~‘?":'§c-'-: i
SR P T e A

R s
iaeg

CS O: ahin Learning
Supervised Learning |

llias Diakonikolas

University of Wisconsin-Madison

9/15/2021

Announcements

*Class roadmap:

__

Tuesday Sept. 20
Thursday Sept. 22

Tuesday Sept. 27
Thursday Sept. 29

Supervised Learning Il

Evaluation

Regression |

Regression Il

|

guluieaq pasiaiadng ||V

Outline

*Review from last time
*Features, labels, hypothesis class, training, generalization

*Instance-based learning

*k-NN classification/regression, locally weighted regression,
strengths & weaknesses, inductive bias

*Decision trees

* Setup, splits, learning, information gain, strengths and
weaknesses

Outline

*Review from last time
*Features, labels, hypothesis class, training, generalization

Supervised Learning: Formal Setup

Problem setting
* Set of possible instances X

* Unknown target function f X =Y

*Set of models (a.k.a. hypotheses): H — {h‘h - X — y}
Get
* Training set of instances for unknown target function,

Supervised Learning: Objects

Three types of sets
* Input space, output space, hypothesis class

X,V H

Examples:
* Input space: feature vectors X C Rd

* Qutput space:
* Binary y — {—1, —|—1}

* Continuous y g R

safe poisonous

13.23°

Output space: Classification vs. Regression

Choices of V) have special names:

*Discrete: “classification”. The elements of) are classes
* Note: doesn’t have to be binary

N

Versicolor

U =

*Continuous: “regression”
* Example: linear regression

*There are other types...

Hypothesis class

We talked about X',) what about H ?

* Pick specific class of models. Ex: linear models: --

h@(l‘) — 0O+ 0121 + 0Oox0 + ...+ 0424

*Ex: feedforward neural networks

O (@) = o (W F4 (@) AN,
(XX /\/4/,_\
* Parameters: Os, Ws. RITAD

Wikipedia

SL: Training & Generalization

Goal: model h that best approximates f

*One way: empirical risk minimization (ERM)

f—argmm—ZK (D), 41)))

heH n
\
Model prediction

Hypothesis Class
Loss function (how far are we)?

*Generalization?

reak & Questions

Outline

*Instance-based learning

*k-NN classification/regression, locally weighted regression,
strengths & weaknesses, inductive bias

Nearest Neighbors: Idea

Basic idea: “nearby” feature vectors more likely have the
same label

*Example: classify car/no car
* All features same, except location of car

*What does “nearby” mean?

1-Nearest Neighbors: Algorithm

Training/learning: given

{(zW), gy W), (2@ @), . (2(m) ym)))

Do nothing. (“lazy learner”).

Prediction: for x , find nearest training point z(J)
Return y(j)

1-Nearest Neighbors: Algorithm

Trammg/learnmg glven
safe

poisonous

a
—

Prediction: for x, find nearest training point z(7)
Return y(]) poisonous

1NN: Decision Regions

Defined by “Voronoi Diagram”

*Each cell contains points closer to a particular training point

k-Nearest Neighbors: Classification

Training/learning: given

{(zW), yW) (2@, y2)), .. (™) y(m))}

Prediction: for &, find k most similar training points

Return plurality class ”

§ < argmax Y 0(v,yV)

(IS
Y 1=1

*|.e., among the k points, output most popular class.

k-Nearest Neighbors: Distances

Discrete features: Homming distance

d
dp (@, 2) =y 1{ai? # 2}

) 1
Continuous features: @

*Euclidean distance: d(w(i)’w(j)) _ (Z(xy) . a:g”)Q)
a=1

S

L1 (Manhattan) dist.: (]) Z | (i) :I:(])\

a=1

k-Nearest Neighbors: Mixed Distances

Might have features of both types
*Sum two types of distances components

*Might need normalization,

*E.g., max{ajg&)} —] . Fix range, or ensure some distribution.
1,Qa o

*Many other choices of distance.

