet, LeNet, AlexNet, ResNets

Outline

•Review & Convolution Operator
•Experimental setup, convolution definition, vs. dense layers
•CNN Components & Layers

•Padding, stride, channels, pooling layers
•CNN Tasks & Architectures

• MNIST, ImageNet, LeNet, AlexNet, ResNets

Review: Experimental Setup

•Hypothesis

• Needed for science of any sort (testable!)

• “I will explore area Y”: not a hypothesis.

• Details of experimental protocol are not
part of hypothesis

•Popper: falsifiability

Review: Experimental Setup Template

•Coffee Experiment (http://aberger.site/coffee/)
•Really great template for any paper’s experimental setup
Hypothesis

• Caffeine makes graduate students more productive.
Proxy

• Productivity: time it takes to complete their PhD
• Coffee consumption: # of cups of coffee a students drinks/day

Protocol:
• Out of the 100 students in our school, have them report the mean

cups of coffee they drink each week

http://aberger.site/coffee/

Review: Coffee Experiment Continued

•Expected Results
• No caffeine: slow.
• Too much caffeine: caffeine tox.
• Convex curve

•Results
• Match our expected results
• Note outlier: further inquiry

Review: Fully-Connected Layers

•We used these in our MLPs:
•Note: lots of connections

Review: Convolution Operator

•Basic formula: as 𝑠 = 𝑢 ∗ 𝑤

•Visual example:

x y z

xa + yb + zc
𝑤 = [z, y, x]
𝑢 = [a, b, c, d, e, f]

𝑠! = &
"#$%

&%

𝑢"𝑤!$"

Filter/Kernel

a b c d e fInput

2-D Convolutions

•Example:

(vdumoulin@ Github)

Kernels: Examples

Edge Detection

Sharpen

Gaussian Blur

(wikipedia)

Convolution Layers

•Notation:
• X: nh x nw input matrix
• W: kh x kw kernel matrix
• b : bias (a scalar)
• Y: () x () output matrix

•As usual W, b are learnable parameters

Convolutional Neural Networks

•Convolutional networks: neural networks that use
convolution in place of general matrix multiplication in at
least one of their layers

•Strong empirical application performance

•Standard for image tasks

CNNs: Advantages

•Fully connected layer: m x n edges

•Convolutional layer: ≤ m x k edges

CNNs: Advantages

•Convolutional layer: same kernel used repeatedly!

Break & Quiz

Q1-1: If the size of Input matrix I is NxN and the kernel/filter size is KxK, what is the
size of the output matrix after performing convolution? Assume N>K, no padding,
and stride (how much we move the kernel each time) = 1.

1. (N - K + 1) x (N - K + 1)

2. (N - K) x (N - K)

3. (N - K - 1) x (N - K - 1)

4. None of the above

Q1-1: If the size of Input matrix I is NxN and the kernel/filter size is KxK, what is the
size of the output matrix after performing convolution? Assume N>K, no padding,
and stride (how much we move the kernel each time) = 1.

1. (N - K + 1) x (N - K + 1)

2. (N - K) x (N - K)

3. (N - K - 1) x (N - K - 1)

4. None of the above

● When sliding to the
right, we have N-K+1 so
many positions

● Similar when sliding
downwards

Outline

•Review & Convolution Operator
•Experimental setup, convolution definition, vs. dense layers
•CNN Components & Layers

•Padding, stride, channels, pooling layers
•CNN Tasks & Architectures

• MNIST, ImageNet, LeNet, AlexNet, ResNets

Convolutional Layers: Padding

Padding adds rows/columns around input

Convolutional Layers: Padding

Padding adds rows/columns around input
•Why?

1. Keeps edge information
2. Preserves sizes / allows deep networks

• ie, for a 32x32 input image, 5x5 kernel, after
1 layer, get 28x28, after 7 layers, only 4x4

3. Can combine different filter sizes

Convolutional Layers: Padding

•Padding ph rows and pw columns, output shape is
(nh-kh+ph+1) x (nw-kw+pw+1)

•Common choice is ph = kh-1 and pw=kw-1

• Odd kh: pad ph/2 on both sides
• Even kh: pad ceil(ph/2) on top, floor(ph/2) on bottom

Convolutional Layers: Stride

•Stride: #rows/#columns per slide
•Example:

Convolutional Layers: Stride

•Given stride sh for the height and stride sw for the width,
the output shape is

⌊(nh-kh+ph+sh)/sh⌋ x ⌊(nw-kw+pw+sw)/sw⌋

•Set ph = kh-1, pw = kw-1, then get

⌊(nh+sh-1)/sh⌋ x ⌊(nw+sw-1)/sw⌋

Convolutional Layers: Channels

•Color images: three channels (RGB).

hyperCODEmia

Convolutional Layers: Channels

•Color images: three channels (RGB)
• Note: contain different information
• Just converting to one grayscale image loses

information

wikipedia

Convolutional Layers: Channels

•How to integrate multiple channels?
•Have a kernel for each channel, and then sum results over
channels

Convolutional Layers: Channels

•No matter how many inputs channels, so far we always get
single output channel

•We can have multiple 3-D kernels, each one generates an
output channel

Convolutional Layers: Multiple Kernels

•Each 3-D kernel may recognize a particular pattern
• Gabor filters

(Olshausen & Field, 1997)

