
CS 760: Machine Learning
Recurrent Neural Networks

Ilias Diakonikolas
University of Wisconsin-Madison

October 25, 2022

Outline

•CNN Tasks & Architectures
• MNIST, ImageNet, LeNet, AlexNet, ResNets
•RNN Basics

•Sequential tasks, hidden state, vanilla RNN
•RNN Variants + LSTMs

•RNN training, variants, LSTM cells

Outline

•CNN Tasks & Architectures
• MNIST, ImageNet, LeNet, AlexNet, ResNets
•RNN Basics

•Sequential tasks, hidden state, vanilla RNN
•RNN Variants + LSTMs

•RNN training, variants, LSTM cells

Review: 2-D Convolutions

•Example:

(vdumoulin@ Github)

Review: CNN Advantages

•Fully connected layer: m x n edges

•Convolutional layer: ≤ m x k edges

Review: Convolutional Layers

•Properties
• Input: volume ci x nh x nw (channels x height x width)
• Hyperparameters: # of kernels/filters co, size kh x kw, stride sh x sw,

zero padding ph x pw
• Output: volume co x mh x mw (channels x height x width)
• Parameters: kh x kw x ci per filter, total (kh x kw x ci) x co

Stanford CS 231n

Review: Max Pooling

•Returns the maximal value in the sliding
window

•Example:
• max(0,1,3,4) = 4

Review: CNN Architectures: LeNet

•Traditional tasks: handwritten digit recognition
•Classic dataset: MNIST
•1989-1999: LeNet model

LeCun, Y et al. (1989). Backpropagation applied to handwritten
zip code recognition. Neural Computation

LeCun, Y.; Bottou, L.; Bengio, Y. & Haffner, P. (1998). Gradient-
based learning applied to document recognition. Proc. IEEE

CNN Architectures: AlexNet

•First of the major advancements: AlexNet
•Wins 2012 ImageNet competition
•Major trends: deeper, bigger LeNet

More CNN Architectures

•AlexNet vs LeNet
• Architecture comparison

LeNetAlexNet

Larger kernel size, stride for increased image
size, and more output channels.

Larger Pool Size

More Output Channels

More Convolutional Layers

FC Layers Increased Size

1000 Classes At Output

More Differences

•Activations: from sigmoid to ReLU
• Deal with vanishing gradient issue

•Data Augmentation

Saturating gradients

Going Further

• ImageNet error rate
• Competition winners; note layer count on right.

Credit: Stanford CS 231n

Add More Layers: Enough?

VGG: 19 layers. ResNet: 152 layers. Add more layers…
sufficient?
•No! Some problems:

• i) Vanishing gradients: more layers ➔ more likely
• ii) Instability: can’t guarantee we learn identity maps

Reflected in training error:

He et al: “Deep Residual Learning for Image Recognition”

Residual Connections

Idea: adding layers can’t make worse if we can learn identity
•But, might be hard to learn identity
•Zero map is easy…

• Make all the weights tiny, produces zero for output

x

f(x)

f(x)-x

x

+f(x)

Left: Conventional layers block

Right: Residual layer block

To learn identity f(x) = x, layers now
need to learn f(x) = 0 ➔ easier

ResNet Architecture

•Idea: Residual (skip) connections help make learning easier
•Example architecture:
•Note: residual connections

• Every two layers for ResNet34
•Vastly better performance

• No additional parameters!
• Records on many benchmarks

He et al: “Deep Residual Learning for Image Recognition”

Break & Quiz

Q1-1: Select the correct option about LeNet-5.

1. Both statements are true.

2. Both statements are false.

3. Statement A is true, Statement B is false.

4. Statement B is true, Statement A is false.

A. LeNet-5 architecture has subsampling layers which essentially does pooling operation.

B. Fully Connected Network is used in the end to obtain softmax scores.

Q1-1: Select the correct option about LeNet-5.

1. Both statements are true.

2. Both statements are false.

3. Statement A is true, Statement B is false.

4. Statement B is true, Statement A is false.

A. LeNet-5 architecture has subsampling layers which essentially does pooling operation.

B. Fully Connected Network is used in the end to obtain softmax scores.

Outline

•CNN Tasks & Architectures
• MNIST, ImageNet, LeNet, AlexNet, ResNets
•RNN Basics

•Sequential tasks, hidden state, vanilla RNN
•RNN Variants + LSTMs

•RNN training, variants, LSTM cells

So Far…

•Our models take one input object to one output object
• Fixed-dimensional input vector

•What about sequential data?
• I.e., language!
• Also, video, many other data

•What should our models do?

Tasks We Can Handle?

•Our standard model so far. One fixed input type, one output
• Image classification

Tasks We Can Handle?

