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Announcements

*Logistics:
* HW6 released this week.
 Class roadmap:

Thursday, Nov. 17 Unsupervised Learning Il
Tuesday, Nov. 22 Learning Theory
Tuesday, Nov. 29 RLI

Thursday, Dec. 1 RLII



Outline

*Clustering
*k-means, hierarchical, spectral clustering

*Gaussian Mixture Models
* Mixtures, Expectation-Maximization algorithm



Unsupervised Learning

*No labels; generally won’t be making predictions

*Sometimes model a distribution, but not always
*Goal: find patterns & structures that help better understand

data.
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Clustering

Several types:

-
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K-Means Clustering

k-means is a type of partitional centroid-based clustering
Algorithm:
1. Randomly pick k cluster centers
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K-Means Clustering: Algorithm

K-Means clustering
2. Find closest center for each point
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K-Means Clustering: Algorithm

K-Means clustering
3. Update cluster centers by computing centroids
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K-Means Clustering: Algorithm

K-Means clustering
Repeat Steps 2 & 3 until convergence
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Hierarchical Clustering

Basic idea: build a “hierarchy”
*Want: arrangements from specific to general
*One advantage: no need for k, number of clusters.

*Input: points. Output: a hierarchy
* A binary tree

Credit: Wikipedia



HC: Agglomerative vs Divisive

Two ways to go:

* Agglomerative: bottom up.

e Start: each point a cluster.
* Progressively merge clusters

*Divisive: top down
e Start: all points in one cluster.
* Progressively split clusters



HC: Agglomerative Clustering Example

Agglomerative: Start: every point is its own cluster



HC: Agglomerative Clustering Example

Basic idea: build a “hierarchy”
*Get pair of clusters that are closest and merge



HC: Agglomerative Clustering Example

Basic idea: build a “hierarchy”
*Repeat: Get pair of clusters that are closest and merge
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HC: Agglomerative Clustering Example

Basic idea: build a “hierarchy”
*Repeat: Get pair of clusters that are closest and merge



HC: Merging Criteria

Merge: use closest clusters. Define closest?

*Single-linkage d(A, B) = r}r‘lin Bd($1,332)
r1E€EA,x2€
*Complete-linkage d(A,B) — rﬂax Bd($17$2)
T1E€EA,T2€
*Average-linkage L
d(A, B) = [A[B| > @)

r1€A,x2€B



HC: Single-linkage Example

We'll merge using single-linkage
*1-dimensional vectors.
*Initial: all points are clusters

1 2 4 5 7.25



HC: Single-linkage Example

Basic idea: build a “hierarchy”
*Want: arrangements from specific to general
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HC: Single-linkage Example

Basic idea: build a “hierarchy”
*Continue...




HC: Single-linkage Example

Basic idea: build a “hierarchy”
*Continue...

1 2 4 5 7.25



HC: Single-linkage Example

eContinue... C,

1 2 4 5 7.25



Other Types of Clustering

Graph-based/proximity-based

*Recall: Graph G = (V,E) has vertex set V, edge set E.
* Edges can be weighted or unweighted
* Encode similarity

(5) (1)
Don’t need vectors here "

* Just edges (and maybe weights)



Graph-Based Clustering

Want: partition Vinto V, and V,
*Implies a graph “cut”
*One idea: minimize the weight of the cut

* Downside: might just cut of one node
*Need: “balanced” cut




Partition-Based Clustering

Want: partition Vinto V, and V,
*Just minimizing weight isn’t good... want balance!
* Approaches:

Cut(Vl, VQ) n Cut(Vl, Vg)

Cut(Vq, V) =
V1, V2) = =17 A

Cut(Vl, VQ) n Cut(V1, Vz)

NCU.t(Vl,VQ)Z Z . Z .
eV 1€V



Partition-Based Clustering

How do we compute these?

*Hard problem = heuristics
* Greedy algorithm
» “Spectral” approaches

*Spectral clustering approach:
* Adjacency matrix
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Partition-Based Clustering

*Spectral clustering approach:
*Adjacency matrix
*Degree matrix

2.0 0 0 0 000 11
020 0 0 00110
D=10 0 1 0 0] A={0 1 0 0 0
000 30 1 10 0 1
0000 2 1 0 0 1 0




Spectral Clustering

*Spectral clustering approach:
1. Compute LaplacianL=D-A
(Important tool in graph theory)

20000 [0o0011 2 0 0 -1
02000 [00110 0 2 -1 -1
L=(0 010 0/-]0 1000 =0 -1 1 0
00030 (11001 |-1 -1 0 3
00002 (10010 |[-1 0 0 -1

| ) \ ) \

Y Y Y
Degree Matrix Adjacency Matrix Laplacian




Spectral Clustering
Spectral clustering approach:

*]. Compute LaplacianL=D-A
2. Compute k smallest eigenvectors

*3. Set U to be the n x k matrix with uy,
u, as columns. Take the n rows formed as
points

*4. Run k-means on the representations




Spectral Clustering

Q: Why do this?
*1. No need for points or distances as input
2. Can handle intuitive separation (k-means can’t!)
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Break & Quiz



Break & Quiz

Q 2.1: You have seven 2-dimensional points. You run 3-means on it, with
initial clusters

Ci = {<272>7 (474>7 (67 6>}7 (o = {<074>7 (47())}7 Cs = {<57 5)7 (979>}

Cluster centroids at the next iteration are?

