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Announcements

•Logistics: 
•HW 5 due coming Tuesday.

•Class roadmap:
Graphical Models

Less-than-full Supervision

Unsupervised Learning I

Unsupervised Learning II



Outline

•Probability Tutorial
•Basics, joint probability, conditional probabilities, etc
•Bayesian Networks
•Definition, examples, inference, learning
•Undirected Graphical Models
•Definitions, MRFs, exponential families, learning
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Basics: Axioms

•Rules for probability:
•For all events
•Always, 
•For disjoint events,

•Easy to derive other laws. Ex: non-disjoint events 



Basics: Random Variables

•Really, functions
•Map outcomes to real values

•Why?
•So far, everything is a set.
•Hard to work with!
•Real values are easy to work with
•One requirement, “F measurable”. For any c, 



Basics: CDF & PDF

•Can still work with probabilities:

•Cumulative Distribution Func. (CDF)

•Density / mass function
•Doesn’t always exist! 

Wiki CDF



•Another advantage of RVs are ``summaries’’
•Expectation:
•The “average”
•Variance:  
•A measure of spread
•Raw moments:
•Note: also don’t always exist…
•Ex: Cauchy distribution

Basics: Expectation & Variance



•Expectation has very useful properties…
•Linearity: 

• Independence not required!

•Hat check problem: 
•There is a dinner party where n people check their hats. The hats 

are mixed up during dinner, so that afterward each man receives 
a random hat. In particular, each person gets their own hat with 
probability 1/n. What is the expected number of people who get 
their own hat?

Basics: Expectation Properties



Basics: Joint Distributions

•Move from one variable to several
•Joint distribution

•Or more variables.



•Given a joint distribution

•Get the distribution in just one variable:

•This is the “marginal” distribution.

Basics: Marginal Probability



Basics: Marginal Probability
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•Independence for a set of events

for all the i1,…,ij combinations

•Why useful? Dramatically reduces the complexity
•Collapses joint into product of marginals
•Note sometimes we have only pair-wise, etc
independence

Independence



•For random variables, uncorrelated means

Note: weaker than independence.
•Independence implies uncorrelated (easy to see)
•Other way around: usually false (but not always).
•If X,Y independent, functions are not correlated:

Uncorrelatedness



Conditional Probability

•For when we know something,

•Leads to conditional independence 
Credit: Devin Soni



Chain Rule

•Apply repeatedly, 

•Note: still big! 
• If some conditional independence, can factor!
•Leads to probabilistic graphical models (this lecture)



Law of Total Probability

•Partition the sample space into disjoint B1, …, Bk
•Then,

•Useful way to control A via conditional probabilities.
•Example: there are 5 red and 2 green balls in an urn. 
A random ball is selected and replaced by a ball of 
the other color; then a second ball is drawn. What is 
the probability the second ball is red?



Bayesian Inference

•Conditional Prob. & Bayes: 

•Has more evidence. 
•Likelihood is hard---but conditional independence 
assumption



Random Vectors & Covariance

•Recall variance:
•Now, for a random vector (same as joint of d RVs)
•Note: size d x d. All variables are centered

Diagonals: Scalar Variance Cross-variance



Estimation Theory

•How do we know that the sample mean is a good 
estimate of the true mean?
•Concentration inequalities

•Law of large numbers
•Central limit theorems, etc.

Wolfram Demo



Break & Quiz



Break & Quiz

Q 1-1: We have two envelopes:
•E1 has two black balls, E2 has one black, one red 
•The red one is worth $100. Others, zero
•Open an envelope, see one ball. Then, can switch (or not).
•You see a black ball. Switch?



Break & Quiz

Q 1-1: Solution

•Now plug in: 

So switch! 



Break & Quiz
Q 1-2: 50% of emails are spam. Software has been applied to 
filter spam. A certain brand of software can detect 99% of 
spam emails, and the probability for a false positive (a non-
spam email detected as spam) is 5%. Now if an email is 
detected as spam, then what is the probability that it is in fact 
a nonspam email? 

A. 5/104
B. 95/100
C. 1/100
D. 1/2
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Bayesian Networks Example

•Consider the following 5 binary random variables:
B = a burglary occurs at the house
E = an earthquake occurs at the house
A = the alarm goes off
J = John calls to report the alarm
M = Mary calls to report the alarm

•Suppose Burglary or Earthquake can trigger Alarm, and Alarm 
can trigger John’s call or Mary’s call

•Now we want to answer queries like what is  P(B | M, J) ?  