•One input, but sequence at the output
• Ex: image captioning. Input: one image, Output: sequence of words

“DenseCap: Fully Convolutional Localization Networks for
Dense Captioning”, Johnson, Karpathy, Li

Tasks We Can Handle?

•Sequence input, one output
• Ex: sentiment analysis. Input is a sentence, output is one of

{positive, neutral, negative}

Tasks We Can Handle?

•Sequence input, sequence output
• Ex: machine translation. Translate from language A to language B

devblogs.nvidia.com

Tasks We Can Handle?

•Synchronized input and output
• Ex: Video classification: label each frame of a video

Tasks We Can Handle?

•Don’t have the ability to do anything except (1) so far…
• Need a new kind of model

Modeling Sequential Data

•Simplistic model:
• s(t) state at time t. Transition function f

𝑠("#$) = 𝑓(𝑠 " ; 𝜃)

𝑠("#$) 𝑠("#&) 𝑠(")
𝑓𝑓

𝑠 𝑓

Modeling Sequential Data: External Input

•External inputs can also influence transitions
• s(t) state at time t. Transition function f
• x(t): input at time t

𝑠("#$) = 𝑓(𝑠 " , 𝑥("#$); 𝜃)

𝑠("#$) 𝑠("#&) 𝑠(") 𝑠("'&)
𝑓 𝑓𝑓

𝑥("#$) 𝑥("#&) 𝑥(") 𝑥("'&)

Important: the
same 𝒇 and 𝜽 for

all time steps

𝑠

𝑥

𝑓

Recurrent Neural Networks

•Use the principle from the system above:
• Same computational function and parameters across different time

steps of the sequence
•Each time step: takes the input entry and the previous
hidden state to compute the current hidden state and the
output entry

•Training: loss typically computed at every time step

RNNs: Basic Components

•What do we need for our new network?

• Input x
• State s
• Output o
• Labels y & Loss function L
• Still need to train!

𝑠

𝑥

𝑜

𝐿

𝑦

Recurrent: state is
plugged back into

itself

RNNs: Unrolled Graph

𝑠("#$) 𝑠(") 𝑠("&$)

𝑥("#$) 𝑥(") 𝑥("&$)

State

Input

𝑜("#$) 𝑜(") 𝑜("&$) Output

𝑦("#$) 𝑦(") 𝑦("&$) Label

𝐿("#$) 𝐿(") 𝐿("&$) Loss

Simple RNNs

•Classical RNN variant:

𝑠("#$) 𝑠(") 𝑠("&$)

𝑥("#$) 𝑥(") 𝑥("&$)

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑎(") = 𝑏 + 𝑊𝑠("#&) + 𝑈𝑥(")

𝑠(") = tanh 𝑎 "

𝑜(") = 𝑐 + 𝑉𝑠(")
1𝑦(") = softmax 𝑜 "

𝐿(") = CrossEntropy(𝑦 " , 1𝑦("))

𝑜("#$) 𝑜(") 𝑜("&$)

𝑉 𝑉 𝑉

𝐿("#$) 𝐿(") 𝐿("&$)

𝑦("#$) 𝑦(") 𝑦("&$)

Properties

•Hidden state: a lossy summary of the past
•Shared functions / parameters

• Reduce the capacity and good for generalization
•Uses the knowledge that sequential data can be processed in
the same way at different time step

•Powerful (universal): any function computable by a Turing
machine computed by such a RNN of a finite size
• Siegelmann and Sontag (1995)

Example: Char. Level Language Model

•LM goal: predict next character:

•Vocabulary
{h,e,l,o}

•Training sequence:
“hello”

Stanford CS231N

Example: Char. Level Language Model

•LM goal: predict next character:

•Vocabulary
{h,e,l,o}

•Test time:
• Sample chars, feed into model

Break & Quiz

Q2-1: Are these statements true or false?
(A) Order matters in sequential data.
(B) A batch of sequential data always contains sequences of a
same length.

1. True, True
2. True, False
3. False, True
4. False, False

Q2-1: Are these statements true or false?
(A) Order matters in sequential data.
(B) A batch of sequential data always contains sequences of a
same length.

1. True, True
2. True, False
3. False, True
4. False, False

(A) As is shown by its name “sequential”, order
matters in sequential data.

(B) A batch of sequential data can have different
length, such as different sentences.

Q2-2: Please choose the representation of 𝑠("#() in terms of
𝑠("), 𝑥("), 𝑥("#$), 𝑥("#() in the following dynamic system 𝑠("#$) =
𝑓)(𝑠 " , 𝑥 "#$).

1. 𝑓)(𝑠 " , 𝑥 "#$)
2. 𝑓)(𝑠 " , 𝑥 "#()
3. 𝑓)(𝑓)(𝑠 " , 𝑥 "), 𝑥 "#$)
4. 𝑓)(𝑓)(𝑠 " , 𝑥 "#$), 𝑥 "#()

Q2-2: Please choose the representation of 𝑠("#() in terms of
𝑠("), 𝑥("), 𝑥("#$), 𝑥("#() in the following dynamic system 𝑠("#$) =
𝑓)(𝑠 " , 𝑥 "#$).

