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Announcements

•Logistics: 
• HW6 released this week. 
• Class roadmap:

Tuesday, Nov. 15 Unsupervised Learning I

Thursday, Nov. 17 Unsupervised Learning II

Tuesday, Nov. 22 Learning Theory

Tuesday, Nov. 29 RL I

Thursday, Dec. 1 RL II



Outline

•Clustering 
•k-means, hierarchical, spectral clustering
•Gaussian Mixture Models
• Mixtures, Expectation-Maximization algorithm



Unsupervised Learning

•No labels; generally won’t be making predictions
•Sometimes model a distribution, but not always
•Goal: find patterns & structures that help better understand 
data.

Mulvey and  Gingold



Clustering

Several types:

Partitional
- Centroid
- Graph-theoretic
- Spectral

Hierarchical
- Agglomerative
- Divisive

Bayesian
- Decision-based
- Nonparametric



K-Means Clustering

k-means is a type of partitional centroid-based clustering
Algorithm:
1. Randomly pick k cluster centers



K-Means Clustering: Algorithm

K-Means clustering
2. Find closest center for each point



K-Means Clustering: Algorithm

K-Means clustering
3. Update cluster centers by computing centroids



K-Means Clustering: Algorithm

K-Means clustering
Repeat Steps 2 & 3 until convergence



Credit: Wikipedia

Hierarchical Clustering

Basic idea: build a “hierarchy”
•Want: arrangements from specific to general 
•One advantage: no need for k, number of clusters.
•Input: points. Output: a hierarchy
•A binary tree



HC: Agglomerative vs Divisive

Two ways to go:
•Agglomerative: bottom up. 
• Start: each point a cluster. 
•Progressively merge clusters 

•Divisive: top down
• Start: all points in one cluster. 
•Progressively split clusters



HC: Agglomerative Clustering Example

Agglomerative: Start: every point is its own cluster



HC: Agglomerative Clustering Example

Basic idea: build a “hierarchy”
•Get pair of clusters that are closest and merge



HC: Agglomerative Clustering Example

Basic idea: build a “hierarchy”
•Repeat: Get pair of clusters that are closest and merge



HC: Agglomerative Clustering Example

Basic idea: build a “hierarchy”
•Repeat: Get pair of clusters that are closest and merge



HC: Merging Criteria

Merge: use closest clusters. Define closest?
•Single-linkage

•Complete-linkage

•Average-linkage



HC: Single-linkage Example

We’ll merge using single-linkage
•1-dimensional vectors.
• Initial: all points are clusters

1 2 4 5 7.25



HC: Single-linkage Example

Basic idea: build a “hierarchy”
•Want: arrangements from specific to general 

1 2 4 5 7.25

C1



HC: Single-linkage Example

Basic idea: build a “hierarchy”
•Continue…

1 2 4 5 7.25

C1 C2



HC: Single-linkage Example

Basic idea: build a “hierarchy”
•Continue…

C3

1 2 4 5 7.25

C1 C2



HC: Single-linkage Example

•Continue…

1 2 4 5 7.25

C3

C1 C2

C4



Other Types of Clustering

Graph-based/proximity-based
•Recall: Graph G = (V,E) has vertex set V, edge set E.
•Edges can be weighted or unweighted
•Encode similarity

•Don’t need vectors here
• Just edges (and maybe weights)



Graph-Based Clustering

Want: partition V into V1 and V2

• Implies a graph “cut”
•One idea: minimize the weight of the cut
•Downside: might just cut of one node
•Need: “balanced” cut

0.
01

0.
01



Partition-Based Clustering

Want: partition V into V1 and V2

•Just minimizing weight isn’t good… want balance!
•Approaches: 



Partition-Based Clustering

How do we compute these?
•Hard problem → heuristics
•Greedy algorithm
• “Spectral” approaches

•Spectral clustering approach:
•Adjacency matrix 



Partition-Based Clustering

•Spectral clustering approach:
•Adjacency matrix 
•Degree matrix



Spectral Clustering

•Spectral clustering approach:
•1. Compute Laplacian L = D – A
(Important tool in graph theory)

Degree Matrix Adjacency Matrix Laplacian



Spectral Clustering

Spectral clustering approach:

•1. Compute Laplacian L = D – A
•2. Compute k smallest eigenvectors
•3. Set U to be the n x k matrix with u1, …, 
uk as columns. Take the n rows formed as 
points
•4. Run k-means on the representations 



Spectral Clustering

Q: Why do this? 
•1. No need for points or distances as input 
•2. Can handle intuitive separation (k-means can’t!)

