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Announcements

*Class roadmap:

Nov. 5 Graphical Models |

Nov. 10 Graphical Models Il

Nov. 12 Less-than-full Supervision



Outline

*Review & Generative Adversarial Networks
* Applications, histograms, autoregressive models

*Support Vector Machines (SVMs)

eLagrangian duality, margins, training objectives

*Kernels
*Feature maps, kernel trick, conditions



Outline

*Review & Generative Adversarial Networks
* Applications, histograms, autoregressive models



GANSs: Generative Adversarial Networks

*So far, we’ve been modeling the density...
* What if we just want to get high-quality samples?

*GANSs do this. Based on a clever idea:
* Art forgery: very common through history
* Left: original

* Right: forged version
* Two-player game. Forger wants to pass off the

forgery as an original; investigator wants to
distinguish forgery from original




GANSs: Basic Setup

*Let’s set up networks that implement this idea:
* Discriminator network: like the investigator
* Generator network: like the forger

Real or Fake

¢

Discriminator Network

| Real Images
' | e (from training set)
Generator Network

¢

Random noise z

Fake Images
(from generator)

Stanford CS231n / Emily Denton



GAN Training: Discriminator

*How to train these networks? Two sets of parameters to
learn: B4 (discriminator) and 6, (generator)

*Let’s fix the generator. What should the discriminator do?
* Distinguish fake and real data: binary classification.
* Use the cross entropy loss, we get

max Bz wpy.., 108 Do, () + E,op(z) log(l — Do, (Ge, (2)))
f !

Real data, want Fake data, want
to classify 1 to classify 0



GAN Training: Generator & Discriminator

*How to train these networks? Two sets of parameters to
learn: B4 (discriminator) and 6, (generator)

*This makes the discriminator better, but also want to make
the generator more capable of fooling it:
* Minimax game! Train jointly.

Hglin n%ax Ez~paata 108 Do, () + Bz log(1l — Do, (G, (2)))
g d
I !

Real data, want Fake data, want
to classify 1 to classify 0



GAN Training: Alternating Training

*So we have an optimization goal:

ngin s Ezpaata 108 Do, () + Bz log(1l — Do, (G, (2)))
g d

*Alternate training:
* Gradient ascent: fix generator, make the discriminator better:

max Kypg,,. 108 Do, () + Eoop(z) log(l — Do, (Ge, (2)))

Oa
* Gradient descent: fix discriminator, make the generator better

minE. ) log(1 — Dy, (Go, (2)))



GAN Training: Issues

*Training often not stable

* Many tricks to help with this:
* Replace the generator training with

max E.p(z) log(Dg,(Go, (2)))

* Better gradient shape
* Choose number of alt. steps carefully

p |
. ] High grad]ie}nt signal :
*Can still be challenging.

Cow gradient signal

— —logD(G(2))

Stanford CS231n



GAN Architectures

*So far we haven’t commented on what the networks are
*Discriminator: image classification, use a CNN

*What should generator look like

* Input: noise vector z. Output: an image (ie, volume 3 x width x
height)
* Can just reverse our CNN pattern...

128 \

3> |Stide 2

Project and reshape

CONV 1

CONV 2 CONV 3 64

Generator Radford et al ‘16



GANSs: Example

*From Radford’s paper, with 5 epochs of training:
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Outline

*Support Vector Machines (SVMs)

eLagrangian duality, margins, training objectives



Mini-Tutorial: Constrained Optimization

*Take optimization problem:
mv}}n f (W) : Objective

gw)<0,vli<i<k

Constraints

*Generalized Lagrangian:

Low,a,B) = fW)+ ) agiw)+ ) fihy(w)
J

l
where @;, ;s are called Lagrange multipliers



Mini-Tutorial: Lagrangian

*Form the quantity:

Op (W) = arﬂr:lg.);o Lw,a,B)

= max fO0) + ) agi(w) + Z Bih;(w)

l
gw)<ovi<i<k

h](W) = O,Vl S] <l
*Note:
f(w), if w satisfies all the constraints
Op(w) = {

+ 00, if w does not satisfy the constraints



Mini-Tutorial: Lagrangian

*Form the quantity:
Op,(w) = max L(w,a,f)

apf:a;=0
*Note:
f(w), if w satisfies all the constraints
Op(w) = : . .
+o00, if w does not satisfy the constraints

