

CS 760: Machine Learning **Decision Trees & Evaluation**

Ilias Dlakonikolas

University of Wisconsin-Madison

Sept. 22, 2022

Announcements

- •Announcements:
 - HW 2 released Tuesday
- •Class roadmap:

Thursday Sept. 22	Evaluation	
Tuesday Sept. 27	Regression I	SL
Thursday Sept. 29	Regression II	<i>s</i> pervis
Tuesday, Oct. 4	Naive Bayes	sed
Thursday, Oct. 6	Neural Networks I	Learnii
		ng

Outline

Continuing from last time: Decision trees

 Information gain, stopping criteria, overfitting, pruning, variations

Evaluation: Generalization

• Train/test split, random sampling, cross validation

Evaluation: Metrics

Confusion matrices, ROC curves, precision/recall

Outline

- Continuing from last time: Decision trees
 - Information gain, stopping criteria, overfitting, pruning, variations
- Evaluation: Generalization
 - Train/test split, random sampling, cross validation
- Evaluation: Metrics
 - Confusion matrices, ROC curves, precision/recall

DT Learning: InfoGain Limitations

- InfoGain is biased towards tests with many outcomes
 - A feature that uniquely identifies each instance
 - Splitting on it results in many branches, each of which is "pure" (has instances of only one class)
 - Maximal information gain!
- •Use GainRatio: normalize information gain by entropy

GainRatio(D, S) =
$$\frac{\text{InfoGain}(D,S)}{H_D(S)} = \frac{H_D(Y) - H_D(Y|S)}{H_D(S)}$$

DT Learning: GainRatio

- •Why?
 - Suppose S is a binary split. InfoGain limited to 1 bit, no matter what.

InfoGain
$$(D, S) = H_D(Y) - H_D(Y|S)$$

Intuition: at most, S tells us Y is in one half of its classes or the other

- Now suppose S is different for each instance (i.e., student number).
 - Uniquely determines Y for each point, but useless for generalization.
 - But, then $H_D(Y|S) = 0$, so maximal information gain!
- Control this by normalizing by $H_D(S)$.
 - Above: for n instances, $H_D(S) = \log_2(n)$

GainRatio
$$(D, S) = \frac{\text{InfoGain}(D, S)}{H_D(S)} = \frac{H_D(Y) - H_D(Y|S)}{H_D(S)}$$

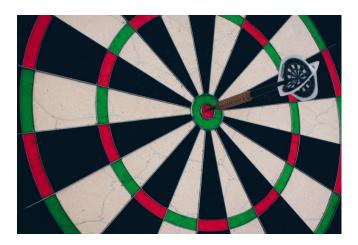
DT Learning: Stopping Criteria

Form a leaf when

- All of the given subset of instances are same class
- We've exhausted all of the candidate splits
- Stop earlier?

Evaluation: Accuracy

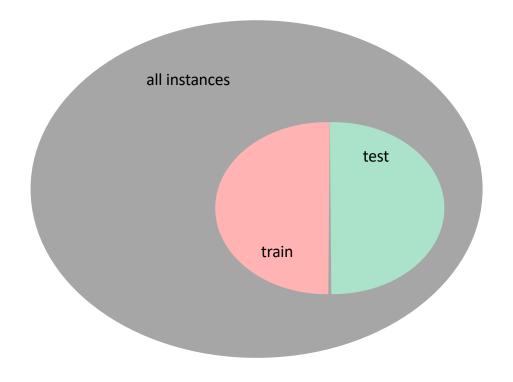
- Can we just calculate the fraction of training instances that are correctly classified?
- Consider a problem domain in which instances are assigned labels at random with P(Y = 1) = 0.5
 - How accurate would a learned decision tree be on previously unseen instances?
 - How accurate would it be on its training set?