k-Nearest Neighbors: Standardization

Typical in data science applications. Recipe:
*Compute empirical mean/stddev for a feature (in train set))

l —— . 1 2
— (2) 1
fla = — Zlév oo = (n > (@l - m-)Q)
1= 1=1
W)
*Standardize features: 5;23) — 2 Ha

* Do the same for test points! Oq

k-Nearest Neighbors: Regression

Training/learning: given

{(zW), yW) (2@, y2)), .. (™) y(m))}

Prediction: for &, find k most similar training points

Return 1
- (2)
=7 Z

*|.e., among the k points, output mean label.

k-Nearest Neighbors: Variations

Could contribute to predictions via a weighted distance
*All k no longer equally contribute

*Classification / regression
k
o 1
arg max :

Y HeNEY L d(z, 2)

1=1

~6(v, ')

Sy @ fd(z, (D)2
Zle 1/d(x, $(7;))2

A
yi
Y s

Dealing with Irrelevant Features

One relevant feature x; Effect of an irrelevant feature x,
on distances and nearest
1-NN rule classifies each neighbors

instance correctly

-
-

X1

Locally Weighted Regression

*Intuitively, want to weight features differently
* Locally weighted regression: kNN variation doing this

*|nstead of standard kNN return value, do

f(z) = wo + w11 + woxs + ... + wWaky

*Look familiar? Linear prediction
* How do the neighbors come into play?

Locally Weighted Regression

*Need the weights

* For each prediction x, minimize the loss
k

E(x) =) (f(z")—y)’

1=1

*In other words, combination of least-squares
linear regression with kNN.

Instance-Based Learning: Strengths

*Simple to implement

*No training!

*Easily done online

*Robust to noisy data (for enough samples)
*Often good in practice!

- L]
L
b sy
[L X0 .1 °)4 4 '-'f.u Cr SUTERY
»iae a o, (P40 " .
S IR R
ab, & S
LS S SN [P T

[
-.I-z. "

'-ﬂb s] a
L] L) L

/B 4™ ~
AT I

o Fgany a

s p
a

Instance-Based Learning: Weaknesses

*Sensitive to range of values

*Sensitive to irrelevant + correlated features
e Can try to solve via variations. More later

*Prediction stage can be expensive
*No “model” to examine

L L
8 " - L]
L) \. sl \- LI
f'd:'-i DR -";.7‘1 ° 4
ate a PR P
‘A'l“'“' al, e,y W 9.8
a a8, a4t * ."A.:‘.
[TP Y
s
O
e % "4
] % L) -t
'-g-‘l L) 4 '-A‘A.lll.'r 5“1
s *
P :’:A‘. A“ '..“ :":AAA
PV Y s hp T8
s N

L]
-
-.l \. L]
- .'-*":"1-.' 34
Bey /P .4° ~
-, “’ L e ‘A‘
sdu
5"
slgm®s °
;'{:‘-1.- 4
LS Y &
O A
aa A“ A“
a

Inductive Bias

* Inductive bias: assumptions a learner uses to predict y; for a previously unseen
instance x;
* Two components
* hypothesis space bias: determines the models that can be represented
» preference bias: specifies a preference ordering within the space of models

learner hypothesis space bias preference bias

k-NN Voronoi decomposition determined instances in neighborhood
by nearest neighbors belong to same class

RO S g R S e L
"m‘ﬂ(-nw‘%ﬁtrhw

Break & Quiz

Q2-1: Table shows all the training points in 2D space and their labels. Assume 3NN
classifier and Euclidean distance. What should be the labels of the points A: (1, 1)
and B(2, 1)?

X y label
1. A:+, B:-

0 0 +
2. A:-, B:+

1 0 +
3. A:-, B:-
4. A:+, B:+ 2 0 *

2 2 +

0 1

0 2

1 2

3 1

Q2-1: Table shows all the training points in 2D space and their labels. Assume 3NN
classifier and Euclidean distance. What should be the labels of the points A: (1, 1)
and B(2, 1)?

