CS 760: Machine Learning
Recurrent Neural Networks

llias Diakonikolas

University of Wisconsin-Madison

October 25, 2022

Outline

*CNN Tasks & Architectures
* MNIST, ImageNet, LeNet, AlexNet, ResNets

*RNN Basics
*Sequential tasks, hidden state, vanilla RNN

*RNN Variants + LSTMs
*RNN training, variants, LSTM cells

Outline

*CNN Tasks & Architectures
* MNIST, ImageNet, LeNet, AlexNet, ResNets

Review: 2-D Convolutions

*Example:
Input Kernel Output
0O11]2
01l 1 19 | 25
31415 * —
2|3 37|43
61718

OxX0+1x1+3%x2+4%x3=19,
IX0+2X1+4%x2+5%x3 =25,
3IX0+4x1+6%x2+7%x3 =237,
4X0+5X1+7%X2+8X%X3=43.

(vdumoulin@ Github)

Review: CNN Advantages

*Fully connected layer: m x n edges

e Convolutional layer: £ m x k edges

QD Q@ () (D nosse

k kernel size

ojoRoRoge ™

Review: Convolutional Layers

*Properties
*Input: volume ¢;x n, x n,, (channels x height x width)

* Hyperparameters: # of kernels/filters c,, size k, x k,, stride s, x s,,,
zero padding p, x p,,

* Output: volume ¢, x m, x m, (channels x height x width)
* Parameters: k, x k,, x ¢; per filter, total (k, x k,, x ¢;) X c,

@E>ooooo

3
Stanford CS 231n

Review: Max Pooling

*Returns the maximal value in the sliding
window

*Example:
*max(0,1,3,4) =4

Input Output
0O|11] 2

2 x 2 Max 4195
31415 :

Pooling 71 s
6|78

Review: CNN Architectures: LeNet

*Traditional tasks: handwritten digit recognition

*Classic dataset: MNIST
©1989-1999: LeNet model

convolution

32x32 image

\\

EE

pooling

LeCun, Y et al. (1989). Backpropagation applied to handwritten
zip code recognition. Neural Computation

LeCun, Y.; Bottou, L.; Bengio, Y. & Haffner, P. (1998). Gradient-
based learning applied to document recognition. Proc. IEEE

————=a

6@28x28
C1 feature map

convolution pooling full
full
_ Gauss
2 |3
] 2 ©
1] m S |3
6@14x14 =

S2 feature map —

16@5x5

16@10x10 S4 feature map

C3 feature map

CNN Architectures: AlexNet

*First of the major advancements: AlexNet
*Wins 2012 ImageNet competition
* Major trends: deeper, bigger LeNet

207 3
i 256, :
CONV Overlapping Overlapping
1x11, Max POOL CONV Max POOL CONV
stride=4, % 3x3, 96 5x5,pad=2 3x3, 256 4 3x3,pad=1
96 kernels stride=2 256 kernels stride=2 384 kernels
e — I I
d i 27+2°2-5)/1 27-3)/2 +1 13+2*1-3)/1
Ui il @27-11)4+1 |5 (55-3)2+1 @ i g el
I yff =55 =2 27 27 13
11 55 13
227
Overlapping
CONV 7 CONV Max POOL
3x3,pad=1 530201 3, 256 O
384 kernels 256 kernels stride=2
(13+2%1-3)1 (13+2°1-3)/1 (13-3)/2 +1 FC FC .
+1 =13 +1 =13 =6
13 6 O
13 6
9216 1000
13
‘ Softmax

4096 4096

More CNN Architectures

Dense (1000)

1000 Classes At Output :

| 3x3 Conv (384), pad 1 |

f
* AlexNet vs LeNet Dense;w%)
* Architecture comparison Dense (4096)
| 3x3 MaxPool, stride 2 |
1
| 3x3 Conv (384), pad 1 |
1
| 3x3 Conv (384), pad 1 |

FC Layers Increased Size

More Convolutional Layers | 3+8 MaxPooling, stride 2 |

More Output Channels — | 5x5 Conv (256), pad 2|
. — MaxPool, stride 2
Larger Pool Size - [[oavax T stide2_|
| 11x11 Conv (96), stride 4 |
Larger kernel size, stride for increased image / :
size, and more output channels. | image (3x224x224) |

Dense (10)

t

Dense (84)

t

Dense (120)

t

2x2 AvgPool, stride 2

t

5x5 Conv (16)

t

2x2 AvgPool, stride 2

t

5x5 Conv (6), pad 2

!

image (32x32)

AlexNet

LeNet

More Differences

* Activations: from sigmoid to RelLU
* Deal with vanishing gradient issue

*Data Augmentation

o sigmoid

08 1l+4+e -

06

. Saturating gradiepts

02

00
-10 -5 0 5 10

Going Further

*ImageNet error rate
* Competition winners; note layer count on right.