*Minimizing f (w) with constraints is the same as minimizing
Op(w)

mln fw) = mln Op(w) = min max L(W a, fB)
w apf:a;=



Mini-Tutorial: Duality

*The primal problem

p* = mlnf(W) = min max L(W; a, ﬁ)
w w aqpf:a;=0
*The dual problem
d*:= max minL(w,a, )
af:ai=0 w

* Always true:



Mini-Tutorial: Duality

* Always true:

Let’s see why:
d* = max minL(w,a,f) / Definition

af:ai=z0 w

max min f(w) + ; a;g;(w) + Zj Bih;(w)

af:ai=z0 w

< max fw")+X;a;i9;(w") + Z;Bikw")
a,f:a;=0 \ |

:p Y

Non-positive




Mini-Tutorial: Duality Gap

* Always true:

If actual equality, could solve dual instead of primal... when?
* Under conditions (ex: Slater’s), there exists (W™, a*, B*) such that

d*=L(w", a",B") =p
« (W*, a*, B*) satisfy Karush-Kuhn-Tucker (KKT) conditions:
0L
an'

gGw) <0, W) =0, ;=0

=0, a;g;(w) =0



Review: Linear Classification

* Assuming linear separability,

wHTx =0

w)Tx >0

- . wHTx <0
Class +1
| [
o
= ® Class -1



Review: Training & Margins

*Want: a large margin

large margin

Class +1




Mini-Tutorial: Linear Algebra & Margin

*What's the expression for the margin?
* We write y = sign(f,, (x)) = sign(w’x)

| fw ()|

lwl|
* Let’s show it. w is orthogonal to the hyperplane

to the hyperplane w'z = 0

*x has distance

* The unit direction is ——
[lwl]

* For any unit vector v, the length of the projection of
xonvis |[v!x]|

T
* The projection of x is (l) X =

[Iwl|

*
L 4
L 4
L 4
L 4
L 4
*
L 4
.0
L 4



Mini-Tutorial: Linear Algebra & Margin

|fw,b(x)|

[lw]|

*x has distance to the hyperplanew’z + b =0

w is orthogonaltow®z + b = 0
Proof:

°Letx=xl+rl

, then || is the distance
[ lwl]

* Multiply both sides by w! and add b
*Left hand side: w'x + b = f, ,(x)

T
+b=0+r]||wl||

w*w

*Right hand side: wix, +r

lwl]



Support Vector Machines: Candidate Goal

*The absolute margin over all training data points:

«——Using our result

*We want correct f,, ,,, (recall y; € {+1, —1}). Define the

margin to be
. yifw,b(xi)
Y = min
i |wl]

*If f,y p incorrect on some x;, the margin is negative



Support Vector Machines: Candidate Goal

*One way: maximize margin over all training data points:

_ YVifwp(x;) _yiw"x; + b)
maxy = max min = max min
w,b w,b l ||W|| w,b L ||W||

*A bit complicated ...
* How do we use our optimization approaches?



SVM: Simplified Goal

*Observation: when (w, b) scaled by a factor ¢ > 0, the
margin unchanged

yi(ew'x; +¢cb)  y;(w'x; +b)
[lewl] nal

*Let’s consider a fixed scale such that
yirwlx;» +b) =1
where x;- is the point closest to the hyperplane



SVM: Simplified Goal

*Let’s consider a fixed scale such that
yirwlx;» +b) =1
where x;+ is the point closet to the hyperplane

*Now we have for all data
yiwlx; + b) > 1
and at least for one i the equality holds

. 1 1 i I 1
*Then the margin over all training points is Tl



SVM: Loss Function

-Optirnization simplified to
| 1 || ||2
Wl,b )

yiwlx; + b) = 1,Vi

*How to find the optimum w™?
Let’s use our Lagrange multiplier method

1
L(w,b,a) =5 [lw]| — z a;[yi(w'x; + b) — 1]

i



SVM: Optimization

*To meet the KKT conditions:

oL
—=0,2w=X;ayx; (1)

ow

0L
£=O,90=Ziaiyi (2)

2

1
] L(w,b,a) =E“W|l —Zai[yi(wai + b) — 1]
*Two rules. Plug into L: ;