A-+ B X Yy label
1. :+, B: -
2. Ai-, B+ _ 0 0 +
3. A:-, B:- 1 0 +
4. A:+,B:+ 2 0 +
3 nearest neighbors to point A are (0, 1) 2 2 +
[-1, (1, 0) [+], (1, 2) [-]. Hence, the label 0 1
should be [-]
0 2
3 nearest neighbors to point B are (2, 0) 1 2
[+], (2, 2) [+], (3, 1) [-]. Hence, the label Z)
should be [+]

Q2-2: In a distance-weighted nearest neighbor, which of the following
weight is NOT appropriate? Let p be the test data point and x; {i = 1: N} be
training data points.

1w =d(p, x,)*

> wi=d(p, x)?

3. Wi = exp(-d(p, x))

4. Wi=1

Q2-2: In a distance-weighted nearest neighbor, which of the following
weight is NOT appropriate? Let p be the test data point and x; {i = 1: N} be
training data points.

w;=d(p,)" (—

w; = d(p, x;)*

=

N

w

w; = exp(-d(p, x;))

Wi=1

The intuition behind weighted kNN, is to give more weight to the points
which are nearby and less weight to the points which are farther away.
Any function whose value decreases as the distance increases can be
used as a function for the weighted knn classifier. w = 1 is also OK as it
reduces to our traditional nearest-neighbor algorithm.

Outline

*Decision trees

* Setup, splits, learning, information gain, strengths and
weaknesses

Decision Trees: Heart Disease Example

thal

normal fixed_defect reversible_defect

#_major_vessels >0 present
true false
chest_pain_type absent

absent

absent

absent

present

Each internal node tests one feature x;

Each branch from an internal node
represents one outcome of the test

Each leaf predicts y or P(y | x)

present

Decision Trees: Logical Formulas

* Suppose X; ... X5are Boolean features, and Y is also
Boolean

* How would you represent the following with decision trees?
Y=X, X, (1e.,Y=X,AX))
Y=X,v X,

Y = X, X, v X,—X,

Decision Trees: Textual Description

Med_defect

thal

#_major_vessels >0 present
trye false
present absent

thal = normal
[# _major_vessels > 0] = true: present
[# _major_vessels > 0] = false: absent
thal = fixed_defect: present

Decision Trees: Mushrooms Example

odor = a: e (400.0) > if odor=almond, predict edible
odor = c: p (192.0)
odor = f£f: p (2160.0)
odor = 1l: e (400.0)
odor = m: p (36.0)
odor = n
spore-print-color = b: e (48.0)
spore-print-color = h: e (48.0)
spore-print-color = X: e (1296.0)
spore-print-color = n: e (1344.0)
spore-print-color = o: e (48.0)
spore-print-color = r: p (72.0)
spore-print-color = u: e (0.0)
spore-print-color = w if odor=none /\
gill-size = b: e (528.0)
gill-size = n _Nnrint- - i
SRacig 2 & @ (0.0) gill-size=narrow A
population = a: e (0.0) . . _
population = ¢: p (16.0) gill-spacing=crowded,
population = n: e (0.0) . .
population = s: e (0.0) predict poisonous
population = v: e (48.0)
population = y: e (0.0)
spore-print-color = y: e (48.0)

odor
odor
odor

p: p (256.0)
s: p (576.0)
y: p (5376.0)

Decision Trees: Learning

*Learning Algorithm - MakeSubtree(set of training instances D)
C = DetermineCandidateSplits(D)
if stopping criteria met

make a leaf node N

20y W) (22 @) (glm) gy (m)
H)) ()} determine class label/probabilities for N

l else
make an internal node N

S = FindBestSplit(D, C)
P

| /m\ e for each outcome k of §
ﬁ& /\ o D, = subset of instances that have outcome &
[e g i k™ child of N = MakeSubtree(Dy)
2\ N return subtree rooted at N

DT Learning: Candidate Splits

First, need to determine how to split features
*Splits on nominal features have one branch per value

thal

normal fixed_defect reversible_defect

*Splits on numeric features use a threshold/interval

weight <35

truNse

ID3, C4.5

DT Learning: Numeric Feature Splits

Given a set of training instances D and a specific feature X;
*Sort the values of X; in D