30
152 layers
25
A
20
15
|19 Iayers‘ |22 Iayers{
10
5 shallow 8 Iayers 8 Iayers I 3.6
. I
2010 2011 2012 2013 2014 2014 2015
Linetal Sanchez & Krizhevsky etal Zeiler & Simonyan & Szegedy et al Heetal
Perronnin (AlexNet) Fergus Zisserman (VGG) (GoogleNet) (ResNet)

Credit: Stanford CS 231n

Add More Layers: Enough?

VGG: 19 layers. ResNet: 152 layers. Add more layers...
sufficient?
*No! Some problems:

*i) Vanishing gradients: more layers = more likely
*ii) Instability: can’t guarantee we learn identity maps

L] [] [] § - ~ '
Reflected in training error: 5 g W\MAL
E 10 § 10 20-1&}'@]‘
.%D 56-layer §
£ Z
© =
= 20-layer

; 3 r s 6 o i 3 3 r
iter. (1e4) iter. (1e4)

He et al: “Deep Residual Learning for Image Recognition”

Residual Connections

Idea: adding layers can’t make worse if we can learn identity
*But, might be hard to learn identity

*Zero map is easy...
* Make all the weights tiny, produces zero for output

] 1 Left: Conventional layers block
[[]] _
) B S Right: Residual layer block
1 qox
y ?] To learn identity f(x) = x, layers now
X X need to learn f(x) = 0 = easier

ResNet Architecture

*ldea: Residual (skip) connections help make learning easier

*Example architecture:

Note: residual connections
* Every two layers for ResNet34

*Vastly better performance
* No additional parameters!
* Records on many benchmarks

VGG-19 34-layer plain 34-layer residual
image image image
utput
o224 3x3 conv, 64
3x3 conv, 64
pool, /2
tput ¥
an 333 conv, 128
[3dconv,128 | [7conv,64,2 |
v v
" pool, /2 pool, /2
p
o ¥ ¥
3conv, 256 | [33w et |
] A
[33256 | [33conver |
Y y
33conv, 2% | [et |
¥
33conv, 256 | [33covet |
v
| 3x3 conv, 64
¥
[3x3 conv, 64
17
pool, /2 [36cov, 1282]
output * i
s2e:28 T35 cony, 512 [33comv,128 |
¥
Deep Residual Learning for Image Recognition”

He et al: “

RO S g R S e L
"m‘ﬂ(-nw‘%ﬁtrhw

Break & Quiz

Q1-1: Select the correct option about LeNet-5.

A. LeNet-5 architecture has subsampling layers which essentially does pooling operation.

B. Fully Connected Network is used in the end to obtain softmax scores.

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT
32x32 6@28x28 S2: f. maps

|
Full conAection ’ Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

1. Both statements are true.
2. Both statements are false.
3. Statement A is true, Statement B is false.

4. Statement B is true, Statement A is false.

Q1-1: Select the correct option about LeNet-5.

A. LeNet-5 architecture has subsampling layers which essentially does pooling operation.

B. Fully Connected Network is used in the end to obtain softmax scores.

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT
32x32 6@28x28 S2: f. maps

Full conAection ’ Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

1. Both statements are true. _

2. Both statements are false.
3. Statement A is true, Statement B is false.

4. Statement B is true, Statement A is false.

Outline

*RNN Basics
*Sequential tasks, hidden state, vanilla RNN

So Far...

*Our models take one input object to one output object
* Fixed-dimensional input vector

*What about sequential data?
*l.e., language!
* Also, video, many other data

*\What should our models do?