Evaluation: Accuracy

To get unbiased estimate of model accuracy, we must use a set of instances that are **held-aside** during learning

• This is called a **test set**



Overfitting

Notation: error of model *h* over

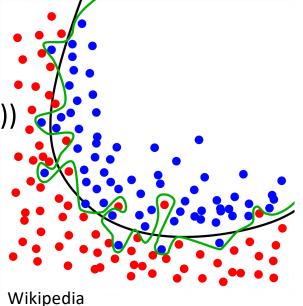
training data: error_D(h)

entire distribution of data: error_D(h)

Model *h* overfits training data if it has

• a low error on the training data (low error_D(h))

• high error on the entire distribution (high error_D(h))



Overfitting Example: Noisy Data

Target function is $Y = X_1 \wedge X_2$

- There is **noise** in some feature values
- Training set:

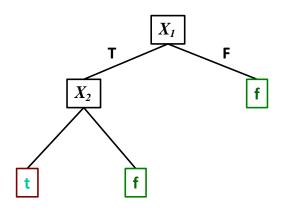
X_{I}	X_2	X_3	X_4	X_5	•••	Y
t	t	t	t	t	•••	t
t	t	f	f	t	•••	t
t	f	t	t	f	•••	t
t	f	f	t	f	•••	f
t	f	t	f	f	•••	f
f	t	t	f	t	•••	f

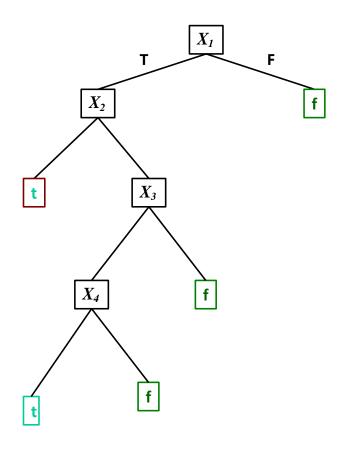
noisy value

Overfitting Example: Noisy Data

Correct tree

Tree that fits noisy training data





Overfitting Example: Noise-Free Data

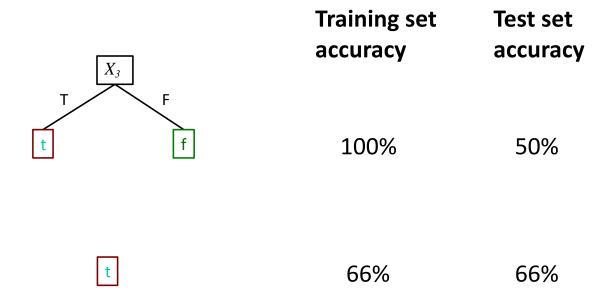
Target function is $Y = X_1 \wedge X_2$

- $P(X_3 = t) = 0.5$ for both classes
- P(Y = t) = 0.67
- Training set:

X_{I}	X_2	X_3	X4	X_5		Y
t	t	t	t	t	•••	t
t	t	t	f	t	•••	t
t	t	t	t	f		t
t	f	f	t	f		f
f	t	f	f	t	•••	f

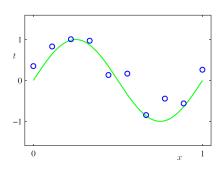
Overfitting Example: Noise-Free Data

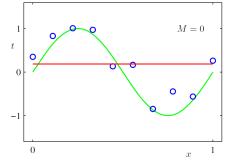
• Training set is a **limited sample.** There might be (combinations of) features that are correlated with the target concept by chance

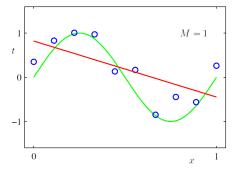


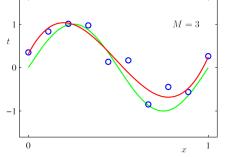
Overfitting Example: Polynomial Regression

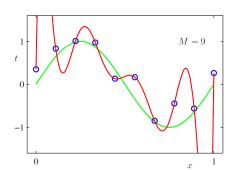
• Training set is a **limited sample.** There might be (combinations of) features that are correlated with the target concept by chance