*Evaluate split thresholds in intervals between instances of
different classes

weight <35

weight <—0—@ 0—\—0 O O { - >
true false
17 35

Numeric Feature Splits Algorithm

// Run this subroutine for each numeric feature at each node of DT induction
DetermineCandidateNumericSplits(set of training instances D, feature X))
cC={} // initialize set of candidate splits for feature X;

S = partition instances in D into sets s; ... sy where the instances in each set have the
same value for X;

let v; denote the value of X; for set s;
sort the sets in S using v; as the key for each s,
for each pair of adjacent sets s;, s, in sorted §
if s;and s;,; contain a pair of instances with different class labels
/[assume we’re using midpoints for splits
add candidate split X; < (v;+v;,))/2t0o C

return C

DT: Splits on Nominal Features

Instead of using k-way splits for k-valued features, could
require binary splits on all nominal features (CART does this)

thal

MNIQ le_defect \Y fixed_defect

color

red \/blueAgreen V yellow

DT Learning: Finding the Best Splits

How to we select the best feature to split on at each step?

*Hypothesis: simplest tree that classifies the training
instances accurately will generalize

Occam’s razor
* “Nunquam ponenda est pluralitis sin necesitate” |
* “Entities should not be multiplied beyond necessity” #iiid
 “when you have two competing theories that make the same | X
predictions, the simpler one is the better”

DT Learning: Finding the Best Splits

Occam’s razor
* “Nunquam ponenda est pluralitis sin necesitate”

* “Entities should not be multiplied beyond necessity”
* “when you have two competing theories that make the same
predictions, the simpler one is the better”

*Ptolemy (~1000 years earlier)

*“We consider it a good principle to explain the
phenomena by the simplest hypothesis possible.”

DT Learning: Finding the Best Splits

How to we select the best feature to split on at each step?

*Hypothesis: simplest tree that classifies the training
instances accurately will generalize

Why is Occam’s razor a reasonable heuristic?

* There are fewer short models (i.e. small trees) than long ones
* A short model is unlikely to fit the training data well by chance
* A long model is more likely to fit the training data well coincidentally | N

DT Learning: Finding Optimal Splits?

Can we find and return the smallest possible decision tree that
accurately classifies the training set?
* NO! This is an NP-hard problem

[Hyafil & Rivest, Information Processing Letters, 1976]

*Instead, we’ll use an information-theoretic heuristic to
greedily choose splits

Information Theory: Super-Quick Intro

*Goal: communicate information to a receiver
*Ex: as bikes go past, communicate the maker of each bike

Information Theory: Encoding

*Could yell out the names of the manufacturers...
*Suppose there are 4: Trek, Specialized, Cervelo, Serrota

*|nefficient... since there’s just 4, we could encode them
* # of bits: 2 per communication

type code
Trek 11
Specialized 10
Cervelo 01

Serrota 00

Information Theory: Encoding

*Now, some bikes are rarer than others...
*Cervelo is a rarer specialty bike.

* We could save some bits... make more popular messages fewer
bits, rarer ones more bits

* Note: this is on average

*Expected # bits: 1.75 Type/probability # bits code
P(Trek)=0.5

o Z P 1Og2 (y) P(Specialized) =0.25 2 01

yey P(Cervelo) =0.125 3 001

P(Serrota) =0.125 3 000

Information Theory: Entropy

*Measure of uncertainty for random variables/distributions

*Expected number of bits required to communicate the value
of the variable 1

ZP log2 () %0.5

yey

0 0.5 1
PriX=1)

Information Theory: Conditional Entropy

*Suppose we know X. CE: how much uncertainty left in Y?

HY|X)=-) P(X=x2)H(Y|X =)
reX

*Here,
HY|X=2)= Y, P(Y =y|X = 2)log, P(Y = y|X = x)

*What is it if Y=X?
*What if Y is independent of X?