Tasks We Can Handle?

one to one

*Our standard model so far. One fixed input type, one output
* Image classification

Tasks We Can Handle?

one to many

man wearing a black shirt
red shirt on a man jelephant is standing
large green elephant is brown
trees o R
- roof of a
building

green trees
in the
background

the ground s =114

ball is
white |

S leg of an
: s elephant
shadow on
elephant is standing the ground

ground is brown

“DenseCap: Fully Convolutional Localization Networks for
Dense Captioning”, Johnson, Karpathy, Li

*One input, but sequence at the output
* Ex: image captioning. Input: one image, Output: sequence of words

Tasks We Can Handle?

many to one

. 0 © 6

Negative Neutral Positive

*Sequence input, one output
* Ex: sentiment analysis. Input is a sentence, output is one of
{positive, neutral, negative}

Tasks We Can Handle?

many to many
Economic growth has slowed down in recent years

~

Das Wirtschaftswachstum hat sich in den letzten Jahren verlangsamt . o El ol e
Economic growth has slowed down in recent years . b e]

D !
- Nyl
N p< T

La croissance économique s' est ralentie ces derniéres années .

devblogs.nvidia.com

*Sequence input, sequence output
* Ex: machine translation. Translate from language A to language B

Tasks We Can Handle?

many to many

*Synchronized input and output
* Ex: Video classification: label each frame of a video

Tasks We Can Handle?

one to one one to many many to one many to many many to many

*Don’t have the ability to do anything except (1) so far...
* Need a new kind of model

Modeling Sequential Data

*Simplistic model:
st state at time t. Transition function f

S(t+1) = f(S(t), 9) %f

Modeling Sequential Data: External Input

%,

S(t+1) — f(s(t),x(”l); 9) x

*External inputs can also influence transitions
* s state at time t. Transition function f
x: input at time t

Important: the
same f and 0 for
all time steps

x(t_z) x(t_l) x(t) x(t+1)

Recurrent Neural Networks

*Use the principle from the system above:

e Same computational function and parameters across different time
steps of the sequence

*Each time step: takes the input entry and the previous
hidden state to compute the current hidden state and the
output entry

*Training: loss typically computed at every time step

RNNs: Basic Components
*\WWhat do we need for our new network?

*lnput x
*State s
* Qutput o

*Labels y & Loss function L
* Still need to train!

Recurrent: state is >
plugged back into
itself

RNNs: Unrolled Graph

.
& © o I

_—] Output

-
—

Simple RNNs

eClassical RNN variant:

a® =p+WstD 4 yx®
s® = tanh(a®)
o® = ¢ 4+ Vs®
@ @ $© = softmax(o®)
L® —-CrossEntropy(y(o A

1G] G NG))

44

£x® L+

Properties

*Hidden state: a lossy summary of the past

*Shared functions / parameters
* Reduce the capacity and good for generalization
*Uses the knowledge that sequential data can be processed in
the same way at different time step
e Powerful (universal): any function computable by a Turing

machine computed by such a RNN of a finite size
*Siegelmann and Sontag (1995)

Example: Char. Level Language Model

LM goal: predict next character:

target chars: ‘e’ i . o “Q”
1.0 0.5 0.1 0.2
*Vocabula ry output layer %% 2% (1)2 (1)?
4.1 1.2 -1.1 2.2
{hlel |)O} 3
T T T W_hy
ini . 0.3 1.0 0.1 03
.Tralnlng SequenCe hidden layer | -0.1 > 0.3 - 05 W_hr; 0.9
" 7] 0.9 0.1 -0.3 0.7
hello ‘
T T TW_xh
1 0 0 0
' 0 1 0 0
input layer 0 0 : -
0 0 0 0
input chars: “h” “g” “p @

Stanford CS231N

Example: Char. Level Language Model

LM goal: predict next character:

*Vocabulary
{hlelllo}

*Test time:
e Sample chars, feed into model

Sample

Softmax

output layer

hidden layer | -

input layer

input chars:

“l” uln uon
4 I '
.25 A1 A1
.20 17, .02
.05 .68 .08
.50 .03 .79
[} I)
0.5 0.1 0.2
03 0.5 -15
-1.0 1.9 0.1
1.2 -11 1
A A I
W_hy
1.0 0.1 |w hn| 03
03 | -05—* 09
0.1 -0.3 0.7
I) 4
W_xh
0 0 0
1 0 0
0 1 1
0 0 0
e » f-r

RO S g R S e L
"m‘ﬂ(-nw‘%ﬁtrhw

Break & Quiz

Q2-1: Are these statements true or false?

(A) Order matters in sequential data.

(B) A batch of sequential data always contains sequences of a
same length.

1. True, True

2. True, False
3. False, True
4. False, False

Q2-1: Are these statements true or false?

(A) Order matters in sequential data.

(B) A batch of sequential data always contains sequences of a
same length.

1. True, True

2. True, False {ummm

(A) As is shown by its name “sequential”, order
3' False’ True matters in sequential data.

B) A batch of sequential data can have different
4. False, False ®) ‘

length, such as different sentences.

