
CS 760: Machine Learning
Generative Models

Ilias Diakonikolas
University of Wisconsin-Madison

Nov. 1, 2022



Announcements

•Logistics: 
•Congrats on the getting through the midterm!

•Class roadmap:
Nov. 1 Generative Models

Nov. 3 Kernels + SVMs

Nov. 8 Graphical Models I

Nov. 10 Graphical Models II



Outline

•Intro to Generative Models
•Applications, histograms, autoregressive models
•Flow-based Models
•Transformations, training, sampling
•Generative Adversarial Networks (GANs)
• Generators, discriminators, training, examples



Generative Models

•Goal: capture our data distribution.
•Recall our discriminative vs. generative discussion
•Generative models exist in supervised & unsupervised settings
•Today: focus is on unsupervised

neurohive



Applications: Generate Images

•Old idea---tremendous growth
•Historical evolution:

2006: Hinton et al 2013: Kingma & Welling



Applications: Generate Images

•More recently, GAN models: 2014
•Goodfellow et al



Applications: Generate Images

•More recently, GAN models
• StyleGAN, Karras, Laine, Aila, 2018



Applications: Generate Images/Video

•GANs can also generate video
•Plus transfer:

CycleGAN: Zhu, Park, Isola & Efros, 2017



Applications: Generate Video

•GANs can also generate video (DVD-GAN, Clark et al)

CycleGAN: Zhu, Park, Isola & Efros, 2017



Additional Applications

•Compress data
•Can often do better than fixed methods like JPEG

•Generate additional training data
•Use for training a model

•Obtain good representations
•Then can fine-tune for particular tasks



Goal: Learn a Distribution

•Want to estimate pdata from samples

•Useful abilities to have:
• Inference: compute p(x) for some x
•Sampling: obtain a sample from p(x)

•As always need efficiency for this too…



Goal: Learn a Distribution

•Want to estimate pdata from samples

•One way: if discrete valued-variables, build a histogram: 
•Say in {1, …, k}.
•Estimate p1, p2, …, pk

•Train this model: 
•Count times #i appears in dataset



Histograms: Inference & Samples

•Inference: check our estimate of pi

•Sampling:
•Produce the cumulative distribution Fi=p1+…+pi
•Get a random value uniformly in [0,1]
•Get smallest value i so that u ≤ Fi

•Easy, but…
•Too many values to compute (recall this from Naïve Bayes)
•MNIST: 28x28 means 2784 probabilities



Parametrizing Distributions

•Don’t store each probability, store pθ(x)
•We saw the conditional version of this for Naïve Bayes

•One approach: likelihood-based
•Good: we know how to train with maximum likelihood

•Recall that we can think of this as minimizing KL divergence



Parametrizing Distributions

•One approach: likelihood-based
•Good: we know how to train with maximum likelihood

•Then, train with SGD

•We’ve been doing this all along for supervised learning… just need 
to make some choices for pθ(x)



Parametrizing Distributions: Bayes Nets

•Bayes nets: a useful tool
•A Bayes net: a DAG that represents a probability distribution
•DAG: directed acyclic graph
• Say graph is G = (V, E), and for node v, pa(v) denotes its parents:
•Example: pa(7) = ?



Parametrizing Distributions: Bayes Nets

•Bayes nets: a useful tool
•A Bayes net: a DAG that represents a probability distribution
•DAG: directed acyclic graph
• Say graph is G = (V, E), and for node v, pa(v) denotes its parents:
•Helps represent distribution in a compact way:



Parametrizing Distributions: Bayes Nets

•A Bayes net: a DAG that represents a probability distribution
• Say graph is G = (V, E), and for node v, pa(v) denotes its parents:
•Helps represent distribution in a compact way:

•Compare to standard factorization: chain rule

• If G sparse, conditional probability terms are much smaller.



Autoregressive Models

•Use a Bayes net for the features

•Then we can directly plug these into our MLE estimation
•Some practical questions:
•To help generalization, share parameters (we did this for CNNs, 

RNNs).
• In fact can directly use RNNs.