Bayesian Networks Example

•Set up a network that shows how random variables influence 
others:

Burglary Earthquake

Alarm

Burglary Earthquake

Alarm

JohnCalls MaryCalls
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Bayesian Networks Example

•Set up a network that shows how random variables influence 
others:

Burglary Earthquake

Alarm

Burglary Earthquake
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t f 0.94 0.06
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P ( A | B, E )
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Bayesian Networks: Definition

•A BN consists of a Directed Acyclic Graph (DAG) and a set of 
conditional probability distributions
• The DAG:
• each node denotes a random variable
• each edge from X to Y represents that X directly influences Y
• (formally: each variable X is independent of its non-descendants given its 

parents)
•Each CPD: represents P(X | Parents(X) )



Bayesian Networks: Parameter Counting

• Parameter reduction: a standard representation of the joint 
distribution for the Alarm example has 25 = 32 parameters

• the BN representation of this distribution has 20 parameters

Burglary Earthquake

Alarm

JohnCalls MaryCalls
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Inference in Bayesian Networks

Given: values for some variables in the network (evidence), 
and a set of query variables

Do: compute the posterior distribution over the query 
variables
•Variables that are neither evidence variables nor query 
variables are hidden variables
•The BN representation is flexible enough that any set can be 
the evidence variables and any set can be the query variables



Inference by Enumeration

•Let a denote A=true, and ¬a denote A=false
•Suppose we’re given the query: P(b | j, m)

“probability the house is being burglarized given that John 
and Mary both called”
•From the graph structure we can first compute:

A
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MJ

sum over possible
values for E and A
variables (e, ¬e, a, ¬a)
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Inference by Enumeration
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Inference by Enumeration

•Next do equivalent calculation for P(¬b,  j, m)
and determine P(b | j, m)

So: exact method, but can be intractably hard.
•Some cases: efficient
•Approximate inference sometimes available
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Learning Bayes Nets

•Problem 1 (parameter learning): given a set of training 
instances, the graph structure of a BN

•Goal: infer the parameters of the CPDs

B E A J M

f f f t f
f t f f f
f f t f t

…

Burglary Earthquake

Alarm

JohnCalls MaryCalls



Learning Bayes Nets

•Problem 2 (structure learning): given a set of training 
instances

•Goal: infer the graph structure (and then possibly also the 
parameters of the CPDs)

B E A J M

f f f t f
f t f f f
f f t f t

…



Parameter Learning: MLE

•Goal: infer the parameters of the CPDs
•As usual, can use MLE

independent parameter learning
problem for each CPD
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Parameter Learning: MLE Example

•Goal: infer the parameters of the CPDs
•Consider estimating the CPD parameters for B and J in the 
alarm network given the following data set
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Parameter Learning: MLE Example

•Goal: infer the parameters of the CPDs
•Consider estimating the CPD parameters for B and J in the 
alarm network given the following data set

B E A J M
f f f t f
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Parameter Learning: Laplace Smoothing

• Instead of estimating parameters strictly from the data, we 
could start with some prior belief for each
•For example, we could use Laplace estimates

where nv represents the number of occurrences of value v
•Recall: we did this for Naïve Bayes
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Structure Learning

•Generally a hard problem, many approaches. 
•Exponentially (or worse) many structures in # variables
•Can either use heuristics or restrict to some tractable subset of 

networks. Ex: trees

•Chow-Liu Algorithm
• Learns a BN with a tree structure that maximizes the likelihood of 

the training data

1. Compute weight I(Xi, Xj) of each possible edge (Xi, Xj)
2. Find maximum weight spanning tree (MST)
3. Assign edge directions in MST



Structure Learning: Chow-Liu Algorithm

Chow-Liu Algorithm
1. Compute weight I(Xi, Xj) of each possible edge (Xi, Xj)
2. Find maximum weight spanning tree (MST)
3. Assign edge directions in MST

•1. Empirical mutual information: O(n2) computations
•2. Compute MST. (Ex: Kruskal’s algorithm)
•3. Assign directions by picking a root and making everything 
directed from root A
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Break & Quiz



Q2-1: Consider a case with 8 binary random variables, how many 
parameters does a BN with the following graph structure have?

1. 24
2. 28
3. 32
4. 52



Q2-1: Consider a case with 8 binary random variables, how many 
parameters does a BN with the following graph structure have?

1. 24
2. 28
3. 32
4. 52

So we have 32 parameters in total.

2 2
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Undirected Graphical Models

•Still want to encode conditional independence, but not in an 
“ordered” way (ie, no parents, direction)
•Why? Allows for modeling other distributions that Bayes nets can’t, 

allows for other algorithms

• Idea: graph directly encodes a type of conditional 
independence. If nodes i,j are not neighbors, 



Markov Random Fields

•A particularly popular kind of undirected model. As above, 
can describe in terms of:
•1. Conditional independence:

•2. Factorization. (Clique: maximal fully-connected subgraphs)
• Bayes nets: factorize over CPTs with parents; MRFs: factorize over cliques

“Potential” functions



Exponential Families

•MRFs (under some conditions) can be written as exponential 
families. General form:

•Lots (but not all) distributions have this form.

Partition function 
(ensures that probabilities integrate to 1)

Sufficient statistics



Exponential Families: Multivariate Gaussian

•MRFs (under some conditions) can be written as exponential 
families. General form:

•Multivariate Gaussian:

Partition function Inverse Covariance Matrix



Ising Models

• Ising models: a particular kind of MRF usually written in 
exponential form
•Popular in statistical physics
• Idea: pairwise interactions (biggest cliques of size 2)

•Challenges:
•Compute partition function
•Perform inference/marginalization

Khudier and Fawaz



Thanks Everyone!
Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, 
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, 
Yingyu Liang, Volodymyr Kuleshov, Fei-Fei Li, Justin Johnson, Serena Yeung, Pieter Abbeel, Peter Chen, Jonathan 
Ho, Aravind Srinivas, Fred Sala


