~‘?":'§c-'-: i
SR P T e A

R s
iaeg

CS O: ahin Learning
Generative Models

llias Diakonikolas

University of Wisconsin-Madison

Nov. 1, 2022

Announcements

*Logistics:
*Congrats on the getting through the midterm!

*Class roadmap:

Nov. 3 Kernels + SVMs
Nov. 8 Graphical Models |

Nov. 10 Graphical Models Il

Outline

*Intro to Generative Models
* Applications, histograms, autoregressive models

*Flow-based Models
*Transformations, training, sampling

*Generative Adversarial Networks (GANs)
e Generators, discriminators, training, examples

Generative Models

*Goal: capture our data distribution.
* Recall our discriminative vs. generative discussion
* Generative models exist in supervised & unsupervised settings
* Today: focus is on unsupervised

neurohive

Applications: Generate Images

*Old idea---tremendous growth

*Historical evolution:

Q&N
OV~
N = QO
M~
RA~ND>OP
Wl NRSI S
NSNS - O

P =NUNT-3 Nee o
NPT NP
J5VKIFLANPer
Ao, »>LO NoB o
DIV NP
DI NITVONA -
JoWUWNXQUOIOKNS -~
FIEV, TPONL
SOV RAUDIN P

2013: Kingma & Welling

2006: Hinton et al

Applications: Generate Images

*More recently, GAN models: 2014
* Goodfellow et al

Applications: Generate Images

*More recently, GAN models
* StyleGAN, Karras, Laine, Aila, 2018

, dir ? ; L ‘»v 4
@ @&

4 A
9
b

Applications: Generate Images/Video

*GANs can also generate video
* Plus transfer:

CycleGAN: Zhu, Park, Isola & Efros, 2017

Applications: Generate Video

*GANSs can also generate video (DVD-GAN, Clark et al)

Additional Applications

Compress data
e Can often do better than fixed methods like JPEG

*Generate additional training data
* Use for training a model

*Obtain good representations
* Then can fine-tune for particular tasks

Goal: Learn a Distribution

*Want to estimate py.., from samples

g[j(l)’aj@)? T 71,(77,) et pdata(x)

e Useful abilities to have:

* Inference: compute p(x) for some x
* Sampling: obtain a sample from p(x)

*As always need efficiency for this too...

Goal: Learn a Distribution

*Want to estimate py.., from samples

x(l)ax(2)7 Bia® 7ZC(n) ™~ pdata(x)

*One way: if discrete valued-variables, build a histogram:
*Sayin{l, ..., k}.

* Estimate py, Py, ., Py

0.05 1

*Train this model:
 Count times #i appears in dataset

Probability

0.02 |

0.01 4

0.00 -

Histograms: Inference & Samples

*Inference: check our estimate of p;
*Sampling:
* Produce the cumulative distribution F,=p,+...+p,
* Get a random value uniformly in [0,1]
* Get smallest value i so that u < F,

*Easy, but...
* Too many values to compute (recall this from Naive Bayes)
* MNIST: 28x28 means 2784 probabilities

Parametrizing Distributions

*Don’t store each probability, store pg(x)
* We saw the conditional version of this for Naive Bayes

*One approach: likelihood-based

e Good: we know how to train with maximum likelihood
1 n
are min — — lo z(?)
gmin —— 2; g po(r'"”)
1=

* Recall that we can think of this as minimizing KL divergence

Parametrizing Distributions

*One approach: likelihood-based

* Good: we know how to train with maximum likelihood
*Then, train with SGD

* We’ve been doing this all along for supervised learning... just need
to make some choices for pg(x)

Parametrizing Distributions: Bayes Nets

*Bayes nets: a useful tool

* A Bayes net: a DAG that represents a probability distribution
* DAG: directed acyclic graph
*Say graph is G = (V, E), and for node v, pa(v) denotes its parents:

e Example: pa(7) =7
e
e.‘a'a
O

Parametrizing Distributions: Bayes Nets

*Bayes nets: a useful tool

* A Bayes net: a DAG that represents a probability distribution
* DAG: directed acyclic graph
*Say graph is G = (V, E), and for node v, pa(v) denotes its parents:
* Helps represent distribution in a compact way:

p(xla o 7:Ud) o H p(xv’xpa(v))

veV

Parametrizing Distributions: Bayes Nets

* A Bayes net: a DAG that represents a probability distribution
*Say graph is G = (V, E), and for node v, pa(v) denotes its parents:
* Helps represent distribution in a compact way:

p(xla o 7xd) o H p(ZUU’Cpra(U))
veV
* Compare to standard factorization: chain rule

p(x1,...,2q9) = H p(Ty|T1, 22, ..., Ty_1)
veV

* If G sparse, conditional probability terms are much smaller.

