o L R e, T R g R B S
R SR N v ‘\ PE R 0 AL R Ry

CS 760: Machine Learning
Reinforcement Learning Il

llias Diakonikolas

University of Wisconsin-Madison

Dec. 6, 2022

Announcements

*Logistics:
*HWS8 released tonight (last HW).

*Class roadmap:

Tues., Dec. 7 RL I

Thurs., Dec 9 Large Language Models

Tues., Dec 14 Fairness & Ethics

Outline

*Review: Intro to Reinforcement Learning
*Basic concepts, mathematical formulation, MDPs, policies

*Valuing and Obtaining Policies

*Value functions, Bellman equation, value iteration, policy
iteration

*Q Learning
*Q function, Q-learning, SARSA, approximation

Outline

*Review: Intro to Reinforcement Learning
*Basic concepts, mathematical formulation, MDPs, policies

Review: General Model

We have an agent interacting with the world

Actions
N Observations
Agent
*Agent receives a reward based on state of the world

* Goal: maximize reward / utility (SSS)

* Note: data consists of actions & observations
e Compare to unsupervised learning and supervised learning

Building The Theoretical Model

Basic setup:) .
Actions
*Set of states, S ! ,
*Set of actions A " Observations
gent

*Information: at time t, observe state s; € S. Get reward r,
*Agent makes choice a, € A. State changes to s;,; continue

Goal: find a map from states to actions maximize rewards.

f

A “policy”

Markov Decision Process (MDP)

The formal mathematical model:
*State set S. Initial state s, Action set A

*State transition model: P(s;,q|s;, a¢)

* Markov assumption: transition probability only depends on s, and a,, and
not previous actions or states.

*Reward function: r(s,)
*Policy: 77(3) - § 3 A action to take at a particular state.

az

aop a1
Sop —> 81 —> 89 —> ...

Grid World Abstraction

Note: (i) Robot is unreliable (ii) Reach target fast

1| START r(s) = —0.04 for every
non-terminal state

Grid World Optimal Policy

Note: (i) Robot is unreliable (ii) Reach target fast

r(s) = —0.04 for every
1 2 3 4 non-terminal state

Back to MDP Setup

The formal mathematical model:
*State set S. Initial state s, Action set A

-State transition model: P(s;11]¢, a4)

* Markov assumption: transition probability only depends on s, and a,, and
not previous actions or states.

How do we find
*Reward function: r(s,) / tho best policy?

*Policy: 7(s): S — Aaction to take at a particular state.

az

aop a1
Sop —> 81 —> 89 —> ...

RO S g R S e L
"m‘ﬂ(-nw‘%ﬁtrhw

Break & Quiz

Break & Quiz

Q 1.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that r(A) =
1, r(B) = 0. Let ¥ be the discounting factor. What is the optimal policy (A)
and m(B)? What are V*(4), V*(B)?

 A. Stay, Stay, 1/(1-y), 1

 B. Stay, Move, 1/(1-y), 1/(1-y)
* C. Move, Move, 1/(1-y), 1
 D. Stay, Move, 1/(1-y), v/(1-y)

Break & Quiz

Q 1.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that r(A) =
1, r(B) = 0. Let ¥ be the discounting factor. What is the optimal policy (A)
and m(B)? What are V*(4), V*(B)?

 A. Stay, Stay, 1/(1-y), 1

 B. Stay, Move, 1/(1-y), 1/(1-y)
* C. Move, Move, 1/(1-y), 1

* D. Stay, Move, 1/(1-y), v/(1-y)

Break & Quiz

Q 1.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current state
and “move” to other state. Let r be the reward function such that r(A) = 1, r(B) = 0.
Let y be the discounting factor. What is the optimal policy m(A) and (B)? What
are I(4), V*(B)?

