

CS 760: Machine Learning Unsupervised Learning I

Ilias Diakonikolas

University of Wisconsin-Madison

Nov. 15, 2022

Announcements

•Logistics:

- HW6 released this week.
- Class roadmap:

Tuesday, Nov. 15	Unsupervised Learning I
Thursday, Nov. 17	Unsupervised Learning II
Tuesday, Nov. 22	Learning Theory
Tuesday, Nov. 29	RL I
Thursday, Dec. 1	RL II

Outline

•Clustering

•k-means, hierarchical, spectral clustering

•Gaussian Mixture Models

• Mixtures, Expectation-Maximization algorithm

Unsupervised Learning

- •No labels; generally won't be making predictions
- •Sometimes model a distribution, but not always
- •Goal: find patterns & structures that help better understand data.

Mulvey and Gingold

Clustering

Several types:

K-Means Clustering

k-means is a type of partitional **centroid-based clustering Algorithm:**

1. Randomly pick k cluster centers

K-Means Clustering: Algorithm

K-Means clustering

2. Find closest center for each point

K-Means Clustering: Algorithm

K-Means clustering

3. Update cluster centers by computing centroids

K-Means Clustering: Algorithm

K-Means clustering

Repeat Steps 2 & 3 until convergence

Hierarchical Clustering

Basic idea: build a "hierarchy"

- •Want: arrangements from specific to general
- •One advantage: no need for k, number of clusters.
- Input: points. Output: a hierarchy
 - A binary tree

Credit: Wikipedia

HC: Agglomerative vs Divisive

Two ways to go:

- •Agglomerative: bottom up.
 - Start: each point a cluster.
 - Progressively merge clusters
- Divisive: top down
 - Start: all points in one cluster.
 - Progressively split clusters

Agglomerative: Start: every point is its own cluster

Basic idea: build a "hierarchy"

•Get pair of clusters that are closest and merge

Basic idea: build a "hierarchy"

•Repeat: Get pair of clusters that are closest and merge

Basic idea: build a "hierarchy"

•Repeat: Get pair of clusters that are closest and merge

HC: Merging Criteria

Merge: use closest clusters. Define closest?

•Single-linkage $d(A,B) = \min_{\substack{x_1 \in A, x_2 \in B}} d(x_1, x_2)$ •Complete-linkage $d(A,B) = \max_{\substack{x_1 \in A, x_2 \in B}} d(x_1, x_2)$ •Average-linkage $d(A,B) = \frac{1}{|A||B|} \sum_{\substack{x_1 \in A, x_2 \in B}} d(x_1, x_2)$

We'll merge using single-linkage

- •1-dimensional vectors.
- •Initial: all points are clusters

Basic idea: build a "hierarchy"

•Want: arrangements from specific to general

Basic idea: build a "hierarchy"

•Continue...

Basic idea: build a "hierarchy"

•Continue...

Other Types of Clustering

Graph-based/proximity-based

- Recall: Graph G = (V,E) has vertex set V, edge set E.
 - Edges can be weighted or unweighted
 - Encode similarity
- Don't need vectors here
 - Just edges (and maybe weights)

Graph-Based Clustering

Want: partition V into V_1 and V_2

- •Implies a graph "cut"
- •One idea: minimize the **weight** of the cut
 - Downside: might just cut of one node
 - Need: "balanced" cut

Partition-Based Clustering

Want: partition V into V₁ and V₂

- •Just minimizing weight isn't good... want **balance!**
- •Approaches:

$$\operatorname{Cut}(V_1, V_2) = \frac{\operatorname{Cut}(V_1, V_2)}{|V_1|} + \frac{\operatorname{Cut}(V_1, V_2)}{|V_2|}$$
$$\operatorname{NCut}(V_1, V_2) = \frac{\operatorname{Cut}(V_1, V_2)}{\sum_{i \in V_1} d_i} + \frac{\operatorname{Cut}(V_1, V_2)}{\sum_{i \in V_2} d_i}$$

Partition-Based Clustering

How do we compute these?

- •Hard problem \rightarrow heuristics
 - Greedy algorithm
 - "Spectral" approaches
- •Spectral clustering approach:
 - Adjacency matrix

$$A = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Partition-Based Clustering

- •Spectral clustering approach:
 - •Adjacency matrix
 - Degree matrix

$$D = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix} \quad A = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Spectral Clustering

Spectral clustering approach:
1. Compute Laplacian L = D – A (Important tool in graph theory)

Spectral Clustering

Spectral clustering approach:

- •1. Compute Laplacian L = D A
- •2. Compute *k* smallest eigenvectors
- Set U to be the n x k matrix with u₁, u_k as columns. Take the n rows formed as points
- •4. Run k-means on the representations

Spectral Clustering

Q: Why do this?

- •1. No need for points or distances as input
- •2. Can handle intuitive separation (k-means can't!)

Credit: William Fleshman

Q 2.1: You have seven 2-dimensional points. You run 3-means on it, with initial clusters

 $C_1 = \{(2,2), (4,4), (6,6)\}, C_2 = \{(0,4), (4,0)\}, C_3 = \{(5,5), (9,9)\}$

Cluster centroids at the next iteration are?