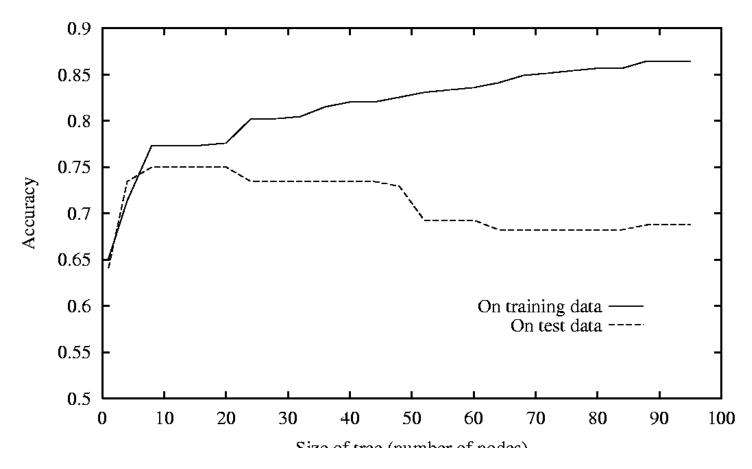






Overfitting: Tree Size vs. Accuracy

• Tree size vs accuracy



General Phenomenon

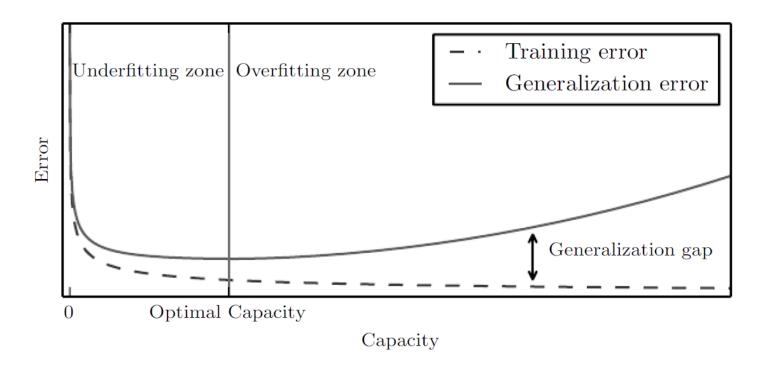


Figure from *Deep Learning*, Goodfellow, Bengio and Courville

DT Learning: Avoiding Overfitting

Two general strategies to avoid overfitting

- 1. early stopping: stop if further splitting not justified by a statistical test
- **2. post-pruning**: grow a large tree, then prune back some nodes
 - Ex: evaluate impact on tuning-set accuracy of pruning each node
 - Greedily remove the one that most improves tuning-set accuracy

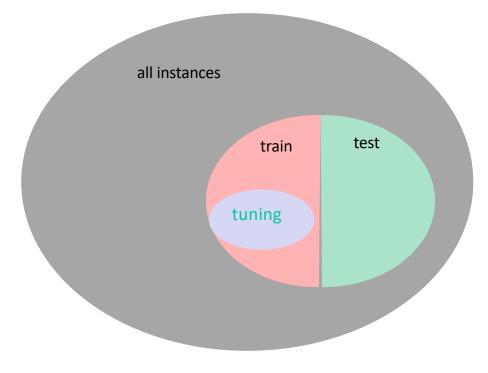
Validation Sets

• A validation set (a.k.a. tuning set) is

not used for primary training process (e.g. tree growing)

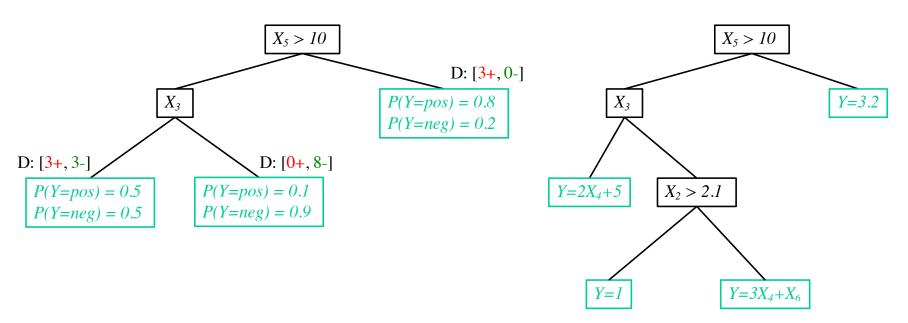
• but used to select among models (e.g. trees pruned to varying

degrees)