*A.C;: (4,4), Cy: (2,2), C5: (7,7)
*B. C;: (6,6), C,: (4,4), C5:(9,9)
*C.C;: (2,2), C5: (0,0), C5: (5,5)
*D. C;: (2,6), C,:(0,4), C5: (5,9)



Break & Quiz

Q 2.1: You have seven 2-dimensional points. You run 3-means on it, with
initial clusters

Ci = {<272>7 (474>7 (67 6>}7 (o = {<074>7 (47())}7 Cs = {<57 5)7 (979)}

Cluster centroids at the next iteration are?

*A. C1: (414)1 CZ: (212)1 C3: (717)
*B. C;: (6,6), C,: (4,4), C5:(9,9)
*C. C4: (2,2), C,: (0,0), C5: (5,5)
*D. C;: (2,6), C,:(0,4), C5: (5,9)



Break & Quiz

Q 2.2: If we do hierarchical clustering on n points, the
maximum depth of the resulting tree is

*A. 2
*B. logn
*C.n/2
°D. n-1



Break & Quiz

Q 2.2: If we do hierarchical clustering on n points, the
maximum depth of the resulting tree is

*A. 2
*B. logn
*C.n/2
°D. n-1



Outline

*Gaussian Mixture Models
* Mixtures, Expectation-Maximization algorithm



Mixture Models

*Let’s get back to modeling densities in unsupervised learning.
*Have dataset:

(2D, 2®, . g

*One type of model: mixtures
* A function of the latent variable z
* We did something similar with flows

* Model:
p(z]z)p(")



Mixture Models: Gaussians

Lots of different kinds of mixtures, but let’s focus on
Gaussians.

*What does this mean? )
*Latent variable z has some multinomial distribution, ) ¢ =1
=1

2(9 ~ Multinomial(¢)
*Then, let’s make x be conditional Gaussian

D) (2D = j) ~ N(pj,%;)

Mean Covariance Matrix



Gaussian Mixture Models: Likelihood

*How should we learn the parameters? ¢, p;,2;

*Could try our usual way: maximum likelihood
* Log likelihood:

UCNTR> Zlog Z p(z |z p, D)p(z7; ¢)

1=1 z()_

* Turns out to be hard to solve... inner sum leads to problems!



GMMs: Supervised Setting

*What if we knew the z’s?
* “Supervised” setting... very similar to Gaussian Naive Bayes

*First, empirically estimate the z parameters:
1 < —
¢j = 521{2() =J}
=l

*Next the Gaussian components: Average of x’s

M =

Y =0 =)
Sica Mz = e — )@ — )"
Y He =)

5, =



GMMs: Back to Latent Setting

*But, we don’t get to see the z’s
 Similar to the weak supervision setting from last time.

\WWhat could we do instead?

*Recall our k-means approach: we don’t know the centers, but
we pretend we do, perform a clustering, re-center, iterate
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GMMis: Expectation Maximization

*EM :an algorithm for dealing with latent variable problems

*|terative, alternating between two steps:
* E-step (expectation): guess the latent variables

* M-step (maximization): update the parameters of the model
* Note similarity to k-means clustering.

Random Initialization
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GMM EM: E-Step

*Let’s write down the formulas.
*E-step: fix parameters, compute posterior:

w'? = p(z = jlz®; ¢, u, )

*These w’s are “soft” assignments of the z terms...
probabilities over the values z could take. Concretely:

w'? = p(z® = jlz®; ¢, 1, %) = p(z® |z = j; 4, B)p(z® = j; ¢)
J S p(a® |20 = £ 5, D)p(z) = £ ¢)




GMM EM: M-Step

eLet’s write down the formulas.

. - [} 1 []
M-step: fix w, update parameters: Soft version of our counting

1 | estimator for the supervised case.
= (2)
b == > wf
n J
1=1

Soft version of our

2?21 w§'i)x(i) empirical mean and
Hj = o (i) / covariances.

D im1 W,

o _ X w) @ — ) — )
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Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,

Yingyu Liang, Volodymyr Kuleshov, Fred Sala