Krizhevsky et al

Convolutional Layers: Summary

•Properties
• Input: volume ci x nh x nw (channels x height x width)
• Hyperparameters: # of kernels/filters co, size kh x kw, stride sh x sw,

zero padding ph x pw
• Output: volume co x mh x mw (channels x height x width)
• Parameters: kh x kw x ci per filter, total (kh x kw x ci) x co

Stanford CS 231n

Other CNN Layers: Pooling

•Another type of layer

Credit: Marc’Aurelio Ranzato

Max Pooling

•Returns the maximal value in the sliding
window

•Example:
• max(0,1,3,4) = 4

Average Pooling

•Max pooling: the strongest pattern signal in
a window

•Average pooling: replace max with mean in
max pooling
• The average signal strength in a window

Other CNN Layers: Pooling

•Pooling layers have similar padding and
stride as convolutional layers

•No learnable parameters
•Apply pooling for each input channel to
obtain the corresponding output channel

#output channels = #input channels

Break & Quiz

Q2-1. Suppose we want to perform convolution on a single channel
image of size 7x7 (no padding) with a kernel of size 3x3, and stride = 2.
What is the dimension of the output?

A. 3x3

B. 7x7

C. 5x5

D. 2x2

7

7

Q2-1. Suppose we want to perform convolution on a single channel
image of size 7x7 (no padding) with a kernel of size 3x3, and stride = 2.
What is the dimension of the output?

A. 3x3

B. 7x7

C. 5x5

D. 2x2

7

7

Q2-2. Suppose we want to perform 2x2 average pooling on the
following single channel feature map of size 4x4 (no padding), and
stride = 2. What is the output?

A.

B.

C.

D.

12 20 30 0

20 12 2 0

0 70 5 2

8 2 90 3

20 30

70 90

16 8

20 25

20 30

20 25

12 2

70 5

Q2-2. Suppose we want to perform 2x2 average pooling on the
following single channel feature map of size 4x4 (no padding), and
stride = 2. What is the output?

A.

B.

C.

D.

12 20 30 0

20 12 2 0

0 70 5 2

8 2 90 3

20 30

70 90

16 8

20 25

20 30

20 25

12 2

70 5

Outline

•Review & Convolution Operator
•Experimental setup, convolution definition, vs. dense layers
•CNN Components & Layers

•Padding, stride, channels, pooling layers
•CNN Tasks & Architectures

• MNIST, ImageNet, LeNet, AlexNet, ResNets

CNN Tasks

•Traditional tasks: handwritten digit recognition
•Dates back to the ‘70s and ‘80s

• Low-resolution images, 10 classes

CNN Tasks

•Traditional tasks: handwritten digit recognition
•Classic dataset: MNIST

•Properties:
• 10 classes
• 28 x 28 images
• Centered and scaled
• 50,000 training data
• 10,000 test data

CNN Architectures

•Traditional tasks: handwritten digit recognition
•Classic dataset: MNIST
•1989-1999: LeNet model

LeCun, Y et al. (1989). Backpropagation applied to handwritten
zip code recognition. Neural Computation

LeCun, Y.; Bottou, L.; Bengio, Y. & Haffner, P. (1998). Gradient-
based learning applied to document recognition. Proc. IEEE

LeNet in PyTorch

•Pretty easy!
•Setup:

LeNet in PyTorch

•Pretty easy!
•Forward pass:

Training a CNN

•Q: so we have a bunch of layers. How do we train?
•A: same as before. Apply softmax at the end, use backprop.

softmax

More CNN Architectures: ImageNet Task

•Next big task/dataset: image recognition on ImageNet
•Large Scale Visual Recognition Challenge (ILSVRC) 2012-2017

•Properties:
• Thousands of classes
• Full-resolution
• 14,000,000 images

•Started 2009 (Deng et al)

CNN Architectures: AlexNet

•First of the major advancements: AlexNet
•Wins 2012 ImageNet competition
•Major trends: deeper, bigger LeNet

More CNN Architectures

•AlexNet vs LeNet
• Architecture comparison

LeNetAlexNet

Larger kernel size, stride for increased image
size, and more output channels.

Larger Pool Size

More Output Channels

More Convolutional Layers

FC Layers Increased Size

1000 Classes At Output

More Differences

•Activations: from sigmoid to ReLU
• Deal with vanishing gradient issue

•Data Augmentation

Saturating gradients

Going Further

• ImageNet error rate
• Competition winners; note layer count on right.

Credit: Stanford CS 231n

Add More Layers: Enough?

VGG: 19 layers. ResNet: 152 layers. Add more layers…
sufficient?
•No! Some problems:

• i) Vanishing gradients: more layers ➔ more likely
• ii) Instability: can’t guarantee we learn identity maps

Reflected in training error:

He et al: “Deep Residual Learning for Image Recognition”

Residual Connections

Idea: adding layers can’t make worse if we can learn identity
•But, might be hard to learn identity
•Zero map is easy…

• Make all the weights tiny, produces zero for output

x

f(x)

f(x)

x

+f(x) + x

Left: Conventional layers block

Right: Residual layer block

To learn identity f(x) = x, layers now
need to learn f(x) = 0 ➔ easier

ResNet Architecture

•Idea: Residual (skip) connections help make learning easier
•Example architecture:
•Note: residual connections

• Every two layers for ResNet34
•Vastly better performance

• No additional parameters!
• Records on many benchmarks

He et al: “Deep Residual Learning for Image Recognition”

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov , Sharon Li, Fred Sala