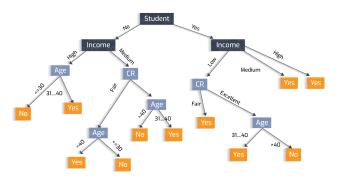
Variations

- Probability estimation trees
 - Leaves: estimate the probability of each class
- Regression trees
 - Either numeric values on leaves, or functions (e.g., linear functions)



Decision Trees: Comments

- Widely used approach
 - Many variations
- Provides humanly comprehensible models
 - When trees not too big
- Insensitive to monotone transformations of numeric features
- Standard methods not suited to on-line setting
- •Usually not among most accurate learning methods

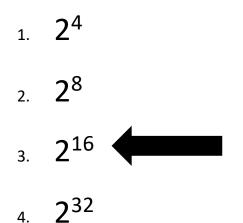


Break & Quiz

Q2-1: How many distinct (binary classification) decision trees are possible with 4 Boolean attributes? Here distinct means representing different functions.

- 1. **2**⁴
- 2. **2**⁸
- 3. **2**¹⁶
- 4. **2**³²

Q2-1: How many distinct (binary classification) decision trees are possible with 4 Boolean attributes? Here distinct means representing different functions.



```
#distinct decision trees
= #distinct Boolean functions
= #functions of 2<sup>4</sup> = 16 inputs, binary label for each input
= 2<sup>16</sup>
```

Q2-2: Which of the following statements is TRUE?

- 1. If there is no noise, then there is no overfitting.
- 2. Overfitting may improve the generalization ability of a model.
- 3. Generalization error is monotone with respect to the capacity/complexity of a model.
- 4. More training data may help preventing overfitting.

Q2-2: Which of the following statements is TRUE?

- 1. If there is no noise, then there is no overfitting.
- 2. Overfitting may improve the generalization ability of a model.
- Generalization error is monotone with respect to the capacity/complexity of a model.
- 4. More training data may help preventing overfitting.

- 1. We can still have false correlation that leads to overfitting.
- 2. Overfitting would undermine the generalization ability.
- 3. Generalization error would first decrease and then increase as the model capacity increases.
- 4. Increasing training data size would help better approximate the true distribution.

Outline

- Continuing from last time: Decision trees
 - Information gain, stopping criteria, overfitting, pruning, variations
- Evaluation: Generalization
 - Train/test split, random sampling, cross validation
- Evaluation: Metrics
 - Confusion matrices, ROC curves, precision/recall

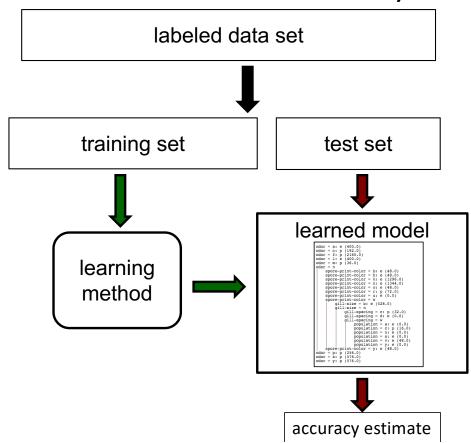
Bias: Accuracy of a Model

• How can we get an unbiased estimate of the accuracy of a

learned model?

•Unbiased estimate of θ

$$\mathbb{E}[\hat{\theta}] = \theta$$



Bias: Using a Test Set

- How can we get an unbiased estimate of the accuracy of a learned model?
 - When learning a model, you should pretend that you don't have the test data yet (it is "in the mail")
 - If the test-set labels influence the learned model in any way, accuracy estimates will be **biased**

•Don't train on the test set!