Autoregressive Models

*Use a Bayes net for the features

d
log po(z1, ..., 24) = Y _log pa(wi|pa(z;))
1=1

*Then we can directly plug these into our MLE estimation

*Some practical questions:

* To help generalization, share parameters (we did this for CNNs,
RNNs).

*In fact can directly use RNNs.

Autoregressive Models: RNNs

*Can use the Bayes net idea to just model a sequence
*Apply to dxd images:

d2

a Hp(ﬂiz',R|p(x1,R, ooy Tim1,R)P(®i, BIP(Z1,B, - - - s Tim1,B)P(TigIP(T1,G65 - - - Tie1,6)
- _Y_} _Y_} _Y_}
Red Channel Blue Channel Green Channel
Pixels Pixels Pixels
* Each pixel depends on the previous pixels I
mE

* Same function/parameters used for each

van den Oord et al ‘16

PixelRNN: Samples

*Trained on ImageNet ..LE-EEM.-

L Daw R

*Use for completion: Eﬂiigi‘h‘.
i Y P

e Left: covered
* Right: original

W et)
* Middle: completed !.ﬂﬁ“‘yuﬁﬁ

- .
II..llv :“"ﬂ
. E

..I
-

van den Oord et al ‘16

PixelRNN: Samples

*Upside: can evaluate p(x) pretty easily, samples are good

*Downside: sequential generation (need all the previous

pixels) might be slow
* Many variants: combine with CNNs, architectural tricks

3 S B ERRR P Mgl
II==IEBQE=

e
. i

Y 0

e) FlsMar
HIIBHIOEHﬂ
P’ L M ek s

pixelCNN++, Salimans et al ‘17

RO S g R S e L
"m‘ﬂ(-nw‘%ﬁtrhw

Break & Quiz

Flow Models

*Still want to fit pg(x)

*Some goals:
* Good fit for the data
* Computing a probability: the actual value of py(x) for some x

* Ability to sample
* Also: a latent representation

*Won’t model pg(x) directly... instead we’ll get some latent
variable z

Flow-based
Flow Inverse

generative models: x > > z >
minimize the negative f(x) f (=)
log-likelihood

Lilian Weng

Flow Models

*Key idea: transform a simple distribution to complex
* Use a chain of transformations (the “flow”)

Flow-based :
generative models: - | Flow 2 | Inverse |,
s . - =1 X
minimize the negative f(x) f (=)
log-likelihood

~_- S—=

Zg ~ Po(zo) z; ~ pi(zi) Zg ~ pK(ZK)

Lilian Weng

Flow Models

*Key idea: transform a simple distribution to complex
e Use a chain of invertible transformations (the “flow”)

Flow-based :
generative models: - | Flow . | Inverse |,

minimize the negative | f(x) | f (=) 1%
log-likelihood

* How to sample?

* Sample from Z (the latent variable)---has a simple distribution that lets us do
it: Gaussian, uniform, etc.

* Then run the sample z through the inverse flow to get a sample x

e How to train? Let’s see...

Flow Models: Density Relationships

*Key idea: transform a simple distribution to complex
* Use a chain of transformations (the “flow”)

*How does each transformation affect the density p?

Latent variable Transformation
/

N2 = fo(z)
po(z) dx = p(z) dz

Determinant of
Jacobian matrix

() = plfo(0) | 2

~

Flow Models: Training

*Key idea: transform a simple distribution to complex
* Use a chain of transformations (the “flow”)

*How does training change?
*ldea: might be easier to optimize p,

g 3 logua) = s 3o (o) + 1o 52 a)

7 7 T T

' Latent variable Determinant of
Maximum version Jacobian matrix
Likelihood

Can extend to many chained transformations...