Autoregressive Models: RNNs

•Can use the Bayes net idea to just model a sequence
•Apply to dxd images:

•Each pixel depends on the previous pixels
• Same function/parameters used for each

Red Channel 
Pixels

Blue Channel 
Pixels

Green Channel 
Pixels

van den Oord et al ‘16



PixelRNN: Samples

•Trained on ImageNet

•Use for completion:
• Left: covered
•Right: original
•Middle: completed

van den Oord et al ‘16



PixelRNN: Samples

•Upside: can evaluate p(x) pretty easily, samples are good
•Downside: sequential generation (need all the previous 
pixels) might be slow
•Many variants: combine with CNNs, architectural tricks 

pixelCNN++, Salimans et al ‘17



Break & Quiz



Flow Models

•Still want to fit pθ(x)
•Some goals:
•Good fit for the data
•Computing a probability: the actual value of pθ(x) for some x
•Ability to sample
•Also: a latent representation 

•Won’t model pθ(x) directly… instead we’ll get some latent 
variable z

Lilian Weng



Flow Models

•Key idea: transform a simple distribution to complex
•Use a chain of transformations (the “flow”)

Lilian Weng



Flow Models

•Key idea: transform a simple distribution to complex
•Use a chain of invertible transformations (the “flow”)

•How to sample?
• Sample from Z (the latent variable)---has a simple distribution that lets us do 

it: Gaussian, uniform, etc.
• Then run the sample z through the inverse flow to get a sample x

•How to train? Let’s see…



Flow Models: Density Relationships

•Key idea: transform a simple distribution to complex
•Use a chain of transformations (the “flow”)

•How does each transformation affect the density p? 
Latent variable Transformation

Determinant of 
Jacobian matrix



Flow Models: Training

•Key idea: transform a simple distribution to complex
•Use a chain of transformations (the “flow”)

•How does training change? 
• Idea: might be easier to optimize pZ

Can extend to many chained transformations…

Latent variable 
version

Determinant of 
Jacobian matrixMaximum 

Likelihood



Flows: Example

•Flow to a Gaussian (right)

•Before training:

•After training:

Flow

UC Berkeley: Deep Unsupervised Training



Flows: Transformations

•What kind of f transformations should we use?
•Many choices:
•Affine: f(x) = A-1(x - b)
•Elementwise: f(x1, …, xd) = (f(x1), …, f(xd))
• Splines: 

•Desirable properties:
• Invertible
•Differentiable (forward and inverse)

Papamakarios et al’ 21



Break & Quiz



GANs: Generative Adversarial Networks

•So far, we’ve been modeling the density…
•What if we just want to get high-quality samples?

•GANs do this. Based on a clever idea:
•Art forgery: very common through history
• Left: original
•Right: forged version
•Two-player game. Forger wants to pass off the 

forgery as an original; investigator wants to 
distinguish forgery from original



GANs: Basic Setup

•Let’s set up networks that implement this idea:
•Discriminator network: like the investigator
•Generator network: like the forger

Stanford CS231n / Emily Denton



GAN Training: Discriminator

•How to train these networks? Two sets of parameters to 
learn: θd (discriminator) and θg (generator)

•Let’s fix the generator. What should the discriminator do?
•Distinguish fake and real data: binary classification. 
•Use the cross entropy loss, we get

Real data, want 
to classify 1 

Fake data, want 
to classify 0



GAN Training: Generator & Discriminator

•How to train these networks? Two sets of parameters to 
learn: θd (discriminator) and θg (generator)

•This makes the discriminator better, but also want to make 
the generator more capable of fooling it:
•Minimax game! Train jointly.

Real data, want 
to classify 1 

Fake data, want 
to classify 0



GAN Training: Alternating Training

•So we have an optimization goal:

•Alternate training: 
•Gradient ascent: fix generator, make the discriminator better:

•Gradient descent: fix discriminator, make the generator better



GAN Training: Issues

•Training often not stable
•Many tricks to help with this:
•Replace the generator training with

•Better gradient shape
•Choose number of alt. steps carefully

•Can still be challenging.

Stanford CS231n



GAN Architectures

•So far we haven’t commented on what the networks are
•Discriminator: image classification, use a CNN
•What should generator look like
• Input: noise vector z. Output: an image (ie, volume 3 x width x 

height)
•Can just reverse our CNN pattern…

Radford et al ‘16



GANs: Example

•From Radford’s paper, with 5 epochs of training:



Thanks Everyone!
Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, 
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, 
Yingyu Liang, Volodymyr Kuleshov, Fei-Fei Li, Justin Johnson, Serena Yeung, Pieter Abbeel, Peter Chen, Jonathan 
Ho, Aravind Srinivas, Fred Sala