Bias: Learning Curves

- Accuracy of a method as a function of the train set size?
 - Plot *learning curves*

Training/test set partition

- for each sample size s on learning curve
 - (optionally) repeat *n* times
 - randomly select *s* instances from training set
 - learn model
 - evaluate model on test set to determine accuracy a
 - plot (s, a) or (s, avg. accuracy and error bars)

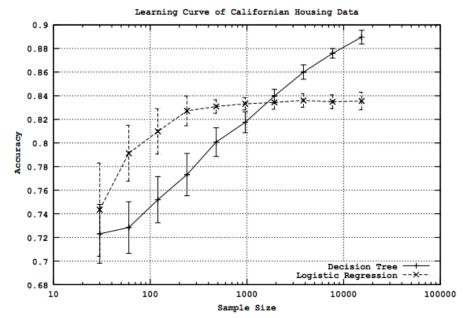


Figure from Perlich et al. Journal of Machine Learning Research, 2003

Single Train/Test Split: Limitations

- May not have enough data for sufficiently large training/test sets
 - A larger test set gives us more reliable estimate of accuracy (i.e. a lower variance estimate)

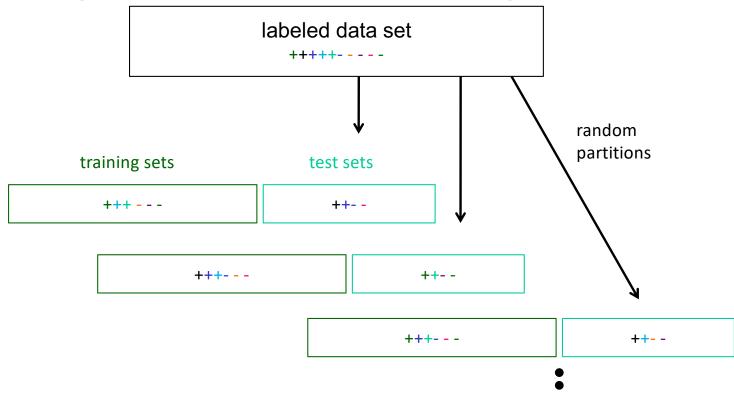
But... a larger training set will be more representative of how much data we

actually have for learning process

 A single training set does not tell us how sensitive accuracy is to a particular training sample

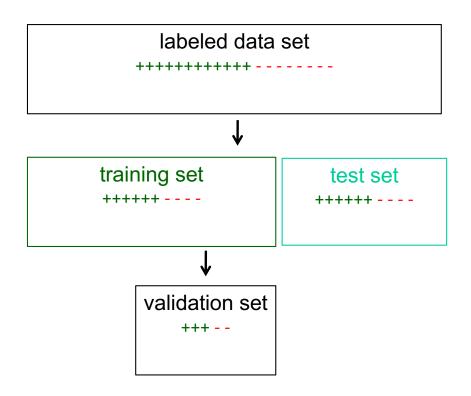
Strategy I: Random Resampling

 Address the second issue by repeatedly randomly partitioning the available data into training and test sets.



Strategy I: Stratified Sampling

• When randomly selecting training or validation sets, we may want to ensure that **class proportions** are maintained in each selected set



This can be done via stratified sampling: first stratify instances by class, then randomly select instances from each class proportionally.

Strategy II: Cross Validation

Partition data into *n* subsamples

labeled data set

S₁ S₂ S₃ S₄ S₅

Iteratively leave one subsample out for the test set, train on the rest

iteration	train on	test on
1	S ₂ S ₃ S ₄ S ₅	S_1
2	S ₁ S ₃ S ₄ S ₅	S ₂
3	S ₁ S ₂ S ₄ S ₅	S ₃
4	S ₁ S ₂ S ₃ S ₅	S ₄
5	S ₁ S ₂ S ₃ S ₄	S ₅

