o L R e, T R g R B S
R SR N v ‘\ PE R 0 AL R Ry

CS 760: Machine Learning
Reinforcement Learning

llias Diakonikolas

University of Wisconsin-Madison

Nov. 29, 2022

Announcements

*Logistics:
*Welcome back!
Last homework released Thursday/Friday.

*Class roadmap:
.

RLII
RL I

? Large Language Models

? Fairness & Ethics

Outline

*Review & PAC Learning Framework
e Definition, intuition, sample complexity bounds

*Intro to Reinforcement Learning
*Basic concepts, mathematical formulation, MDPs, policies

*Valuing and Obtaining Policies

*Value functions, Bellman equation, value iteration, policy
iteration

Outline

*Review & PAC Learning Framework
e Definition, intuition, sample complexity bounds

PAC Learning Setup

PAC learning is a framework used for theoretical analysis. Basic setting:

instance space X

ceC

Set of instances X

Set of hypotheses (models) H
Set of possible target concepts C

Unknown probability distribution D over instances

PAC Learning Setup

We get a set D of training instances (x, c¢(x)) for some target concept cin C
e each instance x is drawn from distribution D
* class label c(x) is provided for each x
* |earner outputs hypothesis # modeling ¢
* Goal: the true error of hypothesis & refers to how often & is wrong on future

instances drawn from D
instance space X

PAC Learning: Two Error Types

We have two kinds of errors:

True error: (i.e., on any instance from distribution d):

errorp(h) = Pplc(x) # h(x)]

Empirical error: (l.e., on our dataset)

errory(h) = Peeplc(x) £ h(x)] = Yxep 8(c(x) # h(x))

DI

Goal: Can we bound errory(h) in terms of errory(h) ?

PAC Learning Definition

Consider a class C of possible target concepts defined over a set of
instances X of length n, and a learner L using hypothesis space H

* Cis PAC learnable by L using H if, for all c€ C, distributions D over X, €
suchthat0 <e <0.5,0suchthat0 <0 <0.5,

*The learner L will, with probability at least (1-0), output a hypothesis
h € H such that errory(h) < € in time that is polynomial in the
guantities:

1/e , 1/0, n, size(c)

“Probably Approximately Correct”

PAC Learning Applications

For finite hypothesis classes, the sample complexity (i.e., the m) so that we get a
learner that satisfies the above definition is

> %(ln|H| +ln(é)) pog

1 1 Wl

Error Size of Probably correct
: 1 0 1 1
tolerance hypothesis
class

Can apply to, for example, decision trees of depth 2 for binary feature vectors
* |H| is the number of splits (ie, n choose 2 times 16: # split choices times # leaf labelings)
* For probability > 0.99 with error < 0.05, number of samples we need is:

* Example: for n=100, m = 318
m=—| n(8n? - 8n)+1n(ij
05 01

PAC Learning Discussion

PAC formalizes learning task, allows for non-perfect learning (indicated
by ¢ and 0)

* Requires polynomial computational time

* PAC analysis has been extended to explore a wide range of cases

* the target concept not in our hypothesis class
* infinite hypothesis class (VC-dimension theory)
* noisy training data

* learner allowed to ask queries

* restricted distributions (e.g. uniform) over D

* Most analyses are worst case
* Sample complexity bounds are generally not tight

RO S g R S e L
"m‘ﬂ(-nw‘%ﬁtrhw

Break & Quiz

Outline

*Intro to Reinforcement Learning
*Basic concepts, mathematical formulation, MDPs, policies

A General Model

We have an agent interacting with the world

Actions
N Observations
Agent
*Agent receives a reward based on state of the world

* Goal: maximize reward / utility (SSS)

* Note: data consists of actions & observations
e Compare to unsupervised learning and supervised learning

Examples: Gameplay Agents

AlphaZero:

0o
‘z;q(og Google DeepMind {9‘3 AlphaGo Policy network Value network
4 Challenge Match

8- 15 March 2016
pa,«’p @ | s) Vo ()

https://deepmind.com/research/alphago/

https://deepmind.com/research/alphago/

Examples: Video Game Agents

Pong, Atari

DQN Rewards
0.04
0.02
Input
0.00
-0.02
Image convolutions
~0.04
Hidden layers bbb I 5 7 et
= - 5 - -004 -002 000 002 004
Game controller action values Teneste
Output QValues
— Acticn 0
— ction)
— Action 2
Acton 3
— Acton 4
L

Mnih et al, “Human-level control through deep reinforcement learning”

00 02 04 06 08 10
Timestep

A. Nielsen

https://holmdk.github.io/

Examples: Video Game Agents

Minecraft, Quake, StarCraft, and more!

Dimensions

3D M Minecraft
—'-"_‘-‘"‘ '_’— ViZDoom
e, DM Lab

ALE

TORCS

2D

Montezuma’s
Revenge

Single-agent

\: (™
Quake I1I i/\,
Arena CTF o ,/ s
iy
StarCraft
Dota2
Number of
) agents
Multi-agent

Shao et al, "A Survey of Deep Reinforcement Learning in Video Games"

Examples: Robotics

Training robots to perform tasks (e.g., grasp!)