Credit: William Fleshman



Break & Quiz



Break & Quiz

Q 2.1: You have seven 2-dimensional points. You run 3-means on it, with 
initial clusters

Cluster centroids at the next iteration are?

•A. C1: (4,4), C2: (2,2), C3: (7,7)
•B. C1: (6,6), C2: (4,4), C3: (9,9)
•C. C1: (2,2), C2: (0,0), C3: (5,5)
•D. C1: (2,6), C2: (0,4), C3: (5,9)



Break & Quiz

Q 2.1: You have seven 2-dimensional points. You run 3-means on it, with 
initial clusters

Cluster centroids at the next iteration are?

•A. C1: (4,4), C2: (2,2), C3: (7,7)
•B. C1: (6,6), C2: (4,4), C3: (9,9)
•C. C1: (2,2), C2: (0,0), C3: (5,5)
•D. C1: (2,6), C2: (0,4), C3: (5,9)



Break & Quiz

Q 2.2: If we do hierarchical clustering on n points, the 
maximum depth of the resulting tree is

•A. 2
•B. log n
•C. n/2
•D. n-1



Break & Quiz

Q 2.2: If we do hierarchical clustering on n points, the 
maximum depth of the resulting tree is

•A. 2
•B. log n
•C. n/2
•D. n-1



Outline

•Review & Self-Supervised Learning
• Contrastive learning, pretext tasks, SimCLR
•Clustering 
•k-means, hierarchical, spectral clustering
•Gaussian Mixture Models
• Mixtures, Expectation-Maximization algorithm



Mixture Models

•Let’s get back to modeling densities in unsupervised learning.
•Have dataset: 

•One type of model: mixtures
•A function of the latent variable z
•We did something similar with flows
•Model:



Mixture Models: Gaussians

•Lots of different kinds of mixtures, but let’s focus on 
Gaussians. 
•What does this mean?
•Latent variable z has some multinomial distribution,

•Then, let’s make x be conditional Gaussian

Mean Covariance Matrix 



Gaussian Mixture Models: Likelihood

•How should we learn the parameters?
•Could try our usual way: maximum likelihood
• Log likelihood:

•Turns out to be hard to solve… inner sum leads to problems!



GMMs: Supervised Setting

•What if we knew the z’s?
• “Supervised” setting… very similar to Gaussian Naïve Bayes

•First, empirically estimate the z parameters:

•Next the Gaussian components: Average of x’s 
where z = j 



GMMs: Back to Latent Setting

•But, we don’t get to see the z’s
• Similar to the weak supervision setting from last time.

•What could we do instead?
•Recall our k-means approach: we don’t know the centers, but 
we pretend we do, perform a clustering, re-center, iterate



GMMs: Expectation Maximization

•EM :an algorithm for dealing with latent variable problems
• Iterative, alternating between two steps:
•E-step (expectation): guess the latent variables
•M-step (maximization): update the parameters of the model
•Note similarity to k-means clustering.

Jake VanderPlas



GMM EM: E-Step

•Let’s write down the formulas.
•E-step: fix parameters, compute posterior:

•These w’s are “soft” assignments of the z terms… 
probabilities over the values z could take. Concretely:



GMM EM: M-Step

•Let’s write down the formulas.
•M-step: fix w, update parameters: Soft version of our counting 

estimator for the supervised case.

Soft version of our 
empirical mean and 
covariances.



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, 
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, 
Yingyu Liang, Volodymyr Kuleshov, Fred Sala 