Strategy II: Cross Validation Example

•Suppose we have 100 instances, and we want to estimate accuracy with cross validation

iteration	train on	test on	correct
1	S ₂ S ₃ S ₄ S ₅	s_1	11 / 20
2	S ₁ S ₃ S ₄ S ₅	S ₂	17 / 20
3	S ₁ S ₂ S ₄ S ₅	S ₃	16 / 20
4	S ₁ S ₂ S ₃ S ₅	S ₄	13 / 20
5	S ₁ S ₂ S ₃ S ₄	S ₅	16 / 20

accuracy = 73/100 = 73%

Strategy II: Cross Validation Tips

- 10-fold cross validation is common, but smaller values of *n* are often used when learning takes a lot of time
- in *leave-one-out* cross validation, *n* = # instances
- in *stratified* cross validation, stratified sampling is used when partitioning the data
- CV makes efficient use of the available data for testing
- note that whenever we use multiple training sets, as in CV and random resampling, we are evaluating a <u>learning method</u> as opposed to an <u>individual learned hypothesis</u>

Break & Quiz

- Q2-1: Are these statements true or not?
- (A) The accuracy of a model is the training set accuracy, and its estimator is the test set accuracy.
- (B) An unbiased estimator $\hat{\theta}$ always equals to its corresponding true parameter θ .
- 1. True, True
- 2. True, False
- 3. False, True
- 4. False, False

- Q2-1: Are these statements true or not?
- (A) The accuracy of a model is the training set accuracy, and its estimator is the test set accuracy.
- (B) An unbiased estimator $\hat{\theta}$ always equals to its corresponding true parameter θ .
- 1. True, True
- 2. True, False
- 3. False, True
- 4. False, False

- (A) The accuracy of a model should be based on the true distribution. The training set and test set only approximate the true distribution.
- (B) An unbiased estimator equals to the true parameter in expectation, which means that they won't always be the same for single estimate but the average of a large number of estimates would well approximate the true parameter. An unbiased estimator just makes sure that there's no systematic error.

- Q2-2: Are these statements true or not?
- (A) The sample size on the learning curve is the size of test set.
- (B) A larger training set would provide a lower variance estimate of the accuracy of a learned model.
- 1. True, True
- 2. True, False
- 3. False, True
- 4. False, False

- Q2-2: Are these statements true or not?
- (A) The sample size on the learning curve is the size of test set.
- (B) A larger training set would provide a lower variance estimate of the accuracy of a learned model.
- 1. True, True
- 2. True, False
- 3. False, True
- 4. False, False

- (A) The sample size on the learning curve is for training set.
- (B) A larger test set rather than a larger training set does so.

Q2-3: Which of the following is NOT true?

- Random resampling can tell us how sensitive accuracy of a learning method is.
- 2. Class proportions are maintained same in the stratified sampling.
- 3. In leave-one-out cross validation, the number of partition equals to the number of instances.
- In cross validation, we are evaluating the performance of an individual learned hypothesis.

Q2-3: Which of the following is NOT true?

- 1. Random resampling can tell us how sensitive accuracy of a learning method is.
- 2. Class proportions are maintained same in the stratified sampling.
- 3. In leave-one-out cross validation, the number of partition equals to the number of instances.
- 4. In cross validation, we are evaluating the performance of an individual learned hypothesis.

In cross validation, we are evaluating a learning method as opposed to a specific individual learned hypothesis.

Outline

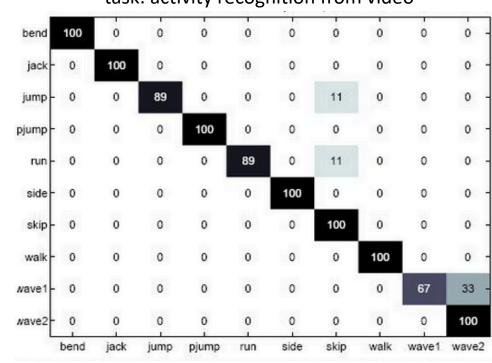
- Continuing from last time: Decision trees
 - Information gain, stopping criteria, overfitting, pruning, variations
- Evaluation: Generalization
 - Train/test split, random sampling, cross validation
- Evaluation: Metrics
 - Confusion matrices, ROC curves, precision/recall