Ibarz et al, " How to Train Your Robot with Deep Reinforcement Learning — Lessons We’ve Learned "

Building The Theoretical Model

Basic setup:) .
Actions
*Set of states, S ! ,
*Set of actions A " Observations
gent

*Information: at time t, observe state s; € S. Get reward r,
*Agent makes choice a, € A. State changes to s;,; continue

Goal: find a map from states to actions maximize rewards.

f

A “policy”

Markov Decision Process (MDP)

The formal mathematical model:
*State set S. Initial state s, Action set A

*State transition model: P(s;,q|s;, a¢)

* Markov assumption: transition probability only depends on s, and a,, and
not previous actions or states.

*Reward function: r(s,)
*Policy: 77(3) - § 3 A action to take at a particular state.

az

aop a1
Sop —> 81 —> 89 —> ...

Example of MDP: Grid World

Robot on a grid; goal: find the best policy

Source: P. Abbeel and D. Klein

Example of MDP: Grid World

Note: (i) Robot is unreliable (ii) Reach target fast

i@i

r(s) = —0.04 for every
non-terminal state

Grid World Abstraction

Note: (i) Robot is unreliable (ii) Reach target fast

1| START r(s) = —0.04 for every
non-terminal state

Grid World Optimal Policy

Note: (i) Robot is unreliable (ii) Reach target fast

r(s) = —0.04 for every
1 2 3 4 non-terminal state

Back to MDP Setup

The formal mathematical model:
*State set S. Initial state s, Action set A

-State transition model: P(s;11]¢, a4)

* Markov assumption: transition probability only depends on s, and a,, and
not previous actions or states.

How do we find
*Reward function: r(s,) / tho best policy?

*Policy: 7(s): S — Aaction to take at a particular state.

az

aop a1
Sop —> 81 —> 89 —> ...

RO S g R S e L
"m‘ﬂ(-nw‘%ﬁtrhw

Break & Quiz

Outline

*Valuing and Obtaining Policies

*Value functions, Bellman equation, value iteration, policy
iteration

Defining the Optimal Policy

For policy i, expected utility over all possible state
sequences from s, produced by following that policy:

VT(sy) = z P(sequence)U (sequence)

sequences
starting from s

-

Called the value function (for 7, s¢)

Discounting Rewards

One issue: these are infinite series. Convergence?
*Solution

U(s0,51-..) = 1(s0) +yr(s1) + 77 = 7 r(st)

t>0
*Discount factor y between O and 1

*Set according to how important present is VS future
*Note: has to be less than 1 for convergence

From Value to Policy

Now that V™ (s,) is defined what a should we take?

First, set V(s) to be expected utility for optimal policy from s

*What's the expected utility of an action?
*Specifically, action a in state s?

ZP(S’]S, a)V*(s")

/ T N

All the states we Transition probability Expected rewards

could go to

Obtaining the Optimal Policy

We know the expected utility of an action.
*So, to get the optimal policy, compute

7 (s) = argmax, Z P(s'ls,a)V*(s")

A,

All the states we Transition Expected
could go to probability rewards

Credit L. Lazbenik

Slight Problem...

Now we can get the optimal policy by doing
7*(s) = argmax, Z P(s'|s,a)V*(s")

S
So we need to know V(s).
*But it was defined in terms of the optimal policy!
So we need some other approach to get V(s).
*Need some other property of the value function!

Bellman Equation

Let’s walk over one step for the value function:

V*(s) =r(s) + ymO?XZP(S’\S, a)V*(s')

1 \SY }

Current state Discounted expected
reward future rewards

*Bellman: inventor of dynamic programming

Value Iteration

Q: how do we find V*(s)?

*Why do we want it? Can use it to get the best policy

*Know: reward r(s), transition probability P(s’|s,a)

Also know V(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with V,(s)=0. Then, update

Viea(s) = r(s) +ymax) P(s'|s,a)Vi(s')

S

Value Iteration: Demo

- e
[REINFORCES: Gridworld with Dy X ° o

& C @ csstanford.edu/people/karpathy/reinforcejs/gridworld_dp.html ® G

5 Apps @ CS760Fall 2021) phylogenetic-trees-.. $8 Projection of point.. @ Unsupervised Learn... [Label Verbalization. W Asymptotic Normal » | 15 Reading list

GridWorld: Dynamic Programming Demo

022 [025 [027 [031 [034 [038 [034 [031 034 [0.38
el el &1 B2 |

025 (027 [0.31 [0.34 0.42
— | e}

0.2P

0.20
2

: !
|

Policy Evaluation (one sweep) : Policy Update i Toggle Value Iteration
|
l J

0.22

ad

0.25
g

0.27
‘-D

0.31
g

0.34
—

0.3L 0.3& 0.3& 0.4& 0.4& 0.5& 0.5{, 0.6? 0.?] Of}

Cell reward: (select a cell)

Setup

This is a toy environment called Gridworld that is often used as a toy model in the Reinforcement Learning
literature. In this particular case:

Source: Karpathy

Policy Iteration

With value iteration, we estimate V*
*Then get policy (i.e., indirect estimate of policy)
*Could also try to get policies directly

*This is policy iteration. Basic idea:
e Start with random policy it
e Use it to compute value function V™ (for that policy)
* Improve the policy: obtain i’

Policy Iteration: Algorithm

Policy iteration. Algorithm
e Start with random policy it
* Use it to compute value function V™ : a set of linear equations

V7(s) =7(s) + 7> _ P(s's,a)V7(s')
* Improve the policy: obtain i’

7' (s) = arg max r(s) + ”yZ P(s'|s,a)V7(s")

* Repeat

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,

Yingyu Liang, Volodymyr Kuleshov, Fred Sala

