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Announcements

•Logistics: 
•HW 6 due after Thanksgiving.
•Happy Thanksgiving! Enjoy break.
•Class roadmap:

PCA Review & Learning 
Theory

RL I

RL II

RL III

Fairness & Ethics



Outline

•Review & PCA
• Intuition, operation, interpretations, compression
•Intro to Learning Theory
•Error decomposition, bias-variance tradeoff
•PAC Learning Framework
• Definition, intuition, sample complexity bounds
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PCA Intuition
•The dimension of the ambient space (ie, Rd) might be much 
higher than the intrinsic data dimension

•Question: Can we transform the features so that we only need to 
preserve one latent feature?
•Or a few? 



PCA Intuition

•Some more visualizations

• In case where data  lies on or near a low d-dimensional linear 
subspace, axes of this subspace are an effective 
representation of the data.



PCA: Principal Components

•Principal Components (PCs) are orthogonal directions that 
capture most of the variance in the data.

• First PC – direction of greatest variability in data.
• Projection of data points along first PC discriminates data most 

along any one direction 

1s
t PC



PCA: Principal Components and Projection

•How does dimensionality reduction work? From d
dimensions to r dimensions:
• Get
• Orthogonal!

•Maximizing variability
• Equivalent to minimizing reconstruction error

•Then project data onto PCs → d-dimensional

Victor Powell



PCA First Step

•First component,

•Same as getting



PCA Recursion

•Once we have k-1 components, next?

•Then do the same thing
Deflation



PCA Interpretations

•The v’s are eigenvectors of XXT (Gram matrix)
•We’ll see why in a second

•XXT (proportional to) sample covariance matrix
•When data is 0 mean!
• I.e., PCA is eigendecomposition of sample covariance

•Nested subspaces span(v1), span(v1,v2),…,



PCA Interpretations: First Component

•Two specific ways to think about the first component
•Maximum variance direction 

• What we saw so far

•Minimum reconstruction error
• A direction so that projection yields minimum MSE in 

reconstruction 



PCA Interpretations: Equivalence

• Interpretation 1. 
Maximum variance direction

• Interpretation 2. 
Minimum reconstruction error

•Why are these equivalent?
• Use Pythagorean theorem.
• Maximizing blue segment is the same as minimizing the green

x! v

v ⋅ x!



PCA Covariance Matrix Interpretation

•Recall our first PC, maximized variance:

•Constrained optimization
• Recall our usual approach: Lagrangian + KKT conditions



•So…                               
•Means that v (the first PC) is an eigenvector of XXT

• Its eigenvalue 𝜆 denotes the amount of variability captured 
along that dimension

•PCs are just the eigenvectors…
• How to find them? Eigendecomposition

•Don’t need to keep all eigenvectors
• Just the ones for largest eigenvalues

x1

x2 vT x1v Tx2

PCA Covariance Matrix Interpretation



PCA Dimensionality Reduction

• In high-dimensional problems, data sometimes lies near a 
linear subspace, as noise introduces small variability

•Only keep data projections onto principal components with 
large eigenvalues 

•Can ignore the components of smaller significance. 
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Application: Image Compression

•Start with image; divide into 12x12 patches

• I.E., 144-D vector

• Original image:



Application: Image Compression

•Project to 6D, 

Compressed Original



Break & Quiz



Q1-1: Are these statements true or false?
(A) The principal component with the largest eigenvalue maximizes the 
reconstruction error.
(B) The dimension of original data representation is always higher than the 
dimension of transformed representation of PCA.

1. True, True 
2. True, False 
3. False, True
4. False, False



Q1-1: Are these statements true or false?
(A) The principal component with the largest eigenvalue maximizes the 
reconstruction error.
(B) The dimension of original data representation is always higher than the 
dimension of transformed representation of PCA.

1. True, True 
2. True, False 
3. False, True
4. False, False

(A) The principal component with the largest eigenvalue 
captures the maximum amount of variability which is 
equivalent to minimum reconstruction error.

(B) If the matrix 𝑋𝑋! is full-rank, they can be of the 
same dimension.
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Learning Theory

•Goal: try to analyze error, and especially generalization
• i.e., the expected error on the whole distribution

•We will cover a few ideas:
• Error decomposition & generalization
• Bias-variance tradeoff
• PAC framework

•Deep subject overall.