Beyond Accuracy: Confusion Matrices

actual class

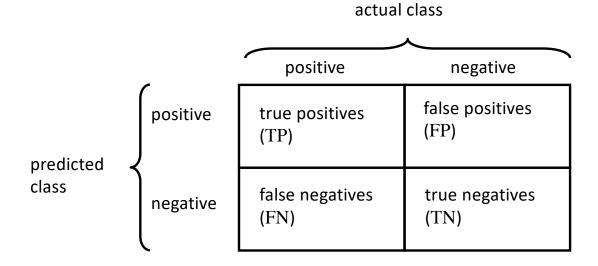
• How can we understand what types of mistakes a learned model makes?

task: activity recognition from video



predicted class

Confusion Matrices: 2-Class Version



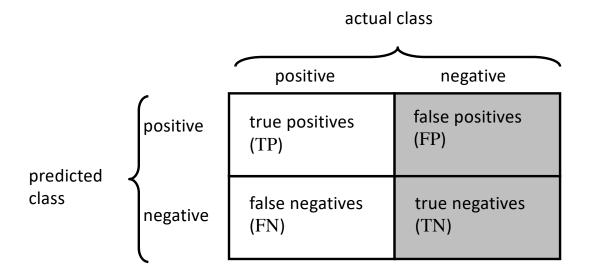
accuracy =
$$\frac{TP + TN}{TP + FP + FN + TN}$$
error = 1 - accuracy =
$$\frac{FP + FN}{TP + FP + FN + TN}$$

Accuracy: Sufficient?

Accuracy may not be useful measure in cases where

- There is a large class skew
 - Is 98% accuracy good when 97% of the instances are negative?
- There are differential misclassification costs say, getting a positive wrong costs more than getting a negative wrong
 - Consider a medical domain in which a false positive results in an extraneous test but a false negative results in a failure to treat a disease
- We are most interested in a subset of high-confidence predictions

Other Metrics

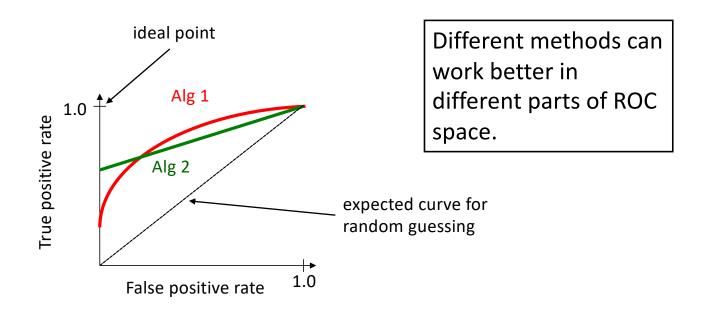


true positive rate (recall) =
$$\frac{TP}{\text{actual pos}}$$
 = $\frac{TP}{TP + FN}$

false positive rate =
$$\frac{FP}{\text{actual neg}}$$
 = $\frac{FP}{TN + FP}$

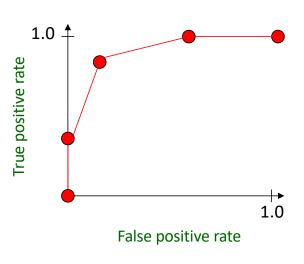
Other Metrics: ROC Curves

• A Receiver Operating Characteristic (ROC) curve plots the TP-rate vs. the FP-rate as a threshold on the confidence of an instance being positive is varied