•A. C₁: (4,4), C₂: (2,2), C₃: (7,7)
•B. C₁: (6,6), C₂: (4,4), C₃: (9,9)
•C. C₁: (2,2), C₂: (0,0), C₃: (5,5)
•D. C₁: (2,6), C₂: (0,4), C₃: (5,9)

Q 2.1: You have seven 2-dimensional points. You run 3-means on it, with initial clusters

 $C_1 = \{(2,2), (4,4), (6,6)\}, C_2 = \{(0,4), (4,0)\}, C_3 = \{(5,5), (9,9)\}$

Cluster centroids at the next iteration are?

A. C₁: (4,4), C₂: (2,2), C₃: (7,7)
B. C₁: (6,6), C₂: (4,4), C₃: (9,9)
C. C₁: (2,2), C₂: (0,0), C₃: (5,5)
D. C₁: (2,6), C₂: (0,4), C₃: (5,9)

Q 2.2: If we do hierarchical clustering on n points, the maximum depth of the resulting tree is

- •A. 2
- •B. log *n*
- •C. *n*/2
- •D. *n*-1

Q 2.2: If we do hierarchical clustering on n points, the maximum depth of the resulting tree is

- •A. 2
- •B. log *n*
- •C. n/2
- •D. *n*-1

Outline

•Review & Self-Supervised Learning

• Contrastive learning, pretext tasks, SimCLR

•Clustering

k-means, hierarchical, spectral clustering

•Gaussian Mixture Models

• Mixtures, Expectation-Maximization algorithm

Mixture Models

- •Let's get back to modeling densities in unsupervised learning.
- Have dataset:

$$\{(x^{(1)}, x^{(2)}, \dots, x^{(n)}\}$$

- •One type of model: **mixtures**
 - A function of the latent variable z
 - We did something similar with flows
 - Model:

$$p(x^{(i)}|z^{(i)})p(z^{(i)})$$

Mixture Models: Gaussians

- Lots of different kinds of mixtures, but let's focus on Gaussians.
- •What does this mean?
- •Latent variable z has some multinomial distribution, $\sum_{i=1}^{n} \phi_i = 1$

$$z^{(i)} \sim \text{Multinomial}(\phi)$$

•Then, let's make x be conditional Gaussian

$$x^{(i)}|(z^{(i)}=j) \sim \mathcal{N}(\mu_j, \Sigma_j)$$

Mean Covariance Matrix

Gaussian Mixture Models: Likelihood

- •How should we learn the parameters? ϕ, μ_j, Σ_j
- •Could try our usual way: maximum likelihood

• Log likelihood:

$$\ell(\phi, \mu, \Sigma) = \sum_{i=1}^{n} \log \sum_{z^{(i)}=1}^{k} p(x^{(i)} | z^{(i)}; \mu, \Sigma) p(z^{(i)}; \phi)$$

• Turns out to be **hard** to solve... inner sum leads to problems!

GMMs: Supervised Setting

- •What if we knew the z's?
 - "Supervised" setting... very similar to Gaussian Naïve Bayes
- First, empirically estimate the z parameters:

$$\phi_j = \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{z^{(i)} = j\}$$

•Next the Gaussian components:

Average of x's where z = i

$$\begin{split} \mu_{j} &= \frac{\sum_{i=1}^{n} 1\{z^{(i)} = j\} x^{(i)}}{\sum_{i=1}^{n} 1\{z^{(i)} = j\}} \\ \Sigma_{j} &= \frac{\sum_{i=1}^{n} 1\{z^{(i)}_{j} = j\} (x^{(i)} - \mu_{j}) (x^{(i)} - \mu_{j})^{T}}{\sum_{i=1}^{n} 1\{z^{(i)}_{j} = j\}} \end{split}$$

GMMs: Back to Latent Setting

- •But, we don't get to see the z's
 - Similar to the weak supervision setting from last time.
- •What could we do instead?
- •Recall our **k-means** approach: we don't know the centers, but we pretend we do, perform a clustering, re-center, iterate

GMMs: Expectation Maximization

- •EM :an algorithm for dealing with latent variable problems
- Iterative, alternating between two steps:
 - E-step (expectation): guess the latent variables
 - M-step (maximization): update the parameters of the model
 - Note similarity to k-means clustering.

Jake VanderPlas

GMM EM: E-Step

- •Let's write down the formulas.
- •E-step: fix parameters, compute posterior:

$$w_j^{(i)} = p(z^{(i)} = j | x^{(i)}; \phi, \mu, \Sigma)$$

•These w's are "soft" assignments of the z terms... probabilities over the values z could take. Concretely:

$$w_j^{(i)} = p(z^{(i)} = j | x^{(i)}; \phi, \mu, \Sigma) = \frac{p(x^{(i)} | z^{(i)} = j; \mu, \Sigma) p(z^{(i)} = j; \phi)}{\sum_{\ell=1}^k p(x^{(i)} | z^{(i)} = \ell; \mu, \Sigma) p(z^{(i)} = \ell; \phi)}$$

GMM EM: M-Step

- •Let's write down the formulas.
- •M-step: fix w, update parameters:

Soft version of our counting estimator for the supervised case.

Soft version of our empirical mean and covariances.

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, Yingyu Liang, Volodymyr Kuleshov, Fred Sala