Error Decomposition

•ℎ∗: the optimal function (Bayes 
classifier)

•ℎ"#$: the optimal hypothesis on the 
data distribution

• "ℎ"#$: the optimal hypothesis on the 
training data

• "ℎ: the hypothesis found by the 
learning algorithm

ℎ∗
ℎ"#$

"ℎ"#$
"ℎ

Hypothesis class 𝐻



Error Decomposition

𝑒𝑟𝑟 $ℎ − 𝑒𝑟𝑟 ℎ∗

= 𝑒𝑟𝑟(ℎ"#$) − 𝑒𝑟𝑟 ℎ∗

+ 𝑒𝑟𝑟($ℎ"#$) − 𝑒𝑟𝑟(ℎ"#$)

+ 𝑒𝑟𝑟 $ℎ − 𝑒𝑟𝑟($ℎ"#$)

ℎ∗
ℎ"#$

"ℎ"#$
"ℎ

Hypothesis class 𝐻



Error Decomposition

𝑒𝑟𝑟 $ℎ − 𝑒𝑟𝑟 ℎ∗

= 𝑒𝑟𝑟(ℎ"#$) − 𝑒𝑟𝑟 ℎ∗

+ 𝑒𝑟𝑟($ℎ"#$) − 𝑒𝑟𝑟(ℎ"#$)

+ 𝑒𝑟𝑟 $ℎ − 𝑒𝑟𝑟($ℎ"#$)

Approximation error
due to problem modeling (the 

choice of hypothesis class)

Estimation error 
due to finite data

Optimization error due 
to imperfect optimization



Bounding Estimation Error

𝑒𝑟𝑟($ℎ!"#) − 𝑒𝑟𝑟(ℎ!"#)

= 𝑒𝑟𝑟($ℎ!"#) − )𝑒𝑟𝑟 ($ℎ!"#)

+ )𝑒𝑟𝑟 ($ℎ!"#) − 𝑒𝑟𝑟(ℎ!"#)

≤ 𝑒𝑟𝑟($ℎ!"#) − )𝑒𝑟𝑟 ($ℎ!"#)

+ )𝑒𝑟𝑟 (ℎ!"#) − 𝑒𝑟𝑟(ℎ!"#)

≤ 2 sup
$∈&

|𝑒𝑟𝑟(ℎ) − )𝑒𝑟𝑟(ℎ)|



Another Decomposition

𝑒𝑟𝑟 "ℎ = &𝑒𝑟𝑟 "ℎ + 𝑒𝑟𝑟 "ℎ − &𝑒𝑟𝑟 "ℎ

≤ &𝑒𝑟𝑟 "ℎ + sup
&∈(

|𝑒𝑟𝑟(ℎ) − &𝑒𝑟𝑟(ℎ)|

• The training error &𝑒𝑟𝑟 "ℎ is what we can compute
• Need to control the generalization gap.
• How?

Generalization gap



Bounding the Generalization Gap

Have: 𝑒𝑟𝑟 "ℎ ≤ &𝑒𝑟𝑟 "ℎ + sup
&∈(

|𝑒𝑟𝑟(ℎ) − &𝑒𝑟𝑟(ℎ)|

•How do we deal with the right-hand term?
•Have, for example, 

|𝑒𝑟𝑟(ℎ) − &𝑒𝑟𝑟(ℎ)| ≤ 𝑅 𝐻 + log )
*
/2𝑛

for all h in H and where n is the number of samples, R(H) is the 
Rademacher complexity of the function class



Bounding the Generalization Gap

|𝑒𝑟𝑟(ℎ) − ,𝑒𝑟𝑟(ℎ)| ≤ 𝑅 𝐻 + log )
*
/2𝑛

for all h in H and where n is the number of samples, R(H) is the 
Rademacher complexity of the function class

•Rademacher complexity: a measure of how “large” the 
hypothesis is.
• How much random data can it fit? 
• Other versions: VC complexity, Gaussian complexity



Bias-Variance Tradeoffs

Consider the task of learning a regression model given a 
training set 𝐷 = (𝑥()), 𝑦())), . . . , (𝑥(-), 𝑦(-))

•A natural measure of the error of f is

𝐸𝐷 𝑦 − 𝑓(𝐱; 𝐷) .