1
Lw,b,a) = X;a; ==X a;a;y;iyixi X (3)
combined with 0 = }; a;y;,a; = 0



SVM: Dual Version

*Reduces to dual problem:
1
max L(w, b, a) = maxz a; —— aiajy,;ijiij
a a 2

i Lj

Zaiyi = O,a,; >0

i

Sincew = Y, a;y;x;, wehavew’x + b = Y a;y;x] x + b
*Note: only deals with data via inner products x{xj



SVM: Support Vectors

* Solution is a sparse linear combination of training instances
* Those instances with a; > 0 are called support vectors

* Lie on the margin boundary
* Solution does not change if we delete instances with a; =0

1.0

| support
vectors




SVM: Soft Margin

What if our data isn’t linearly separable?

*Can adjust our approach by using slack variables (denoted by
(;) to tolerate errors

min —||W” +CZ {;

w,b,{; 2

yi(WTxi +b)=>1-7;,(; =0,Vi

*C determines the relative importance of maximizing margin
vs. minimizing slack



SVM: Soft Margin
1 2
min - [wl| + CZ i

yiwTx; +b) 21—, = 0,Vi

C=100

1.0

0.5

0.0

-0.5

197 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

Ben-Hur & Weston, Methods in Molecular Biology 2010
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Outline

*Kernels
*Feature maps, kernel trick, conditions



Feature Maps

e Can take a set of features and map them into another

e Can also construct non-linear features

* Use these inside a linear classifier?

X d(x)

Color Histogram

. ——
Extract -

features

mRed mGreen mBlue

z2

X x X
D X X

Sres

5 00

<1



Feature Maps and SVMs

Want to use feature space {¢(x;)} in linear classifier...
* Downside: dimension might be high (even infinite!)
*So we don’t want to write down ¢ (x;) = [0.2,0.3, ...]

Recall our SVM dual form:
*Only relies on inner products xij

1

L(w,b,a) = z a; = al-ajy,;ijiij

i j

Zaiyi — O,a,; =0

i



Kernel Trick

*Using SVM on the feature space {¢(x;)}: only need
¢ (x)" P (x))

*Conclusion: no need to design ¢ (), only need to design

k(i ;) = ¢ Cx) " (x))

AN

Kernel Matrix Feature Maps



Kernel Types: Polynomial

*Fix degree d and constant c:

k(x,x) = (xTx" + ¢)?
*What are ¢(x)?
*Expand the expression to get ¢ (x)

vx,x' € R?, K(x,x) = (v12] + zo2h 4+ ¢)* =

polynomial degree 2 polynomial degree 5

linear kernel

-1'91.0 -05 00 05 10-10 -05 0.0 05 10-10 -05 0.0 05 1.0

Ben-Hur & Weston, Methods in Molecular Biology 2010




Kernel Types: Gaussian/RBF

*Fix bandwidth o
k(x,x") = exp(—||x — x’HZ/ZU2

* Also called radial basis function (RBF) kernels

04

02

-02

k(x, x") = exp(—y|lx — x'I[*)

Andrew Ng



Theory of Kernels

* Part of a deep mathematical theory

* With some conditions, any kernel yields a feature map:

*Theorem: k(x,x") has expan_fion
(00

k(x,x") = Z a;p;(x)p;(x")

: Feature Maps

for nonnegative q;’s, if and only if for any function c(x),

[ c(x)c(xDk(x,x)dxdx' =0

* Given certain requirements/conditions, can construct a
bunch of new kernels from existing ones



Kernel Methods VS Neural Networks

e Can think of our kernel SVM approach as fixing a layer of a
neural network

y = sign(w’ ¢(x) + b)




SVM Review

e Can find globally optimal solutions: convex optimization
* No local minima (unlike training general NNs)

* Can train primal or dual
e Dual: relies on support vectors; enables use of kernels

* Variety of pre-existing optimization techniques

e Kernels: allow non-linear decision boundaries

* And to represent all sorts of new data (strings, trees)

* High-dimensional representations, but can use kernel trick to avoid
explicitly computing feature maps

* Good performance! Sometimes close to DNNs



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,

Yingyu Liang, Volodymyr Kuleshov, Fei-Fei Li, Justin Johnson, Serena Yeung, Pieter Abbeel, Peter Chen, Jonathan
Ho, Aravind Srinivas, Fred Sala