Flows: Example

*Flow to a Gaussian (right)

Flow
1.0 1 154
0.8 101 3000 A
*Before training: .| 3 »
0.4 o]
0.2 104 1000 1
0.0 : [; —15 - . . . 0
-2 0 2 -2 0 2
1.0 7.5
5.0 1 2500 A
0.8 A '
2.5 2000 4
[. . 0.6 4
*After training: o 00- 1500
. —2.5 1 1000 4
0.2 1 0. so0]
0.0 —— . : -7.5 . : : 04
-2 0 2 -2 0 2

UC Berkeley: Deep Unsupervised Training

Flows: Transformations

\What kind of f transformations should we use?

*Many choices:
* Affine: f(x) = A%(x - b)

« Elementwise: f(Xy, ..., Xg) = (F(Xy), oo, F(Xg)) ... = imerse
' ® Endpoints
*Splines: 050 i

0.25 A
. . 0.00 A
*Desirable properties: 02
*Invertible =050
-0.75 A

* Differentiable (forward and inverse)

—1.00 A
-1.0 -0.5 0.0 0.5 1.0

(a) Forward and inverse transformer

Papamakarios et al’ 21

RO S g R S e L
"m‘ﬂ(-nw‘%ﬁtrhw

Break & Quiz

GANSs: Generative Adversarial Networks

*So far, we’ve been modeling the density...
* What if we just want to get high-quality samples?

*GANSs do this. Based on a clever idea:
* Art forgery: very common through history
* Left: original

* Right: forged version
* Two-player game. Forger wants to pass off the

forgery as an original; investigator wants to
distinguish forgery from original

GANSs: Basic Setup

*Let’s set up networks that implement this idea:
* Discriminator network: like the investigator
* Generator network: like the forger

Real or Fake

¢

Discriminator Network

| Real Images
' | e (from training set)
Generator Network

¢

Random noise z

Fake Images
(from generator)

Stanford CS231n / Emily Denton

GAN Training: Discriminator

*How to train these networks? Two sets of parameters to
learn: B4 (discriminator) and 6, (generator)

*Let’s fix the generator. What should the discriminator do?
* Distinguish fake and real data: binary classification.
* Use the cross entropy loss, we get

max Bz wpy.., 108 Do, () + E,op(z) log(l — Do, (Ge, (2)))
f !

Real data, want Fake data, want
to classify 1 to classify 0

GAN Training: Generator & Discriminator

*How to train these networks? Two sets of parameters to
learn: B4 (discriminator) and 6, (generator)

*This makes the discriminator better, but also want to make
the generator more capable of fooling it:
* Minimax game! Train jointly.

Hglin n%ax Ez~paata 108 Do, () + Bz log(1l — Do, (G, (2)))
g d
I !

Real data, want Fake data, want
to classify 1 to classify 0

GAN Training: Alternating Training

*So we have an optimization goal:

ngin s Ezpaata 108 Do, () + Bz log(1l — Do, (G, (2)))
g d

*Alternate training:
* Gradient ascent: fix generator, make the discriminator better:

max Kypg,,. 108 Do, () + Eoop(z) log(l — Do, (Ge, (2)))

Oa
* Gradient descent: fix discriminator, make the generator better

minE.) log(1 — Dy, (Go, (2)))

GAN Training: Issues

*Training often not stable

* Many tricks to help with this:
* Replace the generator training with

max E.p(z) log(Dg,(Go, (2)))

* Better gradient shape
* Choose number of alt. steps carefully

p |
.] High grad]ie}nt signal :
*Can still be challenging.

Cow gradient signal

— —logD(G(2))

Stanford CS231n

GAN Architectures

*So far we haven’t commented on what the networks are
*Discriminator: image classification, use a CNN

*What should generator look like

* Input: noise vector z. Output: an image (ie, volume 3 x width x
height)
* Can just reverse our CNN pattern...

128 \

3> |Stide 2

Project and reshape

CONV 1

CONV 2 CONV 3 64

Generator Radford et al ‘16

GANSs: Example

*From Radford’s paper, with 5 epochs of training:

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,

Yingyu Liang, Volodymyr Kuleshov, Fei-Fei Li, Justin Johnson, Serena Yeung, Pieter Abbeel, Peter Chen, Jonathan
Ho, Aravind Srinivas, Fred Sala