• Expectation is taken with respect to the real-world distribution of 
instances (not the empirical one)



Bias-Variance: Derivation

Take a fixed 𝐱. Can rewrite:

𝐸𝐷 𝑦 − 𝑓(𝐱; 𝐷) . = 

𝐸𝐷 𝑦 − 𝐸[𝑦|𝐱] . + 𝑓 𝑥; 𝐷 − 𝐸 𝑦 𝑥 2

Variance of y given x
(unrelated to model)

Error of f as a predictor



Bias-Variance: Derivation

Let’s look at the 2nd term, and take the expectation over 
datasets:

𝐸𝐷 𝑓 𝒙; 𝐷 − 𝐸 𝑦 𝒙 2 =
𝐸𝐷 𝑓 𝒙; 𝐷 − 𝐸 𝑦 𝒙 2 + 𝐸𝐷[(𝑓 𝒙; 𝐷 −

𝐸𝐷 𝑓 𝒙; 𝐷 2] = 

• Bias: if on average f (x; D) differs from E [y | x] then f (x; D) is a 
biased estimator of E [y | x] 

• Variance:  f (x; D) may be sensitive to D and vary a lot from its 
expected value

Bias Variance



Bias-Variance: Polynomial Interpolation 

•Example:
• 1st order polynomial has high bias, low variance
• 50th order polynomial has low bias, high variance
• 4th order polynomial represents a good trade-off



Bias-Variance: Idea

Predictive error has two controllable components
• expressive/flexible learners reduce bias, but increase variance

• For many models we can trade-off these two components (e.g. via our 
selection of k in k-NN)

• The optimal point in this trade-off depends on the particular problem 
domain and training set size

• Not necessarily a strict trade-off; e.g. with ensembles we can often 
reduce bias and/or variance without increasing the other term



Break & Quiz
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PAC Learning Setup
PAC learning is a framework used for theoretical analysis. Basic setting:

• Set of instances 𝒳
• Set of hypotheses (models) H
• Set of possible target concepts C
• Unknown probability distribution 𝒟 over instances 

instance space 𝒳

+
+

+
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PAC Learning Setup
We get a set D of training instances (x, c(x)) for some target concept c in C

• each instance x is drawn from distribution 𝒟
• class label c(x) is provided for each x

• learner outputs hypothesis h modeling c
• Goal: the true error of hypothesis h refers to how often h is wrong on future 

instances drawn from 𝒟

c h

instance space 𝒳
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PAC Learning: Two Error Types

We have two kinds of errors:

True error: (i.e., on any instance from distribution d):

𝑒𝑟𝑟𝑜𝑟𝒟(ℎ) ≡ 𝑃𝒟[𝑐(𝑥) ≠ ℎ(𝑥)]

Empirical error: (I.e., on our dataset)

𝑒𝑟𝑟𝑜𝑟#(ℎ) ≡ 𝑃$∈#[𝑐(𝑥) ≠ ℎ(𝑥)] =
∑$∈# 𝛿(𝑐(𝑥) ≠ ℎ(𝑥))

|𝐷|

Goal: Can we bound error𝒟(h) in terms of errorD(h) ?



PAC Learning Definition

Consider a class C of possible target concepts defined over a set of 
instances 𝒳 of length n, and a learner L using hypothesis space H

•C is PAC learnable by L using H if, for all c∈ C, distributions 𝒟 over 𝒳, ε
such that 0 < ε < 0.5, δ such that 0 < δ < 0.5,

• The learner L will, with probability at least (1-δ), output a hypothesis 
h ∈ H such that error𝒟(h) ≤ ε in time that is polynomial in the 
quantities:

1/ε , 1/δ, n, size(c)

“Probably Approximately Correct”



PAC Learning Applications

For finite hypothesis classes, the sample complexity (i.e., the m) so that we get a 
learner that satisfies the above definition is 

Can apply to, for example, decision trees of depth 2 for binary feature vectors 
• |H| is the number of splits (ie, n choose 2 times 16: # split choices times # leaf labelings)
• For probability ≥ 0.99 with error ≤ 0.05, number of samples we need is:
• Example: for n=100, m ≥ 318

m ≥ 1
ε
ln H + ln 1

δ
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Size of 
hypothesis 
class

Probably correctError 
tolerance

Xi

Xj Xj

1 0 1 1

m ≥ 1
.05

ln 8n2 − 8n( ) + ln 1
.01

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟



PAC Learning Discussion

PAC formalizes learning task, allows for non-perfect learning (indicated 
by ε and δ)
• Requires polynomial computational time

• PAC analysis has been extended to explore a wide range of cases
• the target concept not in our hypothesis class
• infinite hypothesis class (VC-dimension theory)
• noisy training data
• learner allowed to ask queries
• restricted distributions (e.g. uniform) over 𝒟

• Most analyses are worst case
• Sample complexity bounds are generally not tight



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, 
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, 
Yingyu Liang, Volodymyr Kuleshov, Fred Sala


