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Announcements

•Logistics: 
•HW 2 grades released, proposal feedback returned
•Coming up: HW 4 released, midterm review, midterm



Outline

•Review & Convolution Operator
•Experimental setup, convolution definition, vs. dense layers
•CNN Components & Layers

•Padding, stride, channels, pooling layers
•CNN Tasks & Architectures

• MNIST, ImageNet, LeNet, AlexNet, ResNets
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Review: Experimental Setup

•Hypothesis

• Needed for science of any sort (testable!)

• “I will explore area Y”: not a hypothesis.

• Details of experimental protocol are not 
part of hypothesis

•Popper: falsifiability 



Review: Experimental Setup Template

•Coffee Experiment (http://aberger.site/coffee/)
•Really great template for any paper’s experimental setup
Hypothesis

• Caffeine makes graduate students more productive.
Proxy

• Productivity: time it takes to complete their PhD
• Coffee consumption: # of cups of coffee a students drinks/day

Protocol:
• Out of the 100 students in our school, have them report the mean 

cups of coffee they drink each week

http://aberger.site/coffee/


Review: Coffee Experiment Continued

•Expected Results
• No caffeine: slow.
• Too much caffeine: caffeine tox.
• Convex curve

•Results
• Match our expected results
• Note outlier: further inquiry



Review: Fully-Connected Layers

•We used these in our MLPs:
•Note: lots of connections



Review: Convolution Operator

•Basic formula: as 𝑠 = 𝑢 ∗ 𝑤

•Visual example:

x y z

xa + yb + zc
𝑤 = [z, y, x]
𝑢 = [a, b, c, d, e, f]

𝑠! = &
"#$%
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2-D Convolutions

•Example:

(vdumoulin@ Github)



Kernels: Examples

Edge Detection

Sharpen

Gaussian Blur

(wikipedia)



Convolution Layers

•Notation:
• X: nh x nw input matrix
• W: kh x kw kernel matrix 
• b : bias (a scalar)
• Y: () x () output matrix 

•As usual W, b are learnable parameters



Convolutional Neural Networks

•Convolutional networks: neural networks that use 
convolution in place of general matrix multiplication in at 
least one of their layers

•Strong empirical application performance

•Standard for image tasks



CNNs: Advantages

•Fully connected layer: m x n edges

•Convolutional layer: ≤ m x k edges



CNNs: Advantages

•Convolutional layer: same kernel used repeatedly!



Break & Quiz



Q1-1: If the size of Input matrix I is NxN and the kernel/filter size is KxK, what is the 
size of the output matrix after performing convolution? Assume N>K, no padding, 
and stride (how much we move the kernel each time) = 1.

1. (N - K + 1) x (N - K + 1)

2. (N - K) x (N - K)

3. (N - K - 1) x (N - K - 1)

4. None of the above



Q1-1: If the size of Input matrix I is NxN and the kernel/filter size is KxK, what is the 
size of the output matrix after performing convolution? Assume N>K, no padding, 
and stride (how much we move the kernel each time) = 1.

1. (N - K + 1) x (N - K + 1)

2. (N - K) x (N - K)

3. (N - K - 1) x (N - K - 1)

4. None of the above

● When sliding to the 
right, we have N-K+1 so 
many positions

● Similar when sliding 
downwards
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Convolutional Layers: Padding

Padding adds rows/columns around input



Convolutional Layers: Padding

Padding adds rows/columns around input
•Why?

1. Keeps edge information
2. Preserves sizes / allows deep networks

• ie, for a 32x32 input image, 5x5 kernel, after    
1 layer, get 28x28, after 7 layers, only 4x4

3. Can combine different filter sizes



Convolutional Layers: Padding

•Padding ph rows and pw columns, output shape is
(nh-kh+ph+1) x (nw-kw+pw+1)

•Common choice is ph = kh-1 and pw=kw-1

• Odd kh: pad ph/2 on both sides
• Even kh: pad ceil(ph/2) on top, floor(ph/2) on bottom



Convolutional Layers: Stride

•Stride: #rows/#columns per slide
•Example:



Convolutional Layers: Stride

•Given stride sh for the height and stride sw for the width, 
the output shape is

⌊(nh-kh+ph+sh)/sh⌋ x ⌊(nw-kw+pw+sw)/sw⌋

•Set ph = kh-1, pw = kw-1, then get

⌊(nh+sh-1)/sh⌋ x ⌊(nw+sw-1)/sw⌋



Convolutional Layers: Channels

•Color images: three channels (RGB).

hyperCODEmia



Convolutional Layers: Channels

•Color images: three channels (RGB)
• Note: contain different information
• Just converting to one grayscale image loses 

information

wikipedia



Convolutional Layers: Channels

•How to integrate multiple channels?
•Have a kernel for each channel, and then sum results over 
channels



Convolutional Layers: Channels

•No matter how many inputs channels, so far we always get 
single output channel 

•We can have multiple 3-D kernels, each one generates an 
output channel



Convolutional Layers: Multiple Kernels

•Each 3-D kernel may recognize a particular pattern
• Gabor filters

(Olshausen & Field, 1997)