 A. Stay, Stay, 1/(1-y), 1
 B. Stay, Move, 1/(1-y), 1/(1-y)
* C. Move, Move, 1/(1-y), 1

 D. Stay, Move, 1/(1-y), v/(1-y) Note: want to stay at A, if at B,
move to A. Starting at A, sequence A,AA,... rewards 1, y, v3,....
Start at B, sequence B,AA,... rewards 0, ¥, y2,.... Sums to 1/(1-y),

y/(1-y).

Outline

*Valuing and Obtaining Policies

*Value functions, Bellman equation, value iteration, policy
iteration

Defining the Optimal Policy

For policy i, expected utility over all possible state
sequences from s, produced by following that policy:

VT(sy) = z P(sequence)U (sequence)

sequences
starting from s

-

Called the value function (for 7, s¢)

Discounting Rewards

One issue: these are infinite series. Convergence?
*Solution

U(s0,51-..) = 1(s0) +yr(s1) + 77 = 7 r(st)

t>0
*Discount factor y between O and 1

*Set according to how important present is VS future
*Note: has to be less than 1 for convergence

From Value to Policy

Now that V™ (s,) is defined what a should we take?

First, set V(s) to be expected utility for optimal policy from s

*What's the expected utility of an action?
*Specifically, action a in state s?

ZP(S’]S, a)V*(s")

/ T N

All the states we Transition probability Expected rewards

could go to

Obtaining the Optimal Policy

We know the expected utility of an action.
*So, to get the optimal policy, compute

7 (s) = argmax, Z P(s'ls,a)V*(s")

A,

All the states we Transition Expected
could go to probability rewards

Credit L. Lazbenik

Slight Problem...

Now we can get the optimal policy by doing
7*(s) = argmax, Z P(s'|s,a)V*(s")

S
So we need to know V(s).
*But it was defined in terms of the optimal policy!
So we need some other approach to get V(s).
*Need some other property of the value function!

Bellman Equation

Let’s walk over one step for the value function:

V*(s) =r(s) + ymO?XZP(S’\S, a)V*(s')

1 \SY }

Current state Discounted expected
reward future rewards

*Bellman: inventor of dynamic programming

Value Iteration

Q: how do we find V*(s)?

*Why do we want it? Can use it to get the best policy

*Know: reward r(s), transition probability P(s’|s,a)

Also know V(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with V,(s)=0. Then, update

Viea(s) = r(s) +ymax) P(s'|s,a)Vi(s')

S

Value Iteration: Demo

- e
[REINFORCES: Gridworld with Dy X ° o

& C @ csstanford.edu/people/karpathy/reinforcejs/gridworld_dp.html ® G

5 Apps @ CS760Fall 2021) phylogenetic-trees-.. $8 Projection of point.. @ Unsupervised Learn... [Label Verbalization. W Asymptotic Normal » | 15 Reading list

GridWorld: Dynamic Programming Demo

022 [025 [027 [031 [034 [038 [034 [031 034 [0.38
el el &1 B2 |

025 (027 [0.31 [0.34 0.42
— | e}

0.2P

0.20
2

: !
|

Policy Evaluation (one sweep) : Policy Update i Toggle Value Iteration
|
l J

0.22

ad

0.25
g

0.27
‘-D

0.31
g

0.34
—

0.3L 0.3& 0.3& 0.4& 0.4& 0.5& 0.5{, 0.6? 0.?] Of}

Cell reward: (select a cell)

Setup

This is a toy environment called Gridworld that is often used as a toy model in the Reinforcement Learning
literature. In this particular case:

Source: Karpathy

Policy Iteration

With value iteration, we estimate V*
*Then get policy (i.e., indirect estimate of policy)
*Could also try to get policies directly

*This is policy iteration. Basic idea:
e Start with random policy it
e Use it to compute value function V™ (for that policy)
* Improve the policy: obtain i’

Policy Iteration: Algorithm

Policy iteration. Algorithm
e Start with random policy it
* Use it to compute value function V™ : a set of linear equations

V7(s) =7(s) + 7> _ P(s's,a)V7(s')
* Improve the policy: obtain i’

7' (s) = arg max r(s) + ”yZ P(s'|s,a)V7(s")

* Repeat

RO S g R S e L
"m‘ﬂ(-nw‘%ﬁtrhw

Break & Quiz

Outline

*Q Learning
*Q function, Q-learning, SARSA, approximation

Q-Learning

What if we don’t know transition probability P(s’|s,a)?
*Need a way to learn to act without it.