Information Theory: Conditional Entropy

Example. Y is still the bike maker, X is color.

Specialized 0.125 0.125

Cervelo 0.125 0

0 0.125

H(Y|X = black) = —0.5%10og 0.5 — 0.25% 10og 0.25 — 0.25X 1log 0.25 — 0 = 1.5
H(Y|X = white) = —0.5%1og 0.5 — 0.25% 1log 0.25 — 0 — 0.25% log 0.25 = 1.5
H(Y|X) = 0.5xH(Y|X = black) + 0.5xH (Y |white) = 1.5

Information Theory: Mutual Information

*Similar comparison between R.V.s:

[(Y;X)=H(Y) - H(Y|X)

*How much uncertainty of Y that X can reduce.

Specialized 0.125 0.125

Cervelo 0.125 0

0 0.125

I(Y;X) = H(Y) — H(Y|X) = 1.75 — 1.5 = 0.25

DT Learning: Back to Splits

Want to choose split S that maximizes
InfoGain(D,S) = Hp(Y) — Hp(Y|5)

ie, mutual information.

*Note: D denotes that this is the empirical entropy
*We don’t know the real distribution of Y, just have our dataset

*Equivalent to maximally reduces conditional entropy of Y

DT Learning: InfoGain Example

Simple binary classification (play tennis?) with 4 features.

PlayTennis: training examples
e C

Day Outlook Temperature = Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

DT Learning: InfoGain For One Split

e What’s the information gain of splitting on Humidity?

D: [9+, 5-]
Humidity H,(Y)= —%logz(%j — %logz(%j =0.940
hV\normal
D: [3+,4-] D: [6+, 1-]
1,0 high) =21z, 3| S1og 2] H (¥ [normal) - ~Stog,() Hhog,[1)
=0.985 =0.592

InfoGain(D, Humidity) = H,(Y) — H, (Y | Humidity)
=0.940 - 1(0.985) + 1(0.592)
14 14

=0.151

DT Learning: Comparing Split InfoGains

e |s it better to split on Humidity or Wind?

D: [9+, 5-] D: [9+, 5-]
Humidity Wind
hy\normal We/\)ng
D: [3+, 4-] D: [6+, 1-] D: [6+, 2-] D: [3+, 3-]

H, (Y lweak)=0.811 H, (Y Istrong)=1.0

InfoGain(D, Humidity) = 0.940 — [% (0.985) + % (0.592)}
=0.151
: : 8 6
InfoGain(D, Wind) = 0.940 — ” (0.811)+ 2 (1.0)

=0.048

DT Learning: InfoGain Limitations

*InfoGain is biased towards tests with many outcomes
* A feature that uniquely identifies each instance

« Splitting on it results in many branches, each of which is
“‘pure” (has instances of only one class)

« Maximal information gain!

*Use GainRatio: normalize information gain by entropy

GainRatio(D, S) = Infogz,i?é?,s) — HD(YQI;I(JSD)(YIS)

Inductive Bias

* Recall: Inductive bias: assumptions a learner uses to predict y; for a previously
unseen instance x;
* Two components
* hypothesis space bias: determines the models that can be represented
» preference bias: specifies a preference ordering within the space of models

learner hypothesis space bias preference bias

ID3 decision tree trees with single-feature, axis-parallel small trees identified by greedy
splits search
k-NN Voronoi decomposition determined instances in neighborhood

by nearest neighbors belong to same class

Q3-1: How many distinct (binary classification) decision trees are
possible with 4 Boolean attributes? Here distinct means representing
different functions.

. 24
2. 28
5. 216

s 2%

Q3-1: How many distinct (binary classification) decision trees are

possible with 4 Boolean attributes? Here distinct means representing
different functions.

. 24
), 28
#distinct decision trees
3, 216 _ = #distinct Boolean functions
= #ffunctions of 2% = 16 inputs, binary label for each
0. 232 input

=216

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,

Yingyu Liang, Volodymyr Kuleshov, Fred Sala