Krizhevsky et al



Convolutional Layers: Summary

•Properties
• Input: volume ci x nh x nw (channels x height x width) 
• Hyperparameters: # of kernels/filters co, size kh x kw, stride sh x sw, 

zero padding ph x pw
• Output: volume co x mh x mw (channels x height x width)
• Parameters: kh x kw x ci per filter, total (kh x kw x ci) x co

Stanford CS 231n



Other CNN Layers: Pooling

•Another type of layer 

Credit: Marc’Aurelio Ranzato



Max Pooling

•Returns the maximal value in the sliding 
window

•Example:
• max(0,1,3,4) = 4



Average Pooling

•Max pooling: the strongest pattern signal in 
a window

•Average pooling: replace max with mean in 
max pooling 
• The average signal strength in a window



Other CNN Layers: Pooling

•Pooling layers have similar padding and 
stride as convolutional layers 

•No learnable parameters 
•Apply pooling for each input channel to 
obtain the corresponding output channel

#output channels = #input channels



Break & Quiz



Q2-1. Suppose we want to perform convolution on a single channel 
image of size 7x7 (no padding) with a kernel of size 3x3, and stride = 2. 
What is the dimension of the output?  

A. 3x3

B. 7x7

C. 5x5

D. 2x2

7

7
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Q2-2. Suppose we want to perform 2x2 average pooling on the 
following single channel feature map of size 4x4 (no padding), and 
stride = 2. What is the output?  

A.

B.

C.

D.

12 20 30 0

20 12 2 0

0 70 5 2

8 2 90 3

20 30

70 90

16 8

20 25

20 30

20 25

12 2

70 5



Q2-2. Suppose we want to perform 2x2 average pooling on the 
following single channel feature map of size 4x4 (no padding), and 
stride = 2. What is the output?  

A.

B.

C.

D.

12 20 30 0

20 12 2 0

0 70 5 2

8 2 90 3

20 30

70 90

16 8

20 25

20 30

20 25

12 2

70 5
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CNN Tasks

•Traditional tasks: handwritten digit recognition
•Dates back to the ‘70s and ‘80s

• Low-resolution images, 10 classes



CNN Tasks

•Traditional tasks: handwritten digit recognition
•Classic dataset: MNIST

•Properties:
• 10 classes
• 28 x 28 images
• Centered and scaled 
• 50,000 training data 
• 10,000 test data 



CNN Architectures

•Traditional tasks: handwritten digit recognition
•Classic dataset: MNIST
•1989-1999: LeNet model

LeCun, Y  et al. (1989). Backpropagation applied to handwritten 
zip code recognition. Neural Computation

LeCun, Y.; Bottou, L.; Bengio, Y. & Haffner, P. (1998). Gradient-
based learning applied to document recognition. Proc. IEEE



LeNet in PyTorch

•Pretty easy!
•Setup:



LeNet in PyTorch

•Pretty easy!
•Forward pass:



Training a CNN

•Q: so we have a bunch of layers. How do we train?
•A: same as before. Apply softmax at the end, use backprop. 

softmax



More CNN Architectures: ImageNet Task

•Next big task/dataset: image recognition on ImageNet
•Large Scale Visual Recognition Challenge (ILSVRC)  2012-2017

•Properties:
• Thousands of classes
• Full-resolution
• 14,000,000 images

•Started 2009 (Deng et al)



CNN Architectures: AlexNet

•First of the major advancements: AlexNet
•Wins 2012 ImageNet competition
•Major trends: deeper, bigger LeNet



More CNN Architectures

•AlexNet vs LeNet
• Architecture comparison

LeNetAlexNet

Larger kernel size, stride for increased image 
size, and more output channels.

Larger Pool Size

More Output Channels

More Convolutional Layers

FC Layers Increased Size

1000 Classes At Output



More Differences

•Activations: from sigmoid to ReLU
• Deal with vanishing gradient issue

•Data Augmentation

Saturating gradients



Going Further

• ImageNet error rate
• Competition winners; note layer count on right.

Credit: Stanford CS 231n



Add More Layers: Enough?

VGG: 19 layers. ResNet: 152 layers. Add more layers… 
sufficient?
•No! Some problems:

• i) Vanishing gradients: more layers ➔ more likely
• ii) Instability: can’t guarantee we learn identity maps

Reflected in training error:

He et al: “Deep Residual Learning for Image Recognition”



Residual Connections

Idea: adding layers can’t make worse if we can learn identity
•But, might be hard to learn identity 
•Zero map is easy…

• Make all the weights tiny, produces zero for output

x

f(x)

f(x)

x

+f(x) + x

Left: Conventional layers block

Right: Residual layer block

To learn identity f(x) = x, layers now 
need to learn f(x) = 0 ➔ easier



ResNet Architecture

•Idea: Residual (skip) connections help make learning easier
•Example architecture: 
•Note: residual connections 

• Every two layers for ResNet34 
•Vastly better performance 

• No additional parameters! 
• Records on many benchmarks

He et al: “Deep Residual Learning for Image Recognition”



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, 
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, 
Yingyu Liang, Volodymyr Kuleshov , Sharon Li, Fred Sala