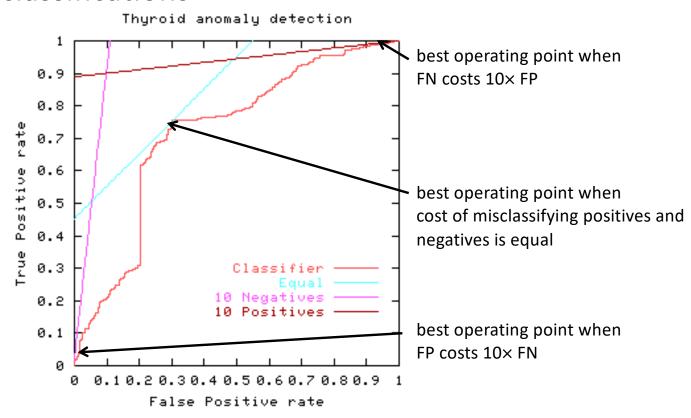
ROC Curves: Plotting

instance	confiden positive	ice	correct class
Ex 9	.99		+
Ex 7	.98	TPR= 2/5, FPR= 0/5	+
Ex 1	.72		-
Ex 2	.70		+
Ex 6	.65	TPR= 4/5, FPR= 1/5	+
Ex 10	.51		-
Ex 3	.39		-
Ex 5	.24	TPR= 5/5, FPR= 3/5	+
Ex 4	.11		-
Ex 8	.01	TPR= 5/5, FPR= 5/5	-

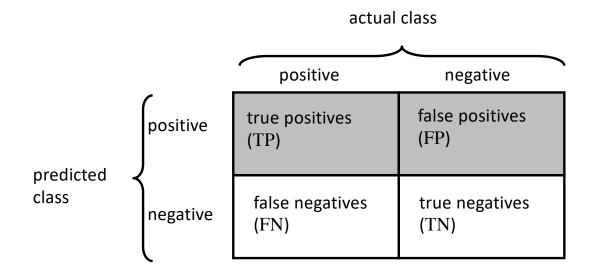


ROC Curves: Misclassification Cost

 The best operating point depends on relative cost of FN and FP misclassifications



Other Metrics: Precision

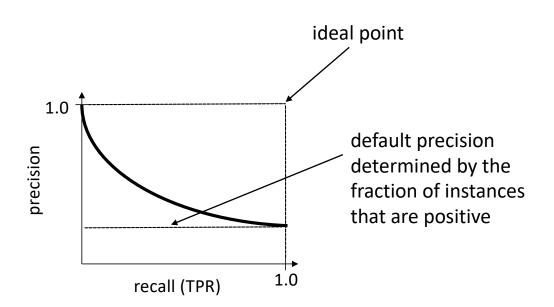


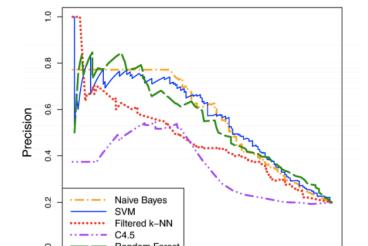
recall (TP rate) =
$$\frac{TP}{\text{actual pos}}$$
 = $\frac{TP}{TP + FN}$

precision (positive predictive value) =
$$\frac{TP}{predicted pos}$$
 = $\frac{TP}{TP + FP}$

Other Metrics: Precision/Recall Curve

• A precision/recall curve (TP-rate): threshold on the confidence of an instance being positive is varied





predicting patient risk for VTE

Recall figure from Kawaler et al., *Proc. of AMIA Annual Symposium*, 2012

0.6

0.8

1.0

0.4

0.2

ROC vs. PR curves

Both

- Allow predictive performance to be assessed at various levels of confidence
- Assume binary classification tasks
- Sometimes summarized by calculating area under the curve

ROC curves

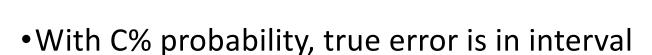
- Insensitive to changes in class distribution (ROC curve does not change if the proportion of positive and negative instances in the test set are varied)
- Can identify optimal classification thresholds for tasks with differential misclassification costs

Precision/recall curves

- Show the fraction of predictions that are false positives
- Well suited for tasks with lots of negative instances

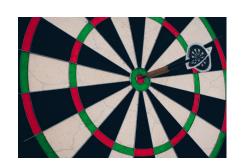
Confidence Intervals

- Back to looking at accuracy on new data.
- •Scenario:
 - For some model h, a test set S with n samples
 - We have *h* producing *r* errors out of *n*.
 - Our estimate of the error rate: $error_s(h) = r/n$



$$error_{S}(h) \pm z_{C} \sqrt{\frac{error_{S}(h)(1 - error_{S}(h))}{n}}$$

• $z_{\rm C}$ depends on C. For 95% confidence, it is ~1.96



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, Yingyu Liang, Volodymyr Kuleshov, Fred Sala