*Q-learning: get an action-utility function Q(s,a) that tells us the
value of doing a in state s

Note: V(s) = max, Q(s,a)

Now, we can just do m(s) = arg max,Q (s, a)
* But need to estimate Q!

Q-Learning Iteration

How do we get Q(s,a)?
*Similar iterative procedure

Q(st,at) < Q(5¢,a¢) + afr(se) + "y max Q(St+1,a) — Q(s¢, at)]

Learning rate _
Idea: combine old value and new estimate of future value.

Note: We are using a policy to take actions; based on Q!

Exploration Vs. Exploitation

General question!

* Exploration: take an action with unknown consequences

*Pros:
* Get a more accurate model of the environment
* Discover higher-reward states than the ones found so far

*Cons:
* When exploring, not maximizing your utility
* Something bad might happen
e Exploitation: go with the best strategy found so far

*Pros:

* Maximize reward as reflected in the current utility estimates
 Avoid bad stuff

*Cons:
* Might also prevent you from discovering the true optimal strategy

Q-Learning: Epsilon-Greedy Policy

How to explore?

*With some 0<e<1 probability, take a random action at each
state, or else the action with highest Q(s,a) value.

argmax,c 4 Q(s,a) uniform(0,1) > €
a =
random a € A otherwise

Q-Learning: SARSA

An alternative:
*Just use the next action, no max over actions:

Q(st,at) < Q(s¢,a¢) + alr(se) + YQ(St41, 1) — Q(s¢, ay)]

Learning rate

Called state—action—reward—state—action (SARSA)
*Can use with epsilon-greedy policy

Q-Learning Details

Note: if we have a terminal state, the process ends
*An episode: a sequence of states ending at a terminal state

*Want to run on many episodes
Slightly different Q-update for terminal states

Q-Learning — Compact Representations

Q-table can be quite large... might not even fit memory

*Solution: use some other representation for a more compact
version. Ex: neural networks.

encoding of
the state (s)

each input unit encodes a or could have one net for
property of the state (e.g., each possible action
a sensor value)

Deep Q-Learning

How do we get Q(s,a)?

Convolution Convolution Fully connected
X, v N o4

,.,
=4
<
3
‘:!
3
@
Q
8

000000 ooooooo
L

. e o0
L

-
[
-

“m

% %

[a] [l

O a
CLLEEELEECL L
+1+0+0+-0+0+-0+1+ L “ ¥ > |E
@] (@] (¢] (@] (¢] (] (] (¢

Mnih et al, "Human-level control through deep reinforcement learning"

Break & Quiz

Q 2.1 For Q learning to converge to the true Q function, we must

A. Visit every state and try every action
B. Perform at least 20,000 iterations.

C. Re-start with different random initial table values.

D. Prioritize exploitation over exploration.

Break & Quiz

Q 2.1 For Q learning to converge to the true Q function, we must

A. Visit every state and try every action
B. Perform at least 20,000 iterations.

C. Re-start with different random initial table values.

D. Prioritize exploitation over exploration.

Break & Quiz

Q 2.1 For Q learning to converge to the true Q function, we must

A. Visit every state and try every action

B. Perform at least 20,000 iterations. (No: this is dependent on the
particular problem, not a general constant).

C. Re-start with different random initial table values. (No: this is
not necessary in general).

D. Prioritize exploitation over exploration. (No: insufficient
exploration means potentially unupdated state action pairs).

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,

Yingyu Liang, Volodymyr Kuleshov, Fred Sala