Q2-2: Please choose the representation of s(t+2) in terms of
s xO x D) x(E+2) in the following dynamic system s+ =
fo(st, xt+D),

t) . (t+1
7 fe(S()y ())
£E=2)) x® G £ (t+2)

2. fo (s x(t+2)y
3. fo(fo(s®, x®), x(t+1))
4. fo(fo(s,x (1)) x(E+2)y

Q2-2: Please choose the representation of s(t+2) in terms of
s xO x D) x(E+2) in the following dynamic system s+ =
fo(st, xt+D),

t) . (t+1
7 fe(S()y ())
£E=2)) x® G £ (t+2)

2. fo (S(t), x(”z))
3. fo(fo(s®, x®), xE+1)
4. fo(fo(s®, x(tD), x(t+2)) qumm

As is shown in this dynamic system, we have

S(t+2) — fg(s(Hl),x(Hz)) — fe(fe (S(t),x(t+1)),x(t+2)),
as S(t+1) — fg(S(t),X(t+1)).

Q2-3: Are these statements true or false?
(A) The hidden state s(®) is the linear combination of the previous

hidden state s(*~1) and the external data x®.
(B) Sharing functions and parameters in RNN leads to inherent
limitation on the learning ability of the model.

— _>S(t—1) L S(t) Ls(t+1) _W_ -

1. True, True tv fu tu
2. True, False @ ¢
3. False, True

4. False, False

x(E+1)

Q2-3: Are these statements true or false?

(A) The hidden state s(®) is the linear combination of the previous
hidden state s(*~1) and the external data x®.

(B) Sharing functions and parameters in RNN leads to inherent
limitation on the learning ability of the model.

1. True, True
2. True, False

3. False, True

4. False, Fals e ¢umm—m

PGS x® x(+D)

(A) We need to use an activation function to
compute the hidden states, so it’s not linear.

(B) As is shown in the lecture, such RNN of a finite
size can be universal.

Outline

*RNN Variants + LSTMs
*RNN training, variants, LSTM cells

RNN Variants

Example: use the output at the

previous step
oE+1) \
4 \W
V V N\
\
4
U

x@® x(D x@® x(&=1) NG £ (t+D)

Example: only output at the
end

\

RNN Variants: Encoder/Decoder

*RNNs: can map sequence to one vector; or to sequence of
same length

*What about mapping sequence to sequence of different
length?
* Ex: speech recognition, machine translation, question answering,
etc.

RNN Variants: Encoder/Decoder

Encoder

‘—? H

Decoder ‘ ‘
@

y

Training RNNs

*Backpropagation Through Time
*|dea: unfold the computational graph, and use backpropagation

*Conceptually: first compute the gradients of the internal
nodes, then compute the gradients of the parameters

| aEQ . OEQ TT + % TT 0111 T
b Ll U — Ohy \'2 " 9k 'Y T Oho -

ééé

RNN Problems

*What happens to gradients in backprop w. many layers?

*In an RNN trained on long sequences (e.g. 100 time steps) the
gradients can easily explode or vanish.

* We can avoid this by initializing the weights very carefully.

*Even with good initial weights, very hard to detect that
current target output depends on an input from long ago.
* RNNs have difficulty dealing with long-range dependencies.

LSTM Architecture

*RNN: can write structure as:

L

&) &)
*Long Short-Term Memory: deals with problem. Cell:
& ® &)
I L t

A IEAD A
;é / @ é Chris Olah

Understanding the LSTM Cell

*Step-by-step

* Good reference: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

fo=0W;s-[he_1,24] + by)

*“Forget” gate.
* Can remove all or part of any entry in cell state C
* Note the sigmoid activation

Understanding the LSTM Cell

*Step-by-step

it =0 (Wi-lhi—1,2¢] + bi)

he s ﬁf :tr%illll(“v("[11171..1}] —])(.)

*Input gate. Combine:
* What entries in C,_; we’ll update
« Candidates for updating: C,
* Add information to cell state C_, (post-forgetting)

Understanding the LSTM Cell

*Step-by-step

f

o\

0,
iy k
C

—>®

*Updating C._; to C,
* Forget, then
* Add new information

Cy = fi xCi—1 + 14 x Cy

Understanding the LSTM Cell

*Step-by-step

he &\

op =0 (W, [hi—1,2¢] + by)

hy = o4 * tanh (C})

*Output gate
* Combine hidden state, input as before, but also
* Modify according to cell state C,

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,

Yingyu Liang, Volodymyr Kuleshov , Sharon Li, Chris Olah, Fred Sala

