
CS 760: Machine Learning
Reinforcement Learning II

Ilias Diakonikolas
University of Wisconsin-Madison

Dec. 6, 2022

Announcements

•Logistics:
•HW8 released tonight (last HW).

•Class roadmap:
Thurs., Dec. 2 RL II

Tues., Dec. 7 RL III

Thurs., Dec 9 Large Language Models

Tues., Dec 14 Fairness & Ethics

Outline

•Review: Intro to Reinforcement Learning
•Basic concepts, mathematical formulation, MDPs, policies
•Valuing and Obtaining Policies
•Value functions, Bellman equation, value iteration, policy
iteration

•Q Learning
•Q function, Q-learning, SARSA, approximation

Outline

•Review: Intro to Reinforcement Learning
•Basic concepts, mathematical formulation, MDPs, policies
•Valuing and Obtaining Policies
•Value functions, Bellman equation, value iteration, policy
iteration

•Q Learning
•Q function, Q-learning, SARSA, approximation

Review: General Model

We have an agent interacting with the world

•Agent receives a reward based on state of the world
•Goal: maximize reward / utility
•Note: data consists of actions & observations
• Compare to unsupervised learning and supervised learning

World

Agent

Actions

Observations

($$$)

Building The Theoretical Model

Basic setup:
•Set of states, S
•Set of actions A
• Information: at time t, observe state st∈ S. Get reward rt
•Agent makes choice at∈ A. State changes to st+1, continue

Goal: find a map from states to actions maximize rewards.

World

Agent

Actions

Observations

A “policy”

Markov Decision Process (MDP)

The formal mathematical model:
•State set S. Initial state s0. Action set A
•State transition model:
•Markov assumption: transition probability only depends on st and at, and

not previous actions or states.
•Reward function: r(st)
•Policy: action to take at a particular state.

Grid World Abstraction

Note: (i) Robot is unreliable (ii) Reach target fast

𝒓(𝑠) = −0.04 for every
non-terminal state

Grid World Optimal Policy

Note: (i) Robot is unreliable (ii) Reach target fast

𝒓(𝑠) = −0.04 for every
non-terminal state

Back to MDP Setup

The formal mathematical model:
•State set S. Initial state s0. Action set A
•State transition model:
•Markov assumption: transition probability only depends on st and at, and

not previous actions or states.
•Reward function: r(st)
•Policy: action to take at a particular state.

How do we find
the best policy?

Break & Quiz

Break & Quiz

Q 1.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that r(A) =
1, r(B) = 0. Let 𝛾 be the discounting factor. What is the optimal policy 𝜋(A)
and 𝜋(𝐵)? What are 𝑉*(𝐴), 𝑉*(B)?

• A. Stay, Stay, 1/(1-𝛾), 1
• B. Stay, Move, 1/(1-𝛾), 1/(1-𝛾)
• C. Move, Move, 1/(1-𝛾), 1
• D. Stay, Move, 1/(1-𝛾), 𝛾/(1-𝛾)

Break & Quiz

Q 1.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that r(A) =
1, r(B) = 0. Let 𝛾 be the discounting factor. What is the optimal policy 𝜋(A)
and 𝜋(𝐵)? What are 𝑉*(𝐴), 𝑉*(B)?

• A. Stay, Stay, 1/(1-𝛾), 1
• B. Stay, Move, 1/(1-𝛾), 1/(1-𝛾)
• C. Move, Move, 1/(1-𝛾), 1
• D. Stay, Move, 1/(1-𝛾), 𝛾/(1-𝛾)

Break & Quiz

Q 1.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current state
and “move” to other state. Let r be the reward function such that r(A) = 1, r(B) = 0.
Let 𝛾 be the discounting factor. What is the optimal policy 𝜋(A) and 𝜋(𝐵)? What
are 𝑉*(𝐴), 𝑉*(B)?
• A. Stay, Stay, 1/(1-𝛾), 1
• B. Stay, Move, 1/(1-𝛾), 1/(1-𝛾)
• C. Move, Move, 1/(1-𝛾), 1
• D. Stay, Move, 1/(1-𝛾), 𝛾/(1-𝛾) Note: want to stay at A, if at B,

move to A. Starting at A, sequence A,A,A,… rewards 1, 𝛾, 𝛾2,….
Start at B, sequence B,A,A,… rewards 0, 𝛾, 𝛾2,…. Sums to 1/(1-𝛾),
𝛾/(1-𝛾).

Outline

•Review: Intro to Reinforcement Learning
•Basic concepts, mathematical formulation, MDPs, policies
•Valuing and Obtaining Policies
•Value functions, Bellman equation, value iteration, policy
iteration

•Q Learning
•Q function, Q-learning, SARSA, approximation

Defining the Optimal Policy

For policy p, expected utility over all possible state
sequences from 𝑠! produced by following that policy:

Called the value function (for p, 𝑠!)

𝑉! 𝑠" = -

#$%&$'($#
#)*+),'- .+/0 1!