1. 𝑓)(𝑠 " , 𝑥 "#$)
2. 𝑓)(𝑠 " , 𝑥 "#()
3. 𝑓)(𝑓)(𝑠 " , 𝑥 "), 𝑥 "#$)
4. 𝒇𝜽(𝒇𝜽(𝒔 𝒕 , 𝒙 𝒕#𝟏), 𝒙 𝒕#𝟐)

As is shown in this dynamic system, we have
𝑠("'$) = 𝑓(𝑠 "'& , 𝑥 "'$ = 𝑓(𝑓(𝑠 " , 𝑥 "'& , 𝑥 "'$,
as 𝑠 "'& = 𝑓(𝑠 " , 𝑥 "'& .

Q2-3: Are these statements true or false?
(A) The hidden state 𝑠(") is the linear combination of the previous
hidden state 𝑠("-$) and the external data 𝑥(").
(B) Sharing functions and parameters in RNN leads to inherent
limitation on the learning ability of the model.

1. True, True
2. True, False
3. False, True
4. False, False

Q2-3: Are these statements true or false?
(A) The hidden state 𝑠(") is the linear combination of the previous
hidden state 𝑠("-$) and the external data 𝑥(").
(B) Sharing functions and parameters in RNN leads to inherent
limitation on the learning ability of the model.

1. True, True
2. True, False
3. False, True
4. False, False

(A) We need to use an activation function to
compute the hidden states, so it’s not linear.

(B) As is shown in the lecture, such RNN of a finite
size can be universal.

Outline

•CNN Tasks & Architectures
• MNIST, ImageNet, LeNet, AlexNet, ResNets
•RNN Basics

•Sequential tasks, hidden state, vanilla RNN
•RNN Variants + LSTMs

•RNN training, variants, LSTM cells

RNN Variants

𝑠('#$) 𝑠(')𝑠($)

𝑥('#$) 𝑥(')𝑥($)

𝑜(')

𝐿(')

𝑦(')

𝑈

𝑊

𝑈𝑈

𝑠(()
𝑊 …

Example: only output at the
end

𝑠("#$) 𝑠(") 𝑠("&$)

𝑥("#$) 𝑥(") 𝑥("&$)

𝑜("#$) 𝑜(") 𝑜("&$)

𝐿("#$) 𝐿(") 𝐿("&$)

𝑦("#$) 𝑦(") 𝑦("&$)

𝑈

𝑉 𝑊

𝑈

𝑉
𝑊

𝑈

𝑉
𝑊

Example: use the output at the
previous step

RNN Variants: Encoder/Decoder

•RNNs: can map sequence to one vector; or to sequence of
same length

•What about mapping sequence to sequence of different
length?
• Ex: speech recognition, machine translation, question answering,

etc.

RNN Variants: Encoder/Decoder

𝑠('#$) 𝑠(')𝑠($)

𝑥('#$) 𝑥(')𝑥($)

𝑠(() …

Encoder

memory

ℎ($)

Decoder

𝑦($)

ℎ()) ℎ(*#$)

𝑦(*#$)

ℎ(*)

𝑦(*)

Training RNNs

•Backpropagation Through Time
• Idea: unfold the computational graph, and use backpropagation

•Conceptually: first compute the gradients of the internal
nodes, then compute the gradients of the parameters

RNN Problems

•What happens to gradients in backprop w. many layers?
• In an RNN trained on long sequences (e.g. 100 time steps) the

gradients can easily explode or vanish.
• We can avoid this by initializing the weights very carefully.

•Even with good initial weights, very hard to detect that
current target output depends on an input from long ago.
• RNNs have difficulty dealing with long-range dependencies.

•RNN: can write structure as:

•Long Short-Term Memory: deals with problem. Cell:

LSTM Architecture

Chris Olah

•Step-by-step
• Good reference: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

•“Forget” gate.
• Can remove all or part of any entry in cell state C
• Note the sigmoid activation

Understanding the LSTM Cell

•Step-by-step

•Input gate. Combine:
• What entries in Ct-1 we’ll update
• Candidates for updating: Ćt
• Add information to cell state Ct-1 (post-forgetting)

Understanding the LSTM Cell

•Step-by-step

•Updating Ct-1 to Ct
• Forget, then
• Add new information

Understanding the LSTM Cell

•Step-by-step

•Output gate
• Combine hidden state, input as before, but also
• Modify according to cell state Ct

Understanding the LSTM Cell

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov , Sharon Li, Chris Olah, Fred Sala