𝑃 sequence 𝑈(sequence)

Discounting Rewards

One issue: these are infinite series. Convergence?
•Solution

•Discount factor g between 0 and 1
•Set according to how important present is VS future
•Note: has to be less than 1 for convergence

From Value to Policy

Now that 𝑉" 𝑠! is defined what a should we take?
•First, set V*(s) to be expected utility for optimal policy from s
•What’s the expected utility of an action?
•Specifically, action a in state s?

All the states we
could go to

Transition probability Expected rewards

Obtaining the Optimal Policy

We know the expected utility of an action.
•So, to get the optimal policy, compute

All the states we
could go to

Transition
probability

Expected
rewards Credit L. Lazbenik

Slight Problem…

Now we can get the optimal policy by doing

•So we need to know V*(s).
•But it was defined in terms of the optimal policy!
•So we need some other approach to get V*(s).
•Need some other property of the value function!

Bellman Equation

Let’s walk over one step for the value function:

•Bellman: inventor of dynamic programming

Discounted expected
future rewards

Current state
reward

Value Iteration

Q: how do we find V*(s)?
•Why do we want it? Can use it to get the best policy
•Know: reward r(s), transition probability P(s’|s,a)
•Also know V*(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with V0(s)=0. Then, update

Value Iteration: Demo

Source: Karpathy

Policy Iteration

With value iteration, we estimate V*
•Then get policy (i.e., indirect estimate of policy)

•Could also try to get policies directly

•This is policy iteration. Basic idea:
• Start with random policy π
•Use it to compute value function Vπ (for that policy)
• Improve the policy: obtain π’

Policy Iteration: Algorithm

Policy iteration. Algorithm
• Start with random policy π
•Use it to compute value function Vπ : a set of linear equations

• Improve the policy: obtain π’

•Repeat

Break & Quiz

Outline

•Review: Intro to Reinforcement Learning
•Basic concepts, mathematical formulation, MDPs, policies
•Valuing and Obtaining Policies
•Value functions, Bellman equation, value iteration, policy
iteration

•Q Learning
•Q function, Q-learning, SARSA, approximation

Q-Learning

What if we don’t know transition probability P(s’|s,a)?
•Need a way to learn to act without it.
•Q-learning: get an action-utility function Q(s,a) that tells us the
value of doing a in state s
•Note: V*(s) = maxa Q(s,a)
•Now, we can just do 𝜋∗ 𝑠 = arg max3𝑄 𝑠, 𝑎
•But need to estimate Q!

Q-Learning Iteration

How do we get Q(s,a)?
•Similar iterative procedure

Idea: combine old value and new estimate of future value.
Note: We are using a policy to take actions; based on Q!

Learning rate

Exploration Vs. Exploitation

General question!
•Exploration: take an action with unknown consequences
•Pros:
•Get a more accurate model of the environment
• Discover higher-reward states than the ones found so far

•Cons:
•When exploring, not maximizing your utility
• Something bad might happen

•Exploitation: go with the best strategy found so far
•Pros:
•Maximize reward as reflected in the current utility estimates
• Avoid bad stuff

•Cons:
•Might also prevent you from discovering the true optimal strategy

Q-Learning: Epsilon-Greedy Policy

How to explore?
•With some 0<ε<1 probability, take a random action at each
state, or else the action with highest Q(s,a) value.

Q-Learning: SARSA

An alternative:
•Just use the next action, no max over actions:

•Called state–action–reward–state–action (SARSA)
•Can use with epsilon-greedy policy

Learning rate

Q-Learning Details

Note: if we have a terminal state, the process ends
•An episode: a sequence of states ending at a terminal state
•Want to run on many episodes
•Slightly different Q-update for terminal states

Q-table can be quite large… might not even fit memory
•Solution: use some other representation for a more compact
version. Ex: neural networks.

Q-Learning – Compact Representations

or could have one net for
each possible action

each input unit encodes a
property of the state (e.g.,
a sensor value)

Q(s, a1)

Q(s, a2)

Q(s, ak)

encoding of
the state (s)

Deep Q-Learning

How do we get Q(s,a)?

Mnih et al, "Human-level control through deep reinforcement learning"

Break & Quiz

Q 2.1 For Q learning to converge to the true Q function, we must

• A. Visit every state and try every action
• B. Perform at least 20,000 iterations.
• C. Re-start with different random initial table values.
• D. Prioritize exploitation over exploration.

Break & Quiz

Q 2.1 For Q learning to converge to the true Q function, we must

• A. Visit every state and try every action
• B. Perform at least 20,000 iterations.
• C. Re-start with different random initial table values.
• D. Prioritize exploitation over exploration.

Break & Quiz

Q 2.1 For Q learning to converge to the true Q function, we must

• A. Visit every state and try every action
• B. Perform at least 20,000 iterations. (No: this is dependent on the

particular problem, not a general constant).
• C. Re-start with different random initial table values. (No: this is

not necessary in general).
• D. Prioritize exploitation over exploration. (No: insufficient

exploration means potentially unupdated state action pairs).

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov, Fred Sala

